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Linear Block Codes
Let Fq be a finite field of order q and let n be a positive integer. We will denote by Zq
the ring of integers modulo q.

Definition [Linear Code]

An [n, k ]q-linear code C ⊂ Fn
q is a k -dimensional subspace of Fn

q . The elements of C
are called codewords.

Definition [Hamming Weight/Distance]

For any two codewords x , y ∈ C we define
• the Hamming weight of x , wtH(x) = |{i ∈ {1, . . . , n} | xi 6= 0}|
• the Hamming distance between x and y , dH(x , y) := wtH(x − y)

An [n, k ]q-linear code C can be represented by an (n − k)× n matrix H satisfying

C = ker(H).

We call H a parity-check matrix of C.
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LDPC Codes over Finite Integer Rings
According to Sridhara and Fuja

Definition [LDPC Code]

An [n, k ]q LDPC code over Zq is defined by a sparse parity-check matrix H, whose
nonzero entries lie in the set of units Z×q .

Can be described by a bipartite graph G consisting of
• variable nodes (VN) {v1, . . . , vn}
• check nodes (CN) {c1, . . . , cm}

VN vj is connected to CN ci if and only if hij 6= 0.

H =


0 1 0 2 4 0 0 1
1 2 1 0 0 4 0 0
0 0 2 0 0 1 3 1
1 0 0 1 4 0 1 0

 ∈ Z4×8
5

v1

v2

v3

v4

v5

v6

v7

v8

c1

c2

c3

c4

An LDPC code is (k , `)-regular, if every VN connects to k CNs and every CN connects
to ` VNs, for some fixed positive integer k and `.
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The Lee Metric

Definition [Lee weight]

For any integer a ∈ Zq we define its Lee weight as

wtL(a) := min(a, q − a). (1)

The Lee weight of a vector x ∈ Zn
q is the sum of the Lee weights of its entries, i.e.,

wtL(x) :=
n∑

i=1

wtL(xi ). (2)

0

1

23

4

Example: Consider Z5. The Lee weight of a = 3 is

wtL(3) = min(3, 5− 3) = 2

The Lee weight of an element a describes also the minimal
number of arcs separating a from 0.
=⇒ wtL(3) = 2



Page 3/14 J. Bariffi · LDPC in Lee Channel · Introduction June 9, 2021
Introduction The Lee Channel Performance Analysis

The Lee Metric

Definition [Lee weight]

For any integer a ∈ Zq we define its Lee weight as

wtL(a) := min(a, q − a). (1)

The Lee weight of a vector x ∈ Zn
q is the sum of the Lee weights of its entries, i.e.,

wtL(x) :=
n∑

i=1

wtL(xi ). (2)

0

1

23

4

Example: Consider Z5. The Lee weight of a = 3 is

wtL(3) = min(3, 5− 3) = 2

The Lee weight of an element a describes also the minimal
number of arcs separating a from 0.
=⇒ wtL(3) = 2



Page 3/14 J. Bariffi · LDPC in Lee Channel · Introduction June 9, 2021
Introduction The Lee Channel Performance Analysis

The Lee Metric

Definition [Lee weight]

For any integer a ∈ Zq we define its Lee weight as

wtL(a) := min(a, q − a). (1)

The Lee weight of a vector x ∈ Zn
q is the sum of the Lee weights of its entries, i.e.,

wtL(x) :=
n∑

i=1

wtL(xi ). (2)

0

1

23

4

Example: Consider Z5. The Lee weight of a = 3 is

wtL(3) = min(3, 5− 3) = 2

The Lee weight of an element a describes also the minimal
number of arcs separating a from 0.

=⇒ wtL(3) = 2



Page 3/14 J. Bariffi · LDPC in Lee Channel · Introduction June 9, 2021
Introduction The Lee Channel Performance Analysis

The Lee Metric

Definition [Lee weight]

For any integer a ∈ Zq we define its Lee weight as

wtL(a) := min(a, q − a). (1)

The Lee weight of a vector x ∈ Zn
q is the sum of the Lee weights of its entries, i.e.,

wtL(x) :=
n∑

i=1

wtL(xi ). (2)

0

1

23

4

Example: Consider Z5. The Lee weight of a = 3 is

wtL(3) = min(3, 5− 3) = 2

The Lee weight of an element a describes also the minimal
number of arcs separating a from 0.

=⇒ wtL(3) = 2



Page 3/14 J. Bariffi · LDPC in Lee Channel · Introduction June 9, 2021
Introduction The Lee Channel Performance Analysis

The Lee Metric

Definition [Lee weight]

For any integer a ∈ Zq we define its Lee weight as

wtL(a) := min(a, q − a). (1)

The Lee weight of a vector x ∈ Zn
q is the sum of the Lee weights of its entries, i.e.,

wtL(x) :=
n∑

i=1

wtL(xi ). (2)

0

1

23

4

Example: Consider Z5. The Lee weight of a = 3 is

wtL(3) = min(3, 5− 3) = 2

The Lee weight of an element a describes also the minimal
number of arcs separating a from 0.

=⇒ wtL(3) = 2



Page 3/14 J. Bariffi · LDPC in Lee Channel · Introduction June 9, 2021
Introduction The Lee Channel Performance Analysis

The Lee Metric

Definition [Lee weight]

For any integer a ∈ Zq we define its Lee weight as

wtL(a) := min(a, q − a). (1)

The Lee weight of a vector x ∈ Zn
q is the sum of the Lee weights of its entries, i.e.,

wtL(x) :=
n∑

i=1

wtL(xi ). (2)

0

1

23

4

Example: Consider Z5. The Lee weight of a = 3 is

wtL(3) = min(3, 5− 3) = 2

The Lee weight of an element a describes also the minimal
number of arcs separating a from 0.
=⇒ wtL(3) = 2



Page 4/14 J. Bariffi · LDPC in Lee Channel · Introduction June 9, 2021
Introduction The Lee Channel Performance Analysis

The Lee Metric

Properties
For every a ∈ Zq it holds:
• wtL(a) = wtL(q − a)

• wtL(a) ≤ bq/2c
• wtH(a) ≤ wtL(a)

If q ∈ {2, 3}, the Lee weight is equivalent to the Hamming weight.

Definition [Lee Distance]

The Lee distance of two scalars a, b ∈ Zq is dL(a, b) := wtL(a− b). The Lee distance
between two vectors x , y ∈ Zn

q is

dL(x , y) =
n∑

i=1

dL(xi , yi ).
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Channel Coding
Let X and Y the input and output alphabet of the channel, respectively.

Encoder Channel

With a given channel law

PY |X (y | x) := P(Y = y | X = x)

Decoder
Input data x ∈ X n y ∈ Yn Output data

Definition [Discrete Memoryless Channel]

A channel is called discrete memoryless, if the input and output alphabets are discrete,
finite sets and the output Y = y at time t only depends on the input X = x at that time
t , i.e.,

P(Y1 = y1, . . . ,Yn = yn |X1 = x1, . . . ,Xn = xn) =
n∏

i=1

P(Yi = yi |Xi = xi )

Example: q-ary Symmetric Channel

Let x ∈ Zn
q sent and y ∈ Zn

q received. Then PYi |Xi
(yi | xi ) :=

{
1− ε if yi = xi ,
ε

q−1 else.
∀i.
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The Lee Channel

Define the “Lee Channel” over Zq as proposed by Chiang and Wolf:

pi := P(i | 0) = P(−i | 0), for i = 0, . . . , bq/2c. (3)

Due to symmetry: P(i | j) = P(i − j mod q | 0)

Theorem (Chiang and Wolf)

The channel described in (3) is strictly matched to the Lee metric for maximum
likelihood decoding if and only if the following two properties hold.

p0 > p1 and pi =
pi

1

pi−1
0

for all i = 2, . . . , bq/2c.
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The Lee Channel

For y , x , e ∈ Zq , consider a discrete memoryless channel (DMC)

y
channel output

= x
channel input

+ e
additive error term

(4)

The channel law is given by

P(Y = y |X = x) =: PY |X (y |x) =
1
Z

exp (−λ dL(x , y)) , (5)

where Z :=
∑q−1

e=0 exp(−λwtL(e)) and λ > 0.

Note:
• The channel defined in (5) is the DMC matched to the Lee metric.
• The conditional distribution (5) arises (in the limit of large n) as the marginal

distribution of a channel.
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The Constant-Weight Lee Channel

Let y , x , e ∈ Zn
q , where wtL(e) = t for some fixed positive integer t . Consider again

y = x + e.

Note: The error vector e is chosen uniformly at random from the set of all length-n
vectors of Lee weight t :

Sn
t :=

{
x
∣∣ x ∈ Zn

q ,wtL(x) = t
}
.

Question: What would PY | X (y | x) look like?
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The Constant-weight Lee Channel

Let p = (p0, . . . , pq−1), with pi := P(i | 0) for all i ∈ Zq .

Lemma

The constant-weight Lee channel over Zq has channel distribution

p?i = κ exp (−λwtL(i)) , κ :=
1∑q−1

j=0 exp(−λwtL(j))
,

such that it matches under maximum likelihood decoding.

Sketch of proof
We want that p = (p0, . . . , pq−1) maximizes the entropy function

He(p) := −
q−1∑

i=0,pi 6=0

pi log pi

under the constraint that
∑q−1

i=0 wtL(i)pi = t/n =: δ.
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Symbol Message Passing

Consider a nonbinary LDPC code C with VNs {v1, . . . , vn} and CNs {c1, . . . , cm} and
parity-check matrix H. Denote by N (vj ) and N (ci ) the set of all connecting elements
to VN vj and CN ci , respectively.

mch−→
mch−→

mch−→
mch−→

v1

v2

...

vn−1

vn

c1

c2

...

cm

v

c1

...

cd

mv−→
c1

mv−→cd

c

v1

...

vt

v

m
v1→c

mvt→cv

c1

...

cd−1

c

mc 1
→v

mcd−1→v
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Symbol Message Passing

Initialization.
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neighboring CNs c ∈ N (v)
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Symbol Message Passing

CN-to-VN step.
Each CN computes for every v ∈ N (c)

mc→v = h−1
c,v

∑
v′∈N (c)\{v}

hc,v′mv′→c.

Note: h−1
c,v exists, since we said the nonzero

entries of H are units.
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Symbol Message Passing
VN-to-CN step.

Define the aggregated extrinsic L-vector

E = L(y) +
∑

c′∈N (v)\{c}
L (mc′→v) ,

where y is the channel output and
L(y) = (L0(y), . . . , Lq−1(y)) with
Lx (y) = log

(
PY |X (y | x)

)
.

Note: We assume the CN-to-VN messages are
modelled as a qSC,

PM|X (m|x) =
{

1− ξ if m = x
ξ/(q − 1) otherwise

Then the VN-to-CN messages are

mv→c = argmax
x∈Zq

Ex .
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Symbol Message Passing
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Final decision.
The final decision at each VN v is

x̂ = argmax
x∈Zq

LFIN
x

where LFIN = L(mch) +
∑

c∈N (v)

L (mc→v) .
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The qSC-Assumption for SMP

• Following Lechner, Pedersen, and Kramer, the CN to VN messages are
modelled as observations from a q-ary symmetric channel.

• Motivation behind this choice:

I Over finite fields, the extrinsic channel transition probabilities, averaged
over a uniform distribution of nonzero elements the parity-check matrix,
yield (in the limit of a large block length) a qSC.

I For a field Zq this argument is independent of the channel law and hence
also valid for the Lee channel.

• If q is not a prime, we treat the messages as qSC anyways, due to the following
observations

I The approximation is especially accurate when the fraction of elements of
Zq \ {0} that are in Z×q is large.

I The use of the qSC approximation is important from a practical viewpoint,
i.e., decoding becomes particularly simple.
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Simulations

Decoding performance for both BP and SMP over both the Lee channel and the
constant-weight Lee channel using

• (3, 6) regular nonbinary LDPC codes of length 256 and 2048,
• For the constant-weight Lee channel, the error vectors are drawn uniformly at

random from the set of vectors with a given weight.
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Simulations
Block error rate vs. average Lee weight δ for regular (3, 6) nonbinary LDPC codes in the Lee channel for BP and
SMP decoding.

Code length n = 256
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Code length n = 2048
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Simulations
Block error rate vs. average Lee weight δ for regular (3, 6) nonbinary LDPC codes in the constant-weight Lee
channel for BP and SMP decoding.

Code length n = 256
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Thank you very much for your attention!
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