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Motivation m

Goal
Count the number of codewords of a certain weight

o MacWilliams found a relationship between the Hamming weight enumerator of a code and its dual code.
=— MacWilliams Identity

o Linear Programming Bound

o Non-Existence Results for the Lee and Homogeneous Metric

Can we derive a MacWilliams-like identity for a similar
enumerator in the Lee/Homogeneous metric?

J. Bariffi, 23.04.2025
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Codes over Z/p°Z

integer residue ring :  Z/p3Z ={0,...,p* — 1}

standard inner product : (x,y) 1= Z?:l ziyi, x,y € (Z/pSL)™

Linear code over (Z/p3Z)™ and its dual
Over Z/p°Z, a linear code C of length n is a Z/p*Z-submodule of (Z/psZ)™. The elements of C are called

codewords. The dual code of C is

¢t ={z e (Z/p*Z)" | (x,¢) =0 for every ¢ € C}.
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Linear code over (Z/p3Z)™ and its dual
Over Z/p°Z, a linear code C of length n is a Z/p*Z-submodule of (Z/psZ)™. The elements of C are called

codewords. The dual code of C is
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Codes over Z/p°Z m

integer residue ring :  Z/p3Z ={0,...,p* — 1}
standard inner product : (x,y) 1= Z?:l ziyi, x,y € (Z/pSL)™

Linear code over (Z/p3Z)™ and its dual
Over Z/p°Z, a linear code C of length n is a Z/p*Z-submodule of (Z/psZ)™. The elements of C are called
codewords. The dual code of C is

¢t ={z e (Z/p*Z)" | (x,¢) =0 for every ¢ € C}.

Example over Z/3Z

C =
ct =

(0,0,0),(1,0,0),(2,0,0)}

{
{(0,0,0),(0,1,0),(0,0,1),(0,2,0), (0,0,2), (0,1,1),(0,1,2), (0,2,1),(0,2,2)}

J. Bariffi, 23.04.2025 2



Hamming Weight

Hamming weight and weight enumerator
Let x € (Z/p°Z)™ and let C C (Z/p*Z)™ be a linear code.

Hamming weight of z: wty(z) =[{i=1,...,n|z; #0}|

Weight i enumerator of C : Wg'(z) =|{ceC| wth(c) =14}| fori=0,...
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Hamming weight and weight enumerator
Let x € (Z/p°Z)™ and let C C (Z/p*Z)™ be a linear code.

Hamming weight of z: wty(z) =[{i=1,...,n|z; #0}|
Weight i enumerator of C : Wg'(z) =|{ceC| wth(c) =14}| fori=0,...

Example over Z/37Z

C= {(0,0, 0), (0, 1,0),(0,0,1),(0,2,0),(0,0,2),(0,1,1),(0,1,2),(0,2,1), (0,2, 2)}
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Hamming Weight

Hamming weight and weight enumerator
Let x € (Z/p°Z)™ and let C C (Z/p*Z)™ be a linear code.

Hamming weight of z: wty(z) =[{i=1,...,n|z; #0}|
Weight i enumerator of C : Wg'(z) =|{ceC| wth(c) =14}| fori=0,...

Example over Z/37Z
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Hamming Weight

Hamming weight and weight enumerator
Let x € (Z/p°Z)™ and let C C (Z/p*Z)™ be a linear code.

Hamming weight of z: wty(z) =[{i=1,...,n|z; #0}|
Weight i enumerator of C : Wg'(z) =|{ceC| wth(c) =14}| fori=0,...

Example over Z/37Z

¢ =1{(0,0,0),(0,1,0),(0,0,1),(0,2,0),(0,0,2),(0,1,1),(0,1,2),(0,2,1),(0,2,2) }

wty=0 wty=1 wty=2

%% %o
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The MacWilliams Identity

o Relation between Wg' and Wg'L

MacWilliams Identity [MacWilliams ’63]

Given a linear code C C (Z/p°Z)™ and its dual C*. For every j € {0,...,n}, it holds that

W, (j) = i‘ K;()WH (@),

i=0

Z £(%%) for any x € C with wty(z) = 4.

a€(z/p )"
wty (a)=j

where, given a p-th root of unity &, K;(i) :=

J. Bariffi, 23.04.2025



Krawtchouk Coefficient for the Hamming Weight Enumerator

Given any =z € (Z/pSZ)" : wty(z) =1
Krawtchouk coefficient K (i) := Z glaw)

a€(Z/pZ)"™
wty (a)=j

J. Bariffi, 23.04.2025
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Krawtchouk Coefficient for the Hamming Weight Enumerator

Given any =z € (Z/pSZ)" : wty(z) =1

Krawtchouk coefficient K (i) := Z glaw)
a€(z/p°2)"
win (a)=3
i n—1
T 0
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Krawtchouk Coefficient for the Hamming Weight Enumerator

Given any =z € (Z/pSZ)" : wty(z) =1

Krawtchouk coefficient K (i) := Z §<‘W”>
a€(Z/p )"
wty (a)=j
i n—i
T ’ | 0 ‘
a ’ 0 | 0 ‘
t -t

J. Bariffi, 23.04.2025
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Krawtchouk Coefficient for the Hamming Weight Enumerator

Given any

Krawtchouk coefficient

J. Bariffi,

23.04.2025

z € (Z/p*L)"

Ki(i) = Y gl

a€(Z/pZ)"™
wty (a)=j

s owty(x) =14

0= OC [T e

t=0 k=0 ay
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Krawtchouk Coefficient for the Hamming Weight Enumerator

Given any

Krawtchouk coefficient

n-—1
| | 0 |
a ’ 0 | 0 ‘
t j—t
J. Bariffi, 23.04.2025

z € (Z/p*L)"

KJ(Z) =

s owty(x) =14

Z 5(%9@)

a€(Z/pZ)"™
wty(a)=j



Krawtchouk Coefficient for the Hamming Weight Enumerator

Krawtchouk coefficient

Zk;éo ¢ =

J. Bariffi, 23.04.2025
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Krawtchouk Coefficient for the Hamming Weight Enumerator

Given any =z € (Z/pSZ)" : wty(z) =1

Krawtchouk coefficient K (i) := Z glaw)

a€(Z/p°Z)"
wty (a)=j

. ] K0 -3 O H [T e
t=0 k=0 ayp
! e SO0 e
t=0
Do =1
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Krawtchouk Coefficient for the Hamming Weight Enumerator TUT

Given any =z € (Z/pSZ)" : wty(z) =1

Krawtchouk coefficient K (i) := Z glaw)

a€(Z/p°Z)"
wty (a)=j
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Example over Z/37Z

MacWilliams Identity

t=0

n J .
W, () = ﬁ > <Z ® (?:Z)(—Ut(ps - 1)i_t> WH (i)
i=0

¢ = {(0,0,0),(1,0,0), (2,0,0)}
¢t ={(0,0,0),(0,1,0),(0,0,1),(0,2,0), (0,0,2), (0,1,1),(0,1,2),(0,2,1),(0,2,2) }
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Example over Z/37Z

MacWilliams Identity

n J .
Wc“m'):lélZ(Z (ﬁ)(?: (-1)'(p* - 1)~ )Wc“u)
i=0

¢ = {(0,0,0),(1,0,0), (2,0,0)}
¢+t ={(0,0,0), (0,1,0), (0,0, 1), (0, 2,0), (0,0, 2),(0,1,1),(0,1,2),(0,2,1),(0,2,2) }

WL (1) = < (WEH(0)K1(0) + WE (1) K1 (1) + WH(2)K1(2) + WE (3)K1(3))

o:)\»—t
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Example over Z/37Z

MacWilliams Identity

n J X
v@m=@2&2@@<U@A>>Wm
i=0

C:{ (0,0,0), (1,0,0), (2,0, 0)}

¢t ={(0,0,0), (0,1,0), (0,0, 1), 0, 2,0), (0,0, 2),(0,1,1),(0,1,2),(0,2,1),(0,2,2) }

Wl (1) = 2 (WE0)K1(0) + WE (1) K1 (1) + W (2)K1(2) + W (3) K1 (3))

o:)\»—t
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Example over Z/37Z

MacWilliams Identity

t=0

n J .
W, () = ﬁ > <Z ® (?:Z)(—Ut(ps - 1)i_t> WH (i)
i=0

C:{ (0,0,0), (1,0,0), (2,0, 0)}

¢t ={(0,0,0), (0,1,0), (0,0, 1), 0, 2,0), (0,0, 2),(0,1,1),(0,1,2),(0,2,1),(0,2,2) }

W)= (1 Ki(0)+ 2 - K1 (1)

Wl =
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Example over Z/37Z

MacWilliams Identity

n J .
W, () = ﬁ > <Z ® (?:Z)(—Ut(ps - 1)i_t> WH (i)
i=0

t=0

C:{ (0,0,0), (1,0,0), (2,0, 0) }

¢t ={(0,0,0), (0,1,0), (0,0, 1), 0, 2,0), (0,0, 2),(0,1,1),(0,1,2),(0,2,1),(0,2,2) }

WL (1) = 5 (1 Ka(0) +2- Ka (1)

- % (1 [(8) (?)(—1)021] +2 [((1)) (f)(—1)021 n (1) (g)(_1)120])

J. Bariffi, 23.04.2025



Example over Z/37Z

MacWilliams Identity

n J .
W, () = ﬁ > <Z ® (?:Z)(—Ut(ps - 1)i_t> WH (i)
i=0

t=0

C:{ (0,0,0), (1,0,0), (2,0, 0) }

¢t ={(0,0,0), (0,1,0), (0,0, 1), 0, 2,0), (0,0, 2),(0,1,1),(0,1,2),(0,2,1),(0,2,2) }

1

ng(l):5(1'K1(0)+2'K1(1))
1 0y /3 1\ /2 1\ /3
=3 (1@ Q2] +2 [ () ) -vr2t+ () (o) -v'2°] )
:%(6+6):4
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2. Failure of the Classical Identities



Lee and Homogeneous Weight over Z/p*Z

Lee Weight

wti (a) := min {a,p® — a}

J. Bariffi, 23.04.2025

Example over Z/8Z

weight
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Lee and Homogeneous Weight over Z/p*Z

Lee Weight

wti (a) := min {a,p® — a}

Homogeneous Weight

WhHom ([l) e

0

p/(p—1)

a=20
ag(p
e(p

S

5 —

D,
{0}

J

. Bariffi, 23.04.2025

Example over

weight

OLee
x Hom

7./87
o

x

2



Lee and Homogeneous Weight over Z/p*Z TUM

Lee Weight Example over Z/8Z
weight
4t o OLee
wti(a) := min {a,p® — a} x Hom
3+ [e] [e]
21 [e] o
Homogeneous Weight -
0 a=0 14 ® x x x x ®
WhHom (a) := ¢ 1 ad <p571>
_ 7/8L
p/(p—1) a€(p*"')\{0} R
1 2 3 4 5 6 7

We extend both weights additively, i.e., for x € (Z/p°Z)™ we have Wt| /pom(z) = Z?:l WL /Hom (%)

J. Bariffi, 23.04.2025



Non-Existence for Lee/Homogeneous Weight Enumerator

Given any =z € (Z/p°Z)™ : wtL(x)/ Wwhhom(z) = ¢
Krawtchouk coefficient K (i) := Z glax)

a€(Z/p°Z)"
wtL (z)/ WtHom (a)=J
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Non-Existence for Lee/Homogeneous Weight Enumerator TUT

Given any =z € (Z/p°Z)™ : wtL(x)/ Wwhhom(z) = ¢

Krawtchouk coefficient K (i) := Z glax)

a€(Z/p°Z)"
wtL (z)/ WtHom (a)=J

? n—7
- ’ | 0 ‘ o wt(z)/ wthom () = ¢ does not imply supp(a) = i.
o Z £{®%) highly depends on the choice of
a€(Z/p°2)"
a| 0o | [T Ay
\—,—/\W—/\—v—/\—\,—/
t 7T—t ?7—t n—=7-74t
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Non-Existence for Lee/Homogeneous Weight Enumerator TUT

Given any =z € (Z/p°Z)™ : wtL(x)/ Wwhhom(z) = ¢

Krawtchouk coefficient K (i) := Z glax)

a€(Z/p°Z)"
wtL (z)/ WtHom (a)=J

? n—7
- ‘ | 0 ‘ o wt(z)/ wthom () = ¢ does not imply supp(a) = i.
o Z £{®%) highly depends on the choice of
a€(Z/p°Z)"
al o | [T Ay
\_\,_/\—v—/\—v—/\—\,—/
t 7T—t ?7—t n—=7-74t

o H. Gluesing-Luerssen, Partitions of Frobenius Rings Induced by the Homogeneous Weight, 2013.
o K. Shiromoto, A note on a basic exact sequence for the Lee and Fuclidean weights of linear codes over Zy, 2015.
o N. Abdelghany, J. Wood, Failure of the MacWilliams identities for the Lee weight enumerator over Ly, m > 5, 2020.

o J. Wood, Homogeneous weight enumerators over integer residue rings and failures of the MacWilliams identities, 2023.

J. Bariffi, 23.04.2025 8
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Changing the Approach

Wanted
An enumerator...

o giving rise to the weight enumerator (in the relative metric),

o with more information about the codeword’s structure,

o allowing for a well-defined Krawtchouk coefficient.

J. Bariffi, 23.04.2025

Idea: Refine the weight partition!

codewords

weight partition

finer partition




Outline

3. Reflexive Partitions of Finite Abelian Groups



Group Characters

G finite abelian group

Definition - Character
A character x of G is a complex-valued map x : G — C*| such that for every «, 3 € G it holds

x(a+ B) = x(a)x(B).

o G= Homgz (G, C*): set of all characters

J. Bariffi, 23.04.2025
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Group Characters

G finite abelian group

Definition - Character
A character x of G is a complex-valued map x : G — C*| such that for every «, 3 € G it holds

x(a+ B) = x(a)x(B).

o G= Homgz (G, C*): set of all characters

Examples

o G=(Z/mZ,+): For any a,z € G, xa(x) := (ezy) .



Group Characters m

G finite abelian group

Definition - Character
A character x of G is a complex-valued map x : G — C*| such that for every «, 3 € G it holds

x(a+ B) = x(a)x(B).

o G= Homgz (G, C*): set of all characters

Examples

. ax
o G=(Z/mZ,+): For any a,z € G, Xa(z) := (ezm ) .
o G = GR(p*,r): For any a,z € G, xa() := xa(z) = ET7(@%)  where € is a p°-th root of unity.

— Extends to G™ as o (z) = £Tr{az))

J. Bariffi, 23.04.2025 10



Partitions of an Abelian Group TUT

Partition (based on [Zinoviev and Ericson, 2009])
A partition P = P1 | -+ | Py of a finite abelian group G consists of nonempty, pairwise disjoint sets
P; C G that cover G.

J. Bariffi, 23.04.2025 11
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P; C G that cover G.

Given another partition Q of G. We call P coarser than Q if the blocks of P contain the blocks of Q.

Example
Consider G = Z/8Z
o Partition based on Hamming weight: P= {a € G | wty(a) =0} | {a € G| wty(a) =1}

Po Py

J. Bariffi, 23.04.2025 11



Partitions of an Abelian Group TUT

Partition (based on [Zinoviev and Ericson, 2009])
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P; C G that cover G.
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Example
Consider G = Z/8Z
o Partition based on Hamming weight: P= {a € G | wty(a) =0} | {a € G| wty(a) =1}

Po Py
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Partitions of an Abelian Group TUT

Partition (based on [Zinoviev and Ericson, 2009])
A partition P = P1 | -+ | Py of a finite abelian group G consists of nonempty, pairwise disjoint sets
P; C G that cover G.

Given another partition Q of G. We call P coarser than Q if the blocks of P contain the blocks of Q.

Example
Consider G = Z/8Z
o Partition based on Hamming weight: P= {a € G | wty(a) =0} | {a € G| wty(a) =1}

Po Py
o Partition based on ring structure: o= {0} | {a c G\ {0} |a € GX} | {a e G\ {0} |a ¥ GX}
~—
Qo Q1 Q2

o For a code C < G, denote by PEp(C) its partition enumerator.

J. Bariffi, 23.04.2025 11



(Fourier)-Reflexive Partition
o P=P|Ps|--| Py a partition of G

J. Bariffi, 23.04.2025
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(Fourier)-Reflexive Partition TUT

o P=P|Ps|--| Py a partition of G

o Define the dual partition P = Q1| Q2| | Qe as partition of G via the equivalence relation
X~ X' if and only if E x(z) = E X' (z) forall i =1,...,m.
rEP; rEP;

J. Bariffi, 23.04.2025 12



(Fourier)-Reflexive Partition

o P=P|Ps|--| Py a partition of G
o Define the dual partition P = Q1| Q2| | Qe as partition of G via the equivalence relation
X~ X' if and only if Z x(z) = Z X' (z) forall i =1,...,m.

TEP; TEP;

o For x € Qj, call K;(i) := ZzeP- x(z) the generalized Krawtchouk coefficient

J. Bariffi, 23.04.2025

12



(Fourier)-Reflexive Partition

o P=P|Ps|--| Py a partition of G
o Define the dual partition P = Q1| Q2| | Qe as partition of G via the equivalence relation
X~ X' if and only if Z x(z) = Z X' (z) forall i =1,...,m.

TEP; TEP;

o For x € Qj, call K;(i) := ZzeP- x(z) the generalized Krawtchouk coefficient

J. Bariffi, 23.04.2025

12



(Fourier)-Reflexive Partition

o P=P|Ps|--| Py a partition of G
o Define the dual partition P = Q1| Q2| | Qe as partition of G via the equivalence relation
X~ X' if and only if Z x(z) = Z X' (z) forall i =1,...,m.

TEP; TEP;

o For x € Qj, call K;(i) := ZzeP- x(z) the generalized Krawtchouk coefficient

Reflexive Partition
If P =P, then P is said to be (Fourier)-reflexive.

J. Bariffi, 23.04.2025

12



(Fourier)-Reflexive Partition

o P=P|Ps|--| Py a partition of G
o Define the dual partition P = Q1| Q2| | Qe as partition of G via the equivalence relation
X~ X' if and only if Z x(z) = Z X' (z) forall i =1,...,m.

TEP; TEP;

o For x € Qj, call K;(i) := ZzeP- x(z) the generalized Krawtchouk coefficient

Reflexive Partition
If P =P, then P is said to be (Fourier)-reflexive.

Theorem [Gluessing-Luerssen, 2015]
A partition P is reflexive if and only if P and P consist of the same number of blocks.
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(Fourier)-Reflexive Partition

o P=P|Ps|--| Py a partition of G
o Define the dual partition P = Q1| Q2| | Qe as partition of G via the equivalence relation
X~ X' if and only if Z x(z) = Z X' (z) forall i =1,...,m.

TEP; TEP;

o For x € Qj, call K;(i) := ZzeP- x(z) the generalized Krawtchouk coefficient

Reflexive Partition
If P =P, then P is said to be (Fourier)-reflexive.

Theorem [Gluessing-Luerssen, 2015]
A partition P is reflexive if and only if P and P consist of the same number of blocks.

Example over G = Z/6Z

o P={0} | {1,3,5} | {2,4} = P ={0} | {1,2,4,5} | {3} reflexive

J. Bariffi, 23.04.2025

12



(Fourier)-Reflexive Partition

o P=P|Ps|--| Py a partition of G
o Define the dual partition P = Q1| Q2| | Qe as partition of G via the equivalence relation
X~ X' if and only if Z x(z) = Z X' (z) forall i =1,...,m.

TEP; TEP;

o For x € Qj, call K;(i) := ZzeP- x(z) the generalized Krawtchouk coefficient

Reflexive Partition
If P =P, then P is said to be (Fourier)-reflexive.

Theorem [Gluessing-Luerssen, 2015]
A partition P is reflexive if and only if P and P consist of the same number of blocks.

Example over G = Z/6Z
o P={0} | {1,3,5} | {2,4} = 7/5:{0} | {1,2,4,5} | {3} reflexive
o P={0} | {1,2} | {3,4,5} = P ={0} | {1} | {2,4} | {3} | {5}  not reflexive

J. Bariffi, 23.04.2025
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Existence of Partition-based MacWilliams Identities TUT

Theorem [Gluessing-Luerssen, 2015]
Let P and Q be partitions of G and G respectively. Given a code C < G and its dual CL. If P = Q (P is
reflexive) then the MacWilliams identities hold, i.e.,

PEq, (C*) = Z i)PEp, (C)

J. Bariffi, 23.04.2025 13



Existence of Partition-based MacWilliams Identities TUT

Theorem [Gluessing-Luerssen, 2015]

Let P and Q be partitions of G and G respectively. Given a code C < G and its dual CL. If P = Q (P is
reflexive) then the MacWilliams identities hold, i.e.,

PEq, (C*) = Z i)PEp, (C)

Example of reflexive partition ([Gluessing-Luerssen, 2015])

o G finite additive abelian group, H < Aut(G)
o Py partition of G obtained by orbits of H

— Py is reflexive

J. Bariffi, 23.04.2025 13




Induced Partitions m

o Go from a partition P = Py | ... | Py, of G to a partition of G™

o Define equivalence relation on G™, for every j = 1,...,m, by

(g1y---y9n) ~ (g1,...,gs) if and only if \{i:l,...n\giGPj}\:|{i:1,...n|g§€Pj}|

J. Bariffi, 23.04.2025 14



m

Induced Partitions
o Go from a partition P = Py | ... | Py, of G to a partition of G™
o Define equivalence relation on G™, for every j = 1,...,m, by

(g1y---y9n) ~ (g1,...,gs) if and only if \{i:l,...n\giEPj}\:|{i:1,...n|g§€Pj}|

Symmetrized Partition
The partition associated with the equivalence relation is called (induced) symmetrized partition PL,, of

an.
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Induced Partitions m
o Go from a partition P = Py | ... | Py, of G to a partition of G™
o Define equivalence relation on G™, for every j = 1,...,m, by

(g1y---y9n) ~ (g1,...,gs) if and only if \{i:l,...n\giGPj}\:|{i:1,...n|g§€Pj}|

Symmetrized Partition
The partition associated with the equivalence relation is called (induced) symmetrized partition PL,, of

an.

Example - symmetrized Hamming weight partition

Let G =Z/5Z and Py = {0} | {1, 2, 3, 4} the Hamming weight partition of G.



m

Induced Partitions
o Go from a partition P = Py | ... | Py, of G to a partition of G™
o Define equivalence relation on G™, for every j = 1,...,m, by

(g1y---y9n) ~ (g1,...,gs) if and only if \{i:l,...n\giGPj}\:|{i:1,...n|g§€Pj}|

Symmetrized Partition
The partition associated with the equivalence relation is called (induced) symmetrized partition PL,, of

an.

Example - symmetrized Hamming weight partition

Let G =Z/5Z and Py = {0} | {1, 2, 3, 4} the Hamming weight partition of G.

Consider G2:
(0, 1)~ (0,2)~(3,0)~...

J. Bariffi, 23.04.2025 14



m

Induced Partitions
o Go from a partition P = Py | ... | Py, of G to a partition of G™
o Define equivalence relation on G™, for every j = 1,...,m, by

(g1y---y9n) ~ (g1,...,gs) if and only if \{i:l,...n\giGPj}\:|{i:1,...n|g§€Pj}|

Symmetrized Partition
The partition associated with the equivalence relation is called (induced) symmetrized partition PL,, of

an.

Example - symmetrized Hamming weight partition

Let G =Z/5Z and Py = {0} | {1, 2, 3, 4} the Hamming weight partition of G.

Consider G2:
(0,1)~(0,2)~(3,0)~... Hamming weight 1

J. Bariffi, 23.04.2025 14



m

Induced Partitions
o Go from a partition P = Py | ... | Py, of G to a partition of G™
o Define equivalence relation on G™, for every j = 1,...,m, by

(g1y---y9n) ~ (g1,...,gs) if and only if \{i:l,...n\giGPj}\:|{i:1,...n|g§€Pj}|

Symmetrized Partition
The partition associated with the equivalence relation is called (induced) symmetrized partition PL,, of

an.

Example - symmetrized Hamming weight partition

Let G =Z/5Z and Py = {0} | {1, 2, 3, 4} the Hamming weight partition of G.

Consider G2:
(0,1)~(0,2)~(3,0)~... Hamming weight 1

(1,1)~(1,2)~(2,4)~... Hamming weight 2
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m

Induced Partitions
o Go from a partition P = Py | ... | Py, of G to a partition of G™
o Define equivalence relation on G™, for every j = 1,...,m, by

(g1y---y9n) ~ (g1,...,gs) if and only if \{i:l,...n\giGPj}\:|{i:1,...n|g§€Pj}|

Symmetrized Partition
The partition associated with the equivalence relation is called (induced) symmetrized partition PL,, of

an.

Example - symmetrized Hamming weight partition

Let G =Z/5Z and Py = {0} | {1, 2, 3, 4} the Hamming weight partition of G.

Consider G2:
(0,1)~(0,2)~(3,0)~... Hamming weight 1

(1,1)~(1,2)~(2,4)~... Hamming weight 2

Phoym = {9€ G | wtu(g) =0} | {g€ G| wtn(g) =1} | {9 € G*| wtu(g) =2}

J. Bariffi, 23.04.2025 14



Reflexive Symmetrized Partitions m

Theorem [Gluessing-Luerssen, 2015]
Let P be a partition of G such that {0} is a block of P. It holds that PZ,, = Pg

sym*

Consequently, if P is

reflexive, then P2, is reflexive too.

sym

J. Bariffi, 23.04.2025



Reflexive Symmetrized Partitions m

Theorem [Gluessing-Luerssen, 2015]
Let P be a partition of G such that {0} is a block of P. It holds that PZ,, = Pg

sym*

Consequently, if P is

reflexive, then P2, is reflexive too.

sym

Examples

n

o (symmetrized) Hamming weight partition Py and P sym

J. Bariffi, 23.04.2025



Reflexive Symmetrized Partitions m

Theorem [Gluessing-Luerssen, 2015]
Let P be a partition of G such that {0} is a block of P. It holds that PZ,, = Pg

sym*

Consequently, if P is
reflexive, then P, is reflexive too.

Examples

n
H,sym

o Singleton partition Psing = {0} | {91} | ... | {gm}, for all g; € G, and P&ing.sym

o (symmetrized) Hamming weight partition Py and P,

J. Bariffi, 23.04.2025 15



Outline

4. Application to some Additive Metrics over Finite Chain Rings



Set-Up and Goal

Consider a finite chain ring R, a ring-linear code C C R™, and an additive weight over R.

Wanted
A partition-based enumerator of R™...
o giving rise to the weight enumerator (in the relative metric),

o with more information about the codeword’s structure,

o allowing for a well-defined Krawtchouk coefficient.

J. Bariffi, 23.04.2025
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Set-Up and Goal

Consider a finite chain ring R, a ring-linear code C C R™, and an additive weight over R.

Wanted
A partition-based enumerator of R™...
o giving rise to the weight enumerator (in the relative metric),

o with more information about the codeword’s structure,

o allowing for a well-defined Krawtchouk coefficient.

Candidate
A reflexive symmetrized partition of R"™, finer than the weight partition.
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Set-Up and Goal

Consider a finite chain ring R, a ring-linear code C C R™, and an additive weight over R.

Wanted
A partition-based enumerator of R™...
o giving rise to the weight enumerator (in the relative metric),

o with more information about the codeword’s structure,

o allowing for a well-defined Krawtchouk coefficient.

Candidate
A reflexive symmetrized partition of R"™, finer than the weight partition.

Question: How fine should the partition be?

J. Bariffi, 23.04.2025
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Set-Up and Goal m

Consider a finite chain ring R, a ring-linear code C C R™, and an additive weight over R.

Wanted
A partition-based enumerator of R™...
o giving rise to the weight enumerator (in the relative metric),

o with more information about the codeword’s structure,

o allowing for a well-defined Krawtchouk coefficient.

Candidate
A reflexive symmetrized partition of R"™, finer than the weight partition.

Question: What is the coarsest such partition?

J. Bariffi, 23.04.2025 16



Lee Weight Partition

Lee Partition

For any z € (Z/p*Z)"™ we define its Lee partition w'(z) = (nf(z), 7} (2), ..

@) = | {k=1,...,n | wty(ax) = i}|.

- 7y (2)) by

Example over Z /47

J. Bariffi, 23.04.2025
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Lee Weight Partition m

Lee Partition
For any € (Z/p*Z)" we define its Lee partition 7" (z) = (v5(x), n{(x),..., 7k, (x)) by

Example over Z/4Z
C= {(07070)7 (0,1,0),(0,0,1),(0,3,0), (0,0,3), (0,2,0), (0,0,2), (0,1, 1),
(0,1,3),(0,3,1),(0,3,3),(0,1,2),(0,2,1), (0, 3,2), (0,2, 3), (0, 2, 2)}

J. Bariffi, 23.04.2025 17



Lee Weight Partition m

Lee Partition
For any € (Z/p*Z)" we define its Lee partition 7" (z) = (v5(x), n{(x),..., 7k, (x)) by

Example over Z/4Z
C = {(07 07 0)7 (07 17 0)7 (07 07 1)7 (07 37 0)7 (07 07 3) ’ (07 27 0)7 (07 0’ 2)7(0’ 17 1)’(07 17 3)7 (07 37 1)7 (07 37 3) il

(0, 1, 2), (0, 2, 1),(0, 3, 2), (0, 2, 3), (0, 2, 2) }

J. Bariffi, 23.04.2025 17



Lee Weight Partition m

Lee Partition
For any € (Z/p*Z)" we define its Lee partition 7" (z) = (v5(x), n{(x),..., 7k, (x)) by

Example over Z/4Z
C = {(07 07 0)7 (07 17 0)7 (07 07 1)7 (07 37 0)7 (07 07 3) ’ (07 27 0)7 (07 0’ 2)7(0’ 17 1)’(07 17 3)7 (07 37 1)7 (07 37 3) il

(0, 1, 2), (0, 2, 1),(0, 3, 2), (0, 2, 3), (0, 2, 2) }

codewords of Lee weight 2: (0, 2,0),(0,0,2), (0,1,1),(0,1,3),(0,3,1),(0,3,3)
Lee partition 7 : (2,0,1) (1,2,0)
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Lee Weight Partition m

Lee Partition
For any € (Z/p*Z)" we define its Lee partition 7" (z) = (v5(x), n{(x),..., 7k, (x)) by

Example over Z/4Z
C= {(0,0,0), (0, 1, 0), (0, 0, 1), (0, 3, 0), (0, 0, 3) , (0,2, 0), (0,0, 2),

(0, 1, 1),(0, 1, 3), (0, 3, 1), (0, 3, 3), (0, 1, 2), (0, 2, 1),(0, 3, 2), (0, 2, 3), (0,2, 2) }

codewords of Lee weight 2: (0, 2,0),(0,0,2), (0,1,1),(0,1,3),(0,3,1),(0,3,3)

Lee partition 7 : (2,0,1) (1,2,0)
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Lee Weight Partition m

Lee Partition
For any € (Z/p*Z)" we define its Lee partition 7" (z) = (v5(x), n{(x),..., 7k, (x)) by

@) = | {k=1,...,n | wt(ax) = i}|.

Example over Z/4Z
C= {(0,0,0), (0, 1, 0), (0, 0, 1), (0, 3, 0), (0, 0, 3) , (0,2, 0), (0,0, 2),

(0, 1, 1),(0, 1, 3), (0, 3, 1), (0, 3, 3), (0, 1, 2), (0, 2, 1),(0, 3, 2), (0, 2, 3), (0,2, 2) }

codewords of Lee weight 2: (0, 2,0),(0,0,2), (0,1,1),(0,1,3),(0,3,1),(0,3,3)

Lee partition 7 : (2,0,1) (1,2,0)

Note! We can derive any additive weight wt(z) for x € Z/p®Z from this decomposition, i.e.,
M
wt(z) = E mh(2) wt(3).
i=0

J. Bariffi, 23.04.2025 17



Symmetrized Lee Partition m

. L o M+1 M+1
Set of Lee partitions . = {Tl' € {0,...,n} > ieo T = n}
S ized L iti m = pL L L (4) L
ymmetrized Lee partition PP = P-q, | Py | | Pop_yy, meDps

J. Bariffi, 23.04.2025 18



Symmetrized Lee Partition

e y M
Set of Lee partitions ID);Syn = {7’{' e{o,...,n}M*1 Ei:gl = n}

symmetrized Lee partition PP’ = PJ;(U) | P:;(l) [ -] P:;(D,l)v

#® ept,

Proposition [B., Cavicchioni, Weger, “24]
The symmetrized Lee partition ’Pfsym is reflexive.

J. Bariffi, 23.04.2025
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Symmetrized Lee Partition

itions L - M+1 M+1
Set of Lee partitions D = {ﬂ' €{0,...,n} E i i = n}
S ized L e n L L L. L (%) L
ymmetrized Lee partition P = P-, | P~ | | P-p 1y, ™ €Dps

Proposition [B., Cavicchioni, Weger, “24]
The symmetrized Lee partition ’Pfsym is reflexive.

Idea.
o Underlying partition P of Z/p°Z into Lee weights is based on orbits of {£1}
o P is reflexive

. . .
o PL,sym is reflexive

J. Bariffi, 23.04.2025
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Krawtchouk Coefficient for the Lee Partition

Set of Lee partitions ]D)I';sm = {7r e{0,...,n}M*?

Lee partition enumerator DL (C) := | {c cC|nt(ec) = Tl'} |

Krawtchouk coefficient  Kk(p) = > ,c(z/pszyn £,
wt(@)=p

J. Bariffi, 23.04.2025

Z]\/I+1 T —=n
i=0 v

x € (Z/pSZ)™

s wh(x)

=T

19



Krawtchouk Coefficient for the Lee Partition

Set of Lee partitions

Lee partition enumerator

Krawtchouk coefficient

DY, o= {m e 0, mp

DL(C) == |{cec| () =7}

KL (p) = > ac@penyn €Y,
wh(z)=p

Z]\/I+1 T —=n
i=0 v

z € (Z/p°Z)™

o T ™™
—
z 0 +1 M|




Krawtchouk Coefficient for the Lee Partition

Set of Lee partitions

Lee partition enumerator

DY, o= {m e 0, mp

DL(C) == |{cec| () =7}

Z]\/I+1 T —=n
i=0 v

Krawtchouk coefficient Kk (p) =3 ,ez/pez)n glwa) e (Z/p°Z)" : at(z) =7
mt(x)=p
o 1 T
——
T ’ 0 ‘ el ‘ ‘ +M ‘ at(z) =7
alofE - EMolE - [o[F1-EM  r@=p

too tor  loartio ti1

to t1

J. Bariffi, 23.04.2025

—
Tarolart  tarng
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Krawtchouk Coefficient for the Lee Partition

Set of Lee partitions ]D)I';sm = {7r e{0,...,n}M*?

Z]\/I+1 T —=n
i=0 v

Lee partition enumerator DL (C) := | {c cC|nt(ec) = Tl'} |
Krawtchouk coefficient Kk (p) =3 ,ez/pez)n glwa) e (Z/p°Z)" : at(z) =7
wh(z)=p
o T ™™
—
a| 0 | il | | v | A@=r
alo[E - EMolE - EM [0 [ EM  r@)=)
oo to1 torrt10 t11 Ting taotart tM}
to t1 tym

Note! KL(p) is independent on the choice of = € (Z/p*Z)"

J. Bariffi, 23.04.2025



Lee Metric - MacWilliams-like Identity

-

KlL)(7r) =

DL(Ch) =

ZtEComp'—

p<m

E:tECOmp';<7r

I1
I1

M
=0
M
=0

(¢
(¢

MacWilliams Identity for the Lee Partition Enumerator

G Y KHmDhe),

weDL
p®,n

T
0055t M
Ky
i05 - ting

where the Krawtchouk coefficient exists and is given by

)11
)11

M—-1

j=1
M
j=1

(7 + »:Z’f)“f)

(€9 +€9)eM) itp=2

otherwise

J. Bariffi, 23.04.2025
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Lee Metric - MacWilliams-like Identity TUT

-

MacWilliams Identity for the Lee Partition Enumerator

Pheh) =5 Y KimDhe),

weDL
pT,n
where the Krawtchouk coefficient exists and is given by

M ™ ) M—1 ( —ij z‘j)tm‘ iM e
Ztecompl;}<ﬂ Hi:o (t,;o,.”,tiM szl 7Y+ ¢ 3 ifp=2

M L ) M ( —ij ij)tij .
ZtECOmp';<7r Hi:() (tm,..,,tiM H]‘:l 3 +€ otherwise

\ J

KlL)(7r) =

Credits:
o MacWilliams in 1963: Over Fjs

o Astola in 1982: Association schemes

o Solé in 1986: Association schemes

o Gluessing-Luerssen 2015: Fourier-reflexive partitions

o B., Cavicchioni, Weger in 2024: Identity is true over any finite chain ring R for all additive weights.

J. Bariffi, 23.04.2025 20



A Partition for any Additive Weight TUT

codewords

sym. Hamming weight partition

some symmetrized weight partition

symmetrized Lee weight partition

J. Bariffi, 23.04.2025 21



Homogeneous Weight-Unit Partition

Recall the homogeneous weight over Z/p*Z

0 ifz=0
Wiom(z) := ¢ 1 ife g (p*~1)\ {0}
2o ifze (pt)

J. Bariffi, 23.04.2025



Homogeneous Weight-Unit Partition

Recall the homogeneous weight over Z/p*Z

0 ifx =0
WhHom (z) == { 1 ifz & <ps_ > {0}

e (o)

o Homogeneous weight partition

o H. Gluesing-Luerssen, Partitions of Frobenius Rings Induced by the Homogeneous Weight, 2021.

J. Bariffi, 23.04.2025
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Homogeneous Weight-Unit Partition

Recall the homogeneous weight over Z/p*Z

0 ifz=20
Wion(@) = {1 ifz ¢ (p1)) {0}
% 1fx€<p 1>

o Homogeneous weight partition

o H. Gluesing-Luerssen, Partitions of Frobenius Rings Induced by the Homogeneous Weight, 2021.
o Consider the following partition of Z/p°Z: PH™ = Z | U | S | R, where

Z:={0}, U:=(Z/p°L)*, S:=p" YZ/p°Z), R:={z€Z/p°Z|xg¢ ZUUUS}

Homogeneous Weight-Unit Partition
Given a finite chain ring R and z € R"™, define the homogeneous weight-unit partition of = as

oM (@) = (17" (2), 7" (@), T (@), TR (2)), M (@) = [{k=1,...,n|ax € I}].

J. Bariffi, 23.04.2025
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Symmetrized Homogeneous Weight-Unit Partition TUM

Set of hom. partitions ]D)I")'°":L = {ﬂ' e{0,...,n}* ZIG{Z,U,R,S} T = n}

symmetrized hom. partition P/ pHom | pHom

. H ) H
Hom,sym = (O) P ﬂ'(l) € DpSO:T';I’L

0 | [P

J. Bariffi, 23.04.2025 23



Symmetrized Homogeneous Weight-Unit Partition TUM

Set of hom. partitions ]D)H?”;L = {71’ e{0,...,n}* ZIG{Z,U,R,S} T = n}

PHom

n . Hom
P (1)

H i H
Hom,sym “— (0) ‘ . ‘ owg,l), RONS ID)pSO:T;L

symmetrized hom. partition

Proposition [B., Cavicchioni, Weger, “24]
The symmetrized homogeneous weight-unit partition P/ sym is reflexive.

J. Bariffi, 23.04.2025 23



Symmetrized Homogeneous Weight-Unit Partition TUM

Set of hom. partitions ]D)I")'°”;L = {ﬂ' e{0,...,n}* ZIG{Z,U,R,S} T = n}

symmetrized hom. partition P = H("O”; | PH(U e PH(OB‘ 1 =) ¢ D;‘?Tl

Proposition [B., Cavicchioni, Weger, “24]

The symmetrized homogeneous weight-unit partition P/} is reflexive.

Hom,sym

Idea.
For each I,J € {Z,U, R, S} compute the expression er] gTr(az),

INJ | z U s R
Z |1 ¢ 'g-1) q¢-1 ¢ '—gq
U o1 0 ~1 0
s |1 —¢°! a—=1 ¢ l1—q
R 1 0 qg—1 —q

J. Bariffi, 23.04.2025 23



Homogeneous Metric - MacWilliams-like Identity TUT

Homogeneous weight-unit partition  wHom(z) = (7Hom(z), Trg"m (z), 7720’“ (), w??f’m (z)),

7r|1—|om($):‘{k;:1,...,n‘$kEI}‘

J. Bariffi, 23.04.2025 24



Homogeneous Metric - MacWilliams-like Identity TUT
Homogeneous weight-unit partition  wHom(z) = (7Hom(z), 7r5°m (z), g°m (), w%f’m(m)),

wHom(@) = |k =1,....n | ok € I} |

MacWilliams-like Identity for the Homogeneous Weight [B., Cavicchioni, Weger ’24]

DHom (CJ_ Z KHom( )DHom(C)

WE]IDH‘""
\ T

where the Krawtchouk coefficient exists and is given by

D S ) [ L U

tGComp';°<mﬂ, 4€IHom

-1 tzr
(ps - p)) (p— ) ZsTESSTESRIIRS Uy =t gy =t =0}

J. Bariffi, 23.04.2025 24



Subfield Metric

Subfield Metric
Given a finite field Fps the subfield weight of an element a € Fys is defined as

0 ifa=0
wty(a) =<1 ifac ]F;f
A ifa€eF,s \Fp

J. Bariffi, 23.04.2025



Subfield Metric

Subfield Metric
Given a finite field Fps the subfield weight of an element a € Fys is defined as

0 ifa=0
wty(a) =<1 ifac ]F;f
A ifa€eF,s \Fp

o MacWilliams identities fail, in general, for the subfield weight partition

J. Bariffi, 23.04.2025



Subfield Metric

Subfield Metric
Given a finite field Fps the subfield weight of an element a € Fys is defined as

0 ifa=0
wta(a) =1 ifa€lF)
A ifa€Fys \Fp

o MacWilliams identities fail, in general, for the subfield weight partition

o Similar approach as for homogeneous metric:

Oan = {0}= Oal - F;;

. s _ 1
Oa; = aiF),  for a; € Fps \ (I_l;;[l)(’)aj) and i =2,... b .

= Is reflexive (since based on orbits of F,)

J. Bariffi, 23.04.2025




Subfield-Trace Partition m

Subfield-Trace Partition
Given a finite field Fps. The subfield-trace partition of Fps is defined as Py = I()\ | Il)‘ | 12)‘ | I:,f‘, where

Ig = {0}, I} :=TF), I3 :={x € Fps \Fp | Tr(x) =0} and I3 = {x € Fps \ Fp | Tr(z) # 0}.

o Denote the symmetrized subfield-trace partition of IFZS by PY sym”

J. Bariffi, 23.04.2025 26



Subfield-Trace Partition

Subfield-Trace Partition
Given a finite field Fps. The subfield-trace partition of Fps is defined as Py = 16\ | Il)‘ | 12)‘ | 133‘7 where

Ig == {0}, I} :==F), I3 :={x € Fps \Fp | Tr(zx) =0} and I3 := {x € Fps \ Fp | Tr(x) # 0}.

n

o Denote the symmetrized subfield-trace partition of IFZS by P} sym”

Proposition [B., Cavicchioni, Weger, “24]

The subfield-trace partition Py of s is reflexive (and so is P} Svm).

J. Bariffi, 23.04.2025
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Subfield Metric - MacWilliams-like Identity m

]D)p’r 1n {7r e{0,...,n}* ‘ Zf:o = n}
| P

Set of \-trace partitions

Symmetrized A-trace partition P

A,sym = Pﬂ—(o) | r(D=1)

A-trace enumerator D (C) := ’ PXncC ’ M ¢ ]D);rm

J. Bariffi, 23.04.2025 27



Subfield Metric - MacWilliams-like Identity m

.. 4 3
Set of A-trace partitions ]D);}ml’n = {7r €{0,...,n} ‘ Zz‘:o T = n}
Symmetrized A-trace partition P} sym = P:(o) | --- | P A D-1)

A-trace enumerator D (C) := ’ PXncC ’ M ¢ ]D);rm

MacWilliams-like Identity for the Homogeneous Weight [B., Cavicchioni, Weger ’24]

A A A
Dy () = ﬁ > KXeD)E),
WED;)J\ r,1,n
A(p 3 LS PN

Wh;re the Krawtchouk coefficient exists and is given by K3 ZtGCOH’lp,)‘\.(p) (H (tzo, t53)) K
an
A (p _ 1)t01+t11 +t21+to3 (_1)t31 (_p)t22 (prfl _ p)to2+t12 (_p’l‘*l)tla (p’l‘fl)tgg if ¢ ‘ P,

’ (p _ 1)t01+t03 (_1)t11+t22+t33+t32 (1 _ p)t23 (pT—l _ 1)t02+t03+t12+t21 (1 _ pr—l)tw otherwise.

J. Bariffi, 23.04.2025
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Wrap up

Found
A partition-based enumerator...
o giving rise to the weight enumerator (in the relative metric),

o with more information about the codeword’s structure,
o allowing for a well-defined Krawtchouk coefficient,

o using the coarsest symmetrized partition.

J. Bariffi, 23.04.2025
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Open Questions
o Coarser partitions of R™ that are not symmetrized?

o Other metrics?
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