International Workshop on Code-Based Cryptography (CBCrypto) 2022

Information Set Decoding for Lee-Metric Codes using Restricted Spheres

Jessica Bariffi

joint work with Karan Khathuria (UT) and Violetta Weger (TUM)

Institute for Communications and Navigation German Aerospace Center, DLR

Motivation

• Code-based cryptography for quantum secure cryptosystems

Motivation

- Code-based cryptography for quantum secure cryptosystems
- The original McEliece cryptosystem suffers from large key sizes (even though unbroken)
 - \longrightarrow Alternative metrics are considered

Motivation

- Code-based cryptography for quantum secure cryptosystems
- The original McEliece cryptosystem suffers from large key sizes (even though unbroken)
 - \longrightarrow Alternative metrics are considered
- The security relies on the hardness of the syndrome decoding problem
 - \longrightarrow Generic decoding in the Lee metric has a large cost
 - $\longrightarrow \mathsf{NP}\text{-hard}$ in the Lee metric

Outline

2 Information Set Decoding using Restricted Spheres

- Up to Minimum Distance Decoding
- Decoding Beyond the Minimum Distance

Outline

Information Set Decoding using Restricted Spheres

- Up to Minimum Distance Decoding
- Decoding Beyond the Minimum Distance

Ring-Linear Codes

Let *p* a prime number and *s* and *n* two positive integers.

Definition

A linear code $C \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ is a $\mathbb{Z}/p^s\mathbb{Z}$ -submodule of $(\mathbb{Z}/p^s\mathbb{Z})^n$.

Ring-Linear Codes

Let *p* a prime number and *s* and *n* two positive integers.

Definition

A linear code $C \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ is a $\mathbb{Z}/p^s\mathbb{Z}$ -submodule of $(\mathbb{Z}/p^s\mathbb{Z})^n$.

Parameters:

- *n* is called the *length* of *C*
- $k := \log_{p^s} |\mathcal{C}|$ is the $\mathbb{Z}/p^s\mathbb{Z}$ -dimension of \mathcal{C}
- R := k/n denotes the *rate* of C.

The Lee Metric

Definition

For $a \in \mathbb{Z}/p^s\mathbb{Z}$ and $e = (e_1, \dots, e_n) \in (\mathbb{Z}/p^s\mathbb{Z})^n$ we define their *Lee weight*, respectively, by wt_L(a) := min(a, $|p^s - a|$),

$$\operatorname{wt}_{\mathsf{L}}(e) := \sum_{i=1}^{n} \operatorname{wt}_{\mathsf{L}}(e_i).$$

The Lee Metric

Definition

For $a \in \mathbb{Z}/p^s\mathbb{Z}$ and $e = (e_1, \dots, e_n) \in (\mathbb{Z}/p^s\mathbb{Z})^n$ we define their *Lee weight*, respectively, by

$$\operatorname{wt}_{\mathsf{L}}(a) := \min(a, |p^{\mathsf{s}} - a|)$$

 $\operatorname{wt}_{\mathsf{L}}(e) := \sum_{i=1}^{n} \operatorname{wt}_{\mathsf{L}}(e_i).$

),

Example over $\mathbb{Z}/5\mathbb{Z}$

- 1: wt_L(1) = 1
- 2: $wt_L(2) = 2$
- 3: wt_L(3) = 2
- 4: wt_L(4) = 1

The Lee Metric

Definition

For $a \in \mathbb{Z}/p^s\mathbb{Z}$ and $e = (e_1, \dots, e_n) \in (\mathbb{Z}/p^s\mathbb{Z})^n$ we define their *Lee weight*, respectively, by

$$egin{aligned} & ext{wt}_{\mathsf{L}}(a) := \min(a, \left| p^s - a
ight|) \ & ext{wt}_{\mathsf{L}}(e) := \sum_{i=1}^n ext{wt}_{\mathsf{L}}(e_i). \end{aligned}$$

Example over $\mathbb{Z}/5\mathbb{Z}$

- 0: wt_L(0) = 0
- 1: $wt_L(1) = 1$
- 2: wt_L(2) = 2
- 3: wt_L(3) = 2
- 4: $wt_L(4) = 1$

Properties:

For every $a \in \mathbb{Z}/p^s\mathbb{Z}$ and $x \in (\mathbb{Z}/p^s\mathbb{Z})^n$

- $wt_L(a) = wt_L(p^s a)$
- $\operatorname{wt}_{H}(a) \leq \operatorname{wt}_{L}(a) \leq \lfloor p^{s}/2 \rfloor =: M$
- $wt_H(e) \le wt_L(e) \le nM$

Let $a \in \mathbb{Z}/p^s\mathbb{Z}$ be chosen uniformly at random.

Lemma

The expected Lee weight of *a* is then given by

$$\delta_{p^{\mathsf{S}}} := \mathbb{E}(\mathsf{wt}_{\mathsf{L}}(a)) = \begin{cases} \frac{(p^{\mathsf{S}})^2 - 1}{4p^{\mathsf{S}}} & \text{if } p^{\mathsf{S}} \text{ is odd}, \\ \frac{p^{\mathsf{S}}}{4} & \text{if } p^{\mathsf{S}} \text{ is even} \end{cases}$$

Let $a \in \mathbb{Z}/p^s\mathbb{Z}$ be chosen uniformly at random.

Lemma

The expected Lee weight of a is then given by

$$\delta_{\rho^{\mathsf{S}}} := \mathbb{E}(\mathsf{wt}_{\mathsf{L}}(a)) = \begin{cases} \frac{(p^{\mathsf{S}})^2 - 1}{4\rho^{\mathsf{S}}} & \text{if } p^{\mathsf{S}} \text{ is odd,} \\ \frac{p^{\mathsf{S}}}{4} & \text{if } p^{\mathsf{S}} \text{ is even.} \end{cases}$$

Let $e \in S_{t,p^s}^n := \{x \in (\mathbb{Z}/p^s\mathbb{Z})^n \mid \operatorname{wt}_L(x) = t\}$ be chosen uniformly at random.

Let $a \in \mathbb{Z}/p^s\mathbb{Z}$ be chosen uniformly at random.

Lemma

The expected Lee weight of a is then given by

$$\delta_{p^s} := \mathbb{E}(\mathsf{wt}_\mathsf{L}(a)) = \begin{cases} \frac{(p^s)^2 - 1}{4p^s} & \text{if } p^s \text{ is odd}, \\ \frac{p^s}{4} & \text{if } p^s \text{ is even.} \end{cases}$$

Let $e \in S^n_{t,p^s} := \left\{ x \in (\mathbb{Z}/p^s\mathbb{Z})^n \mid \operatorname{wt}_{\mathsf{L}}(x) = t \right\}$ be chosen uniformly at random.

How does the distribution for each entry e_i look like?

Let $a \in \mathbb{Z}/p^s\mathbb{Z}$ be chosen uniformly at random.

Lemma

The expected Lee weight of a is then given by

$$\delta_{p^{\mathcal{S}}} := \mathbb{E}(\mathsf{wt}_{\mathsf{L}}(a)) = \begin{cases} \frac{(p^{\mathcal{S}})^2 - 1}{4p^{\mathcal{S}}} & \text{if } p^{\mathcal{S}} \text{ is odd,} \\ \frac{p^{\mathcal{S}}}{4} & \text{if } p^{\mathcal{S}} \text{ is even.} \end{cases}$$

Let $e \in S^n_{t,p^s} := \left\{ x \in (\mathbb{Z}/p^s\mathbb{Z})^n \mid \operatorname{wt}_{\mathsf{L}}(x) = t \right\}$ be chosen uniformly at random.

How does the distribution for each entry e_i look like?

Let $T := \lim_{n \to \infty} t(n)/n$ be the asymptotic relative Lee weight of *e*.

Let *E* be the random variable corresponding to the realization of a random entry of *e*.

Let *E* be the random variable corresponding to the realization of a random entry of *e*.

Theorem [1]

Assume that the asymptotic relative Lee weight is $T := \lim_{n \to \infty} \frac{t(n)}{n}$. For every $i \in \mathbb{Z}/p^s\mathbb{Z}$ the marginal distribution of *E* is given by

$$p_i := \mathbb{P}(E = i) = \frac{1}{\sum_{j=0}^{p^s - 1} \exp(-\beta \operatorname{wt}_{\mathsf{L}}(j))} \exp(-\beta i)$$

where β is the solution to $T = \sum_{i=0}^{M} \operatorname{wt}_{L}(i)p_{i}$.

¹ "On the Properties of Error Patterns in the Constant Lee Weight Channel". In: International Zurich Seminar on Information and Communication (IZS). 2022, pp. 44–48.

Let *E* be the random variable corresponding to the realization of a random entry of *e*.

Theorem [1]

Assume that the asymptotic relative Lee weight is $T := \lim_{n \to \infty} \frac{t(n)}{n}$. For every $i \in \mathbb{Z}/p^s\mathbb{Z}$ the marginal distribution of *E* is given by

$$p_i := \mathbb{P}(E = i) = \frac{1}{\sum_{j=0}^{p^s - 1} \exp(-\beta \operatorname{wt}_{\mathsf{L}}(j))} \exp(-\beta i)$$

where β is the solution to $T = \sum_{i=0}^{M} \operatorname{wt}_{L}(i)p_{i}$.

$$\mathbb{P}(\mathsf{wt}_{\mathsf{L}}(E) = j) = \begin{cases} \mathbb{P}(E = j) & \text{if } (j = 0) \text{ or } (j = M \text{ and } p \text{ is even}), \\ 2\mathbb{P}(E = j) & \text{if } (1 \le j \le M - 1) \text{ or } (j = M \text{ and } p \text{ is odd}). \end{cases}$$

¹ "On the Properties of Error Patterns in the Constant Lee Weight Channel". In: International Zurich Seminar on Information and Communication (IZS). 2022, pp. 44–48.

Let *E* be the random variable corresponding to the realization of a random entry of *e*.

Theorem [1]

Assume that the asymptotic relative Lee weight is $T := \lim_{n \to \infty} \frac{t(n)}{n}$. For every $i \in \mathbb{Z}/p^s\mathbb{Z}$ the marginal distribution of *E* is given by

$$p_i := \mathbb{P}(E = i) = \frac{1}{\sum_{j=0}^{p^s - 1} \exp(-\beta \operatorname{wt}_{\mathsf{L}}(j))} \exp(-\beta i)$$

where β is the solution to $T = \sum_{i=0}^{M} \operatorname{wt}_{L}(i)p_{i}$.

$$\mathbb{P}(\mathsf{wt}_{\mathsf{L}}(E) = j) = \begin{cases} \mathbb{P}(E = j) & \text{if } (j = 0) \text{ or } (j = M \text{ and } p \text{ is even}), \\ 2\mathbb{P}(E = j) & \text{if } (1 \le j \le M - 1) \text{ or } (j = M \text{ and } p \text{ is odd}). \end{cases}$$

Note: $T < \delta_{\rho^s} \iff \beta > 0$

The Marginal Distribution - Example over $\mathbb{Z}/47\mathbb{Z}$

Outline

2 Information Set Decoding using Restricted Spheres

- Up to Minimum Distance Decoding
- Decoding Beyond the Minimum Distance

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given
$$H \in (\mathbb{Z}/p^s\mathbb{Z})^{(n-k)\times n}$$
, $s \in (\mathbb{Z}/p^s\mathbb{Z})^{n-k}$ and $t \in \mathbb{N}$,
find $e \in (\mathbb{Z}/p^s\mathbb{Z})^n$ s.t. wt_L $(e) = t$ and $s = eH^{\top}$.

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given
$$H \in (\mathbb{Z}/p^s\mathbb{Z})^{(n-k)\times n}$$
, $s \in (\mathbb{Z}/p^s\mathbb{Z})^{n-k}$ and $t \in \mathbb{N}$,
find $e \in (\mathbb{Z}/p^s\mathbb{Z})^n$ s.t. wt_L $(e) = t$ and $s = eH^{\top}$.

• Information set decoding (ISD) algorithms to solve the LSDP

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given
$$H \in (\mathbb{Z}/p^s\mathbb{Z})^{(n-k)\times n}$$
, $s \in (\mathbb{Z}/p^s\mathbb{Z})^{n-k}$ and $t \in \mathbb{N}$,
find $e \in (\mathbb{Z}/p^s\mathbb{Z})^n$ s.t. wt_L $(e) = t$ and $s = eH^{\top}$.

Information set decoding (ISD) algorithms to solve the LSDP

 —> Recent improvements: using partial Gaussian elimination¹

¹Matthieu Finiasz and Nicolas Sendrier. "Security bounds for the design of code-based cryptosystems". In: International Conference on the Theory and Application of Cryptology and Information Security. Springer. 2009, pp. 88–105.

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given $H \in (\mathbb{Z}/p^s\mathbb{Z})^{(n-k)\times n}$, $s \in (\mathbb{Z}/p^s\mathbb{Z})^{n-k}$ and $t \in \mathbb{N}$, find $e \in (\mathbb{Z}/p^s\mathbb{Z})^n$ s.t. wt_L(e) = t and $s = eH^{\top}$.

- Information set decoding (ISD) algorithms to solve the LSDP
 - $\longrightarrow\,$ Recent improvements: using partial Gaussian elimination
 - ... Representation technique¹ or Wagner's approach²

²Alexander May, Alexander Meurer, and Enrico Thomae. "Decoding Random Linear Codes in $\tilde{O}(2^{0.054n})$ ". In: International Conference on the Theory and Application of Cryptology and Information Security. Springer. 2011, pp. 107–124.

¹Anja Becker et al. "Decoding random binary linear codes in $2^{n/20}$: How 1+ 1= 0 improves information set decoding". In: Annual international conference on the theory and applications of cryptographic techniques. Springer. 2012, pp. 520–536.

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given $H \in (\mathbb{Z}/p^s\mathbb{Z})^{(n-k)\times n}$, $s \in (\mathbb{Z}/p^s\mathbb{Z})^{n-k}$ and $t \in \mathbb{N}$, find $e \in (\mathbb{Z}/p^s\mathbb{Z})^n$ s.t. wt_L(e) = t and $s = eH^{\top}$.

• Information set decoding (ISD) algorithms to solve the LSDP

- \longrightarrow Recent improvements: using partial Gaussian elimination
 - ... Representation technique or Wagner's approach
 - ... BJMM on 2 Levels is fastest in the Lee metric (non-amortized)¹
 - ... Wagner's approach is fastest in the Lee metric (amortized)²

²André Chailloux, Thomas Debris-Alazard, and Simona Etinski. "Classical and Quantum algorithms for generic Syndrome Decoding problems and applications to the Lee metric". In: International Conference on Post-Quantum Cryptography. Springer. 2021, pp. 44–62.

¹Violetta Weger et al. "On the hardness of the Lee syndrome decoding problem". In: Advances in Mathematics of Communications (2019). DOI: 10.3934/amc.2022029.

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given
$$H \in (\mathbb{Z}/p^s\mathbb{Z})^{(n-k)\times n}$$
, $s \in (\mathbb{Z}/p^s\mathbb{Z})^{n-k}$ and $t \in \mathbb{N}$,
find $e \in (\mathbb{Z}/p^s\mathbb{Z})^n$ s.t. $wt_L(e) = t$ and $s = eH^{\top}$.

- Information set decoding (ISD) algorithms to solve the LSDP
 - \longrightarrow Recent improvements: using partial Gaussian elimination
 - ... Representation technique or Wagner's approach
 - ... BJMM on 2 Levels is fastest in the Lee metric (non-amortized)
 - ... Wagner's approach is fastest in the Lee metric (amortized)
- The cost of an ISD algorithm is given by

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given $H \in (\mathbb{Z}/p^s\mathbb{Z})^{(n-k)\times n}$, $s \in (\mathbb{Z}/p^s\mathbb{Z})^{n-k}$ and $t \in \mathbb{N}$, find $e \in (\mathbb{Z}/p^s\mathbb{Z})^n$ s.t. wt_L(e) = t and $s = eH^{\top}$.

- Information set decoding (ISD) algorithms to solve the LSDP
 - \longrightarrow Recent improvements: using partial Gaussian elimination
 - ... Representation technique or Wagner's approach
 - ... BJMM on 2 Levels is fastest in the Lee metric (non-amortized)
 - ... Wagner's approach is fastest in the Lee metric (amortized)
- The cost of an ISD algorithm is given by

nr. of iterations $\,\times\,$ cost per iteration

(

Consider an instance of the Lee Syndrome Decoding Problem (LSDP):

Given
$$H \in (\mathbb{Z}/p^s\mathbb{Z})^{(n-k)\times n}$$
, $s \in (\mathbb{Z}/p^s\mathbb{Z})^{n-k}$ and $t \in \mathbb{N}$,
find $e \in (\mathbb{Z}/p^s\mathbb{Z})^n$ s.t. $wt_L(e) = t$ and $s = eH^{\top}$.

Information set decoding (ISD) algorithms to solve the LSDP

 \longrightarrow Recent improvements: using partial Gaussian elimination

- ... Representation technique or Wagner's approach
- ... BJMM on 2 Levels is fastest in the Lee metric (non-amortized)
- ... Wagner's approach is fastest in the Lee metric (amortized)
- The cost of an ISD algorithm is given by

 $\underbrace{\text{nr. of iterations}}_{1} \times \text{cost per iteration}$

We use the idea of partial Gaussian elimination to solve the problem:

1. Find $U \in \operatorname{GL}_{n-k}(\mathbb{Z}/p^s\mathbb{Z})$ such that

$$UH^{\top} = \begin{pmatrix} \mathbb{I}_{n-k-\ell} & 0\\ A^{\top} & B^{\top} \end{pmatrix}$$

We use the idea of partial Gaussian elimination to solve the problem:

1. Find $U \in \operatorname{GL}_{n-k}(\mathbb{Z}/p^s\mathbb{Z})$ such that

$$UH^{\top} = \begin{pmatrix} \mathbb{I}_{n-k-\ell} & 0\\ A^{\top} & B^{\top} \end{pmatrix}$$

2. Transform the syndrome equation accordingly to

$$\begin{pmatrix} e_1 & e_2 \end{pmatrix} U H^\top = \begin{pmatrix} s_1 & s_2 \end{pmatrix} = s U$$

We use the idea of partial Gaussian elimination to solve the problem:

1. Find $U \in \operatorname{GL}_{n-k}(\mathbb{Z}/p^s\mathbb{Z})$ such that

$$UH^{\top} = \begin{pmatrix} \mathbb{I}_{n-k-\ell} & 0\\ A^{\top} & B^{\top} \end{pmatrix}$$

2. Transform the syndrome equation accordingly to

$$\begin{pmatrix} e_1 & e_2 \end{pmatrix} U H^{ op} = \begin{pmatrix} s_1 & s_2 \end{pmatrix} = s U$$

3. Assume, $wt_L(e_1) = t - v$ and $wt_L(e_2) = v$. Hence, we need to solve

$$e_1 + e_2 A^\top = s_1$$

 $e_2 B^\top = s_2$

We use the idea of partial Gaussian elimination to solve the problem:

1. Find $U \in \operatorname{GL}_{n-k}(\mathbb{Z}/p^s\mathbb{Z})$ such that

$$UH^{\top} = \begin{pmatrix} \mathbb{I}_{n-k-\ell} & 0\\ A^{\top} & B^{\top} \end{pmatrix}$$

2. Transform the syndrome equation accordingly to

$$\begin{pmatrix} e_1 & e_2 \end{pmatrix} U H^\top = \begin{pmatrix} s_1 & s_2 \end{pmatrix} = s U$$

3. Assume, $wt_L(e_1) = t - v$ and $wt_L(e_2) = v$. Hence, we need to solve

$$e_1 + e_2 A^\top = s_1$$

 $e_2 B^\top = s_2$

4. Solve the smaller instance of the LSDP. Immediately check whether $e_1 = s_1 - e_2 A^{\top}$ has Lee weight t - v.

Focus on the small instance of the Lee syndrome decoding problem

Given
$$B \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell \times (k+\ell)}$$
, $s_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell}$ and $v, t \in \mathbb{N}$
find $e_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{k+\ell}$ s.t. wt_L $(e_2) = v$ and $s_2 = e_2B^{\top}$.

Focus on the small instance of the Lee syndrome decoding problem

Given
$$B \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell \times (k+\ell)}$$
, $s_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell}$ and $v, t \in \mathbb{N}$
find $e_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{k+\ell}$ s.t. wt_L $(e_2) = v$ and $s_2 = e_2B^{\top}$.

Main Idea and Difference

• Use the marginal distribution, i.e.,

Focus on the small instance of the Lee syndrome decoding problem

Given
$$B \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell \times (k+\ell)}$$
, $s_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell}$ and $v, t \in \mathbb{N}$
find $e_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{k+\ell}$ s.t. wt_L $(e_2) = v$ and $s_2 = e_2B^{\top}$.

- Use the marginal distribution, i.e.,
 - for t/n < M/2, with high probability 0 is the most likely Lee weight in *e*, followed by the Lee weight 1 until the least likely Lee weight *M*.

Focus on the small instance of the Lee syndrome decoding problem

Given
$$B \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell \times (k+\ell)}$$
, $s_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell}$ and $v, t \in \mathbb{N}$
find $e_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{k+\ell}$ s.t. wt_L $(e_2) = v$ and $s_2 = e_2B^{\top}$.

- Use the marginal distribution, i.e.,
 - for t/n < M/2, with high probability 0 is the most likely Lee weight in *e*, followed by the Lee weight 1 until the least likely Lee weight *M*.
 - for t/n > M/2 the contrary is true

Focus on the small instance of the Lee syndrome decoding problem

Given
$$B \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell \times (k+\ell)}$$
, $s_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell}$ and $v, t \in \mathbb{N}$
find $e_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{k+\ell}$ s.t. wt_L $(e_2) = v$ and $s_2 = e_2B^{\top}$.

- Use the marginal distribution, i.e.,
 - for t/n < M/2, with high probability 0 is the most likely Lee weight in *e*, followed by the Lee weight 1 until the least likely Lee weight *M*.
 - for t/n > M/2 the contrary is true
- With high probability the least probable entries of *e* lie **outside** the information set, hence are not in *e*₂.

Focus on the small instance of the Lee syndrome decoding problem

Given
$$B \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell \times (k+\ell)}$$
, $s_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{\ell}$ and $v, t \in \mathbb{N}$
find $e_2 \in (\mathbb{Z}/p^s\mathbb{Z})^{k+\ell}$ s.t. wt_L $(e_2) = v$ and $s_2 = e_2B^{\top}$.

- Use the marginal distribution, i.e.,
 - for t/n < M/2, with high probability 0 is the most likely Lee weight in *e*, followed by the Lee weight 1 until the least likely Lee weight *M*.
 - for t/n > M/2 the contrary is true
- With high probability the least probable entries of *e* lie **outside** the information set, hence are not in *e*₂.
- We will restrict e_2 to live either in $\{0, \pm 1, \dots, \pm r\}^{k+\ell}$ or in $\{\pm r, \dots, \pm M\}^{k+\ell}$, respectively.

$$\mathcal{B}_{i} = \left\{ \nu(\mathbf{x}) \mid \mathbf{x}_{\mathcal{E}_{i}^{\mathcal{C}}} \in \{0, \dots, \pm r\}^{(k+\ell-\varepsilon)/2}, \operatorname{wt}_{\mathsf{L}}(\mathbf{x}_{\mathcal{E}_{i}^{\mathcal{C}}}) = \nu/4, \mathbf{x}_{\mathcal{E}_{i}} \in \left(\mathbb{Z}/\rho^{\mathsf{S}}\mathbb{Z}\right)^{\varepsilon/2}, \nu \in S_{(k+\ell)/2} \right\}$$

Recall, $s_2 = e_2 B^{\top}$, where $e_2 = y_1 + y_2 = (x_1^{(1)}, x_2^{(1)}) + (x_1^{(2)}, x_2^{(2)})$.

Recall, $s_2 = e_2 B^{\top}$, where $e_2 = y_1 + y_2 = (x_1^{(1)}, x_2^{(1)}) + (x_1^{(2)}, x_2^{(2)})$.

1. Splitting $B = (B_1 \ B_2)$, for i = 1, 2 concatenate all $x_1^{(i)}, x_2^{(i)} \in \mathcal{B}_i$ satisfying

$$\begin{aligned} x_1^{(1)} B_1^\top &=_u - x_2^{(1)} B_2^\top, \\ x_1^{(2)} B_1^\top &=_u s_2 - x_2^{(2)} B_2^\top \end{aligned}$$

They imply the syndrome equations for y_1 and y_2 , respectively.

$$y_1 B^{\top} = 0$$
 and $y_2 B^{\top} = s_2$

Recall, $s_2 = e_2 B^{\top}$, where $e_2 = y_1 + y_2 = (x_1^{(1)}, x_2^{(1)}) + (x_1^{(2)}, x_2^{(2)})$.

1. Splitting $B = (B_1 \ B_2)$, for i = 1, 2 concatenate all $x_1^{(i)}, x_2^{(i)} \in \mathcal{B}_i$ satisfying

$$\begin{aligned} x_1^{(1)} B_1^\top &=_u - x_2^{(1)} B_2^\top, \\ x_1^{(2)} B_1^\top &=_u s_2 - x_2^{(2)} B_2^\top \end{aligned}$$

They imply the syndrome equations for y_1 and y_2 , respectively.

$$y_1B^{ op}=0$$
 and $y_2B^{ op}=s_2$

2. Store them in a list \mathcal{L}_i .

Recall, $s_2 = e_2 B^{\top}$, where $e_2 = y_1 + y_2 = (x_1^{(1)}, x_2^{(1)}) + (x_1^{(2)}, x_2^{(2)})$.

1. Splitting $B = (B_1 \ B_2)$, for i = 1, 2 concatenate all $x_1^{(i)}, x_2^{(i)} \in B_i$ satisfying

$$\begin{aligned} x_1^{(1)} B_1^\top &=_u - x_2^{(1)} B_2^\top, \\ x_1^{(2)} B_1^\top &=_u s_2 - x_2^{(2)} B_2^\top \end{aligned}$$

They imply the syndrome equations for y_1 and y_2 , respectively.

$$y_1 B^\top = 0$$
 and $y_2 B^\top = s_2$

- 2. Store them in a list \mathcal{L}_i .
- **3**. For each $y_1 \in \mathcal{L}_1$ and $y_2 \in \mathcal{L}_2$ check that

Recall, $s_2 = e_2 B^{\top}$, where $e_2 = y_1 + y_2 = (x_1^{(1)}, x_2^{(1)}) + (x_1^{(2)}, x_2^{(2)})$.

1. Splitting $B = (B_1 \ B_2)$, for i = 1, 2 concatenate all $x_1^{(i)}, x_2^{(i)} \in \mathcal{B}_i$ satisfying

$$\begin{aligned} x_1^{(1)} B_1^\top &=_u - x_2^{(1)} B_2^\top, \\ x_1^{(2)} B_1^\top &=_u s_2 - x_2^{(2)} B_2^\top \end{aligned}$$

They imply the syndrome equations for y_1 and y_2 , respectively.

$$y_1 B^{\top} = 0$$
 and $y_2 B^{\top} = s_2$

- 2. Store them in a list \mathcal{L}_i .
- 3. For each $y_1 \in \mathcal{L}_1$ and $y_2 \in \mathcal{L}_2$ check that a) the smaller instance is solved

 $s_2 = (y_1 + y_2)B^{\top}$ and $wt_L(y_1 + y_2) = v$,

Recall, $s_2 = e_2 B^{\top}$, where $e_2 = y_1 + y_2 = (x_1^{(1)}, x_2^{(1)}) + (x_1^{(2)}, x_2^{(2)})$.

1. Splitting $B = (B_1 \ B_2)$, for i = 1, 2 concatenate all $x_1^{(i)}, x_2^{(i)} \in B_i$ satisfying

$$\begin{aligned} x_1^{(1)} B_1^\top &=_u - x_2^{(1)} B_2^\top, \\ x_1^{(2)} B_1^\top &=_u s_2 - x_2^{(2)} B_2^\top \end{aligned}$$

They imply the syndrome equations for y_1 and y_2 , respectively.

$$y_1 B^{\top} = 0$$
 and $y_2 B^{\top} = s_2$

- 2. Store them in a list \mathcal{L}_i .
- For each y₁ ∈ L₁ and y₂ ∈ L₂ check that
 a) the smaller instance is solved

$$s_2 = (y_1 + y_2)B^{\top}$$
 and $wt_L(y_1 + y_2) = v$,

b) the original LSDP is fulfilled as well

$$\mathsf{wt}_{\mathsf{L}}(s_1 - (y_1 + y_2)A^{\top}) = t - v$$

Decoding Beyond the Minimum Distance

Outline

1 Preliminaries

2 Information Set Decoding using Restricted Spheres

- Up to Minimum Distance Decoding
- Decoding Beyond the Minimum Distance

Up to Minimum Distance Decoding - $\mathbb{Z}/47\mathbb{Z}$

¹André Chailloux, Thomas Debris-Alazard, and Simona Etinski. "Classical and Quantum algorithms for generic Syndrome Decoding problems and applications to the Lee metric". In: *International Conference on Post-Quantum Cryptography*. Springer. 2021, pp. 44–62.

Up to Minimum Distance Decoding - $\mathbb{Z}/47\mathbb{Z}$

Thank you for your attention!

¹André Chailloux, Thomas Debris-Alazard, and Simona Etinski. "Classical and Quantum algorithms for generic Syndrome Decoding problems and applications to the Lee metric". In: *International Conference on Post-Quantum Cryptography*. Springer. 2021, pp. 44–62.