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Motivation

® Code-based cryptography for quantum secure cryptosystems

® The original McEliece cryptosystem suffers from large key sizes (even though
unbroken)
— Alternative metrics are considered

® The security relies on the hardness of the syndrome decoding problem
— Generic decoding in the Lee metric has a large cost
— NP-hard in the Lee metric
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Ring-Linear Codes

Let p a prime number and s and n two positive integers.

Definition
A linear code C C (Z/p°Z)" is a Z/pSZ-submodule of (Z/pSZ)".
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Ring-Linear Codes

Let p a prime number and s and n two positive integers.

Definition
A linear code C C (Z/p°Z)" is a Z/pSZ-submodule of (Z/pSZ)".

Parameters:
® nis called the length of C
® Kk :=logys |C|is the Z/p*Z-dimension of C
® R := k/ndenotes the rate of C.
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The Lee Metric

Definition
Forac Z/pSZ and e = (ey, ..., en) € (Z/p3Z)" we define their Lee weight,

respectively, by
wt (a) := min(a, | p° — al),

wt|_(e) = Z th(e/).
i=1
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The Lee Metric

Definition

Forac Z/pSZ and e = (ey, ..., en) € (Z/p3Z)" we define their Lee weight,
respectively, by
wt (a) := min(a, | p° — al),

wt|_(e) = Z th(e/).
i=1

Example over Z/5Z

®* 0: wt(0)=

° 1 wt (1) =1
°2: wy(2)=2
® 3: wy(3)=2
° 4: wi(4)=1
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The Lee Metric

Definition

Forac Z/pSZ and e = (ey, ..., en) € (Z/p3Z)" we define their Lee weight,
respectively, by
wty (&) := min(a, |ps —a |),

th(e) = Z th(e/).
i=1

Example over Z/5Z Properties:
° 0: wt(0)= For every a € Z/psZ and x € (Z/p°Z)"

° = ® wt (@) = wt (p° — a)

1 (1)

2 (2)=2 * wty(a) <wt (a) < [p°/2) =M
®3: wt(3)=2 °* wiy(e) < wt (e) < nM

4: (4)=1

30.05.22
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The Expected Lee Weight

Let a € Z/p3Z be chosen uniformly at random.

Lemma
The expected Lee weight of a is then given by

P21 it psis odd,

Ops = E(wt(a)) = { 4p*

S . .
g if p is even.
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Let a € Z/p3Z be chosen uniformly at random.

Lemma

The expected Lee weight of a is then given by
©P-1 it ps is odd,

Ops = E(wt (a)) = P

S . .
g if p is even.

Lete € S7 s := {x € (Z/p°L)" | wt_(x) = t} be chosen uniformly at random.

How does the distribution for each entry e; look like?
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The Expected Lee Weight

Let a € Z/p3Z be chosen uniformly at random.
Lemma

The expected Lee weight of a is then given by

EP=1 it ps is odd
Ops = E(wt(a)) = 4p* ’

S . .
g if p is even.

Lete € S7 s := {x € (Z/p°L)" | wt_(x) = t} be chosen uniformly at random.

How does the distribution for each entry e; look like?

Let T := limp— o t(n)/n be the asymptotic relative Lee weight of e.
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The Marginal Distribution

Let E be the random variable corresponding to the realization of a random entry of e.
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The Marginal Distribution

Let E be the random variable corresponding to the realization of a random entry of e.

Theorem [1]

Assume that the asymptotic relative Lee weightis T := limp— @ For every

i € Z/p°Z the marginal distribution of E is given by

1
pi=P(E=i)= — exp (—p1)
P T exp(—Bw ()

where 3 is the solution to T = "M wt, (/)p;.

14On the Properties of Error Patterns in the Constant Lee Weight Channel’. In: International Zurich Seminar on
Information and Communication (I1ZS). 2022, pp. 44-48.
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The Marginal Distribution

Let E be the random variable corresponding to the realization of a random entry of e.

Theorem [1]

Assume that the asymptotic relative Lee weightis T := limp— @ For every

i € Z/p°Z the marginal distribution of E is given by

1

= S xp (—pi
7 Tep( v P

pi = P(E = i)

where 3 is the solution to T = "M wt, (/)p;.

B(E=j) if(
if (1

0) or (j = M and pis even),
2P(E=j) (1<)

P(wt (E) =) = { < M—1)or(j=Mand pis odd).

<

14On the Properties of Error Patterns in the Constant Lee Weight Channel’. In: International Zurich Seminar on
Information and Communication (I1ZS). 2022, pp. 44-48.
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The Marginal Distribution

Let E be the random variable corresponding to the realization of a random entry of e.

Theorem [1]

Assume that the asymptotic relative Lee weightis T := limp— oo (n) For every
i € Z,/p°Z the marginal distribution of E is given by

1

5 exp (—pi
T o)

pi:=P(E=1)=

where 3 is the solution to T = Zf‘io wty (1)p;.

. _JP(E=)) if(j=0)or(j=Mandpiseven),
P(WtL(E)_’)_{zp(E_j) if(1<j<M-—1)or(j=Mand pis odd).

Note: T < dps <= 8> 0
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The Marginal Distribution - Example over Z/477Z

30.05.22
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Information Set Decoding Algorithms

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given H € (Z/psz)("~ k%" s ¢ (z/pSZ)" ¥ and t € N,
find e € (Z/p°Z)" s.t. wt (e) =tands=eH'.
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Information Set Decoding Algorithms

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given H € (Z/pSZ)"=9%" s € (2/pSZ)" ¥ and t € N,
find e € (Z/p°Z)" s.t. wt (e) =tands=eHT.

® |nformation set decoding (ISD) algorithms to solve the LSDP
— Recent improvements: using partial Gaussian elimination’

" Matthieu Finiasz and Nicolas Sendrier. “Security bounds for the design of code-based cryptosystems”. In:
International Conference on the Theory and Application of Cryptology and Information Security. Springer. 2009,
pp. 88-105.
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Information Set Decoding Algorithms

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):
Given H € (Z/ps7)"~9%" s € (2/pSZ)" ¥ and t € N,
find e € (Z/p°2)" s.t. wt (e) =tands=eH'.
® |nformation set decoding (ISD) algorithms to solve the LSDP
— Recent improvements: using partial Gaussian elimination
... Representation technique' or Wagner’s approach?

1 Anja Becker et al. “Decoding random binary linear codes in 21/20: How 1+ 1=0 improves information set
decoding”. In: Annual international conference on the theory and applications of cryptographic techniques.
Springer. 2012, pp. 520-536.

2 Alexander May, Alexander Meurer, and Enrico Thomae. “Decoding Random Linear Codes in @(20'054”)". In:
International Conference on the Theory and Application of Cryptology and Information Security. Springer. 2011,
pp. 107-124.
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Information Set Decoding Algorithms

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):
Given H € (Z/pszZ)("~ k%" s e (z/pSZ)" ¥ and t € N,
find e € (Z/pZ)" sit. wt (e) =tands=eH'.
® |nformation set decoding (ISD) algorithms to solve the LSDP
— Recent improvements: using partial Gaussian elimination

... Representation technique or Wagner’s approach

... BJMM on 2 Levels is fastest in the Lee metric (non-amortized)'
... Wagner’s approach is fastest in the Lee metric (amortized)?

Violetta Weger et al. “On the hardness of the Lee syndrome decoding problem”. In: Advances in Mathematics of
Communications (2019). DOI: 10.3934/amc.2022029.

2André Chailloux, Thomas Debris-Alazard, and Simona Etinski. “Classical and Quantum algorithms for generic
Syndrome Decoding problems and applications to the Lee metric”. In: International Conference on Post-Quantum
Cryptography. Springer. 2021, pp. 44-62.
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Information Set Decoding Algorithms

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given H € (Z/pS7)"~9%" s € (2/pSZ)" ¥ and t € N,
find e € (Z/p°2)" sit. wti (e) =tands=eH .

® |nformation set decoding (ISD) algorithms to solve the LSDP
— Recent improvements: using partial Gaussian elimination
... Representation technique or Wagner’s approach

... BJMM on 2 Levels is fastest in the Lee metric (non-amortized)
... Wagner’s approach is fastest in the Lee metric (amortized)

® The cost of an ISD algorithm is given by

nr. of iterations x cost per iteration
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Information Set Decoding Algorithms

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given H € (Z/psz)("~ k%" s ¢ (z/pSZ)" ¥ and t € N,
find e € (Z/p°Z)" s.t. wt (e) =tands=eH'.

® |nformation set decoding (ISD) algorithms to solve the LSDP
— Recent improvements: using partial Gaussian elimination
... Representation technique or Wagner’s approach

... BJMM on 2 Levels is fastest in the Lee metric (non-amortized)
... Wagner’s approach is fastest in the Lee metric (amortized)

® The cost of an ISD algorithm is given by

nr. of iterations x cost per iteration
N—_— ———

1
success probability per iter.
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General Framework

We use the idea of partial Gaussian elimination to solve the problem:
1. Find U € GL,_(Z/p°Z) such that
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General Framework

We use the idea of partial Gaussian elimination to solve the problem:
1. Find U € GL,_(Z/p°Z) such that

Ipk— 0
UHT:(HAIT('[ BT)

2. Transform the syndrome equation accordingly to

(61 @)UH' = (s1 s)=sU
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General Framework

We use the idea of partial Gaussian elimination to solve the problem:
1. Find U € GL,_(Z/p°Z) such that

Ipk— 0
UHT:(HAIT('[ BT)

2. Transform the syndrome equation accordingly to
(61 @)UH' = (s1 s)=sU
3. Assume, wt| (e1) =t — v and wt; (e2) = v. Hence, we need to solve

e + egAT: Sy

B =s,
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General Framework

We use the idea of partial Gaussian elimination to solve the problem:
1. Find U € GL,_(Z/p°Z) such that

Ipk— 0
UHT:(HAIT('[ BT)

2. Transform the syndrome equation accordingly to
(61 @)UH' = (s1 s)=sU
3. Assume, wt| (e1) =t — v and wt; (e2) = v. Hence, we need to solve

e + egAT: Sy

B =s,

4. Solve the smaller instance of the LSDP. Immediately check whether
e1 = sy — & A" has Lee weight t — v.

i DLR
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New Framework: using Restricted Spheres

Focus on the small instance of the Lee syndrome decoding problem

Given B € (7/ps7)* 5+ | s, € (2/ps7)" and v,t € N
find & € (Z/pSZ)** s.t. wt () = vands, = &BT.
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New Framework: using Restricted Spheres

Focus on the small instance of the Lee syndrome decoding problem

Given B € (7/ps7)* 5+ | s, € (2/ps7)" and v,t € N
find & € (Z/pSZ)** s.t. wt () = vands, = &BT.

Main Idea and Difference

® Use the marginal distribution, i.e.,
o fort/n < M/2, with high probability 0 is the most likely Lee weight in e,
followed by the Lee weight 1 until the least likely Lee weight M.
o fort/n> M/2 the contrary is true
® With high probability the least probable entries of e lie outside the information
set, hence are not in e,.
o We will restrict e, to live either in {0, +1,..., £r}**C orin {£r, ..., +MF+E,
respectively.
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Up to Minimum Distance Decoding - The BJMM Approach

k+¢
€2 v

supp(ez) € {+1,...,r}suwpp(2)]
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Up to Minimum Distance Decoding - The BJMM Approach

k+¢
€2 v

- supp(ez) € {+1,...,r}suwpp(2)]

| v/4 v/4 |

Yo | v/4 v/4 |




Page 10/13

Jessica Bariffi - ISD using Restricted Lee Spheres 30.05.22

Up to Minimum Distance Decoding - The BJMM Approach

k+1¢
(=) I v
- supp(ez) € {+1,...,r}suwpp(2)]
e/2 o2
+ e/2 o2
% | ' ‘ v/4 v/4 [ l |
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Up to Minimum Distance Decoding - The BJMM Approach

k+¢
(=) I v
- supp(€z) € {£1,...,£r}lsuee(e)]
e/2 o2

) R —
Y1 I [ ‘ v/4 " v/a4 } ] I
’ <—>E/2 X1(1) xg) /2

. >
Yo | ' ‘ v/4 : v/4 [ l |

x1(2) I xéz)

Bi= {V(X) I xgo €40, i’}(k+£7s)/2’WtL(Xsf) =v/4,xg € (Z/pSZ)€/2 ve S<k+/z)/2}
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Minimum Distance Decoding - The BUMM Approach

Recall, s, = ;BT , where e, = y; + y» = (x1(1), x2(1)) + (x1(2)7 xéz)).
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Minimum Distance Decoding - The BUMM Approach

Recall, s, = ;BT , where e, = y; + y» = (x1(1), x2(1)) + (x1(2)7 xéz)).

1. Splitting B = (B By), for i = 1,2 concatenate all x”, x{ € B; satisfying

xWBT =, —x{"By
OB =, 5 —xPB] .
They imply the syndrome equations for y4 and y», respectively.

y1BT =0 and B = s,
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1. Splitting B = (B By), for i = 1,2 concatenate all x”, x{ € B; satisfying
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Recall, s, = ;BT , where e, = y; + y» = (x1(1), x2(1)) + (x1(2)7 xéz)).

1. Splitting B = (B By), for i = 1,2 concatenate all x”, x{ € B; satisfying

xWBT =, —x{"By
OB =, 5 —xPB] .
They imply the syndrome equations for y4 and y», respectively.

y1BT =0 and B = s,

2. Store themin alist £;.

3. Foreach y; € £ and y» € L, check that
a) the smaller instance is solved
s2=(y1+y2)B" and wt (y1 +y2) = v,
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Minimum Distance Decoding - The BUMM Approach

Recall, s, = ;BT , where e, = y; + y» = (x1(1), x2(1)) + (x1(2)7 xéz)).
1. Splitting B = (B By), for i = 1,2 concatenate all x”, x{ € B; satisfying
xWBT =, —x{"By
OB =, 5 —xPB] .
They imply the syndrome equations for y4 and y», respectively.

y1BT =0 and B = s,

2. Store themin alist £;.

3. Foreach y; € £ and y» € L, check that
a) the smaller instance is solved
s2=(y1+y2)B" and wt (y1 +y2) = v,

b) the original LSDP is fulfilled as well
wti (81— (V1 +)2)AT) =t—v

i DLR
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Decoding Beyond the Minimum Distance
€
e | (v—cm)/2 M ] (v—cM)/2 |

Lee weights in {r,..., M}

Lee weights in {r,..., M}

n| (v—em)/a [ l [ (v—ecM)/4 |

+ X | )

ve | V=M T 7] v—cM)/4 |
P ’ R
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Up to Minimum Distance Decoding - Z/477Z

—— BJMM
- - Restricted BJMM
‘Amortized BJMM
~ - Amortized Restricted BJMM
~—— Amortized Wagner !
~ - Amortized Restricted Wagner
” 1
Algorithm e(R*, p°) R*
Lee-BJMM 0.1618 0.451
Restricted Lee-BJMM for r = 5 0.1539 0.408
Amortized Lee-BJMM 0.1205 0.396
Amortized Restricted Lee-BJMM 0.1189 0.406
Amortized Lee-Wagner 0.1441 0.445
Amortized Restricted Lee-Wagner 0.1441 0.445

T André Chailloux, Thomas Debris-Alazard, and Simona Etinski. “Classical and Quantum algorithms for generic
Syndrome Decoding problems and applications to the Lee metric”. In: International Conference on Post-Quantum
Cryptography. Springer. 2021, pp. 44-62.
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Up to Minimum Distance Decoding - Z/477Z

t —— BJMM
= o ~ - Restricted BIMM
E t ‘Amortized BJMM
0 -~ Amortized Restricted BIMM
~—— Amortized Wagner !
~ - Amortized Restricted Wagner
” 1
Algorithm e(R*, p°) R*
Lee-BJMM 0.1618 0.451
Restricted Lee-BJMM for r = 5 0.1539 0.408
Amortized Lee-BJMM 0.1205 0.396
Amortized Restricted Lee-BJMM 0.1189 0.406
Amortized Lee-Wagner 0.1441 0.445
Amortized Restricted Lee-Wagner 0.1441 0.445

Thank you for your attention!

T André Chailloux, Thomas Debris-Alazard, and Simona Etinski. “Classical and Quantum algorithms for generic
Syndrome Decoding problems and applications to the Lee metric”. In: International Conference on Post-Quantum
Cryptography. Springer. 2021, pp. 44-62.
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