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Motivation

• Code-based cryptography for quantum secure cryptosystems

• The original McEliece cryptosystem suffers from large key sizes (even though
unbroken)
−→ Alternative metrics are considered

• The security relies on the hardness of the syndrome decoding problem
−→ Generic decoding in the Lee metric has a large cost
−→ NP-hard in the Lee metric
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Ring-Linear Codes

Let p a prime number and s and n two positive integers.

Definition

A linear code C ⊆ (Z/psZ)n is a Z/psZ-submodule of (Z/psZ)n.

Parameters:

• n is called the length of C
• k := logps | C | is the Z/psZ-dimension of C
• R := k/n denotes the rate of C.
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The Lee Metric

Definition

For a ∈ Z/psZ and e = (e1, . . . , en) ∈ (Z/psZ)n we define their Lee weight,
respectively, by

wtL(a) := min(a,
∣∣ ps − a

∣∣),
wtL(e) :=

n∑
i=1

wtL(ei ).

Example over Z/5Z
• 0 : wtL(0) = 0
• 1 : wtL(1) = 1
• 2 : wtL(2) = 2
• 3 : wtL(3) = 2
• 4 : wtL(4) = 1

Properties:

For every a ∈ Z/psZ and x ∈ (Z/psZ)n

• wtL(a) = wtL(ps − a)
• wtH(a) ≤ wtL(a) ≤ ⌊ps/2⌋ =: M
• wtH(e) ≤ wtL(e) ≤ nM
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The Expected Lee Weight

Let a ∈ Z/psZ be chosen uniformly at random.

Lemma

The expected Lee weight of a is then given by

δps := E(wtL(a)) =

 (ps)2−1
4ps if ps is odd,

ps

4 if ps is even.

Let e ∈ Sn
t,ps :=

{
x ∈ (Z/psZ)n

∣∣ wtL(x) = t
}

be chosen uniformly at random.

How does the distribution for each entry ei look like?

Let T := limn−→∞ t(n)/n be the asymptotic relative Lee weight of e.
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The Marginal Distribution

Let E be the random variable corresponding to the realization of a random entry of e.

Theorem [1]

Assume that the asymptotic relative Lee weight is T := limn→∞
t(n)

n . For every
i ∈ Z/psZ the marginal distribution of E is given by

pi := P(E = i) =
1∑ps−1

j=0 exp(−β wtL(j))
exp (−βi)

where β is the solution to T =
∑M

i=0 wtL(i)pi .

P(wtL(E) = j) =

{
P(E = j) if (j = 0) or (j = M and p is even),
2P(E = j) if (1 ≤ j ≤ M − 1) or (j = M and p is odd).

Note: T < δps ⇐⇒ β > 0
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1“On the Properties of Error Patterns in the Constant Lee Weight Channel”. In: International Zurich Seminar on
Information and Communication (IZS). 2022, pp. 44–48.
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The Marginal Distribution - Example over Z/47Z
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Information Set Decoding Algorithms

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given H ∈ (Z/psZ)(n−k)×n , s ∈ (Z/psZ)n−k and t ∈ N,
find e ∈ (Z/psZ)n s.t. wtL(e) = t and s = eH⊤.

• Information set decoding (ISD) algorithms to solve the LSDP
−→ Recent improvements: using partial Gaussian elimination

. . . Representation technique or Wagner’s approach

. . . BJMM on 2 Levels is fastest in the Lee metric (non-amortized)

. . . Wagner’s approach is fastest in the Lee metric (amortized)
• The cost of an ISD algorithm is given by

nr. of iterations︸ ︷︷ ︸
1

success probability per iter.

× cost per iteration
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General Framework

We use the idea of partial Gaussian elimination to solve the problem:

1. Find U ∈ GLn−k (Z/psZ) such that

UH⊤ =

(
In−k−ℓ 0

A⊤ B⊤

)

2. Transform the syndrome equation accordingly to(
e1 e2

)
UH⊤ =

(
s1 s2

)
= sU

3. Assume, wtL(e1) = t − v and wtL(e2) = v . Hence, we need to solve

e1 + e2A⊤= s1

e2B⊤= s2

4. Solve the smaller instance of the LSDP. Immediately check whether
e1 = s1 − e2A⊤ has Lee weight t − v .
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New Framework: using Restricted Spheres

Focus on the small instance of the Lee syndrome decoding problem

Given B ∈ (Z/psZ)ℓ×(k+ℓ) , s2 ∈ (Z/psZ)ℓ and v , t ∈ N

find e2 ∈ (Z/psZ)k+ℓ s.t. wtL(e2) = v and s2 = e2B⊤.

Main Idea and Difference

• Use the marginal distribution, i.e.,

◦ for t/n < M/2, with high probability 0 is the most likely Lee weight in e,
followed by the Lee weight 1 until the least likely Lee weight M.

◦ for t/n > M/2 the contrary is true

• With high probability the least probable entries of e lie outside the information
set, hence are not in e2.

• We will restrict e2 to live either in {0,±1, . . . ,±r}k+ℓ or in {±r , . . . ,±M}k+ℓ,
respectively.



Page 9/13 Jessica Bariffi · ISD using Restricted Lee Spheres 30.05.22

New Framework: using Restricted Spheres

Focus on the small instance of the Lee syndrome decoding problem

Given B ∈ (Z/psZ)ℓ×(k+ℓ) , s2 ∈ (Z/psZ)ℓ and v , t ∈ N

find e2 ∈ (Z/psZ)k+ℓ s.t. wtL(e2) = v and s2 = e2B⊤.

Main Idea and Difference

• Use the marginal distribution, i.e.,

◦ for t/n < M/2, with high probability 0 is the most likely Lee weight in e,
followed by the Lee weight 1 until the least likely Lee weight M.

◦ for t/n > M/2 the contrary is true
• With high probability the least probable entries of e lie outside the information

set, hence are not in e2.
• We will restrict e2 to live either in {0,±1, . . . ,±r}k+ℓ or in {±r , . . . ,±M}k+ℓ,

respectively.



Page 9/13 Jessica Bariffi · ISD using Restricted Lee Spheres 30.05.22

New Framework: using Restricted Spheres

Focus on the small instance of the Lee syndrome decoding problem

Given B ∈ (Z/psZ)ℓ×(k+ℓ) , s2 ∈ (Z/psZ)ℓ and v , t ∈ N

find e2 ∈ (Z/psZ)k+ℓ s.t. wtL(e2) = v and s2 = e2B⊤.

Main Idea and Difference

• Use the marginal distribution, i.e.,
◦ for t/n < M/2, with high probability 0 is the most likely Lee weight in e,

followed by the Lee weight 1 until the least likely Lee weight M.

◦ for t/n > M/2 the contrary is true
• With high probability the least probable entries of e lie outside the information

set, hence are not in e2.
• We will restrict e2 to live either in {0,±1, . . . ,±r}k+ℓ or in {±r , . . . ,±M}k+ℓ,

respectively.



Page 9/13 Jessica Bariffi · ISD using Restricted Lee Spheres 30.05.22

New Framework: using Restricted Spheres

Focus on the small instance of the Lee syndrome decoding problem

Given B ∈ (Z/psZ)ℓ×(k+ℓ) , s2 ∈ (Z/psZ)ℓ and v , t ∈ N

find e2 ∈ (Z/psZ)k+ℓ s.t. wtL(e2) = v and s2 = e2B⊤.

Main Idea and Difference

• Use the marginal distribution, i.e.,
◦ for t/n < M/2, with high probability 0 is the most likely Lee weight in e,

followed by the Lee weight 1 until the least likely Lee weight M.
◦ for t/n > M/2 the contrary is true

• With high probability the least probable entries of e lie outside the information
set, hence are not in e2.

• We will restrict e2 to live either in {0,±1, . . . ,±r}k+ℓ or in {±r , . . . ,±M}k+ℓ,
respectively.



Page 9/13 Jessica Bariffi · ISD using Restricted Lee Spheres 30.05.22

New Framework: using Restricted Spheres

Focus on the small instance of the Lee syndrome decoding problem

Given B ∈ (Z/psZ)ℓ×(k+ℓ) , s2 ∈ (Z/psZ)ℓ and v , t ∈ N

find e2 ∈ (Z/psZ)k+ℓ s.t. wtL(e2) = v and s2 = e2B⊤.

Main Idea and Difference

• Use the marginal distribution, i.e.,
◦ for t/n < M/2, with high probability 0 is the most likely Lee weight in e,

followed by the Lee weight 1 until the least likely Lee weight M.
◦ for t/n > M/2 the contrary is true

• With high probability the least probable entries of e lie outside the information
set, hence are not in e2.

• We will restrict e2 to live either in {0,±1, . . . ,±r}k+ℓ or in {±r , . . . ,±M}k+ℓ,
respectively.
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Up to Minimum Distance Decoding - The BJMM Approach

e2

k + ℓ

︸ ︷︷ ︸v

supp(e2) ∈ {±1, . . . ,±r}| supp(e2) |

=

y1

+

v/4

ε/2

︸ ︷︷ ︸
x (1)

1

v/4

ε/2

︸ ︷︷ ︸
x (1)

2

y2 v/4

ε/2

︸ ︷︷ ︸
x (2)

1

v/4

ε/2

︸ ︷︷ ︸
x (2)

2

Bi =

{
ν(x) | xEc

i
∈ {0, . . . ,±r}(k+ℓ−ε)/2

,wtL(xEc
i
) = v/4, xEi

∈
(
Z/psZ

)ε/2
, ν ∈ S(k+ℓ)/2

}
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Minimum Distance Decoding - The BJMM Approach

Recall, s2 = e2B⊤, where e2 = y1 + y2 = (x (1)
1 , x (1)

2 ) + (x (2)
1 , x (2)

2 ).

1. Splitting B = (B1 B2), for i = 1, 2 concatenate all x (i)
1 , x (i)

2 ∈ Bi satisfying

x (1)
1 B⊤

1 =u −x (1)
2 B⊤

2 ,

x (2)
1 B⊤

1 =u s2 − x (2)
2 B⊤

2 .

They imply the syndrome equations for y1 and y2, respectively.

y1B⊤ = 0 and y2B⊤ = s2

2. Store them in a list Li .

3. For each y1 ∈ L1 and y2 ∈ L2 check that

a) the smaller instance is solved
s2 = (y1 + y2)B⊤ and wtL(y1 + y2) = v ,

b) the original LSDP is fulfilled as well
wtL(s1 − (y1 + y2)A⊤) = t − v
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Decoding Beyond the Minimum Distance

e2

ε

(v − εM)/2︸ ︷︷ ︸
Lee weights in {r , . . . ,M}

(v − εM)/2︸ ︷︷ ︸
Lee weights in {r , . . . ,M}

εM

=

+

y1 (v − εM)/4︸ ︷︷ ︸
x (1)

1

(v − εM)/4︸ ︷︷ ︸
x (1)

2

y2 (v − εM)/4︸ ︷︷ ︸
x (2)

1

(v − εM)/4︸ ︷︷ ︸
x (2)

2
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Up to Minimum Distance Decoding - Z/47Z

1

Algorithm e(R∗, ps) R∗

Lee-BJMM 0.1618 0.451
Restricted Lee-BJMM for r = 5 0.1539 0.408

Amortized Lee-BJMM 0.1205 0.396
Amortized Restricted Lee-BJMM 0.1189 0.406

Amortized Lee-Wagner 0.1441 0.445
Amortized Restricted Lee-Wagner 0.1441 0.445

Thank you for your attention!

1André Chailloux, Thomas Debris-Alazard, and Simona Etinski. “Classical and Quantum algorithms for generic
Syndrome Decoding problems and applications to the Lee metric”. In: International Conference on Post-Quantum
Cryptography. Springer. 2021, pp. 44–62.
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