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Motivation

Goal
Count the number of codewords of a certain weight

◦ MacWilliams found a relationship between the Hamming weight enumerator of a code and its dual code.
=⇒ MacWilliams Identity

◦ Linear Programming Bound
◦ Non-Existence Results for the Lee and Homogeneous Metric

Can we derive a MacWilliams-like identity for a similar
enumerator in the Lee/Homogeneous metric?
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Outline

1. The MacWilliams Identity

2. Failure of the Classical Identities

3. Reflexive Partitions of Finite Abelian Groups

4. Application to some Additive Metrics over Finite Chain Rings
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Codes over Z/psZ

integer residue ring : Z/psZ = {0, . . . , ps − 1}
standard inner product : ⟨x, y⟩ :=

∑n

i=1 xiyi, x, y ∈ (Z/psZ)n

Linear code over (Z/psZ)n and its dual
Over Z/psZ, a linear code C of length n is a Z/psZ-submodule of (Z/psZ)n. The elements of C are called
codewords. The dual code of C is

C⊥ = {x ∈ (Z/psZ)n | ⟨x, c⟩ = 0 for every c ∈ C} .

Example over Z/3Z

C = {(0, 0, 0), (1, 0, 0), (2, 0, 0)}

C⊥ = {(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 2, 0), (0, 0, 2), (0, 1, 1), (0, 1, 2), (0, 2, 1), (0, 2, 2)}
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Hamming Weight

Hamming weight and weight enumerator
Let x ∈ (Z/psZ)n and let C ⊆ (Z/psZ)n be a linear code.

Hamming weight of x : wtH(x) = | {i = 1, . . . , n | xi ̸= 0} |

Weight i enumerator of C : W H
C (i) = | {c ∈ C | wtH(c) = i} | for i = 0, . . . , n
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Hamming weight and weight enumerator
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The MacWilliams Identity

◦ Relation between W H
C and W H

C⊥

MacWilliams Identity [MacWilliams ’63]

Given a linear code C ⊆ (Z/psZ)n and its dual C⊥. For every j ∈ {0, . . . , n}, it holds that

W H
C⊥ (j) = 1

| C |

n∑
i=0

Kj(i)W H
C (i),

where, given a p-th root of unity ξ, Kj(i) :=
∑

a∈(Z/psZ)n

wtH(a)=j

ξ⟨a,x⟩ for any x ∈ C with wtH(x) = i.
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Krawtchouk Coefficient for the Hamming Weight Enumerator

Given any x ∈ (Z/psZ)n : wtH(x) = i

Krawtchouk coefficient Kj(i) :=
∑

a∈(Z/psZ)n

wtH(a)=j

ξ⟨a,x⟩

x 0

︷ ︸︸ ︷i ︷ ︸︸ ︷n − i

a ︸ ︷︷ ︸
t

︸ ︷︷ ︸
j − t

0 0

∑
k ̸=0 ξk = (−1)

∑
k=0 ξk = 1
∑

k ̸=0 ξ0 = (ps − 1)
∑

k=0 ξ0 = 1

Kj(i) =
j∑

t=0

(i
t

)(n − i

j − t

) n∏
k=0

∑
ak

ξxkak

=
j∑

t=0

(i
t

)(n − i

j − t

)

(−1)t(ps − 1)j−t
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Example over Z/3Z

MacWilliams Identity

W H
C⊥ (j) = 1

| C |

n∑
i=0

(
j∑

t=0

(i
t

)(n − i

j − t

)
(−1)t(ps − 1)i−t

)
W H

C (i)

C = {(0, 0, 0), (1, 0, 0), (2, 0, 0)}

C⊥ =
{

(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 2, 0), (0, 0, 2), (0, 1, 1), (0, 1, 2), (0, 2, 1), (0, 2, 2)
}

W H
C⊥ (1) = 1

3
(K1(0) + K1(1))

= 1
3

(
1
[(0

0
)(3

1
)

(−1)021
]

+ 2
[(1

0
)(2

1
)

(−1)021 +
(1

1
)(3

0
)

(−1)120
])

= 1
3

(6 + 6) = 4
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Example over Z/3Z

MacWilliams Identity

W H
C⊥ (j) = 1

| C |

n∑
i=0

(
j∑

t=0

(i
t

)(n − i

j − t

)
(−1)t(ps − 1)i−t

)
W H

C (i)
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Outline

1. The MacWilliams Identity

2. Failure of the Classical Identities

3. Reflexive Partitions of Finite Abelian Groups

4. Application to some Additive Metrics over Finite Chain Rings



Lee and Homogeneous Weight over Z/psZ

Lee Weight

wtL(a) := min {a, ps − a}

Homogeneous Weight

wtHom(a) :=


0 a = 0
1 a ̸∈

〈
ps−1

〉
p/(p − 1) a ∈

〈
ps−1

〉
\ {0}

Example over Z/8Z

1 2 3 4 5 6 7

1

2

3

4

Z/8Z

weight Lee

We extend both weights additively, i.e., for x ∈ (Z/psZ)n we have wtL/Hom(x) =
∑n

i=1 wtL/Hom(xi)
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Non-Existence for Lee/Homogeneous Weight Enumerator

Given any x ∈ (Z/psZ)n : wtL(x)/ wtHom(x) = i

Krawtchouk coefficient Kj(i) :=
∑

a∈(Z/psZ)n

wtL(x)/ wtHom(a)=j

ξ⟨a,x⟩

x 0
︷ ︸︸ ︷? ︷ ︸︸ ︷n−?

a ︸ ︷︷ ︸
t

︸ ︷︷ ︸
? − t

0 0︸ ︷︷ ︸
? − t

︸ ︷︷ ︸
n−?−? + t

◦ wtL(x)/ wtHom(x) = i does not imply supp(a) = i.

◦
∑

a∈(Z/psZ)n

wtL(a)/ wtHom(a)=j

ξ⟨a,x⟩ highly depends on the choice of x

◦ H. Gluesing-Luerssen, Partitions of Frobenius Rings Induced by the Homogeneous Weight, 2013.

◦ K. Shiromoto, A note on a basic exact sequence for the Lee and Euclidean weights of linear codes over Zℓ, 2015.

◦ N. Abdelghany, J. Wood, Failure of the MacWilliams identities for the Lee weight enumerator over Zm, m ≥ 5, 2020.

◦ J. Wood, Homogeneous weight enumerators over integer residue rings and failures of the MacWilliams identities, 2023.
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Changing the Approach

Wanted
An enumerator...

◦ giving rise to the weight enumerator (in the relative metric),

◦ with more information about the codeword’s structure,
◦ allowing for a well-defined Krawtchouk coefficient.

Idea: Refine the weight partition!Emma

codewords

0weight partition ω1 ωM. . .

. . . . . .A1 Aℓ B1 Bm0

weight partition

finer partition
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Group Characters

G finite abelian group

Definition - Character
A character χ of G is a complex-valued map χ : G −→ C∗, such that for every α, β ∈ G it holds

χ(α + β) = χ(α)χ(β).

◦ Ĝ = HomZ(G,C∗): set of all characters

Examples

◦ G = (Z/mZ, +): For any a, x ∈ G, χa(x) :=
(

e
2πi
m

)ax

.

◦ G = GR(ps, r): For any a, x ∈ G, χa(x) := χa(x) = ξTr(ax), where ξ is a ps-th root of unity.

G = GR(ps, r): −→ Extends to Gn as χa(x) = ξTr(⟨ax⟩)

J. Bariffi, 23.04.2025 10



Group Characters

G finite abelian group

Definition - Character
A character χ of G is a complex-valued map χ : G −→ C∗, such that for every α, β ∈ G it holds

χ(α + β) = χ(α)χ(β).
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Partitions of an Abelian Group

Partition (based on [Zinoviev and Ericson, 2009])
A partition P = P1 | · · · | Pm of a finite abelian group G consists of nonempty, pairwise disjoint sets
Pi ⊆ G that cover G.

Given another partition Q of G. We call P coarser than Q if the blocks of P contain the blocks of Q.

Example
Consider G = Z/8Z

◦ Partition based on Hamming weight: P = {a ∈ G | wtH(a) = 0}︸ ︷︷ ︸
P0

| {a ∈ G | wtH(a) = 1}︸ ︷︷ ︸
P1

◦ Partition based on ring structure:ght Q = {0}︸︷︷︸
Q0

|
{

a ∈ G \ {0} | a ∈ G×
}︸ ︷︷ ︸

Q1

|
{

a ∈ G \ {0} | a ̸∈ G×
}︸ ︷︷ ︸

Q2

◦ For a code C ≤ G, denote by PEP (C) its partition enumerator.

J. Bariffi, 23.04.2025 11
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(Fourier)-Reflexive Partition
◦ P = P1 | P2 | · · · | Pm a partition of G

◦ Define the dual partition P̂ = Q1 | Q2 | · · · | Qℓ as partition of Ĝ via the equivalence relation

χ ∼
P̂

χ′ if and only if
∑
x∈Pi

χ(x) =
∑
x∈Pi

χ′(x) for all i = 1, . . . , m.

◦ For χ ∈ Qj , call Kj(i) :=
∑

x∈Pi
χ(x) the generalized Krawtchouk coefficient

Reflexive Partition
If ̂̂P = P, then P is said to be (Fourier)-reflexive.

Theorem [Gluessing-Luerssen, 2015]
A partition P is reflexive if and only if P and P̂ consist of the same number of blocks.

Example over G = Z/6Z

◦ P = {0} | {1, 3, 5} | {2, 4} =⇒ P̂ = {0} | {1, 2, 4, 5} | {3} reflexive
◦ P = {0} | {1, 2} | {3, 4, 5} =⇒ P̂ = {0} | {1} | {2, 4} | {3} | {5} not reflexive

J. Bariffi, 23.04.2025 12
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χ ∼
P̂

χ′ if and only if
∑
x∈Pi

χ(x) =
∑
x∈Pi

χ′(x) for all i = 1, . . . , m.

◦ For χ ∈ Qj , call Kj(i) :=
∑

x∈Pi
χ(x) the generalized Krawtchouk coefficient

Reflexive Partition
If ̂̂P = P, then P is said to be (Fourier)-reflexive.

Theorem [Gluessing-Luerssen, 2015]
A partition P is reflexive if and only if P and P̂ consist of the same number of blocks.

Example over G = Z/6Z

◦ P = {0} | {1, 3, 5} | {2, 4} =⇒ P̂ = {0} | {1, 2, 4, 5} | {3} reflexive
◦ P = {0} | {1, 2} | {3, 4, 5} =⇒ P̂ = {0} | {1} | {2, 4} | {3} | {5} not reflexive

J. Bariffi, 23.04.2025 12



(Fourier)-Reflexive Partition
◦ P = P1 | P2 | · · · | Pm a partition of G

◦ Define the dual partition P̂ = Q1 | Q2 | · · · | Qℓ as partition of Ĝ via the equivalence relation
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Example over G = Z/6Z

◦ P = {0} | {1, 3, 5} | {2, 4} =⇒ P̂ = {0} | {1, 2, 4, 5} | {3} reflexive
◦ P = {0} | {1, 2} | {3, 4, 5} =⇒ P̂ = {0} | {1} | {2, 4} | {3} | {5} not reflexive
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Existence of Partition-based MacWilliams Identities

Theorem [Gluessing-Luerssen, 2015]
Let P and Q be partitions of G and Ĝ, respectively. Given a code C ≤ G and its dual C⊥. If P = Q̂ (P is
reflexive) then the MacWilliams identities hold, i.e.,

PEQj
(C⊥) = 1

| C |

m∑
i=1

Kj(i)PEPi
(C)

Example of reflexive partition ([Gluessing-Luerssen, 2015])

◦ G finite additive abelian group, H ≤ Aut(G)
◦ PH partition of G obtained by orbits of H

=⇒ PH is reflexive
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Induced Partitions
◦ Go from a partition P = P1 | . . . | Pm of G to a partition of Gn

◦ Define equivalence relation on Gn, for every j = 1, . . . , m, by

(g1, . . . , gn) ∼ (g′
1, . . . , g′

n) if and only if | {i = 1, . . . n | gi ∈ Pj} | =
∣∣ {i = 1, . . . n | g′

i ∈ Pj

} ∣∣

Symmetrized Partition
The partition associated with the equivalence relation is called (induced) symmetrized partition Pn

sym of
Gn.

Example - symmetrized Hamming weight partition
Let G = Z/5Z and PH = {0} | {1, 2, 3, 4} the Hamming weight partition of G.

Consider G2:
( 0 , 1 ) ∼ ( 0 , 2 ) ∼ ( 3 , 0 ) ∼ . . .

Hamming weight 1

( 1 , 1 ) ∼ ( 1 , 2 ) ∼ ( 2 , 4 ) ∼ . . . Hamming weight 2

0

P2
H,sym =

{
g ∈ G2 | wtH(g) = 0

}
|
{

g ∈ G2 | wtH(g) = 1
}

|
{

g ∈ G2 | wtH(g) = 2
}
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Reflexive Symmetrized Partitions

Theorem [Gluessing-Luerssen, 2015]
Let P be a partition of G such that {0} is a block of P. It holds that P̂n

sym = P̂n
sym. Consequently, if P is

reflexive, then Pn
sym is reflexive too.

Examples

◦ (symmetrized) Hamming weight partition PH and Pn
H,sym

◦ Singleton partition PSing = {0} | {g1} | . . . | {gm}, for all gi ∈ G, and Pn
Sing,sym
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Outline

1. The MacWilliams Identity

2. Failure of the Classical Identities

3. Reflexive Partitions of Finite Abelian Groups

4. Application to some Additive Metrics over Finite Chain Rings



Set-Up and Goal

Consider a finite chain ring R, a ring-linear code C ⊆ Rn, and an additive weight over R.

Wanted
A partition-based enumerator of Rn...

◦ giving rise to the weight enumerator (in the relative metric),
◦ with more information about the codeword’s structure,
◦ allowing for a well-defined Krawtchouk coefficient.

Candidate
A reflexive symmetrized partition of Rn, finer than the weight partition.

Question:
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Set-Up and Goal

Consider a finite chain ring R, a ring-linear code C ⊆ Rn, and an additive weight over R.

Wanted
A partition-based enumerator of Rn...

◦ giving rise to the weight enumerator (in the relative metric),
◦ with more information about the codeword’s structure,
◦ allowing for a well-defined Krawtchouk coefficient.

Candidate
A reflexive symmetrized partition of Rn, finer than the weight partition.
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Lee Weight Partition

Lee Partition
For any x ∈ (Z/psZ)n we define its Lee partition πL(x) = (πL

0(x), πL
1(x), . . . , πL

M (x)) by

πL
i (x) = | {k = 1, . . . , n | wtL(xk) = i} | .

Example over Z/4Z

codewords of Lee weight 2 : (0, 2, 0), (0, 0, 2)︸ ︷︷ ︸, (0, 1, 1), (0, 1, 3), (0, 3, 1), (0, 3, 3)︸ ︷︷ ︸
Lee partition πL : (2, 0, 1) (1, 2, 0)

Note! We can derive any additive weight wt(x) for x ∈ Z/psZ from this decomposition, i.e.,

wt(x) =
M∑

i=0

πL
i (x) wt(i).

J. Bariffi, 23.04.2025 17



Lee Weight Partition

Lee Partition
For any x ∈ (Z/psZ)n we define its Lee partition πL(x) = (πL

0(x), πL
1(x), . . . , πL

M (x)) by

πL
i (x) = | {k = 1, . . . , n | wtL(xk) = i} | .

Example over Z/4Z

C =
{

(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 3, 0), (0, 0, 3), (0, 2, 0), (0, 0, 2), (0, 1, 1),

(0, 1, 3), (0, 3, 1), (0, 3, 3), (0, 1, 2), (0, 2, 1), (0, 3, 2), (0, 2, 3), (0, 2, 2)
}

codewords of Lee weight 2 : (0, 2, 0), (0, 0, 2)︸ ︷︷ ︸, (0, 1, 1), (0, 1, 3), (0, 3, 1), (0, 3, 3)︸ ︷︷ ︸
Lee partition πL : (2, 0, 1) (1, 2, 0)

Note! We can derive any additive weight wt(x) for x ∈ Z/psZ from this decomposition, i.e.,

wt(x) =
M∑

i=0

πL
i (x) wt(i).

J. Bariffi, 23.04.2025 17



Lee Weight Partition

Lee Partition
For any x ∈ (Z/psZ)n we define its Lee partition πL(x) = (πL

0(x), πL
1(x), . . . , πL

M (x)) by

πL
i (x) = | {k = 1, . . . , n | wtL(xk) = i} | .

Example over Z/4Z

C =
{

(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 3, 0), (0, 0, 3) , (0, 2, 0), (0, 0, 2),(0, 1, 1),(0, 1, 3), (0, 3, 1), (0, 3, 3) ,

(0, 1, 2), (0, 2, 1),(0, 3, 2), (0, 2, 3) , (0, 2, 2)
}

codewords of Lee weight 2 : (0, 2, 0), (0, 0, 2)︸ ︷︷ ︸, (0, 1, 1), (0, 1, 3), (0, 3, 1), (0, 3, 3)︸ ︷︷ ︸
Lee partition πL : (2, 0, 1) (1, 2, 0)

Note! We can derive any additive weight wt(x) for x ∈ Z/psZ from this decomposition, i.e.,

wt(x) =
M∑

i=0

πL
i (x) wt(i).

J. Bariffi, 23.04.2025 17



Lee Weight Partition

Lee Partition
For any x ∈ (Z/psZ)n we define its Lee partition πL(x) = (πL

0(x), πL
1(x), . . . , πL

M (x)) by

πL
i (x) = | {k = 1, . . . , n | wtL(xk) = i} | .

Example over Z/4Z

C =
{

(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 3, 0), (0, 0, 3) , (0, 2, 0), (0, 0, 2),(0, 1, 1),(0, 1, 3), (0, 3, 1), (0, 3, 3) ,

(0, 1, 2), (0, 2, 1),(0, 3, 2), (0, 2, 3) , (0, 2, 2)
}

codewords of Lee weight 2 : (0, 2, 0), (0, 0, 2)︸ ︷︷ ︸, (0, 1, 1), (0, 1, 3), (0, 3, 1), (0, 3, 3)︸ ︷︷ ︸
Lee partition πL : (2, 0, 1) (1, 2, 0)

Note! We can derive any additive weight wt(x) for x ∈ Z/psZ from this decomposition, i.e.,

wt(x) =
M∑

i=0

πL
i (x) wt(i).

J. Bariffi, 23.04.2025 17



Lee Weight Partition

Lee Partition
For any x ∈ (Z/psZ)n we define its Lee partition πL(x) = (πL

0(x), πL
1(x), . . . , πL

M (x)) by

πL
i (x) = | {k = 1, . . . , n | wtL(xk) = i} | .

Example over Z/4Z

C =
{

(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 3, 0), (0, 0, 3) , (0, 2, 0), (0, 0, 2) ,

(0, 1, 1),(0, 1, 3), (0, 3, 1), (0, 3, 3) , (0, 1, 2), (0, 2, 1),(0, 3, 2), (0, 2, 3) , (0, 2, 2)
}

codewords of Lee weight 2 : (0, 2, 0), (0, 0, 2)︸ ︷︷ ︸, (0, 1, 1), (0, 1, 3), (0, 3, 1), (0, 3, 3)︸ ︷︷ ︸
Lee partition πL : (2, 0, 1) (1, 2, 0)

Note! We can derive any additive weight wt(x) for x ∈ Z/psZ from this decomposition, i.e.,

wt(x) =
M∑

i=0

πL
i (x) wt(i).

J. Bariffi, 23.04.2025 17



Lee Weight Partition

Lee Partition
For any x ∈ (Z/psZ)n we define its Lee partition πL(x) = (πL

0(x), πL
1(x), . . . , πL

M (x)) by

πL
i (x) = | {k = 1, . . . , n | wtL(xk) = i} | .

Example over Z/4Z

C =
{

(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 3, 0), (0, 0, 3) , (0, 2, 0), (0, 0, 2) ,

(0, 1, 1),(0, 1, 3), (0, 3, 1), (0, 3, 3) , (0, 1, 2), (0, 2, 1),(0, 3, 2), (0, 2, 3) , (0, 2, 2)
}

codewords of Lee weight 2 : (0, 2, 0), (0, 0, 2)︸ ︷︷ ︸, (0, 1, 1), (0, 1, 3), (0, 3, 1), (0, 3, 3)︸ ︷︷ ︸
Lee partition πL : (2, 0, 1) (1, 2, 0)

Note! We can derive any additive weight wt(x) for x ∈ Z/psZ from this decomposition, i.e.,

wt(x) =
M∑

i=0

πL
i (x) wt(i).

J. Bariffi, 23.04.2025 17



Symmetrized Lee Partition

Set of Lee partitions DL
ps,n :=

{
π ∈ {0, . . . , n}M+1

∣∣∣ ∑M+1
i=0 πi = n

}
symmetrized Lee partition Pn

L,sym = P L
π(0) | P L

π(1) | · · · | P L
π(D−1) , π(i) ∈ DL

ps,n

Proposition [B., Cavicchioni, Weger, ´24]
The symmetrized Lee partition Pn

L,sym is reflexive.

Idea.
◦ Underlying partition PL of Z/psZ into Lee weights is based on orbits of {±1}

◦ PL is reflexive
◦ Pn

L,sym is reflexive

J. Bariffi, 23.04.2025 18
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Krawtchouk Coefficient for the Lee Partition

Set of Lee partitions DL
ps,n :=

{
π ∈ {0, . . . , n}M+1

∣∣∣ ∑M+1
i=0 πi = n

}
Lee partition enumerator DL

π(C) :=
∣∣ {c ∈ C | πL(c) = π

} ∣∣
Krawtchouk coefficient KL

π(ρ) =
∑
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±1 · · ·
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±M

a πL(a) = ρ0
t00︸ ︷︷ ︸

t0

±1
t01

· · · ±M

t0M

0
t10

±1
t11

· · · ±M

t1M︸ ︷︷ ︸
t1

· · · 0
tM0

±1
tM1

· · · ±M

tMM︸ ︷︷ ︸
tM
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π(ρ) is independent on the choice of x ∈ (Z/psZ)n
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Lee Metric - MacWilliams-like Identity

MacWilliams Identity for the Lee Partition Enumerator

DL
π(C⊥) = 1

| C |

∑
π∈DL

ps,n

KL
ρ(π)DL

ρ(C),

where the Krawtchouk coefficient exists and is given by

KL
ρ(π) =


∑

t∈CompL
ρ<π

(∏M

i=0

(
πi

ti0,...,tiM

)∏M−1
j=1

(
ξ−ij + ξij

)tij
ξiM

)
if p = 2∑

t∈CompL
ρ<π

(∏M

i=0

(
πi

ti0,...,tiM

)∏M

j=1

(
ξ−ij + ξij

)tij

)
otherwise

Credits:
◦ MacWilliams in 1963: Over Fps

◦ Astola in 1982: Association schemes
◦ Solé in 1986: Association schemes
◦ Gluessing-Luerssen 2015: Fourier-reflexive partitions
◦ B., Cavicchioni, Weger in 2024: Identity is true over any finite chain ring R for all additive weights.
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A Partition for any Additive Weight

codewords

wtH = 0 wtH = 1 . . .

0 ω1 ωℓ. . .

. . .. . .. . .wtL = 1 wtL = 2 wtL = MwtL = 0

sym. Hamming weight partition

some symmetrized weight partition

symmetrized Lee weight partition
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Homogeneous Weight-Unit Partition
Recall the homogeneous weight over Z/psZ

wtHom(x) :=


0 if x = 0
1 if x ̸∈

〈
ps−1

〉
\ {0}

p
p−1 if x ∈

〈
ps−1

〉

◦ Homogeneous weight partition
◦ H. Gluesing-Luerssen, Partitions of Frobenius Rings Induced by the Homogeneous Weight, 2021.

◦ Consider the following partition of Z/psZ: PHom = Z | U | S | R, where

Z := {0} , U := (Z/psZ)×, S := ps−1(Z/psZ), R := {x ∈ Z/psZ | x ̸∈ Z ∪ U ∪ S}

Homogeneous Weight-Unit Partition
Given a finite chain ring R and x ∈ Rn, define the homogeneous weight-unit partition of x as

πHom(x) = (πHom
Z (x), πHom

U (x), πHom
S (x), πHom

R (x)), πHom
I (x) = | {k = 1, . . . , n | xk ∈ I} | .
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Symmetrized Homogeneous Weight-Unit Partition

Set of hom. partitions DHom
ps,n :=

{
π ∈ {0, . . . , n}4

∣∣∣ ∑I∈{Z,U,R,S} πI = n

}
symmetrized hom. partition Pn

Hom,sym := P Hom
π(0) | P Hom

π(1) | · · · | P Hom
π(D−1) , π(i) ∈ DHom

ps,n

Proposition [B., Cavicchioni, Weger, ´24]
The symmetrized homogeneous weight-unit partition Pn

Hom,sym is reflexive.

Idea.
For each I, J ∈ {Z, U, R, S} compute the expression

∑
x∈J

ξTr(a·x):

I \ J Z U S R

Z 1 qs−1(q − 1) q − 1 qs−1 − q

U 1 0 −1 0
S 1 −qs−1 q − 1 qs−1 − q

R 1 0 q − 1 −q
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Homogeneous Metric - MacWilliams-like Identity
Homogeneous weight-unit partition πHom(x) = (πHom

Z (x), πHom
U (x), πHom

S (x), πHom
R (x)),

πHom
I (x) = | {k = 1, . . . , n | xk ∈ I} |

MacWilliams-like Identity for the Homogeneous Weight [B., Cavicchioni, Weger ’24]

DHom
ρ (C⊥) = 1

| C |

∑
π∈DHom

ps,n

KHom
ρ (π)DHom

π (C),

where the Krawtchouk coefficient exists and is given by

KHom
ρ (π) =

∑
t∈CompHom

ρ<π

( ∏
i∈IHom

( πi

ti0, . . . , tiM

))
(−1)tUS (−ps−1)tSU

(
ps−1(p − 1)

)tZU

(
ps−1 − p)

)tZR (p − 1)tZS+tSS+tSR+tRS1{tUU =tUR=tRU =tRR=0}.
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Subfield Metric

Subfield Metric
Given a finite field Fps the subfield weight of an element a ∈ Fps is defined as

wtλ(a) =


0 if a = 0
1 if a ∈ F×

p

λ if a ∈ Fps \ Fp

◦ MacWilliams identities fail, in general, for the subfield weight partition
◦ Similar approach as for homogeneous metric:

Oa0 = {0} , Oa1 = F×
p

Oai = aiF×
p , for ai ∈ Fps \

(
⊔i−1

j=0Oaj

)
and i = 2, . . .

ps − 1
p − 1

.

=⇒ Is reflexive (since based on orbits of F×
p )
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Subfield-Trace Partition

Subfield-Trace Partition
Given a finite field Fps . The subfield-trace partition of Fps is defined as Pλ = Iλ

0 | Iλ
1 | Iλ

2 | Iλ
3 , where

Iλ
0 := {0} , Iλ

1 := F×
p , Iλ

2 := {x ∈ Fps \ Fp | Tr(x) = 0} and Iλ
3 := {x ∈ Fps \ Fp | Tr(x) ̸= 0} .

◦ Denote the symmetrized subfield-trace partition of Fn
ps by Pn

λ,sym.

Proposition [B., Cavicchioni, Weger, ´24]
The subfield-trace partition Pλ of Fps is reflexive (and so is Pn

λ,sym).
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Subfield Metric - MacWilliams-like Identity

Set of λ-trace partitions Dλ
p,r,1,n =

{
π ∈ {0, . . . , n}4

∣∣ ∑3
i=0 πi = n

}
Symmetrized λ-trace partition Pn

λ,sym := P λ
π(0) | · · · | P λ

π(D−1)

λ-trace enumerator Dλ
π(C) :=

∣∣P λ
π ∩ C

∣∣ π(i) ∈ Dλ
pr,n

MacWilliams-like Identity for the Homogeneous Weight [B., Cavicchioni, Weger ’24]

Dλ
ρ (C⊥) = 1

| C |

∑
π∈Dλ

p,r,1,n

Kλ
π (ρ)Dλ

π(C),

where the Krawtchouk coefficient exists and is given by Kλ
π (ρ) =

∑
t∈Compλ

π(ρ)

(∏3
i=0

(
πi

ti0,...,ti3

))
· κλ

and

κλ :=
{

(p − 1)t01+t11+t21+t03 (−1)t31 (−p)t22 (pr−1 − p)t02+t12 (−pr−1)t13 (pr−1)t03 if r | p,

(p − 1)t01+t03 (−1)t11+t22+t33+t32 (1 − p)t23 (pr−1 − 1)t02+t03+t12+t21 (1 − pr−1)t13 otherwise.
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Wrap up

Found
A partition-based enumerator...

◦ giving rise to the weight enumerator (in the relative metric),
◦ with more information about the codeword’s structure,
◦ allowing for a well-defined Krawtchouk coefficient,
◦ using the coarsest symmetrized partition.

Open Questions
◦ Coarser partitions of Rn that are not symmetrized?
◦ Other metrics?

Thank you for
your attention!
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