
Analysis and Decoding of Linear
Lee-Metric Codes with Application

to Code-Based Cryptography

Dissertation
zur

Erlangung der naturwissenschaftlichen Doktorwürde
(Dr. sc. nat.)
vorgelegt der

Mathematisch-naturwissenschaftlichen Fakultät
der

Universität Zürich
von

Jessica Bariffi

von
Lugano, TI

Promotionskommission

Prof. Dr. Joachim Rosenthal (Vorsitz)
Prof. Dr. Jean Bertoin

Dr. Hannes Bartz

Zürich, 2024

iii

To my friends and family

v

Abstract

Lee-metric codes are defined over integer residue rings endowed with the Lee metric. Even
though the metric is one of the oldest metric considered in coding-theroy and has interesting
applications in, for instance, DNA storage and code-based cryptography, it received relatively
few attentions compared to other distances like the Hamming metric or the rank metric.
Hence, codes in the Lee metric are still less studied than codes in other metrics. Recently, the
interest in the Lee metric increased due to its similarities with the Euclidean norm used in
lattice-based cryptosystem. Additionally, it is a promising metric to reduce the key sizes or
signature sizes in code-based cryptosystem. However, basic coding-theoretic concepts, such
as a tight Singleton-like bound or the construction of optimal codes, are still open problems.

Thus, in this thesis we focus on some open problems in the Lee metric and Lee-metric
codes. Firstly, we introduce generalized weights for the Lee metric in different settings by
adapting the existing theory for the Hamming metric over finite rings. We discuss their
utility and derive new Singleton-like bounds in the Lee metric. Eventually, we abandon the
classical idea of generalized weights and introduce generalized distances based on the algebraic
structure of integer residue rings. This allows us to provide a novel and improved Singleton-
like bound in the Lee metric over integer residue rings. For all the bounds we discuss the
density of their optimal codes.

Originally, the Lee metric has been introduced over a q-ary alphabet to cope with phase
shift modulation. We consider two channel models in the Lee metric. The first is a memoryless
channel matching to the Lee metric under the decoding rule “decode to the nearest codeword”.
The second model is a block-wise channel introducing an error of fixed Lee weight, motivated
by code-based cryptography where errors of fixed weight are added intentionally. We show
that both channels coincide in the limit of large block length, meaning that their marginal
distributions match. This distribution enables to provide bounds on the asymptotic growth
rate of the surface and volume spectrum of spheres and balls in the Lee metric, and to derive
bounds on the block error probability of the two channel models in terms of random coding
union bounds. As vectors of fixed Lee weight are also of interest to cryptographic applications,
we discuss the problem of scalar multiplication in the Lee metric in the asymptotic regime
and in a finite-length setting. The Lee weight of a vector may be increased or decreased
by the product with a nontrivial scalar. From a cryptographic view point this problem is
interesting, since an attacker may be able to reduce the weight of the error and hence reduce
the complexity of the underlying problem. The construction of a vector with constant Lee
weight using integer partitions is analyzed and an efficient method for drawing vectors of
constant Lee weight uniformly at random from the set of all such vectors is given.

We then focus on regular low-density parity-check (LDPC) code families defined over inte-
ger residue rings and analyze their performance with respect to the Lee metric. We determine
the expected Lee weight enumerator for a random code in fixed regular LDPC code ensemble
and analyze its asymptotic growth rate. This allows us to estimate the expected decoding
error probability. Eventually, we estimate the error-correction performance of selected LDPC
code families under belief propagation decoding and symbol message passing decoding and
compare the performances.

The thesis is concluded with an application of the results derived to code-based cryp-
tography. Namely, we apply the marginal distribution to improve the yet known fastest
Lee-information set decoding algorithm.

vii

Acknowledgements

First and foremost I would like to thank my advisor Joachim Rosenthal who pushed me
to move out of my comfort zone and pursue a Ph.D. in his group in combination with the
German Aerospace Center (DLR) in Munich, Germany. I am grateful for all his trust and
belief in me, for the continuous support not only regarding the thesis but also my future and
goals, and for being available any time even though I stayed in Munich and visited Zurich
only every now and then.

Secondly, I thank Hannes Bartz, my supervisor at DLR, for guiding me through this
adventure, for all his advices and for the freedom I had in choosing the research topic and
projects. I am grateful for everything I have learned within his group. Moreover, I thank
Gianluigi Liva for giving me the opportunity to come to DLR, and for all the inputs, discus-
sions and positivity during all these years. His knowledge and his honest interest in research
is truly inspiring. I am thankful for every second and comment he offered and for pushing
and believing in me whenever I had doubts.

At this point I want to thank Violetta Weger! Not only has she taken the role of my
mentor, helped me find exciting projects, and offered her help whenever she could, but she
has also become a true friend. I thank her for all her positive and pushing words, for her
patience and experience, and for all the support and trust.

I am grateful to all my colleagues at DLR and at the University of Zurich for the contin-
uous exchange. Especially, I want to thank Felicitas Hörmann for being the best and most
supportive office mate, and for always offering her help and answering even the stupidest
of questions. I thank Stefano Tinelli and Riccardo Schiavone for their friendship, the coffee
breaks and afternoon walks talking about life and research, for all the dinners and adventures
we planed, and for making the working experience at DLR complete. Vi voglio tanto bene! I
also want to thank my remaining co-authors Hugo Sauerbier Couvée, Karan Khathuria and
Thomas Jerkovits for the great collaboration.

I would like to thank my family and my group of friends back in Zurich and spread all
over the world for always being there even on a longer distance, and for the support that they
offerd me so naturally. Coming back home has always felt like a little vacation.

Doing a Ph.D. abroad is not always easy. I consider myself very lucky to be surrounded by
an amazing group of friends contributing to a great personal experience in Munich. Naming
each and every one separately would end in a seemingly infinite list of names, but I am thankful
to each and every one in this seemingly infinite list for the support, for all the great time
we had and for making Disco Maistrasse one of Munichs most historical nightclubs. Thank
you all for sharing this experience with me and for being a part of my Munich-family. More
explicitly, I want to thank Ludovica Cammarone and Lorenzo Zaniboni for their incredible
positivity and availability every day. To say it in Ludo’s words: “Grazie di esistere! Siete
mitici.” Especially, I want to thank Edoardo Giordano. Even though my research does not
lie in his field of expertise, he was always curious to hear about the problems I tried to solve.
Talking to him helped me break down the problem and see the essential parts of it. I thank
him for his patience, for finally showing his emotions while playing a game he is loosing, and
for being a truly GREAT friend.

Last but not least, I would like to express my sincerest gratitude to Pietro Mambelli. His
unconditional support and love, his positive energy, and his calmness helped me overcome
every insecurity and obstacle I faced in this period. I thank him for all his good advice, for
his time listening to my struggles, for being proud of the even tiniest of my achievements, for
being my save space, and for believing in me whenever I did not. Especially, I want to thank
him for accepting me as I am. This thesis would not have been possible without him. Grazie
di tutto Pietro!

Jessica Bariffi
Zurich, April 2024

ix

Contents

1 Introduction 1
1.1 Organization . 5
1.2 Overview of Results . 6

2 Preliminaries 9
2.1 Entropy . 10
2.2 Typicality . 12

2.2.1 Method of Types . 12
2.2.2 Typical Sequences . 13

2.3 Coding Theory . 15
2.3.1 Linear Block Codes over Finite Fields 16
2.3.2 Bounds on Linear Block Codes . 18

3 Introduction to the Lee Metric 21
3.1 Codes over Integer Residue Rings . 21
3.2 Basic Definitions and Results . 25
3.3 Spheres and Balls . 26
3.4 Bounds on Lee-Metric Codes . 28

4 Bounds on the Minimum Lee Distance 31
4.1 Defining Lee-supports and Generalized Lee Weights over Chain Rings 33
4.2 Generalized Join-Lee Weight . 36
4.3 Generalized Column-Lee Weight . 40
4.4 Generalized Lee Distances . 47
4.5 Comparison of the Bounds . 52

4.5.1 Invariance under Isometry in the Lee Metric 54
4.5.2 Density of Optimal Codes . 55

4.6 Summary and Outlook . 58

5 Channel Coding in the Lee Metric 59
5.1 Lee Channels . 60

5.1.1 Memoryless Lee Channels . 60
5.1.2 Constant-Weight Lee Channel . 61

5.2 Finite-Length Bounds for Lee Channels . 64
5.2.1 Bounds on the Lee Spheres and Lee Balls 65
5.2.2 Error Probability Bounds for the Constant Lee-Weight Channel 67
5.2.3 Error Probability Bounds for the Memoryless Lee Channel 69

5.3 Fixed Lee Weight Vectors . 71
5.3.1 Construction of Random Error Vectors 72
5.3.2 The Scalar Multiplication Problem . 76

5.4 Summary and Outlook . 82

6 Regular Lee-LDPC Codes 83
6.1 Message Passing Decoders . 84

6.1.1 Belief Propagation Decoding . 84
6.1.2 Symbol Message-Passing Decoding . 85

6.2 Average Weight Enumerator . 86
6.2.1 Transformation of the Lee Type . 88
6.2.2 Valid Check Node Assignment . 92

x

6.2.3 Asymptotic Growth Rate . 95
6.3 Decoding Performance over Lee Channels . 98

6.3.1 Bounds on the Block Error Probability Based on the Lee Weight Spectrum 98
6.3.2 Density Evolution Analysis . 102
6.3.3 Numerical Results . 107

6.4 Summary and Outlook . 109

7 Restricted Information Set Decoding 111
7.1 Background to Information Set Decoding . 112

7.1.1 General Framework and Prange’s Algorithm 112
7.1.2 Improved ISD Variants . 113

7.2 Restricted Lee-Spheres . 114
7.3 Restricted Lee-BJMM Algorithm . 117

7.3.1 Bounded Minimum Distance Decoding 118
7.3.2 Decoding Beyond the Minimum Distance 126

7.4 Comparison to other Lee Metric ISD Algorithms 130
7.5 Summary and Outlook . 131

8 Conclusions and Future Work 133

Bibliography 135

1

Chapter 1

Introduction

This thesis focuses on the Lee metric introduced in 1958 by Lee [83] which provides an inter-
esting alternative to the Hamming metric [70] and rank metric [48, 56] which are considered
for orthogonal modulation and network coding, respectively. This metric has later been con-
sidered and studied further by Prange [103], Massey [91], Golomb and Welch [63], Berlekamp
[23] and many more. In 1967, Massey was the first one to introduce a channel “matching” to
the Lee metric. In 1971, Chiang and Wolf [42] have derived all the discrete, memoryless, sym-
metric channels matched to the Lee metric. The Lee metric is most known for the celebrated
result in [71], where the authors showed that some optimal non-linear binary codes can be
represented as linear codes over Z/4Z endowed with the Lee metric. Although being a rather
old metric considered in coding theory, it has gained more attention only recently with its
interesting applications to, for instance, code-based cryptography ([16, 18, 40, 108, 129, 130])
and DNA-storage [57]. However, compared to other metrics used in coding theory there are
still many open questions in the Lee metric. This thesis provides the study of the Lee metric
in terms of its algebraic structure as well as its application to communication channels and
code-based cryptography reducing the gap of open problems for Lee-metric codes.

In 1948, Shannon laid the foundation of information theory and classical coding theory in
his seminal work “A mathematical theory of communication” [117]. A classical communica-
tion system, as shown in Figure 1.1, consists of a source that wants to communicate a message
to a receiver. Due to limitations on the construction of a channel model, the transmission
may contain errors. The main problem, thus, is to ensure reliable communication over a noisy
channel. To tackle this problem, we consider two main concepts describing the communication
system: source coding and channel coding. The first discipline deals with removing wasteful
redundancy from the information of the source to make it more compact and practical to use.
Usually, the source encoder compresses the received data to cut down the length of the mes-
sage. This data, however, is not robust against corruption caused by a noisy channel. Hence,
the data at the source encoder’s output is encoded by means of an error-correction code also
referred to as “channel code”. That is, we add controlled redundancy to the message in order
to ensure reliable communication.

Soure
Source
Encoder

Channel
Encoder

Channel

Channel Coding

Channel
Decoder

Source
Decoder

Receiver

Figure 1.1: Communication System Diagram

2 Chapter 1. Introduction

Classical coding theory deals with the error correction in a communication system, i.e.,
the channel coding part highlighted in Figure 1.1. It concentrates on the design of the channel
encoder and decoder. In a nutshell, we have the following communication set-up. Assume
a source wants to send a message m. In classical coding theory, this message is a vector
of fixed length k defined over a finite field Fq (the alphabet) of q elements. At the channel
encoder, we use a subspace of the ambient space Fn

q which we call a code. The elements of
a code C ⊆ Fn

q are called codewords and the dimension of C as a linear subspace is given by
the length k of the original message m. We then transform the message m into a codeword
c ∈ C of length n ≥ k using an injective map. Since k ≤ n this mapping adds redundancy
to the message m. This step is crucial to correct potential errors. The codeword c is then
sent through a (noisy) channel. We consider a probabilistic channel with a given transition
probability. That is an error vector e ∈ Fn

q is added following a given probability distribution.
Hence, at the receiver side we obtain a vector r = c + e. In order to understand the impact
of the error vector, the ambient space is endowed with a metric measuring the total amount
of errors added at each position. Classically, the Hamming metric is used measuring the
amount of erroneous positions in r (i.e., the number of positions in which r differs from c).
Every code has the capability to correct a given amount of errors in the respective distance
measure. This error-correction capability of a code is given by its algebraic structure and
the underlying distance measure. The “bigger” the error, the more difficult the task of
recovering the codeword c. If the distance between the received word r and the original
codeword c is below the error-correction capability of C, a receiver is able to recover c using
a suitable decoding algorithm More precisely, it depends on the minimum distance of the
code capturing the smallest distance (in the respective underlying metric) between any two
distinct codewords. Namely, the larger the minimum distance, the better the error-correction
capability of the code.

Codes with Optimal Distance Properties

Since coding theory aims to correct as many errors in a communication model as possible,
an important task is the study of codes with “good” distance properties in the sense of their
error-correction capability. The most famous bound capturing the maximal error-correction
capability of a code in terms of its minimum distance is the Singleton bound. In the Hamming
metric this bound was introduced by Singleton [121] and was already studied by Komamiya
[80]. The idea of the Singleton bound for a code of minimum distance d is to puncture the
code in d − 1 positions. This results in a punctured code of the same cardinality, since it
has still a minimum distance of at least 1. However, since the punctured code is reduced
in its block length, the maximal amount of possible codewords also reduced. Comparing
the cardinalities of the punctured code yields then the Singleton bound. Codes attaining
the Singleton bound in the Hamming metric are called maximum distance separable (MDS)
codes and are constituting some of the most used and studied codes in coding theory. It is
knwon that codes over Fq attain the Hamming-metric Singleton bound with high probability
when letting the size of the finite field q tend to infinity (see, for instance, [90, Chapter
11]). To see this for given length n and dimension k, we show that the fraction of non-MDS
codes withing all codes of the same dimension and length is negligible as the field size grows.
In fact, a code C ⊆ Fn

q of dimension k is MDS if and only if every full size minors of any
generator matrix is invertible. Additionally, the set of all [n, k] linear block codes defined over
a field Fq can be parameterized by the Grassmann variety Grass(k,Fn

q) consisting of all k-
dimensional linear subspaces inside Fn

q . It follows from a result proven in the general situation
of convolutional codes [110], that the set of [n, k] MDS linear codes is Zariski open inside the
Grassmannian Grass(k,Fn

q). The Reed-Solomon construction shows that this Zariski open
subset is nonempty as soon as the field size is larger than the block length n. Over the algebraic
closure, the seto f MDS linear codes is also Zariski-dense as the complement is contained in
a Zariski closed set of dimension strictly smaller than the dimension of Grass(k,Fn

q). Hence,
for given block length n and dimension k and for a growing field size, the fraction of MDS
codes versus the non-MDS codes tends to one. Instead, if one lets the block length n tend to
infinity, the probability for a code to attain the Singleton bound becomes negligible.

Changing the underlying metric yields completely different results. For instance, we can
consider the rank metric which was introduced in 1978 by Delsarte in [48]. A Singleton-like

Chapter 1. Introduction 3

bound in the rank metric was then derived in [56] by Gabidulin laying the foundation of the
study of optimal codes in the rank metric, called maximum rank distance (MRD) codes. In
fact, we know that for Fqm -linear codes, MRD codes are dense when letting q or m tend
to infinity [95]. For Fq linear codes, however, MRD codes are sparse when letting q tend
to infinity [68], except for some special cases where m or n are 2 [6, 33, 62]. In the Lee
metric, the situation is again different. The first Singleton-like bound in the Lee metric has
been introduced by Shiromoto in 2000 [119] and has been further studied in [5, 34]. The
existing bounds on the minimum distance are rather loose, making the analysis of maximum
Lee distance codes nearly impossible. In fact, it has been shown in [34] that there is only one
nontrivial linear code in the Lee metric attaining Shiromoto’s bound.

In this thesis we abandon the classical idea of puncturing a code to derive a Singleton-like
bound. Instead, we introduce the concept of generalized weights to the Lee metric to derive
bounds on the minimum Lee distance.

Iterative Decoding and LDPC Codes

Another important task of channel coding is the design of codes that, for a given communi-
cation channel, allow for efficient encoding and decoding. Focusing on the code design, we
aim to transmit as much information with as little redundancy as possible. On the other
hand, redundancy adds robustness against corruption and minimizes errors. To face these
contradicting tasks, we might switch the point of view and define the rate of a channel. That
is the relative fraction of information bits per total number of bits sent through the channel.
Shannon introduced the notion of the channel capacity, that is the maximum possible rate
for which a reliable communication is guaranteed. He showed that nearly error-free commu-
nication over an unreliable channel is possible as long as the rate is strictly smaller than the
channel capacity. This proof, however, is non-constructive and does not take into account the
computational complexity of the encoding and decoding algorithm. Therefore, one big task in
coding theory consists in designing code families together with an efficient (low-complexity)
decoding algorithm such that a performance near the channel’s capacity can be achieved.
In terms of complexity, iterative decoders showed a great potential. In 1988, Judea Pearl
introduced the belief propagation algorithm based on probabilistic reasoning [99]. Nowadays,
many iterative decoders can be traced back to Pearl’s belief propagation algorithm. The main
idea of such algorithms is to use a graphical representation of a parity-check matrix of a code
into check nodes (representing the rows of the matrix) and variable nodes (corresponding
to the columns). Then the messages are communicated in terms of probability distributions
(and therefore the name belief) between the connecting check nodes and variables nodes. The
connections between the nodes are determined by the entries of the parity-check matrix.

In his seminal work [58] in 1963, Gallager introduced a new family of codes based on a
sparse parity-check matrix, that is a matrix with relatively few nonzero entries. This family
of codes is generally known as low-density parity-check (LDPC) codes and have almost been
forgotten for thirty years. Besides the family of LDPC codes, Gallager introduced a message-
passing algorithm making use of the graphical representation of the codes. LDPC codes
have shown to perform close to the Shannon limit under low-complexity iterative decoding
algorithms and are hence widely used in communication systems. In [114] the first definition of
Lee-LDPC codes appeared together with a bit-flipping decoding variant that they introduced
as Lee-symbol flipping decoder. This code family defines the first Lee-metric code which is
efficiently decodable.

Code-based Cryptography

Apart from information theory, coding theory is also applied to cryptography and more
explicitly to post-quantum cryptography. Nowadays, all public key cryptosystems based
on the factorization of large integers into its prime factors (like RSA [109]) or the discrete
logarithm problem (in elliptic curve cryptography) can be broken by a capable quantum
computer using Shor’s algorithm [120]. Therefore, the National Institute of Standards and
Technology (NIST) launched a competition in 2016 with the aim of finding new cryptosystems
that are resistant against quantum-attacks. Ever since, many schemes have been proposed in
five main directions: code-based, lattice-based, isogeny-based, hash-based and multivariate
cryptography. Most of these schemes are based on mathematically hard problems, for which

4 Chapter 1. Introduction

it is believed that they are resistant against quantum-attacks [41]. We refer to [25] for more
details on post-quantum cryptography. In the currently fourth round of the competition,
there are three code-based candidates: Bit Flipping Key Encapsulation (BIKE) [7], Classic
McEliece [4], and Hamming Quasi-Cyclic (HQC) [3]. Compared to, for instance, lattice-based
cryptography, code-based cryptosystems suffer from large and impractical key sizes used to
ensure security. Recently, with the scope of reducing the key size other metrics, like the rank
metric and the Lee metric, have been introduced to code-based cryptography [1, 2, 108]

Code-based cryptosystems work in the following fashion. The goal is to communicate
a message m in a way that only authorized parties can read it. For this we use an error-
correcting code C able to correct t errors as a private key. To encode the message m we use
the presentation of C in terms of a matrix called a generator matrix denoted by G. Then the
encoded message is given by c = mG + e where e is an error vector of weight t. To decode
c into the original message m an efficient decoding algorithm suitable for the code C with
generator matrix G is needed. The necessary information for an efficient decoder is the code’s
generator matrix. Since using G as a public key to the communication system would authorize
anyone to read the message, we have to find a way to hide the generator matrix G and hence
the code’s structure but still provide a public key to ensable the encoding of the message m.
To obtain the public key, we disguise the code by transforming either its generator matrix or
its parity-check matrix (depending on the perspective). This transformed version is again a
linear code C′ and serves as the public key. Additionally, C′ should behave like a random code,
i.e., should not show any characteristic of the secret code C. This prevents an attacker from
gaining insights about the structure of the private key C. Eventually, everyone can encrypt
a message by means of the public key and add some intentional errors (but no more than t).
However, only authorized parties having access to the private key can efficiently decrypt the
encrypted message back into a codeword of C, which is efficiently decodable.

The first code-based cryptosystem dates back to 1978 and was introduced by McEliece
[93]. Note that the scheme is as old as RSA and is still unbroken. Its robustness against
attacks is decisive for the trust in code-based cryptosystems and the continuous research in
this area. In fact, Classic McEliece, based on McEliece’s original system, reached the fourth
round of the standardization process introduced by NIST. The system’s security relies on the
hardness of the underlying coding problem (i.e., the hardness of decoding a random linear
code). In classical coding theory we usually consider a finite field Fq of q elements which,
from a cryptographic viewpoint, represents a q-ary input alphabet.

McEliece’s cryptosystem suggests to disguising the generator matrix G by computing
G′ = SGP , where S is a random invertible matrix and P is a random permutation matrix.
In this way we obtain an equivalent code whereas the weight of the error vectors introduce
remain invariant. The public key is given by the disguised code C′ with generator matrix G′

which looks seemingly random and does hence not reveal the structure of the secret code C
whereas the secret key consists of the matrices G, S and P . This assures that authorized
parties (with the knowledge of the secret key) are able to decode the original message. An
equivalent scheme using a parity-check matrix representation of the code has been proposed
by Niederreiter [97]. Originally, McEliece used a special family of codes called Goppa Codes.
Many variants of the scheme based on other code families (such as LDPC, quasi-cyclic codes
and many more) have been proposed [7, 3]. Depending on the codes’ structure, the security
level of the resulting cryptosystems varies. More structure usually means better algorithmic
efficiency (i.e., decoding and encoding is highly efficient) but on the other hand also potentially
longer key sizes and more information to hide when disguising the generator matrix or parity-
check matrix.

Code-based cryptosystems, usually, are based on the hardness of the generic decoding
problem when using a generator matrix, or equivalently on the syndrome decoding problem
when using a parity-check matrix to represent the code (representing the code’s kernel). For
the scope of this thesis we focus on the syndrome decoding problem. Given a received word
r = mG+e composed of the original message m and an error e, the goal is to recover either m
or e. Using a parity-check matrix H to represent the code defining the code’s kernel, we can
consider equivalently rH⊤ = eH⊤. We refer to rH⊤ =: s as the syndrome. The syndrome
decoding problem then is stated as follows.

1.1. Organization 5

Problem 1.0.1 (Syndrome Decoding Problem). Given a linear code C ⊆ Fn
q of dimension k

with a parity-check matrix H, a positive integer t ∈ N and a vector s ∈ Fn−k
q . Find a vector

e ∈ Fn
q of weight t, such that s = eH⊤.

The hardness of solving the sydrome decoding problem is highly dependent on the weight
of the error vector and the underlying metric. It has been shown that the syndrome decoding
problem is NP-hard in the Hamming metric [14, 22] and the Lee metric [130]. If we wanted
to solve this problem via a brute-force algorithm (that is going through all possible vectors
e ∈ Fn

q), the cost would result in (
n

t

)
(q − 1)t(n− k)t.

However, this cost can be reduced using more efficient algorithms. The fastest algorithm
to tackle the syndrome decoding problem is Information Set Decoding (ISD) introduced by
Prange in 1962 [104]. The high-level idea of Prange’s algorithm is to transform the syndrome
decoding problem using linear algebra by permuting and scrambling the parity-check matrix in
such a way that the last k columns of the transformed parity-check matrix form an information
set, i.e., index set representing the whole code. We then apply the same transformation to
the error vector and hope for the nonzero entries to lie in the first few positions. Assuming,
additionally, that the information set is error-free, the original message can be recovered.
Ever since, a large list of improvements has been published (see [21, 26, 36, 37, 39, 54, 84, 85,
92, 125]). However, the cost has only been reduced little and is considered stable. In [129]
Lee-metric variants of the existing ISD algorithms have been proposed and compared.

1.1 Organization

We start by introducing the most basic concepts and results needed throughout the thesis in
Chapter 2. One of the main focus is channel coding and, especially, codes over integer residue
rings. We introduce the entropy and its properties to be able to understand and estimate
the channel’s error correction capability. We furthermore discuss the method of types in
this chapter indicating the most probable sequence over a given alphabet and under given
circumstances. We will use this method to elaborate the marginal distribution of a given
channel model. The chapter is concluded by introducing classical coding theory over finite
fields endowed with the Hamming metric.

Given this background, we then introduce the Lee metric and Lee-metric codes in Chapter
3. As the Lee metric is defined over integer residue rings, we will give a formal definition
of linear codes over integer residue rings and will discuss their properties and bounds (such
as Singleton-like bounds and the Gilbert-Varshamov bound). As we will see, the existing
Singleton-like bounds in the Lee metric are far from being tight.

In Chapter 4 we provide new bounds on the minimum Lee distance of a code defined over
an integer residue ring Z/psZ introducing several novel notions of generalized Lee weights.
The first generalized weights introduced in Section 4.2 are a straightforward adaption of the
generalized Hamming weights over rings, for which we will discuss their suitability in the
Lee metric. In Section 4.3 we define the generalized weights over the columns of a generator
matrix instead of defining it over every codeword. Lastly, we abandon the classical definition
of generalized weights and make use of the natural properties of the integer residue ring Z/psZ
in Section 4.4.

In Chapter 5 we introduce two channel models in the Lee metric; a discrete memoryless
channel and a block-channel introducing an error of fixed Lee weight to the message sent.
The channel models are introduced in Section 5.1 where we discuss their motivation and
properties. In Section 5.2 we estimate the error probability of both the channel models using
a union bound argument based additionally on the size of given spheres and balls in the Lee
metric. We bound the sphere and ball sizes using the entropy of the marginal distribution of
the channel models introduced and show that the bound is asymptotically tight. To conclude
the chapter, we give an algorithm that constructs a vector of fixed length and Lee weight in
a uniform way among all such vectors. For these vectors we discuss the problem of reducing
or increasing its Lee weight by multiplying every entry by a nonzero scalar.

6 Chapter 1. Introduction

Chapter 6 focuses on random regular LDPC code ensembles defined over Z/qZ, for any
positive integer q. We derive an expression for the average weight enumerator in Section
6.2 and discuss its asymptotic growth rate. On the one hand this serves to understand the
possible minimum Lee distance of a randomly chosen LDPC code in this ensemble. On the
other hand, the average weight enumerator itself is crucial to understand the error-correction
in the error floor region (i.e., the region of relatively small error weight). The error-correction
performance in terms of the weight enumerator is discussed in Section 6.3 together with
numerical results and supported by density evolution analysis.

The theoretical part of the thesis is finalized with an application to code-based cryptogra-
phy. Namely, we apply the knowledge of the marginal distribution of a vector of fixed weight
to information set decoding presented in Chapter 7.

Lastly, we give some concluding remarks and related open problems in Chapter 8.

1.2 Overview of Results

This thesis consists of novel results for linear Lee-metric codes in their algebraic structure
and a in more information theoretic sense.

We start by the basic structure of linear codes in the Lee metric. With the aim of building
a solid basis for optimal codes in the Lee metric, we propose improved bounds on the minimum
Lee distance in Chapter 4 and more explicitly in Sections 4.2 - 4.4. The chapter is based on
the paper [19]:

Better Bounds on the Minimum Lee Distance
by Jessica Bariffi and Violetta Weger

submitted to SIAM Journal of Discrete Mathematics
available as arXiv preprint arXiv:2307.06079, 2023.

In Section 5.1 we introduce a discrete memoryless channel and a block-wise constant-
weight channel in the Lee metric. The motivation for the latter channel model comes from a
cryptographic point of view (for the constant-weight channel) where errors of fixed weight are
intentionally introduced. We then also introduced a memoryless counterpart to this channel
model. The main result of this chapter lies in the derivation of the marginal distribution of the
constant-weight channel, Lemma 5.1.4. The result allows us to bound sizes of spheres which
we use to analyze the block error probabilities of both channel models. With the motivation
of introducing errors of fixed Lee weight, we provide an algorithm to construct such a vector
randomly in Section 5.3.1. Additionally, we discuss the impact of a scalar multiplication to
the Lee weight of a vector and show (Theorem 5.3.9) that reducing the Lee weight of a vector
in the limit of large block length is impossible when working over Z/pZ where p is a prime
number. The results in Chapter 5 is based on the papers [15, 16, 17]:

Analysis of Low-Density Parity-Check Codes over Finite Integer Rings for the Lee Channel
by Jessica Bariffi, Hannes Bartz, Gianluigi Liva and Joachim Rosenthal

in IEEE Global Communications Conference, 2022.

On the Properties of Error Patterns in the Constant Lee Weight Channel
by Jessica Bariffi, Hannes Bartz, Gianluigi Liva and Joachim Rosenthal

in International Zurich Seminar on Information and Communication, 2022.

Error-Correction Performance of Regular Ring-Linear LDPC Codes over Lee Channels
by Jessica Bariffi, Hannes Bartz, Gianluigi Liva and Joachim Rosenthal

submitted to IEEE Transactions on Information Theory
available as arXiv preprint arXiv:2312.14674, 2023.

We then study regular LDPC code ensembles with distance properties in the Lee metric.
In Section 6.2 we derive a formula for the expected weight enumerator of a code in a regular
LDPC code ensemble and give its asymptotic growth rate. This allows to estimate the
error probability in the error floor regime (i.e., the regime of small error weight) and to
understand the smallest possible minimum Lee distance a code of the ensemble can admit.

1.2. Overview of Results 7

For the decoding performance we focus on belief propagation and the symbol message passing
decoder. In Section 6.3 we analyze the performance of selected LDPC code ensembles over
the channels introduced in Chapter 5. Chapter 6 is based on the results found in [15, 17]:

Analysis of Low-Density Parity-Check Codes over Finite Integer Rings for the Lee Channel
by Jessica Bariffi, Hannes Bartz, Gianluigi Liva and Joachim Rosenthal

in IEEE Global Communications Conference, 2022.

Error-Correction Performance of Regular Ring-Linear LDPC Codes over Lee Channels
by Jessica Bariffi, Hannes Bartz, Gianluigi Liva and Joachim Rosenthal

submitted to IEEE Transactions on Information Theory
available as arXiv preprint arXiv:2312.14674, 2023.

Lastly, in Sections 7.2 and 7.3 we improve the yet fastest Lee-information set decoding
variant based on the algorithm presented by Becker Joux, May and Meurer [21]. We use
the marginal distribution (see Chapter 5, Lemma 5.1.4) to improve the complexity of the
algorithm. The results in both sections are based on the paper [18]:

Information Set Decoding for Lee-Metric Codes using Restricted Balls
by Jessica Bariffi, Karan Khathuria and Violetta Weger

Code-Based Cryptography 10th International Workshop, CBCrypto 2022, Revised Selected
Papers, 2022.

9

Chapter 2

Preliminaries

In this chapter we provide the necessary background needed for the remainder of this dis-
sertation. The chapter consists of two main areas forming the essential background, namely,
information theory and coding theory. Hence, in a first part we start with an introduction to
information theory and introduce the entropy and the method of types in Sections 2.1 and
2.2, respectively. In Section 2.3 we give an introduction to classical coding theory over finite
fields and endow it with the Hamming metric. We give the fundamental results needed, such
as the Singleton-bound and the error-correction capability of a code. The interested reader
is referred to [45, 59] and [90, 112, 127] for more details on information theory and coding
theory, respectively.

Both areas cover a large spectrum of mathematical disciplines, such as algebra, complex
analysis, probability theory and combinatorics. Especially the basics of probability theory
and combinatorics are common tools we make use of. In the course of the thesis we often use
(discrete) random variables and their probability distributions. More formally, we denote by
X a random variable over a discrete alphabet X and let x ∈ X be its realization. For every
x ∈ X , we will denote the probability distribution of X by

PX(x) := P(X = x).

We omit the subscript X and simply write P (x), if it is clear from the context.
We often use counting arguments to describe the cardinality of a sphere or a ball of

given dimension and radius. Counting elements is an elementary task of combinatorics.
For positive integers n, k, k1, . . . , ks ∈ N with

∑s
i=1 ki = n the binomial coefficient and

multinomial coefficient, respectively, are defined as(
n

k

)
:=

n!

(n− k)!k!
, and

(
n

k1, . . . , ks

)
:=

n!

k1! · · · ks!
.

Another theory used to lay the connection between combinatorics, analysis and other math-
ematical fields is the theory of (ordinary) generating functions. Generating functions enable
us to write a sequence of integers in terms of a series (or polynomial). A single element of
the sequence then represents a coefficient of the sequence (or polynomial).

Definition 2.0.1 (Generating Function). Let (an)n∈N be a sequence of numbers depending
on an integer n. A generating function A of the sequence is (an)n∈N defined to be

A(x) =
∑
n≥0

an · xn.

Theorem 2.0.2 shows how to retrieve a coefficient ai of the sequence (an)n∈N.

Theorem 2.0.2 (Taylor’s Theorem). If A(x) =
∑

n≥0 an · xn is a generating function for a
sequence (an)n∈N then for every i ∈ N

Ai =
A(i)(0)

i!
,

where A(i)(0) denotes the i-th derivative of the generator function A(x) evaluated at x = 0.

10 Chapter 2. Preliminaries

For instance, it is well-known that the sequence ((1 + x)n)n∈N can be expressed by the
ordinary generating function involving the binomial coefficient. That is,

(1 + x)n =

∞∑
k=0

(
n

k

)
xk.

This result is generally known as the Binomial Theorem [139].

2.1 Entropy

One of the key measures in information theory is the entropy. It indicates the degree of
uncertainty contained in a random variable and is used to characterize the achievable trans-
mission rates of a communication channel. Intuitively, the more likely an event is to happen,
the smaller is the surprise of the outcome, i.e., the entropy of this event is small. In a more
probabilistic setting, consider an event E that happens with a probability p(E). If this prob-
ability is close to 1 and hence the event E is very likely to happen, the entropy of E will be
close to zero. On the contrary, if p(E) is close to zero, then the entropy of E is high.

In the course of this chapter let X and Y be two random variables over the two discrete
alphabets X and Y, respectively.

Definition 2.1.1 (Entropy). The binary entropy of a discrete random variable X with prob-
ability mass function PX(x) is defined as

H(X) = −
∑
x∈X

PX(x)̸=0

PX(x) log2(PX(x)).

By convention, we set the entropy H(X) = 0 whenever PX(x) = 0. Whenever it is clear
that the probability mass function P corresponds to a random variable X, we will often write
H(P) for the entropy of X. If we use the logarithm to some base b we will write Hb(X) for
the entropy. Due to the base change property of the logarithm, we can always deduce Hb(X)
from Ha(X) for some bases a and b by observing that

Hb(X) = logb(a)Ha(X).

Example 2.1.2. A famous example is the entropy of a (biased) flipping of a coin. Assume we
consider a binary random variable X ∈ {0, 1} with probability PX = (P(X = 0),P(X = 1)) =
(1− p, p) for some p ∈ [0, 1]. The entropy of X is then given By

H(X) = −p log(p)− (1− p) log(p) =: H(p). (2.1)

Figure 2.1 shows the binary entropy function with respect to the probability p. If p = 1/2
both outcomes are equiprobable. Hence, the outcome is the most uncertain and therefore the
entropy is maximal and hence equal to 1. Similarly, it shows that for p = 0 or p = 1 the
random variable X is deterministic and there is no uncertainty about its outcome. Thus, its
entropy is equal to zero.

The definition of the entropy of a random variable can be extended to a pair of random
variables X and Y . Note that this can be considered as a random variable defined on the
Cartesian product X × Y.

Definition 2.1.3 (Joint Entropy). Let X and Y be two discrete random variables defined
over X and Y, respectively. Denote by (X,Y) the joint probability with probability mass
function P (x, y). Then we define the joint entropy of X and Y as

H(X,Y) := −
∑
x∈X

∑
y∈Y

P (x, y) log2(P (x, y)).

2.1. Entropy 11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Probability p

E
n
tr
o
p
y
H
(p
)

Figure 2.1: Entropy function H(p) defined in (2.1) with respect to the
probability p ∈ [0, 1].

The conditional entropy of Y given X is defined by

H(Y |X) = −
∑
x∈X

H(Y |X = x).

It directly follows from the definition that the joint entropy of two random variables is
symmetric with respect to the arguments, that is

H(X,Y) = H(Y,X).

We observe that the following relation between the conditional entropy and the joint entropy
of two random variables X and Y holds.

H(X,Y) = H(Y |X)−H(X) = H(X|Y)−H(Y)

Theorem 2.1.4 gives a formula for the conditional entropy for n random variables.

Theorem 2.1.4 (Chain Rule Property [45, Theorem 2.5.1]). Let X1, . . . , Xn be a sequence
of random variables drawn according to a probability distribution P (x1, . . . , xn). Then the
entropy of the sequence satisfies

H(X1, . . . , Xn) =

n∑
i=1

H(Xi | Xi−1, . . . , X1) ≤
n∑

i=1

H(Xi)

where equality holds if and only if the Xi are independent.

Let us introduce a measure of the distance between two probability distributions. In
particular, it measures the inefficiency of assuming a distribution Q when the true distribution
is P .

Definition 2.1.5 (Relative Entropy). Let P (x) and Q(x) be two probability mass functions
over the alphabet X . The relative entropy between P and Q is defined to be

D(P ||Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
.

In literature, the relative entropy is sometimes also referred to the Kullback–Leibler dis-
tance between two probability mass functions. If P ̸= 0, we make use of the convention

12 Chapter 2. Preliminaries

limQ−→0 D(P ||Q) =∞. If, additionally P (x) = 0, we set D(P ||Q) = 0. One disadvantage of
the Kullback-Leibler divergence is that it is not symmetric. If a point is outside the support
of Q, the Kullback-Leibler divergence grows large. To cope with this fenomena we add some
random noise to Q. However, this introduces a degree of error and a lot of noise is often
needed for convergence. The relative entropy serves inter alias as a separability measures
and is often used in statistics and information theory. It emerges naturally from the study of
maximum likelihood estimation and is well suited for use with product measures.

An alternative measure of the similarity of two probability distributions is the total vari-
ation distance. Here, we define the distance only for discrete probability distributions. We
follow the description of [135, Proposition 5.2] and define the total variation distance between
two distributions P and Q over X as

TV(P,Q) :=
1

2

∑
x∈X
|P (x)−Q(x) | .

In contrast to the relative entropy, the total variation distance is symmetric. While the
relative entropy is only bounded from below by zero, the total variation distance lies in the
interval [0, 1] and can be bounded from above using the relative entropy in terms of the
Pinkser inequality [101] as

TV(p,Q) ≤
√

1

2
D(P ||Q).

2.2 Typicality

Throughout this subsection we consider a sequence of n random variables X1, . . . , Xn in an
alphabet X . By x we denote the sequence of realizations x1, . . . , xn of the random variables
X1, . . . , Xn, respectively. First, we explain the general concept of typicality in terms of the
method of types which analyzes the empirical distribution of a given sequence of symbols.
In a next step, given a set E of sequences satisfying a common property, we study the most
probable type among these sequences captured in the set of typical sequences. We will discuss
the type of a typical sequence and show that the empirical distribution of a sequence in E
converges exponentially fast to the type of the typical sequence identified.

2.2.1 Method of Types

The method of types was developed in [46]. It is a powerful tool to compute the set of
sequences with the same empirical distribution which we will refer to as type in this context.
For each element in the alphabet we can define its type as follows.

Definition 2.2.1 (Type). The type, θx, of a sequence x ∈ Xn is the relative proportion of
occurrences of each symbol, i.e., for each a ∈ X ,

θx(a) =
| {i ∈ {1, . . . , n} | xi = a} |

n
.

It is obvious that θx defines a probability mass function on the alphabet X . We will
sometimes also refer to the type as the empirical distribution of a sequence.

Example 2.2.2. Let X = {0, 1} and consider the sequence x = (1, 0, 1) ∈ X 3. Then the
type θx of x is given by

θx(0) =
1

3
and θx(1) =

2

3
. (2.2)

Let T (Xn) denote the set of all possible types of sequences of length n over X . Note that,

in Example 2.2.2, x = (1, 0, 1) is not the only sequence in {0, 1}3 of type θx described in (2.2).
Thus, over an alphabet X , we define the set of sequences of the same type θ ∈ T (Xn) by

T
(n)
θ := {x ∈ X | θx = θ} ,

2.2. Typicality 13

which we refer to as type class. The number of sequences of length n over X of a given type
θ is determined by the number of permutations which in turn is defined by the multinomial
coefficient based on the number of occurrences of each symbol a ∈ X , i.e.,∣∣∣T (n)

θ

∣∣∣ = (n

nθ(a1), . . . , nθ(a| X |)

)
=:

(
n

nθ

)
. (2.3)

Given a type (or empirical distribution) θ := (θ1, θ2, . . . , θ| X |) over X , for any positive integer
n, we have [45, Theorem 11.1.3]

1

(n+ 1)| X | 2
nH(θ) ≤

(
n

nθ

)
≤ 2nH(θ). (2.4)

For the probability of a type class T
(n)
θ a similar result holds.

Theorem 2.2.3 (Probability of Type Class). For any type θ ∈ T (Xn) and any distribution

P the following bounds hold for the probability of the type class T
(n)
θ .

1

(n+ 1)| X | 2
−nD(θ ||P) ≤ P

(
T

(n)
θ

)
≤ 2−nD(θ ||P).

Assume now that the random variables X1, . . . , Xn are identically distributed with distri-

bution PX over X and let P
(n)
X be the distribution of a length-n sequence whose entries are

drawn independently according to Xi. Theorem 2.2.4 gives an expression for the distribution

P
(n)
X .

Theorem 2.2.4. If X1, . . . , Xn are independent and identically distributed ∼ PX random
variables and x a sequence of realizations, then the probability of x depends on its type θx
only and is given by

P
(n)
X = 2−n[H(θx)+D(θx ||PX)].

2.2.2 Typical Sequences

Consider the sequences x ∈ Xn for a given alphabet X and a positive integer n. We have
seen in (2.3) that the cardinality of the set of sequences of a type θ ∈ T (Xn) highly depends
on θ. Thus, if we were to sample a sequence x ∈ Xn uniformly at random, some types
are more probable for x to occur than others. The asymptotic equipartition property [45,
Theorem 3.1.1] is the information-theoretic analogue to the law of large numbers and allows
us to define two categories of sequences in Xn: The set of typical sequence and the set of
non-typical sequences. Formally, the set of typical sequences are sequences with a sample
entropy that converges to the true entropy.

Definition 2.2.5 (Typical Set). Given ε > 0 and independent and identically distributed
random variables X1, . . . , Xn having distribution Q. We define the typical set Aε

θ of sequences
with type θ as

Aε
θ :=

{
x ∈ T (n)

θ | D(θ ||Q) ≤ ε
}
.

Remark 2.2.6. Note that the probability that a sequence x is not typical is 1− P (x ∈ Aε
θ),

and we can upper bound it, using Theorem 2.2.3, by

1− P (x ∈ Aε
θ) =

∑
θ∈T (Xn)

D(θ ||Q)>ε

P
(
T

(n)
θ

)
≤

∑
θ∈T (Xn)

D(θ ||Q)>ε

2−nD(θ ||Q) = 2−n[ε−|X | log(n+1)
n].

As n −→∞, we have 2−n[ε−|X | log(n+1)
n] −→ 0, and thus,

P (x ∈ Aε
θ)

n−→∞−→ 1.

14 Chapter 2. Preliminaries

We can then deduce that the empirical distribution of a sequence of realizations converges
to the distribution of the random variables.

Theorem 2.2.7 (Convergence of Empirical Distribution). Let X1, . . . , Xn be a sequence
of independent and identically distributed random variables with distribution Q. Let x =
(x1, . . . , xn) be the realization of the sequence of the random variables and let θx be its type.
Then it holds that

P(D(θx ||Q) > ε) ≤ 2−n[ε−|X | log(n+1)
n]

and hence, D(θx ||Q) −→ 0 almost surely as n −→∞.

Let us now assume that we sample sequences from a given probability distribution. To
understand the probability of an observed sequence belonging to the set of atypical (or typ-
ical) set we use Sanov’s Theorem [113]. Typicality is always referred to a common property
defining the sequences observed. Therefore, let E denote a subset of probability distribu-
tions (or set of types) in Xn defining such a common property. For instance, E could be
the set of probability distributions with a given expected value m. Then the probability that
the empirical distribution of a sampled sequence falls into the set E is captured in Sanov’s
Theorem.

Theorem 2.2.8 (Sanov’s Theorem [113]). Given a set of probability distributions E over
an alphabet X . Let X1, . . . , Xn be n independent and identically distributed random vari-
ables drawn according to a distribution Q over X , not necessarily included in E. Let x =
(x1, . . . , xn) denote the sequence of realizations of the random variables with type θx. Further-
more, we denote by P ⋆ the distribution in E closest (in relative entropy) to the distribution
Q. Then the probability that the type of x belongs to the set E is upper bounded by

P(θx ∈ E) ≤ (n+ 1)| X |2−D(P⋆ ||Q).

In particular, if E is a closed set it holds

lim
n−→∞

1

n
log (P(θx ∈ E)) = −D(P ⋆ ||Q).

Sanov’s Theorem hence tells us that the probability of observing an empirical distribution
that belongs to the set E is exponentially equivalent to 2−D(P⋆ ||Q), meaning that

lim
n→∞

1

n
log

(
P(θx ∈ E)

2−D(P⋆ ||Q)

)
= 0 .

A simple way to find the distribution P ⋆ = argminP∈E D(P ||Q) is using Lagrange multipliers.
Hence, we compute the distribution minimizing the relative entropy D(P ||Q) constrained to
the shared condition the distributions in E must fulfill.

In a nutshell, the probability of types under a given distribution Q over an alphabet X is
determined by the probability of the distribution closest (in relative entropy) to Q which, by
applying Theorem 2.2.3, is given by 2−D(P⋆ ||Q). Thus, the probability of observing a type in
set E is the same as the probability of observing the type closest to P ⋆.

The statement of Sanov’s theorem can further be strengthened. In fact, considering the
same scenario as for Sanov’s Theorem, it holds that the probability of observing any other
type is negligible and moreover, types that are far away from Q are exponentially less likely
to be observed. This result is stated in Theorem 2.2.9 introduced as the Conditional Limit
Theorem [45, Theorem 11.6.2].

Theorem 2.2.9 (Conditional Limit Theorem [45]). Let E be a closed convex subset of prob-
ability distributions over a given alphabet X and let Q be a distribution not in E over the
same alphabet X . Consider X1, . . . , Xn to be discrete random variables drawn independent
and identically distributed ∼ Q and let P ⋆ = argminP∈E D(P ||Q). Denote by x the sequence
of realizations given by the random variables and θx its empirical distribution. Then, for any
a ∈ X and for any i = 1, . . . , n,

P (Xi = a | θx ∈ E) −→ P ⋆(a)

2.3. Coding Theory 15

in probability as n grows large.

Hence, the empirical distribution of the random variables Xi of a random sequence
X1, . . . , Xn with type in E converges exponentially fast to the distribution P ⋆ closest to
Q.

2.3 Coding Theory

We are now introducing the second main topic of this thesis: coding theory. Coding theory and
information theory are strongly related, and we can view coding theory as a direct application
of information theory. In fact, the theory of error-correcting codes started with Shannon’s
seminal work [117] where he showed that error-correcting codes of relatively low rate (i.e.,
a rate that is smaller than the channel’s capacity) allows for the transmission of discrete
data with nearly no error. Classical coding theory studies the properties and error-correction
capability of (linear) block codes defined over finite fields endowed with the Hamming metric
[70]. However, motivated by applications, for instance, in modern code-based cryptography,
alternative metrics such as the rank metric [48] or the Lee metric [83] have gained more
attention in the last decades.

Classical coding theory is about error correction in a communication model. It plays a role
in the channel encoding and channel decoding part of the communication. With the rationale
given in Chapter 1, we consider a finite field Fq and a communication model as shown in
Figure 2.2.

Encoding

Map
Channel

Error e ∈ Fn
q is added

Decoding

Map

m ∈ Fk
q x ∈ Fn

q y ∈ Fn
q m̂ ∈ Fk

q

Figure 2.2: Message transmission model.

The errors during the transmission through the channel are introduced according to a
given transition probability which we sometimes refer to as the channel law. The channel
law is the probability observing the channel output y ∈ Fn

q , given that the channel input was
x ∈ Fn

q , and we denote it as

PY | X(y | x) := PY | X(Y = y | X = x). (2.5)

For a channel model there are two main distinctions: the memoryless channel, transmitting
symbol by symbol independently of the previous symbol and with the same probability, and
a conditioned transition where the symbols are transmitted with a probability depending on
the output of the preceeding symbols. The first channel model, due to its simple application,
is widely used and studied. Let us hence define this channel more explicitly.

Definition 2.3.1 (Discrete Memoryless Channel). Consider a channel with input alphabet
X and output alphabet Y. Assume that x ∈ Xn is transmitted and y ∈ Yn is received. A
channel is called discrete memoryless, if the input alphabet X and the output alphabet Y are
discrete, finite sets and the output Yi = yi at time i only depends on the input Xi = xi at
that time i, i.e.,

PY | X(y1, . . . , yn | x1, . . . , xn) =
n∏

i=1

PYi | Xi
(yi | xi).

After defining the channel with its transition probability, we focus on the decoding part
of the model in Figure 2.2. There are different decoding rules that can be considered. In this
thesis we merely focus on maximum likelihood decoding. Considering now blocks of length n,
maximum likelihood describes the decoding rule “decode to the most likely codeword”. Let
us denote by E the random variable according to the error introduced in the channel. Let

16 Chapter 2. Preliminaries

x̂ denote the decoded word. Similarly to the channel law defined in (2.5), we can define the
following two probabilities.

1. The conditional error probability of the decoder is

P(E | y) := P(x̂ ̸= x | y),

where x̂ is an estimate of the codeword x that was transmitted.

2. The error probability of the decoder is defined as

P(E) :=
∑
y∈Yn

P(E | y)P(y).

Maximum likelihood decoding then translates into minimizing the conditional error proba-
bility P(E | y) given the channel output y. In our set-up, we consider a symmetric channel
where every channel input is equally likely. Hence, for a given x ∈ X , P(x) is constant and
thus for every channel output y ∈ Y is too. Then minimizing the conditional error probability
is equivalent to maximizing PY | X(y | x).

2.3.1 Linear Block Codes over Finite Fields

Let us now focus on the encoding part by properly defining codes and their properties.

Definition 2.3.2 (Linear Code). Given 1 ≤ k ≤ n, an [n, k] linear code over Fq is a k-
dimensional subspace C ⊆ Fn

q . The parameter n is referred to as the block length of the code
C and k defines its dimension. The elements of C are called codewords.

Given a codeword c ∈ C ⊆ Fn
q , we say that c has k information bits. The remaining n− k

bits are redundant. The fraction of information bits per block length is called the rate of the
code, defined by

R :=
logq(| C |)

n
=
k

n
.

Since k is the dimension of an [n, k] linear code C over Fq, C has k linearly independent
codewords spanning the whole code. Therefore, every codeword of C is a linear combination
of the k basis vectors. Over Fq this means that C contains | C | = qk distinct codewords. Thus,
for practical reasons, we use a representation in terms of a matrix whose rows are formed by
a basis of C.

Definition 2.3.3 (Generator Matrix). A matrix G ∈ Fk×n
q is called a generator matrix of

an [n, k] linear code C ⊆ Fn
q if its rows form a basis of C.

From a communication model point of view, the generator matrix is needed to transform
a message m ∈ Fk

q into a codeword c ∈ C. We call this step the encoding of the message.
Note that a generator matrix is not unique as there may exist more than one basis spanning
the same subspace. Furthermore, given an [n, k] linear code C ⊆ Fn

q with generator matrix
G, we have that the code C is characterized by the image of G, i.e.,

C =
{
xG | x ∈ Fk

q

}
.

We say that a generator matrix of C is in systematic form, if there exist a matrix A ∈ Fk×(n−k)
q

such that

G =
(
Ik A

)
=: Gsys, (2.6)

where Ik denotes the k × k identity matrix. A generator matrix G admits a systematic
generator matrix Gsys, if and only if the first columns of G are linearly independent. In order
to check whether a vector x ∈ Fn

q is a codeword of C, we define a matrix H whose kernel
defines C.

2.3. Coding Theory 17

Definition 2.3.4 (Parity-Check Matrix). Consider an [n, k] linear code C over Fq. A matrix

H ∈ F(n−k)×n
q is called a parity-check matrix of C if its kernel corresponds to C, i.e.,

C =
{
x ∈ Fn

q | xH⊤ = 0
}
= ker(H)

In particular, given an [n, k] linear code C over Fq with parity-check matrix H and a vector
x ∈ Fq, we can easily verify whether x ∈ C by checking if

xH⊤ = 0.

Since a code C can be represented either by the image of a generator matrix G or by the
kernel of a parity-check matrix H, it holds that

GH⊤ = 0. (2.7)

This implies HG⊤ = 0 and moreover, if G is in systematic form
(
Ik A

)
then H can easily

be computed by

H =
(
−A⊤ In−k

)
=: Hsys.

In alignment with the systematic form of a generator matrix, we call Hsys the systematic form
of a parity-check matrix. By Equation (2.7) we observe that H and G can play the inverted
role for a specific linear code with parameters [n, n − k]. This code is commonly known as
the dual code and is defined in the subsequent way.

Definition 2.3.5 (Dual Code). Let C ⊆ Fq be a k-dimensional linear code. The dual code of
C is defined as

C⊥ :=
{
x ∈ Fn

q | xc⊤ = 0 for all c ∈ C
}
.

Thus, a generator of a code C is a parity-check matrix of its dual C⊥ and vice versa.

A linear code is capable of correcting a certain amount of errors. This amount of errors
is measured using a distance. Classically, this distance is the Hamming metric, defined as
follows.

Definition 2.3.6 (Hamming Weight). The Hamming weight of a vector x ∈ Fn
q is given by

the number of nonzero entries of x, i.e.,

wtH(x) := | {i = 1, . . . , n | xi ̸= 0} | .

Similarly, for two vectors x, y ∈ Fn
q their Hamming distance is given by the number of positions

in which they differ. That is

dH(x, y) := | {i = 1, . . . , n | xi ̸= yi} | .

We here note that the Hamming distance between two vectors x and y can be interpreted as
the Hamming weight of the difference of the two vectors, meaning that dH(x, y) = wtH(x−y).
Therefore, the Hamming weight naturally induces the Hamming distance. By the definition
of the Hamming weight it follows that the Hamming distance is a metric. To understand
a code’s performance in terms of error correction, we need to introduce another important
parameter of a linear code: its minimum distance.

Definition 2.3.7 (Minimum Hamming Distance). Let C ⊆ Fn
q be an [n, k] linear code. The

minimum Hamming distance of C is defined to be the minimum distance between any two
distinct codewords, i.e.,

dH(C) := min {dH(c1, c2) | c1, c2 ∈ C with c1 ̸= c2} .

Again, as the Hamming distance is induced by the Hamming weight, the minimum distance
of a code C can analogously be written as the smallest Hamming weight among all nonzero

18 Chapter 2. Preliminaries

codewords as

dH(C) = min {wtH(c) | c ∈ C \ {0}} .

The minimum Hamming distance of a code C is in one-to-one correspondence with its error-
correction capability.

Proposition 2.3.8 (Error-Correction Capability). Let k ≤ n be two positive integers and
consider an [n, k] linear code C over Fq. Given the minimum Hamming distance d = dH(C),
we can correct up to

⌊
d−1
2

⌋
errors.

2.3.2 Bounds on Linear Block Codes

Proposition 2.3.8 thus shows that the error-correction capability of a q-ary [n, k] linear code
C grows as its minimum Hamming distance grows. Considering a communication channel, we
obviously would like to use “good” codes in terms of their error-correction capability. Thus,
we want to use codes with maximum minimum Hamming distance. The most famous bound
capturing the trade-off between the minimum distance and the code’s parameter n and k is
the Singleton bound [121] introduced by Singleton in 1964.

Theorem 2.3.9 (Singleton bound). Let C ⊆ Fn
q be an [n, k] linear code with minimum

Hamming distance dH(C) = d. Then the following upper bound applies to d.

d ≤ n− k + 1.

The proof follows a puncturing argument and relies on the fact that the Hamming weight
of a codeword is given by the number of nonzero positions of the codeword. In the Lee metric,
this puncturing argument leads to a rather loose bound (as we will discuss in Section 3.4).
In order to get a clear idea of the arguement, we now give the proof of the Singleton bound.

Proof. Since the minimum Hamming distance of the code C is d, any two distinct codewords
ci and cj differ in at least d positions. Let us puncture the code C in d− 1 randomly chosen
positions and let us denote by C′ the punctured code. It follows that any two punctured
codewords c′i and c

′
j have a Hamming distance of at least 1. Hence, all resulting codewords

are still distinct and thus

| C′ | = | C | = qk.

On the other hand, every codeword c′i ∈ C′ has length n − (d − 1) and its entries lie in Fq.
This means that there can be at most qn−(d−1) distinct codewords and thus

| C′ | = qk ≤ qn−(d−1) (2.8)

Solving (2.8) for the minimum Hamming distance d yields the desired result.

Note that the Singleton bound in Theorem 2.3.9 holds for nonlinear codes too and can be
shown with a similar puncturing argument.

Codes attaining the Singleton bound in the Hamming metric are called maximum distance
separable (MDS) codes, and are well studied in the coding theory community. It is common
folklore that MDS codes are dense in the limit of large field size q. That is, letting q tend
to infinity, any randomly chosen linear code over Fq attains the Singleton bound with high
probability. If we instead let the block length n tend to infinity, the situation is different. In
1955, Segre introduced in [116] the following conjecture, known as the MDS conjecture.

Conjecture 2.3.10 (MDS Conjecture). Consider an MDS code C ⊆ Fn
q . If q ≥ 3 is odd,

then

n ≤ q + 1.

On the other hand, if q is a power of 2 and k ∈ {3, q − 1}, then

n ≤ q + 2.

2.3. Coding Theory 19

The conjecture implies that MDS codes are sparse in the limit of large block length n.

The Singleton bound presents necessary conditions for a code with the stated parameters
to exist. Another bound implying necessary conditions on the parameters of the code such
that such a code exists is the sphere-packing (or Hamming) bound. The bound gives a limit
in the parameters of the code and can be interpreted as packing spheres into a space of all
codewords. Hence, the bound involves the volume of an n-dimensional ball of Hamming-radius
t which is given by

t∑
i=0

(
n

i

)
(q − 1)i.

Theorem 2.3.11 (Sphere-Packing Bound). Given an [n, k] code C ⊆ Fn
q and t = ⌊(d− 1)/2⌋,

then

M ≤ qn∑t
i=0

(
n
i

)
(q − 1)i

.

A sufficient condition on the existence of a code of given parameters, is captured in the
Gilbert-Varshamov bound [61].

Theorem 2.3.12 (Gilbert-Varshamov Bound [61]). There exists a linear [n, k] code C ⊆ Fn
q

with minimum Hamming distance dH(C) ≤ d if it holds That

d−2∑
i=0

(
n− 1

i

)
(q − 1)i ≤ qn−k.

A second version of the Gilbert-Varshamov bound gives a lower bound on the maximal
cardinality a code of given parameter can have. It states that for an [n, k] code C over Fq

with Hamming distance dH(C) = d the cardinality of the code is bounded by

| C | ≥ qn∑d−1
i=0

(
n
i

)
(q − 1)i

.

In an asymptotic setting these bounds state the relation between the rate of the code and
its relative minimum distance δH,min = dH(C)/n. For lower bounds like the Gilbert-Varshamov
bound, the asymptotic bound tell us the possible rates a code can have in order to meet a
given error-correction capability.

21

Chapter 3

Introduction to the Lee Metric

The Lee metric was introduced by C. Y. Lee in 1958 in [83] to cope with phase modulation in
communication. It provides an interesting alternative to the Hamming and rank metric which,
for instance, are considered for orthogonal modulation and network coding, respectively.
The Lee metric has later been considered and studied further by Prange [103], Massey [91],
Golomb and Welch [63], Berlekamp [23] and many more. In 1967, Massey was the first
one to introduce a channel “matching” to the Lee metric. In 1971, Chiang and Wolf [42]
have derived all the discrete, memoryless, symmetric channels matched to the Lee metric.
The Lee metric is mainly known for the celebrated result in [71], where the authors showed
that some optimal non-linear binary codes can be represented as linear codes over Z/4Z
endowed with the Lee metric. It has gained more attention with its promising application to
code-based cryptography. Only recently it was discovered that Lee-metric codes attain the
Gilbert-Varshamov bound with high probability for the length of the code tending to infinity
[32]. This aligns with famous and well studied results in the Hamming [70] and the rank
metric [87]. In addition, the characterization of constant Lee weight codes, initiated by Wood
[136], has only recently been completed in [34]. Recently, a first Lee metric signature scheme
has been proposed in [108]. Even though, the scheme has been broken using lattice-attacks,
the Lee metric is still an interesting candidate for cryptographic applications. The strong
connection to lattices could possibly be a powerful tool for Lee metric schemes, for instance,
in deriving a first code-based fully homomorphic encryption scheme.

In this chapter we formally introduce the Lee metric over a general integer residue ring
Z/qZ for any positive integer q. We define the Lee weight of an element as well as of an
n-tuple. By abuse of notation we will call an n-tuple a vector, even though (Z/qZ)n is not
necessarily a vector space. With the scope of studying vectors of a given Lee weight in the
course of this thesis and with an eye on the syndrome decoding problem in the Lee metric,
we introduce the spheres and balls of a given dimension n and radius t and discuss their
properties. An important task of classical coding theory is to bound the minimum distance
of a code, we also discuss the Singleton bound analogues in the Lee metric as well as the
sphere-packing bound and the Gilbert-Varshamov bound.

3.1 Codes over Integer Residue Rings

Different to classical coding theory over finite fields (see Section 2.3), the Lee metric is defined
over integer residue rings Z/qZ, for a positive integer q. Therefore, in this section we introduce
block codes whose underlying alphabet is an integer residue ring Z/qZ and, especially, Z/psZ
for a positive integer s and a prime number p. Equivalently to the classical case over a
finite field, codes over rings can be characterized by a generator matrix and a parity-check
matrix. We will formally define ring-linear codes in this section and study their structure and
parameters. Codes over rings have been introduced in 1963 by Assmus and Harold [9]. We
refer to [67, 118] for more background on codes over rings.

In the classical coding theory setting over finite fields, a code is a subspace of a given finite
field. The analogue of subspaces when working over rings are modules, or submodules. The
following definition of a ring-linear code works for any finite ring R. However, in the course
of this thesis we will consider only the integer residue rings Z/qZ and Z/psZ.

22 Chapter 3. Introduction to the Lee Metric

Definition 3.1.1 (Ring-Linear Code). Let R be a finite ring. A ring-linear code of length n
is an R-submodule C of Rn.

Assume that the underlying finite ring is of size q, then we define the rate of the code C,
similar to the Hamming case, by

R :=
logq(| C |)

n
.

Similar to the classical case over finite fields, a ring-linear code C can be represented by a
generator matrix and a parity-check matrix which define C in terms of their image and kernel,
respectively.

Codes over rings have mainly been studied over Z/qZ, where q is a positive integer, or in
the more specific case where q = ps is a power s of a prime p [28, 29, 71, 115, 123]. Due to
its algebraic structure, cyclic codes over finite chain rings were considered [35, 98]. Choosing
q = ps yields more structure on the finite integer ring and hence, yields more structure for
codes defined over Z/psZ. Hence, let us now focus on the integer residue ring Z/psZ for a
prime number p and a positive integer s. Compared to any integer residue ring Z/qZ, the
ring Z/psZ is a chain ring, meaning that its ideals form a chain of inclusions. Let us denote
the minimal ideal containing the element pi by〈

pi
〉
:= pi(Z/psZ).

We then observe the following chain of inclusions〈
ps−1

〉
⊆
〈
ps−2

〉
⊆ . . . ⊆ ⟨p⟩ ⊆ Z/psZ. (3.1)

This additional structure allows us to determine more parameters of a code C ⊆ (Z/psZ)n
and to define a systematic form of generator matrices and parity-check matrices, respectively.
By the fundamental theorem of finite Abelian groups, a Z/psZ-submodule C can be uniquely
decomposed into a finite direct sum of Z/psZ-submodules, i.e., there exist s nonnegative
integers k0, . . . , ks−1 such that

C ≃
s−1⊕
i=0

(Z/ps−iZ)ki . (3.2)

This implies that the cardinality | C | of the code is given by

| C | =
s−1∏
i=0

(ps−i)ki = p
∑s

i=0(s−i)ki . (3.3)

In literature the cardinality of a ring-linear code is sometimes referred to the type of the code.
In order not to confuse it with the type introduced in Section 2.2 we will omit this name.
However, we call (k0, . . . , ks−1) the subtype of the code.

Recall from classical coding theory, that the dimension of a code over a finite field deter-
mined, together with the size of the field, the cardinality of the code. In this sense and owing
to (3.3), we define the Z/psZ-analogue of the dimension of a code over a finite field as

k := logps | C | =
s−1∑
i=0

s− i
s

ki.

We call this value k the Z/psZ-dimension of the code in order not to confuse with the notion
of a dimension. In contrast to the dimension over a finite field, the Z/psZ-dimension of a
code may not always be an integer. Furthermore, we define the rank of C by

K :=

s−1∑
i=0

ki.

3.1. Codes over Integer Residue Rings 23

Let C ⊆ (Z/psZ)n be a linear code of rank K and Z/psZ-dimension k. Note that K = k
if and only if (k0, k1, . . . , ks−1) = (k0, 0, . . . , 0), i.e., K = k = k0. Codes with this property
define a specific class of codes over finite chain rings.

Definition 3.1.2. Given a code C ⊆ (Z/psZ)n of rank K and subtype (k0, . . . , ks−1). We
call k0 the free rank of C. Moreover, we say that C is free if its rank coincides with its free
rank, i.e., if K = k0.

With the decomposition given in (3.2), we observe that if C ⊆ (Z/psZ)n is a free code it
admits a Z/psZ-basis and is isomorphic to

C ≃ (Z/psZ)k0 .

As mentioned, the notion of generator matrices and parity-check matrices can be adapted
to codes over finite rings as well. In the case of codes over a finite chain ring Z/psZ, the
rank K and the subtype (k0, . . . , ks−1) allow us to define a systematic form of both types of
matrices.

Definition 3.1.3. Consider a code C ⊆ (Z/psZ)n of rank K and free rank k0. A matrix
G ∈ (Z/psZ)K×n is called a generator matrix of C if the rows of G span C. A parity-check
matrix H is an (n− k0)× n matrix over Z/psZ whose kernel coincides with C.

Proposition 3.1.4. Let C be a linear code in Z/psZ of subtype (k0, . . . , ks) and rank K.
Then C is permutation equivalent to a code having a generator matrix Gsys ∈ (Z/psZ)K×n of
the form

Gsys =

Ik0

A1,2 A1,3 · · · A1,s A1,s+1

0 pIk1 pA2,3 · · · pA2,s pA2,s+1

0 0 p2Ik2
· · · p2A3,s p2A3,s+1

...
...

...
...

...
0 0 0 · · · ps−1Iks−1

ps−1As,s+1

 , (3.4)

where Ai,s+1 ∈ (Z/ps+1−iZ)ki−1×(n−K), Ai,j ∈ (Z/ps+1−iZ)ki−1×kj for j ≤ s. In addition, the

code C is permutation equivalent to a code having a parity-check matrix H ∈ (Z/psZ)(n−k0)×n

of the form

Hsys =

B1,1 B1,2 · · · B1,s−1 B1,s In−K

pB2,1 pB2,2 · · · pB2,s−1 pIks−1
0

p2B3,1 p2B3,2 · · · p2Iks−2
0 0

...
...

...
...

...
ps−1Bs,1 ps−1Ik1

· · · 0 0 0

 , (3.5)

where B1,j ∈ (Z/psZ)(n−K)×kj+1 , Bi,j ∈ (Z/ps+1−iZ)ks−i+1×kj+1 for i > 1.

We call the forms in (3.4) and (3.5) the systematic form of a generator matrix and a
parity-check matrix, respectively. Notice that the systematic form of a generator matrix of a
code over a finite chain ring is quite different to the one over a finite chain ring. However, if
C ⊆ (Z/psZ)n is a free code the systematic form of a generator matrix coincides with (2.6),
i.e., there is a matrix A ∈ (Z/psZ)k0×(n−k0) such that

Gsys =
(
Ik0

A
)
.

The subtype (k0, . . . , ks) of a code C ⊆ (Z/psZ)n hence indicates the number of rows of a
generator matrix G lying in the ideal

〈
pi
〉
. That is, there are ki rows of G lying in

〈
pi
〉
but

not in
〈
pj
〉
for any j > i. Additionally, to the subtype of a code C ⊆ (Z/psZ)n, we can define

a similar parameter going over the columns of a generator matrix of C.

Definition 3.1.5. Let C ⊆ (Z/psZ)n be a linear code of rank K. For each j ∈ {1, . . . , n}
consider the j-th coordinate map

πj : (Z/psZ)n −→ Z/psZ
(c1, . . . , cn) 7−→ cj

.

24 Chapter 3. Introduction to the Lee Metric

The support subtype of C is defined to be an (s + 1)-tuple (n0(C), . . . , ns(C)), where ni(C)
counts the number coordinates j ∈ {1, . . . , n} belonging to ideal ⟨pi⟩, i.e.,

ni(C) :=
∣∣ {j ∈ {1, . . . , n} | ⟨πj(C)⟩ = 〈pi〉} ∣∣ .

A code with ns(C) = 0 is called non-degenerate.

If the code C is clear form the context, we will write ni instead of ni(C).

Example 3.1.6. Let C ⊂ (Z/9Z)4 be defined by the generator matrix

Gsys =

1 0 4 3
0 1 2 0
0 0 3 6

 .

The code C has subtype (k0, k1) = (2, 1). In fact, the first two rows of Gsys lie in the ideal〈
p0
〉
= ⟨1⟩ but not in the ideal ⟨p⟩ whereas the elements of the last row are all contained in

⟨p⟩. The rank K and the Z/psZ-dimension k are computed as

K =

2∑
i=0

ki = 3 and k =

2∑
i=0

2− i
2

ki = k0 +
1

2
k1 = 2.5.

To compute the support subtype we calculate for each column the minimal ideal
〈
pi
〉
that

contains all nonzero the entries of the respective column. Clearly, for the first two columns
this is the ideal generated by 1 = p0. The same holds for the third column. In the last column
all nonzero entries are contained in the ideal ⟨1⟩ and ⟨3⟩ but not in ⟨9⟩. Hence, we assign
this column to the ideal ⟨3⟩. As we have three columns assigned to

〈
p0
〉
and one to ⟨p⟩, the

support subtype of C is

(n0, n1, n2) = (3, 1, 0).

Over finite fields we classically endow the ambient space with the Hamming metric, as
discussed in Section 2.3.1. Over a finite integer ring Z/qZ we can define the Hamming
weight of an n-tuple x ∈ (Z/qZ)n in the exact same way as in Definition 2.3.6. Note, that
Proposition 2.3.8 is independent of the ambient space and thus the same error-correction
capability holds for finite integer rings in the Hamming metric. Understanding the error-
correction performance is hence dependening on the minimum Hamming distance of the code.
Over finite chain rings, we can deduce the same Singleton bound on the minimum Hamming
distance as in the field case.

Proposition 3.1.7. Let C ⊆ (Z/psZ)n be a code of Z/psZ-dimension k. Then its minimum
Hamming distance can be upper bounded by

dH(C) ≤ n− k + 1.

This result can be further tightened using the rank K instead of the Z/psZ-dimension k.

Proposition 3.1.8 ([50, 52]). Let C ⊆ (Z/psZ)n be a linear code of rank K. Then

dH(C) ≤ n−K + 1.

Similarly to classical coding theory, we call a linear code C ⊆ (Z/psZ)n a MDS code
with respect to the Z/psZ-dimension (or the rank) if C meets the bound in Proposition 3.1.7
(or Proposition 3.1.8, respectively) with equality. In Section 3.4 we introduce Singleton-like
bounds for the Lee metric based on a similar puncturing argument as in the Hamming metric
(see the proof of Theorem 2.3.9). In contrast to the Hamming metric Singleton bound, we
will see that its Lee-metric analogous is far from being tight.

3.2. Basic Definitions and Results 25

3.2 Basic Definitions and Results

In the following we consider a positive integer q and the integer residue ring Z/qZ of q
elements. The integer residue ring Z/qZ can be interpreted and represented in various ways.
We mainly use the representation of the set of the first q integers {0, 1, . . . , q − 1}.

Definition 3.2.1. We define the Lee weight of an element a ∈ Z/qZ interpreted as an integer
in {0, . . . , q − 1} in the following way:

wtL(a) := min {a, q − a} .

Similarly, the Lee weight of a vector x ∈ (Z/qZ)n of length n is the sum the Lee weights of
each entry of x, i.e.

wtL(x) =

n∑
i=1

wtL(xi).

Let us give an intuitive picture to establish the Lee weight of the elements of Z/qZ.
Consider the elements of Z/qZ on a circle with equal distances between them. Then the
Lee weight of a ∈ Z/qZ is the minimal number of arcs separating a from zero. Figure 3.1
illustrates this over the ring Z/9Z.

0
1
wtL(1) = 1

2
wtL(2) = 2

3
wtL(3) = 3

4
wtL(4) = 4

5
wtL(5) = 4

6
wtL(6) = 3

7
wtL(7) = 2

8
wtL(8) = 1

Figure 3.1: Circular representation of Z/9Z indicating the respective Lee
weight of its elements.

This yields the following symmetry property of the Lee weight,

wtL(a) = wtL(q − a). (3.6)

Equation (3.6) implies that the Lee weight of any element in Z/qZ can never exceed ⌊q/2⌋.
Furthermore, we observe that the Lee weight of a ∈ Z/qZ is always lower bounded by its
Hamming weight (see Definition 2.3.6). Equality between the two weights holds if and only
q ∈ {2, 3}. Hence, for a vector x ∈ (Z/qZ)n we have

wtH(x) ≤ wtL(x) ≤ wtH(x) ⌊q/2⌋ ≤ n ⌊q/2⌋ .

Similarly to the Hamming distance (Definition 2.3.6), we can define the Lee distance of
two vectors as follows.

Definition 3.2.2. Let x, y ∈ (Z/qZ)n. The Lee distance between x and y, dL(x, y) is the Lee
weight of their difference, i.e.,

dL(x, y) := wtL(x− y).

Analogously, the minimum Lee distance dL(C) of a code C is lower bounded by the mini-
mum Hamming distance dH(C) of the same code and upper bounded by the ⌊q/2⌋-fold of the
minimum Hamming distance, i.e., for any x, y ∈ Z/qZ it holds

dH(x, y) ≤ dL(x, y) ≤ ⌊q/2⌋ dH(x, y).

26 Chapter 3. Introduction to the Lee Metric

Let us assume that we pick an element a uniformly at random from Z/qZ. Lemma 3.2.3
then states the expected Lee weight of that random element a.

Lemma 3.2.3 ([112, Problem 10.15]). Let A be a uniformly distributed random variable over
Z/qZ. The expected Lee weight of A is

δq := E(wtL(A)) =

{
q2−1
4q if q is odd

q
4 if q is even

.

Proof. As A ∈ Z/qZ is chosen uniformly at random, we have P(A = i) = 1
q for every i ∈ Z/qZ.

The proof then follows by computing

E(wtL(A)) =
q−1∑
i=0

wtL(i)P(A = i) =
1

q

q−1∑
i=0

wtL(i).

3.3 Spheres and Balls

A natural question arising is: given a vector x ∈ (Z/qZ)n of fixed Lee weight wtL(x) = t,
what is the distribution of the entries of x? In Section 5.1.2 we answer this question in the
asymptotic regime in terms of large block length. The expected Lee weight δq will serve for
the derivation of the distribution. Knowing the size of an n-dimensional sphere or ball of
a given Lee-radius is crucial to determine bounds like, for instance, the Gilbert-Varshamov
bound [10].

Generally, there is an exact formula on how to compute the size of an ℓ-dimensional sphere
of fixed radius t. Namely, for the radius t we compute all its integer partitions where each
part of the partition has a size of at most the maximal possible weight in the corresponding
metric. These will represent the decomposition of the nonzero entries of the elements in
the sphere. To get the size of the sphere we sum over all integer partitions adding up the
number of elements that have a weight decomposition corresponding to the integer partition.
Although this procedure provides the exact value of the sphere size, it often does not give
an intuitive or practical understanding of the sphere size or how this size changes as the
parameters change. For large parameters it is even impractical to compute the size in this
way. Hence, it can be useful to have practical upper bounds and lower bounds on this formula.
A current method of obtaining both upper and lower bounds is, for instance, to only consider
the partition attaining the maximum number of elements. Another method is to bound the
size of an ℓ-dimensional ball of radius t, since clearly every upper bound on its size is a valid
upper bound on the size of the sphere too. On a more complex analytic side, sizes of spheres
and balls can be described using generating functions, and their limit for n going to infinity
can be computed using the saddle point technique used in [60]. In 1994, Löliger described
a general method to derive bounds on the size of a discrete ball given any additive metric
[86]. A similar approach specifically for the Lee metric has then been done in [27]. All these
quantities can be described using generating functions, and their limit for n going to infinity
can be computed using the saddle point technique used in [60]. In the complexity analysis of
certain decoding algorithms (for instance, information set decoding), we are interested in the
asymptotic size of Lee spheres, Lee balls, and some types of restricted Lee spheres.

Generally, we consider two functions f(x) and g(x) both not depending on n and define
a generating function

Φ(x) = f(x)ng(x).

With an eye on Lemma 3.3.2, we are usually interested in the coefficients of generating
functions. The goal now is to estimate the coefficient coeff

[
Φ(z)n, zk

]
of the term zk in the

function Φ(x)n for some fixed k ∈ N. The following gives an asymptotic result on the growth
rate of this coefficient.

3.3. Spheres and Balls 27

Lemma 3.3.1 ([60, Corollary 1]). Let Φ(x) = f(x)ng(x) with f(0) ̸= 0, and t(n) be a func-
tion in n. Set T := limn→∞ t(n)/n and set ρ to be the solution to

∆(x) :=
xf ′(x)

f(x)
= T.

If ∆′(ρ) > 0, and the modulus of any singularity of g(x) is larger than ρ, then for large n

1

n
logps

(
coeff

[
Φ(x), xt(n)

])
≈ logps(f(ρ))− T logps(ρ) + o(1).

In alliance with the question mentioned, we are interested in the n-dimensional sphere
(respectively, the n-dimensional ball) of Lee-radius t which we define as follows, respectively.

S(n)t,q := {x ∈ (Z/qZ)n | wtL(x) = t} ,

B(n)t,q := {x ∈ (Z/qZ)n | wtL(x) ≤ t} .

Spheres and balls have a natural relation to each other. In fact, we can describe any ball of
a given radius t by the sum of all spheres of radius up to t. This holds as well in the Lee
metric, i.e.,

B(n)t,q =

t∑
r=0

S(n)r,q . (3.7)

According to the definition of generating functions, Definition 2.0.1, we define s
(n)
j,q =

∣∣∣S(n)j,q

∣∣∣
and let S

(n)
q (z) :=

∑
j s

(n)
j,q z

j denote the generating function of the size of n-dimensional
spheres in the Lee metric. By Taylor’s theorem on generating functions (see Theorem 2.0.2)
we deduce for every nonnegative integer j ∈ N

s
(n)
j,q =

1

j!

dj

d zj

(
S(n)
q (z)

)
z=0

. (3.8)

Rewriting Equation (3.7) for the volume of a sphere and using (3.8) yields∣∣∣B(n)t,q

∣∣∣ = r∑
i=0

1

i!

di

d zi

(
S(n)
q (z)

)
z=0

. (3.9)

Next, we would like to find a closed form expression for S
(n)
q . Since the Lee distance of a

vector is additive, we have the same computation for every vector with a given Lee weight.

Thus, the generating function S
(n)
q (z) is multiplicative over the coordinates, which means

that S
(n)
q (z) =

(
S
(1)
q (z)

)n
. It suffices to find a closed form for the generating function S

(1)
q

of the sequence of integers s
(1)
i,q defined to be the number of elements in Fq having Lee weight

exactly i. By the symmetric property of the Lee weight shown in (3.6), we know that s
(1)
0,q = 1

and s
(1)
i,q = 2 for every j ∈ {1, . . . , ⌊q/2⌋ − 1}. For the number of elements in Z/qZ with Lee

weight ⌊q/2⌋ we have two options, depending on whether q is even or odd. If q is odd there

is an even number of nonzero elements and hence s
(1)
⌊q/2⌋,q = 2. Analogously, if q is even, the

number of nonzero elements in Z/qZ is odd and thus s
(1)
⌊q/2⌋,q = 1. Therefore, we deduce the

following closed form.

S(1)
q (z) =

⌊q/2⌋∑
i=0

s
(1)
i,q z

i =

{
1 + 2z + · · ·+ 2z(q−1)/2 q odd,

1 + 2z + · · ·+ 2z(q−2)/2 + zq/2 q even.
(3.10)

Hence, the corresponding closed form for S
(n)
q is obtained by raising the equations in (3.10)

to the n-th power. Hence, using Lemma 3.3.1 and the relation (3.9) allows us to derive the
following result.

28 Chapter 3. Introduction to the Lee Metric

Lemma 3.3.2 (Surface of the spheres). The cardinalities of the n-dimensional Lee-sphere

S(n)d,q and Lee-ball B(n)d,q , respectively, of radius d over Z/qZ are given by

∣∣∣S(n)d,q

∣∣∣ = coeff
[(
S(1)
q (z)

)n
, zd
]

and
∣∣∣B(n)d,q

∣∣∣ = coeff

(
S
(1)
q (z)

)n
1− x

, zd

 ,
where S

(1)
q (z) is given as in Equation (3.10).

There is an exact double-binomial formula for the n-dimensional Lee-sphere Z/qZ if the
radius t does not exceed q/2.

Proposition 3.3.3. [112, Proposition 10.10] The size of an n-dimensional Lee-sphere over
Z/qZ with radius t ≤ q/2 is given by∣∣∣S(n)t,q

∣∣∣ = n∑
i=0

2i
(
n

i

)(
t

i

)
.

Furthermore, we introduce the normalized logarithmic surface (respectively volume) spec-
tra by

σ
(n)
δn :=

1

n
log2

∣∣∣S(n)δn,q

∣∣∣ and ν
(n)
δn :=

1

n
log2

∣∣∣B(n)δn,q

∣∣∣
while their asymptotic counterparts are denoted by

σδ := lim
n→∞

1

n
log2

∣∣∣S(n)δn,q

∣∣∣ and νδ := lim
n→∞

1

n
log2

∣∣∣B(n)δn,q

∣∣∣ .
3.4 Bounds on Lee-Metric Codes

Several bounds, such as the Gilbert-Varshamov, Plotkin, Elias and Singleton bounds, for
codes in the Lee metric have been established using various techniques [5, 24, 42, 119, 137].
In [10] the author derived asymptotic versions of the above-mentioned types of bounds.

One of the most famous bounds in classical coding theory is the Singleton bound (Theorem
2.3.9). Even though the Lee metric is a rather old metric, a Singleton-like bound has only
been found in 2000 by Shiromoto [119].

Theorem 3.4.1 (Singleton-Like Bound in the Lee Metric, [119]). Consider a linear code
C ⊆ (Z/qZ)n of Z/psZ-dimension k. Then the following bound holds⌊

dL(C)− 1

⌊q/2⌋

⌋
≤ n− k.

This bound follows the same puncturing argument as for the classical case in the Hamming
metric (see proof of Theorem 2.3.9). Since the Lee weight of an element can exceed its
Hamming weight, and thus exceed the value 1, having a given Lee weight t does not imply
that there are t nonzero positions. Hence, to follow the proof provided by Singleton for the
Hamming metric, we would have to normalize by the maximal possible Lee weight in an
integer residue ring Z/qZ given by ⌊q/2⌋. Even though the existence of a nontrivial code
attaining this bound has been shown by the example C = ⟨(1, 2)⟩ ⊂ (Z/5Z)2, the authors in
[34] showed that this code is actually the only nontrivial linear code attaining Shiromoto’s
Singleton-like bound in the Lee metric. Thus, studying further techniques to derive tighter
bounds in the Lee metric is crucial.

Note also that Shiromot’s bound implies that dL(C) ≤ ⌊q/2⌋ (n − k) + a, where a ∈
{1, . . . , ⌊q/2⌋}. Alderson and Huntemann managed to tighten this bound being able to amit
the integer a under the assumption that the Z/psZ-dimension k of the code is a positive
integer.

3.4. Bounds on Lee-Metric Codes 29

Theorem 3.4.2 ([5]). For any code C ⊆ (Z/qZ)n of Z/psZ-dimension k, with 1 < k < n is
a positive integer, we have that

dL(C) ≤ ⌊q/2⌋ (n− k).

This bound is tighter than Shiromoto’s bound. However, codes attaining this bound are
still sparse as q or n tend to infinity [32]. In Chapter 4 we give an alternative bound based
on a puncturing argument, and we study new bounds on the minimum Lee distance using
different techniques instead.

Another interesting question in coding theory is the following: given a code of length n
and minimum distance d, what is its maximal cardinality? This question has been captured
in several bounds such as the sphere-packing bound (sometimes referred to as Hamming
bound), the Plotkin bound, the Gilbert-Varshamov bound and the Elias bound. In the
Hamming metric these bounds together with their asymptotic versions are well-known (see
Section 2.3.2 for a recap on the Singleton-bound, the sphere-packing bound and the Gilbert-
Varshamov bound). In the Lee metric similar bounds exist and most involve the size of the
n-dimensional Lee-ball of a given radius. Their asymptotic counterparts can be computed by
using generating functions (see Definition 2.0.1) or the saddle-point technique [60] as a part
of complex analysis.

The sphere-packing bound in the Lee metric is stated as follows.

Theorem 3.4.3 (Sphere-packing, [24]). Let C ⊆ (Z/qZ)n be a linear code with minimum Lee

distance dL(C) = d. For any t = ⌊dL(C)−1
2 ⌋ it holds that

| C | ≤ qn∣∣∣B(n)t,q

∣∣∣ .
For the asymptotic form of this bound, we use the information rate R of the best code

instead of the minimum Lee distance or the maximum size of a code.

Theorem 3.4.4 (Asymptotic sphere-packing, [86]). Given a code C ⊆ (Z/qZ)n of minimum

Lee distance dL(C) = d and maximal information rate R. For any t = ⌊dL(C)−1
2 ⌋ it holds that

lim
n−→∞

supR ≤ lim
n−→∞

(
1− 1

n
logq

(∣∣∣B(n)t,q

∣∣∣))
A lower bound on the asymptotic rate is captured in the Gilbert-Varshamov bound. Let

us first state the bound in its finite length setting. There exist two versions of the Gilbert-
Varshamov bound: The classical bound is a lower bound on the maximal cardinality that any
(not necessarily linear) code C ⊆ (Z/qZ)n can achieve. The second version of the bound is an
existence bound, stating sufficient conditions for the existence of a linear code C ⊆ (Z/qZ)n.
In the course of this thesis we are mainly interested in the classical statement of the bound.

Theorem 3.4.5 (Gilbert-Varshamov in the Lee metric, [24]). Let C ⊆ (Z/qZ)n be a linear
code of minimum Lee distance dL(C) = d. Then,

| C | ≥ qn∣∣∣B(n)d−1,q

∣∣∣
Theorem 3.4.6 (Asymptotic Gilbert-Varshamov, [86]). Given a code C ⊆ (Z/qZ)n of mini-
mum Lee distance dL(C) = d and maximal information rate R. Then,

lim
n−→∞

inf R ≥ lim
n−→∞

(
1− 1

n
logq

(∣∣∣B(n)(d−1)/2,q

∣∣∣)) .
The Gilbert-Varshamov bound is additionally of interest in applications like information

set decoding and the underlying syndrome decoding problem (see Chapter 7 for more details).
In this application, the Gilbert-Varshamov bound provides a threshold for the weight of the
error vector. If the weight of the error vector is below the threshold a unique solution to

30 Chapter 3. Introduction to the Lee Metric

the syndrome decoding problem exists. Otherwise, there are many possible solutions to the
problem and finding all the solution might result in a more expensive computation.

31

Chapter 4

Bounds on the Minimum Lee
Distance

The minimum distance of a code is in one-to-one correspondence with its error-correction
capability. More precisely, the higher the minimum distance, the better the error-correction
capability (see Proposition 2.3.8). The study of optimal codes in terms of the error-correction
performance is an important task in classical coding theory. The most famous bound is the
Singleton bound which provides a trade-off between the minimum distance of a code and its
dimension. The Singleton bound has been introduced for the Hamming metric by Singleton
[121] in 1964 and has already been studied by Komamiya [80]. Ever since, codes attaining
the Singleton bound have been studied extensively. Letting the field size q grow large, it is
well-known that codes attaining the Singleton bound over Fq are dense, meaning that if we
pick a code C ⊆ Fn

q uniformly at random among all codes of the same parameters then C
attains the Singleton bound almost surely in the limit of q.

Similar results have been found for the rank metric, introduced in 1978 by Delsarte [48]
and reintroduced by Gabidulin [56] and Roth [111]. Gabidulin in [56] derived a Singleton-
like bound for rank metric codes already in 1985, and it has been shown in [95] that linear
codes over Fqm attaining Gabidulin’s Singleton bound are dense in the limit of q and m.
Considering, however, Fq-linear codes endowed with the rank metric implies sparsity for q
tending to infinity [68] except for some special cases where m or n are 2 [6, 33, 62].

If we change the ambient space and consider a finite chain ring Z/psZ and endow it with
the Lee metric, the situation is different. In Section 3.4, we have seen that Singleton-like
bounds for Lee-metric codes over a chain ring Z/psZ have been derived by Shiromoto [119]
and Alderson and Huntemann [5] (see Theorem 3.4.1 and 3.4.2, respectively). However, codes
attaining these bounds are extremely sparse as p, s and n tend to infinity [32]. Hence, using
a puncturing argument for Lee-metric codes is not suitable. This is inter alia due to the fact
that for a puncturing argument in the Lee metric, we have to normalize by the maximum Lee
weight ⌊ps/2⌋.

In this chapter we tackle the problem of finding tighter bounds for the minimum Lee
distance of a linear code over Z/psZ using generalized weights. The idea of using generalized
weights stems from the Hamming metric case [106]. We therefore start by introducing this
concept over the Hamming metric first, and we then adapt it to the Lee metric in Section
4.1. We discuss their advantages and disadvantages in Sections 4.2 and 4.3 and derive novel
bounds on the minimum Lee distance with respect to the novel definitions of a Lee-support.
In a second step, we give a novel definition of generalized Lee distances making use of the
algebraic structure of the chain ring. The results and bounds on the minimum Lee distance
of a code presented in this chapter have been studied in [19] in collaboration with Violetta
Weger.

A New Puncturing Bound

Before introducing supports and generalized weights in the Lee metric, we give an improved
version of Shiromoto’s Singleton bound still using a puncturing argument. Recall from Section
3.4 that Shiromoto’s Singleton bound for the Lee metric is far from being a tight bound. One
reason is that the Lee weight of an element is upper bounded by the maximal weight ⌊q/2⌋ in
a given integer residue ring Z/qZ. However, if q = ps is a prime power a code C ⊆ (Z/psZ)n

32 Chapter 4. Bounds on the Minimum Lee Distance

can be decomposed into a finite sum of Z/psZ-submodules (as shown in (3.2)). In each of
the submodules Z/piZ, the elements can achieve a different maximum Lee weight which, for
simplicity, we define as

Mi := max
{
wtL(a) | a ∈

〈
pi
〉}

=

⌊
ps−i

2

⌋
pi. (4.1)

Hence, knowing the number of coordinates of C belonging to a submodule Z/piZ can
be fruitful for the understanding of the maximum possible Lee weight in these coordinates.
Recall from Definition 3.1.5 that the support subtype (n0, . . . , ns) of a code C captures this
number for each submodule Z/piZ. Using the support subtype, we can easily derive Lee-
metric Singleton-like bound from the puncturing argument.

Theorem 4.0.1. Let C ⊆ (Z/psZ)n be a linear code of rank K and support subtype given by
(n0, . . . , ns−1, 0). Define for all k ∈ {0, . . . , s}

Bk =

s−1∑
i=k

ni and Ak =

s−1∑
i=k

niMi.

Let j ∈ {1, . . . , s− 1} be the smallest positive integer such that Aj < dL(C), then

K ≤ n−Bj −
⌊
dL(C)−Aj − 1

Mj−1

⌋
.

Proof. We start by puncturing the code in the positions of the smallest possible Lee weight.
To identify these positions, we use the support subtype. Clearly, in the ideal ⟨pi⟩, we have

as largest possible Lee weight Mi = ⌊p
s−i

2 ⌋p
i, and thus we would start puncturing in the

positions, where all codewords lie within ⟨ps−1⟩, i.e., in the positions belonging to the support
subtype ns−1. We hence assume that the minimum distance between two distinct tuples
decreases by As−1 = ns−1Ms−1. If this is still smaller than the minimum Lee distance,
we can continue puncturing in the next ideal, namely ⟨ps−2⟩. We continue in this fashion,

every time puncturing in niMi positions, until Aj =
∑s−1

i=j niMi has reached the minimum
Lee distance. At this point we are left with codewords that are at least dL(C) − Aj apart,

thus we can continue puncturing in
⌊
dL(C)−Aj−1

Mj−1

⌋
positions living in ⟨pj−1⟩, i.e., belonging

to the support subtype nj−1, and still be sure that the punctured code has the same size
as the original code. In this case, we have the new length of the punctured code, being

n−Bj −
⌊
dL(C)−Aj−1

Mj−1

⌋
, for Bj =

∑s−1
i=j ni.

Example 4.0.2. Let us consider C ⊆ (Z/9Z)4 generated by

G =

1 0 2 3
0 3 6 0
0 0 3 6

 .

The Z/9Z-dimension of this code is k = 2, the minimum Lee distance of this code is dL(C) = 6,
and the support subtype is given by (2, 2, 0).

If we puncture in the second and the last column (both belonging to the ideal ⟨3⟩), we
get n1M1 = 6 ̸< dL(C). Hence, we identify j = s = 2, and we puncture in only one of the

columns corresponding to the support subtype n1 = 2. In fact,
⌊
dL(C)−0−1

3

⌋
= 1. That is, the

bound in Theorem 4.0.1 is attained as

K = 3 = 4− 0−
⌊
6− 0− 1

3

⌋
= n−Bj −

⌊
dL(C)−Aj − 1

Mj−1

⌋
.

The bound from Theorem 3.4.1 would instead give⌊
dL(C)− 1

⌊9/2⌋

⌋
=

⌊
6− 1

4

⌋
= 1 < 2 = n− k.

4.1. Defining Lee-supports and Generalized Lee Weights over Chain Rings 33

Since we are also in the case where k is an integer strictly larger than 1, we can also apply
the bound from Theorem 3.4.2, and get

dL(C) = 6 < 8 = (4− 2) · 4 = (n− k) ⌊9/2⌋ .

We can rewrite the bound from Theorem 4.0.1 as upper bound on the minimum Lee
distance: Let j be the smallest positive integer with Aj < dL(C), then

dL(C) ≤Mj−1

(
j−1∑
i=0

ni −K

)
+

s−1∑
i=j

niMi + α,

for some α ∈ {1, . . . ,Mj−1}. However, the condition to find the smallest positive integer j
such that Aj < dL(C) renders the bound impractical, as usually we do not know the minimum
Lee distance of a code and thus want to bound it from above.

4.1 Defining Lee-supports and Generalized Lee Weights
over Chain Rings

We start this section by recapping the definition of generalized Hamming weights over finite
fields. We discuss their definition of a support of a vector and a code, as well as their
properties, and will then discuss the adaption of these definitions to the case of the Lee
metric.

Generalized Hamming weights have originally been introduced in [73, 131] over finite fields
and have been studied in various areas such as [38, 51, 65, 66, 106]. In [64] the authors defined
the generalized Hamming weights of ring-linear codes by considering the join-Hamming sup-
port of a code. Originally, generalized Hamming weights are based on the minimal support
of a subcode D ⊆ C of dimension r ≤ k. Thus, let us recap the definition of a support of a
vector and a code in the classical case of a finite field.

Definition 4.1.1. Given a finite field Fq of q elements. Let x ∈ Fn
q be a vector of length n

and C ⊆ Fn
q a code of dimension k. The Hamming support of x and C, respectively, is defined

by

suppH(x) := {i = 1, . . . , n | xi ̸= 0} ,
suppH(C) := {i = 1, . . . , n | ∃c ∈ C with ci ̸= 0} .

Notice that it immediately follows from Definition 4.1.1 that the Hamming weight of a
vector x corresponds to the cardinality of the Hamming support of x, i.e.,

wtH(x) = | suppH(x) | .

Similarly, we define the Hamming weight of a code as

wtH(C) := | suppH(C) | .

In the classical case, the r-th generalized Hamming weights are then defined in the fol-
lowing way.

Definition 4.1.2. Let C ⊆ Fn
q be a linear code of dimension k. Then for any r ∈ {1, . . . , k}

the r-th generalized Hamming weight is given by

wtrH(C) = min{wtH(D) | D ⊆ C,dim(D) = r}.

It is easy to see that the first generalized Hamming weight of a code C ⊆ Fn
q corresponds

to the minimum Hamming distance of C. Similarly, the k-th generalized Hamming weight
of C is equal to its Hamming weight. Furthermore, generalized Hamming weights fulfill an
increasing property [131]. That is, given a linear code C ⊆ Fn

q of dimension k, then for every

34 Chapter 4. Bounds on the Minimum Lee Distance

1 ≤ r ≤ k it holds

dH(C) = wt1H(C) < wt2H(C) < . . . < wtkH(C) = wtH(C). (4.2)

As the inequalities in 4.2 are strict inequalities we can easily deduce the Singleton bound
for non-degenerate codes, for which wtH(C) = n, by subtracting (k − 1) from the weight of
the code, i.e.,

dH(C) < wtH(C)− (k − 1) = n− k + 1.

Hence, when moving to finite integer rings endowed with the Lee metric, we would like
to define generalized Lee weights in such a way that the Property (4.2) holds or at least a
similar property. One question that arises is how to define a support in the Lee metric. In
fact, viewing the support as an index set in the Lee metric is not convenient, since we would
have to define ⌊ps/2⌋ many support sets for each Lee weight which is not optimal. In [64] the
authors interpreted the Hamming support of a vector of length n as an n-tuple, where each
position of the support is given by the Hamming weight of the vector at this position, i.e.,
for x ∈ Fn

q

suppH(x) = (wtH(x1), . . . ,wtH(xn)).

As we are now working with tuples of length n, we will introduce additional notation. We
define the cardinality of a tuple s as the sum of its entries, i.e.,

| s | :=
n∑

i=1

si. (4.3)

Considering two n-tuples s, t ∈ Nn, we define their join and meet, respectively, as

s ∨ t := (max {s1, t1} , . . . ,max {sn, tn}),
s ∧ t := (min {s1, t1} , . . . ,min {sn, tn}).

Note that viewing the support as a tuple and defining its cardinality as in (4.3) ensures
wtH(x) = | suppH(x) |, and works in the exact same fashion for the Lee metric too. That is,
for x ∈ (Z/psZ)n we define the Lee support of x as

suppL(x) = (wtL(x1), . . . ,wtL(xn)).

In order to extend this to the support of codes, we have several options. One of those, is
the join-support, as considered in [64]: for C ⊆ Rn a linear code, we define its join-support as

suppjoin(C) :=
(
max
c∈C

wt(c1), . . . ,max
c∈C

wt(cn)

)
=
∨
c∈C

supp(c).

Note that another possibility would be to define the meet-support, as follows

suppmeet(C) :=
(
min
c∈C
{max{wt(c1), 0}}, . . . ,min

c∈C
{max{wt(cn), 0}}

)
=
∧
c∈C

(supp(c) ∨ 0).

As the Hamming weight of nonzero elements equals one, we observe that the join-support
coincides with the meet-support of a code C in the Hamming metric, i.e.,

suppH,join(C) = suppH,meet(C).

4.1. Defining Lee-supports and Generalized Lee Weights over Chain Rings 35

Example 4.1.3. Let us consider a code over F3 generated by

G =

1 0 0 1 0
0 1 0 1 0
0 0 1 0 0

 .

With the usual definition of the Hamming support in Definition 4.1.1, we have that

suppH(C) = {1, 2, 3, 4}.

With the join-support, we are considering the maximal value of the weight of the entries of a
codeword in each position, that is

suppH,join(C) = (1, 1, 1, 1, 0).

For the meet-support, we take the minimum nonzero value of the weight of the entries of a
codeword in each position which also gives (1, 1, 1, 1, 0).
By applying the corresponding definition of the weight of a code we observe that all the three
support definitions of C yield the same weight

wtH(C) = | suppH(C) | = 4,

wtH,join(C) = wtH,meet(C) = 4.

In the following Sections 4.2 and 4.3 we study the adaption of the Hamming supports as
a tuple in the case of the Lee metric.

For the definition of a generalized weight over finite integer rings, we have to exchange the
fixed dimension of the subcodes with a ring-analogue parameter. A natural choice would be
the Z/psZ-dimension, but as this value is not necessarily an integer and there might not exist
subcodes of C of certain fixed smaller rational number as the Z/psZ-dimension, we choose to
discard this option.

In [51], the authors chose to exchange the dimension with the subtype. In fact, in the
same paper the authors defined generalized Lee weights for Z/4Z. This particular case is,
however, not of interest for us, as the Lee-metric Singleton-like bound over Z/4Z directly
follows from the Gray isometry [67]. Following the idea of [51], a first attempt on defining
generalized weights over Z/psZ would be the following.

Definition 4.1.4. Let C ⊆ (Z/psZ)n be a linear code of subtype (k0, . . . , ks−1). Then for any
(r0, . . . , rs−1) with ri ≤ ki for all i ∈ {0, . . . , s− 1} the (r0, . . . , rs−1)-th generalized weight is
given by

d(r0,...,rs−1)(C) = min{wt(D) | D ⊆ C,D has subtype (r0, . . . , rs−1)}.

Note that this definition is not considering all possible subcodes or all possible subtypes
of subcodes. To allow for a comparison between two different subtypes (r0, . . . , rs−1) and
(r′0, . . . , r

′
s−1) which might have ri < r′i for some i but rj > r′j for some j, a natural choice is

to impose a lexicographical order, i.e., we consider the order

(k0, . . . , ks−1) > (k0 − 1, . . . , ks−1) > · · · > (0, k1, . . . , ks−1) > · · · > (0, . . . , 0, 1).

However, the property d(C) = d(0,...,0,1)(C) is then not guaranteed. In fact, a minimum Lee
weight codeword will lie within a subcode having subtype one of the standard vectors ei.
Thus, we have d(C) = dei(C) for some unknown i. Observing that this just means to fix the
rank of the subcode to 1, we choose to directly fix the rank instead.

Definition 4.1.5. Let C ⊆ (Z/psZ)n be a linear code of rank K. Then for any r ∈ {1, . . . ,K}
the r-th generalized weight is given by

dr(C) = min{wt(D) | D ≤ C, rk(D) = r}.

36 Chapter 4. Bounds on the Minimum Lee Distance

4.2 Generalized Join-Lee Weight

With an eye on the definition of generalized weights in the Hamming metric seen in Section
4.1, we introduce and discuss in this section generalized Lee weights with respect to the join-
support derived from the Hamming metric. Recall from Section 4.1 that defining a support in
terms of an index set in the Lee metric is challenging. Therefore, a support in the Lee metric
will always be a tuple storing the Lee weights. In the Hamming metric, we observed that the
Hamming support of a vector x ∈ (Z/psZ)n as an n-tuple of Lee weights has two equivalent
descriptions, namely the join-support and the meet-support defined in 4.1 and 4.1.

We want to define the Lee support and hence the generalized Lee weights similar to the
Hamming metric case. For x ∈ (Z/psZ)n we view the Lee support as an n-tuple and define
it analogously to the Hamming support, i.e.,

suppL(x) := (wtL(x1), . . . ,wtL(xn)).

As we want to proceed as in the Hamming metric, to define a Lee support for a code C ⊆
(Z/psZ)n we have two options: the join-Lee support and the meet-Lee support. Owing to
our ultimate goal of deriving a bound on the minimum Lee distance, and hence on defining
generalized Lee weights that satisfy a property similar to (4.2), we now quickly discuss why,
in the Lee metric, the meet-support is not a suitable choice.

Definition 4.2.1. For a code C ⊂ (Z/psZ)n we define the meet-Lee support as the minimal
(if possible) nonzero Lee weight in each position among all codewords, meaning that

suppL,meet(C) :=
(
min
c∈C
{max{wtL(c1), 0}}, . . . ,min

c∈C
{max{wtL(cn), 0}}

)
.

As the meet support is defined over the entries of the codewords, we can describe the
meet-Lee weight of the code using its support subtype.

Proposition 4.2.2. For C ⊆ (Z/psZ)n of support subtype (n0, . . . , ns−1, 0), we have that

∣∣ suppL,meet(C)
∣∣ = wtL,meet(C) =

s−1∑
i=0

nip
i.

Proof. The meet-Lee support asks to take the smallest nonzero Lee weight in position j and
then to sum over all entries j ∈ {1, . . . , n}. Since any position belonging to the support
subtype ni lies in the ideal ⟨pi⟩, this position has as smallest nonzero Lee weight pi.

We can then define the r-th generalized meet-Lee weights.

Definition 4.2.3. Let C ⊆ (Z/psZ)n be a linear code of rank K. For r ∈ {1, . . . ,K}, we
define the r-th generalized meet-Lee weight as

drL,meet(C) = min
{∣∣ suppL,meet(D)

∣∣ | D ≤ C, rk(D) = r
}
.

Unfortunately, this definition of a generalized Lee weight does not allow us to deduce a
bound on the minimum Lee distance of a code C ⊆ (Z/psZ)n as the desired property (4.2)
does not always hold. In fact, already the first generalized meet-Lee weight does not fulfil the
property as

dL(C) ≤ d1L,meet(C).

Example 4.2.4. Consider the code C = ⟨(1, 2)⟩ ⊆ (Z/9Z)2. It is easy to see that dL(C) = 3
given by the minimum Lee weight codewords (1, 2) and (8, 7). However, the first generalized
meet-Lee weight is d1L,meet(C) = 2 given by the minimal Lee-support suppL,meet⟨(1, 2)⟩ = (1, 1).

We therefore focus on the definition of the join-support in the Lee metric as it was also
promoted in [64].

4.2. Generalized Join-Lee Weight 37

Definition 4.2.5. For a code C ⊂ (Z/psZ)n its join-Lee support is defined as the maximal
possible Lee weight in each position among all codewords, i.e.,

suppL,join(C) := (max{wtL(c1) | c ∈ C}, . . . ,max{wtL(cn) | c ∈ C}) .

Similarly to the meet support, we can express the join-Lee weight of a code using its
support subtype. Notice, that the join-Lee support asks for the maximum Lee weight in
a given column. Since, similarly to the meet-Lee support, we compute the minimal ideal
containing all entries of the column, we need the maximum possible Lee weight in each ideal.

Proposition 4.2.6. For C ⊆ (Z/psZ)n of support subtype (n0, . . . , ns−1, 0), we have that

∣∣ suppL,join(C) ∣∣ = wtL,join(C) =
s−1∑
i=0

niMi.

Proof. In each index j ∈ {1, . . . , n}, we can check in which minimal ideal this coordinate of
the code lies. Let us assume that this is ⟨pi⟩, for some i ∈ {0, . . . , s−1}. Since the support of
the code takes the maximum over all codewords in the code, we will reach in this entry the

maximal Lee weight of the ideal ⟨pi⟩, which is given by Mi = ⌊p
s−i

2 ⌋p
i. Since we know the

support subtype of the code, we know that we have ni many of these entries.

The r-th generalized join-Lee weight is then defined as follows.

Definition 4.2.7. Let C ⊆ (Z/psZ)n be a linear code of rank K. For r ∈ {1, . . . ,K}, we
define the r-th generalized join-Lee weight as

drL,join(C) = min{wtL,join(D) | D ≤ C, rk(D) = r}.

Let us consider an example which also shows the differences between the meet-Lee support
and the join-Lee support.

Example 4.2.8. Let us consider a code C ⊆ (Z/9Z)4 generated by

G =

1 0 3 2
0 1 2 0
0 0 3 3

 ,

which has support subtype (4, 0, 0) and minimum Lee distance 2 (given, for instance, by the
codeword (1, 0, 0, 8)). For the generalized meet-Lee weights we compute

d1L,meet(C) = wtL,meet(⟨(0, 1, 2, 0)⟩ = 2,

d2L,meet(C) = wtL,meet

(〈(
1 0 3 2
0 1 2 0

)〉)
= 4,

d3L,meet(C) = wtL,meet(⟨G⟩) = 4 = wtL,meet(C).

Therefore, we observe

dL(C) ≥ d1L,meet(C) ≤ d2L,meet(C) = d3L,meet(C) = wtL,meet(C).

For the generalized join-Lee weights we have that

dL(C) ≤ d1L,join(C) < d2L,join(C) < d3L,join(C) ≤ wtL,join(C),

since

d1L,join(C) = wtL,join(⟨(0, 0, 3, 3)⟩) = 6,

d2L,join(C) = wtL,join

(〈(
0 0 3 3
3 0 0 6

)〉)
= 9,

d3L,join(C) = wtL,join(C ∩ ⟨3⟩) = 12,

wtL,join(C) = 16.

38 Chapter 4. Bounds on the Minimum Lee Distance

This example already gives an idea about the relation of the r-th generalized join-Lee
weights. To understand their properties better, we prove that subcodes of rank r attaining
the r-th generalized join-Lee weight all lie within the C ∩ Z/ps−1Z which we refer to as the
socle of the code.

Proposition 4.2.9. The subcodes which attain the r-th generalized join-Lee weights all lie
within the socle Cs−1 = C ∩ ⟨ps−1⟩.

Proof. By contradiction, assume that D ≤ C of rank r achieves the r-th generalized Lee
weight drL,join(C) and D does not lie within the socle. That is, if D has support subtype
(n0, . . . , ns−1, 0), then for some i < s− 1 we have ni ̸= 0. Thus,

drL,join(C) =
∣∣ suppL,join(D) ∣∣ ≤ s−1∑

i=1

niMi.

By considering the subcode Ds−1 = D ∩ ⟨ps−1⟩, which is still of rank r, we observe that its
support subtype is (0, . . . , 0, n0 + · · ·+ ns−1, 0). Then, by Proposition 4.2.6,

wtL,join(Ds−1) =Ms−1(n0 + · · ·+ ns−1) <

s−1∑
i=1

niMi,

sinceMs−1 < Mi for all i < s−1. This gives a contradiction to the minimality of the subcode
D.

By Proposition 4.2.9, it is hence enough to only consider the generalized join-Lee weights
of the socle C ∩ ⟨ps−1⟩.

Corollary 4.2.10. Let C ⊆ (Z/psZ)n be a linear code of rank K. Then for all r ∈ {1, . . . ,K}
we have

drL,join(C) = drL,join(C ∩ ⟨ps−1⟩).

This property gives us an immediate relation to the generalized Hamming weights. In fact,
the socle can be considered as a code over Fp and the subcodes which attain the minimal
join-Lee support are then those which attain the minimal Hamming support.

Corollary 4.2.11. Let C ⊆ (Z/psZ)n be a linear code of rank K. Then for all r ∈ {1, . . . ,K}
we have

drL,join(C) = drH(C)Ms−1.

We can the use the properties of the generalized Hamming weights to derive the following
properties of the generalized join-Lee weights.

Proposition 4.2.12. Let C ⊂ (Z/psZ)n be a linear code of rank K. Then we have

1. dL(C) ≤ d1L,join(C).

2. drL,join(C) < dr+1
L,join(C) for every 1 ≤ r < K.

3. dKL,join(C) ≤ wtL,join(C).

Proof. The first property follows immediately from the definition of the join-Lee support of a
tuple x. It can be tight, whenever the minimal Lee weight codeword is in the socle, which is
not necessary. For the second property we simply use Corollary 4.2.11 and the third property
simply follows from the definition of join-Lee support.

We want to note here that we do not recover the exact properties of the generalized
Hamming weight codes. In fact, we do not have dL(C) = d1L,join(C) and wtL,join(C) = dKL,join(C).
This seems to be the price we have to pay in order to drop the absolute homogeneity property

4.2. Generalized Join-Lee Weight 39

and to be able to consider the Lee metric. However, unlike the meet-Lee support we get a
nice chain of inequalities

dL(C) ≤ d1L,join(C) < d2L,join(C) < · · · < dKL,join(C) ≤ wtL,join(C),

which gives us a new Lee-metric Singleton-like bound.

Theorem 4.2.13. Let C ⊂ (Z/psZ)n be a (non-degenerate) linear code of rank K. Then we
have

dL(C) ≤Ms−1(n−K + 1) =
⌊p
2

⌋
ps−1(n−K + 1).

Proof. Using the properties 1.-3. from Proposition 4.2.12 we know that

dL(C) ≤ dKL,join(C)−
K−1∑
i=1

diL,join(C)− di−1
L,join(C).

Let us denote xi = diL,join(C)− di−1
L,join(C). Then, by Corollary 4.2.11, we know that

xi =Ms−1.

Assuming that the code is non-degenerate, we get the claim by using that

dKL,join(C) =
s−1∑
i=0

niMs−1 = nMs−1.

Note that we could have gotten this bound also by directly using

dL(C) ≤ d1L,join(C) = d1H(C)Ms−1 = dH(C)Ms−1 ≤ (n−K + 1)Ms−1.

This new Singleton bound is sharper than the previously known Lee-metric Singleton-like
bounds, for example the bound from Theorem 3.4.1.

Note that for MDS codes, we actually know all r-th generalized Hamming weights: let
C ⊆ Fn

q be a linear code of dimension k, then for all r ∈ {1, . . . , k}

drH(C) = n− k + r. (4.4)

Thus, a natural question that arises, is whether the optimal codes with respect to the newly
defined Lee-metric Singleton-like bound have a similar behaviour. That is, we are interested
in an expression for the r-th generalized join-Lee weight drL,join(C) for every r ∈ {1, . . . ,K}.
Indeed, such an expression does exist and is given in Proposition 4.2.14. The closed form
expression can immediately be derived from the result on the r-th generalized Hamming
weight given in (4.4).

Proposition 4.2.14. Let C ⊆ (Z/psZ)n be code of rank K attaining the bound in Theorem
4.2.13. Then, for each r ∈ {1, . . . ,K}, the r-th generalized join-Lee weight is given by

drL,join(C) =Ms−1(n−K + r).

Proof. This immediately follows from Corollary 4.2.11, as

drL,join(C) =Ms−1 d
r
H(C) =Ms−1(n−K + r).

40 Chapter 4. Bounds on the Minimum Lee Distance

4.3 Generalized Column-Lee Weight

We observe that in order to compute the r-th generalized Hamming weight of a code C, we
consider a generator matrix G and count the number of nonzero columns, i.e., the column
weight. However, since G is not unique, choosing r rows of G which attain the minimal
column weight for G does not immediately give rise to the r-th generalized Hamming weight
(as we will see in Example 4.3.3). To compute the r-th generalized Hamming weight we
would, hence, choose r rows of a generator matrix of minimal column weight.

Let us denote by R any ring. For a matrix A ∈ RK×n we will denote by Sr(A) ∈ Rr×n

all the submatrices of A of size r × n.

Definition 4.3.1. Consider a matrix A = (a⊤1 · · · a⊤n) ∈ RK×n. We define the column weight,
wtcol(A), of A by the number of nonzero columns of A, i.e.,

wtcol(A) :=
∣∣ {i ∈ {1, . . . , n} | ai ̸= 0 ∈ RK

} ∣∣ .
The column support, suppcol(A), of A is given by

suppcol(A) := (max{supp(a1)}, . . . ,max{supp(an)}).

Again we have the nice property that | suppcol(A) | = wtcol(A). In fact,

wtcol(A) = | suppcol(A) | =
n∑

i=1

max{supp(ai)}.

Thus, we can define the column support, column weight and the generalized column weights
of a code.

Definition 4.3.2. Let C ⊆ Rn be a linear code of rank K. The column support of C is given
by the minimal column support of any generator matrix, i.e.,

suppcol(C) = min
G:⟨G⟩=C

suppcol(G).

The column weight of a code is then given by the size of the column support, i.e.,

wtcol(C) = | suppcol(C) | .

Finally, the r-th generalized column weight of C is defined as

drcol(C) = min{wtcol(D) | D ≤ C, rk(D) = r}. (4.5)

Note that the definition of the r-th generalized column weight of a linear code C ⊂ Rn of
rank K is equivalent to

drcol(C) = min{wtcol(Sr(G)) | rk(⟨Sr(G)⟩) = r, ⟨G⟩ = C}.

The difficulty of this new definition lies in the choice of the generator matrix instead of the
choice of the subcode. This is the only difference to the usual definition of join support and
join weight. However, this task is equivalently hard.

Let us show the dependency on the choice of generator matrix in the following example.

Example 4.3.3. Let us consider C ⊆ F5
2 generated by

G =

1 0 0 1 1
0 1 0 1 1
0 0 1 1 1

 .

If we were to compute the column (Hamming) weights of Sr(G), we would get for S1(G)

wtcol
((
1 0 0 1 1

))
= 3.

4.3. Generalized Column-Lee Weight 41

However, this is not the first generalized Hamming weight of the code. There exists a generator
matrix G′, such that Sr(G

′) attains the r-th generalized Hamming weights as column weights,
for each r ∈ {1, . . . , k}:

G′ =

1 1 0 0 0
0 1 1 0 0
0 1 0 1 1

 .

Now we can read of the r-th generalized Hamming weights easily:

d1col(C) = wtcol
((
1 1 0 0 0

))
= 2,

d2col(C) = wtcol

((
1 1 0 0 0
0 1 1 0 0

))
= 3,

d3col(C) = wtcol

1 1 0 0 0
0 1 1 0 0
0 1 0 1 1

 = 5.

Thus, the definition is not independent of the choice of generator matrix. Let us now
adapt the definitions to the Lee weight.

Definition 4.3.4. Consider a matrix A =
(
a⊤1 · · · a⊤n

)
∈ RK×n. Its column Lee support

is given by the n-tuple

suppL,col(A) = (max{suppL(a1)}, . . . ,max{suppL(an)}).

The column Lee weight of A is given by

wtL,col(A) =
∣∣ suppL,col(A) ∣∣ = n∑

i=1

max{suppL(ai)}.

Note that this definition asks us to choose in each column the entry of maximal Lee weight.

Example 4.3.5. Let us consider the matrix

G =

1 0 3 2
0 1 2 0
0 0 3 3

 ∈ (Z/9Z)3×4.

Then, the column Lee support and the column Lee weight of G are given by

suppL,col(G) = (1, 1, 3, 3) and wtL,col(G) = 8.

We are now able to extend the definitions of column Lee support and column Lee weight
to a linear code C ⊆ (Z/psZ)n of rank K.

Definition 4.3.6. Consider a linear code C ⊆ (Z/psZ)n of rank K. We define its column Lee
support by the minimal column Lee weight of any generator matrix of C, i.e.,

suppL,col(C) = min
G:⟨G⟩=C

suppL,col(G).

The column Lee weight of C is then given by the size of its column Lee support, i.e.,

wtL,col(C) =
∣∣ suppL,col(C) ∣∣ .

As in the case for the Hamming metric, the definition is not independent on the choice
of generator matrix. For this, we introduce the following matrix, called reduced systematic
generator matrix.

Definition 4.3.7. Consider a matrix G ∈ (Z/psZ)K×n
as given in (3.4). We say that G is

in reduced systematic form if for every entry a of Ai,j ∈ (Z/ps+1−iZ)ki×kj with i < j ≤ s it
holds that wtL(a) ≤ pj−1.

42 Chapter 4. Bounds on the Minimum Lee Distance

We will denote a matrix G in reduced systematic form by Grsys. Let us give an example
to clarify Definition 4.3.7.

Example 4.3.8. Consider G ∈ (Z/27Z)3×4

G =

1 14 11 0
0 9 18 0
0 0 9 18

 .

Note that G is in systematic form as defined in (3.4). By elementary row reduction, i.e., by
subtracting suitable multiples of the rows rj from row ri with 1 ≤ i < j ≤ 3, we obtain a
matrix Grsys in reduced systematic form

Grsys =

1 5 20 0
0 9 9 9
0 0 9 18

 .

By a similar argument used to prove Proposition 3.1.4 we observe the following.

Proposition 4.3.9. Consider a linear code C ⊆ (Z/psZ)n of subtype (k0, . . . , ks−1) and rank
K. The code C is permutation equivalent to a code having a generator matrix in reduced
systematic form.

This new systematic form yields a natural upper bound on the column Lee weight of a
code C. For this let us now consider the support subtype outside an information set of size K
of the code. Since we can always find a permutation-equivalent code which has an information
set in the first K positions, we can assume that we only consider the last n−K columns of
a generator matrix in reduced systematic form. In order not to confuse it with the support
subtype (n0, . . . , ns) of the entire generator matrix, we will denote the support subtype of the
last n−K columns of a generator matrix in reduced systematic form by (µ0, . . . , µs).

Proposition 4.3.10. Consider a linear code C ⊆ (Z/psZ)n of subtype (k0, . . . , ks−1) and rank
K, and let (µ0, . . . , µs−1) be the support subtypes in the last n − K columns of a generator
matrix in reduced systematic form. Then the column Lee weight of C is upper bounded by

wtL,col(C) ≤
s−1∑
i=0

piki +

s∑
i=0

µiMi.

Proof. By Definition 4.3.6 we have

wtL,col(C) =
∣∣∣∣ min
G:⟨G⟩=C

suppL,col(G)

∣∣∣∣ .
Furthermore, by Proposition 4.3.9, C admits a generator matrix Grsys ∈ (Z/psZ)K×n in re-
duced systematic form. Hence, the column Lee weight of Grsys is a natural upper bound to
the column Lee weight of the code, i.e.,

wtL,col(C) ≤ wtL,col(Grsys).

Due to the form of Grsys, we observe that the maximum Lee weight in the first K columns is
given by the entry (Grsys)i,i for i ∈ {1, . . . ,K}. For the last n−K columns we have to assume
the maximal Lee weight. The support subtype (µ0. . . . , µs) in these columns immediately
tells us, how many columns are contained in which ideal. Hence, for each column lying in ⟨pi⟩
(where i is maximal for this column) the maximal Lee weight is Mi. This yields the desired
result.

Let us now introduce the r-th generalized column Lee weights of a code C.

Definition 4.3.11. Given a linear code C ⊆ (Z/psZ)n of subtype (k0, . . . , ks−1) and rank K.
The r-th generalized column Lee weight of C is defined as

drL,col(C) = min{wtL,col(D) | D ≤ C, rk(D) = r}.

4.3. Generalized Column-Lee Weight 43

Similarly to Definition (4.5), the r-th generalized column Lee weight is equivalent to

drL,col(C) = min{wtL,col(Sr(G)) | rk(⟨Sr(G)⟩) = r, ⟨G⟩ = C}.

As in the Hamming-metric case, the difficulty lies now in finding a generator matrix
attaining the r-th generalized column Lee weights. To visualize this, let us return to our
previous example for the Lee-metric support.

Example 4.3.12. Let us consider the code C ⊆ (Z/9Z)4 generated by

G =

1 0 3 2
0 1 2 0
0 0 3 3

 ,

which has support subtype (4, 0, 0) and minimum Lee distance 2. If we compute the minimal
column weights of submatrices of G we get

wtL,col(
(
0 1 2 0

)
) = 3,

wtL,col

((
0 1 2 0
0 0 3 3

))
= 7,

wtL,col(G) = 8.

However, there is a generator matrix of the code which is not in systematic form and which
attains smaller column Lee weights:

G′ =

8 0 0 1
0 1 2 0
0 8 1 3

 .

The r-th generalized Lee weights are then

d1L,col(C) = wtL,col(
(
8 0 0 1

)
) = 2 = dL(C),

d2L,col(C) = wtL,col

((
8 0 0 1
0 1 8 0

))
= 4,

d3L,col(C) = wtL,col

8 0 0 1
0 1 8 0
0 0 3 0

 = 6 = wtL,col(C).

Note that both matrices within this example are of reduced systematic form.

Lemma 4.3.13. Let C ∈ (Z/psZ)n be code of rank K and let G(i) ∈ (Z/psZ)i×n
of a rank

i ∈ {1, . . . ,K − 1} be a generator matrix of a subcode of C attaining diL,col(C). Consider c ∈ C

such that

(
G(i)

c

)
is a generator matrix of a subcode of rank i+ 1. Then,

wtL,col

((
G(i)

c

))
> wtL,col(G

(i)).

Proof. Let us define for all columns j ∈ {1, . . . , n} the maximal Lee weight of the j-th column

in G(i) as A
(i)
j . We clearly have

wtL,col(G
(i)) ≤ wtL,col

((
G(i)

c

))
.

By contradiction, let us assume that equality holds. Then,

n∑
j=1

A
(i)
j =

n∑
j=1

max
{
A

(i)
j ,wtL(cj)

}
(4.6)

44 Chapter 4. Bounds on the Minimum Lee Distance

and so for all j ∈ {1, . . . , n} we have wtL(cj) ≤ A
(i)
j . However, as G(i) attains diL,col(C), the

sum in Equation (4.6) is minimal among all rank i subcodes of C. Hence, there is no index

j ∈ {1, . . . , n} for which wtL(cj) < A
(i)
j and thus for all j we have wtL(cj) = A

(i)
j . This implies

cj = ±A(i)
j .

This means that c has in every position the maximal Lee weight over all rows of G(i).
Thus, for every row gℓ of G(i) with ℓ ∈ {1, . . . , i} for which wtL(gℓ) > wtL(c), we can add
and/or subtract c to decrease its weight. For each row ℓ ∈ {1, . . . , i} let us define the sets

I−ℓ = {j ∈ {1, . . . , n} | wtL(cj − gℓj) < wtL(cj)},
I+ℓ = {j ∈ {1, . . . , n} | wtL(cj + gℓj) ≤ wtL(cj)}.

For a fixed row ℓ ∈ {1, . . . , i}, if ∑
j∈I−

ℓ

wtL(cj) <
∑
j∈I+

ℓ

wtL(cj),

we add c to the row gℓ. If however,∑
j∈I+

ℓ

wtL(cj) ≤
∑
j∈I−

ℓ

wtL(cj),

we subtract c from that row gℓ.
We consider now the new row g′ℓ := c ± gℓ which has a strictly smaller Lee weight than

c. Since the cases are similar, assume that for gℓ the first case is true, i.e.,
∑

j∈I−
ℓ
wtL(cj) <∑

j∈I+
ℓ
wtL(cj), and thus we add the row c, getting g′ℓ := c + gℓ. Clearly, for each position j

in I−ℓ we added a Lee weight of at most A
(i)
j , while in each position j in I+ℓ we subtracted a

Lee weight of at most A
(i)
j , thus

wtL(g
′
ℓ) =

∑
j∈I+

ℓ

wtL(gℓj + cj) +
∑
j∈I−

ℓ

wtL(gℓj + cj)

<
∑
j∈I+

ℓ

wtL(gℓj + cj) +
∑
j∈I−

ℓ

A
(i)
j +

∑
j∈I−

ℓ

wtL((cj)

<
∑
j∈I+

ℓ

wtL(cj)−
∑
j∈I+

ℓ

A
(i)
j +

∑
j∈I+

ℓ

A
(i)
j +

∑
j∈I−

ℓ

wtL((cj)

= wtL(c).

Repeating this procedure for every row of the matrix G(i), obtaining the new matrix G′(i) of
rank i, we have

wtL,col(G
′(i)) < wtL,col(G

(i)),

since in every row we now reduced the Lee weight, but this is a contradiction to G attaining
diL,col(C).

Finally, we are able to prove the desired properties for the generalized column Lee weights.

Proposition 4.3.14. Let C ⊆ (Z/psZ)n be a linear code of rank K. Then

1. d1L,col(C) = dL(C).

2. drL,col(C) < dr+1
L,col(C) for all r < K.

3. dKL,col(C) = wtL,col(C).

Proof. For the first property, note that the column Lee weight of a 1 × n matrix is equal to
the Lee weight of that n-tuple. Since a minimal Lee-weight codeword c is a rank 1 subcode
of C with the smallest column Lee weight, it attains wtL,col(c) = d1L,col(C).

4.3. Generalized Column-Lee Weight 45

The second property follows from Lemma 4.3.13. Any G(i+1) ∈ (Z/psZ)(i+1)×n
attaining

di+1
L,col(C) we can write G(i+1) =

(
G(i)

g′

)
for some G(i) ∈ (Z/psZ)i×n

of rank i. Then we either

have that G(i) already attained diL,col(C) and hence

diL,col(C) = wtL,col(G
(i)) < wtL,col(G

(i+1)) = di+1
L,col(C),

or, if G(i) did not attain diL,col(C), then

diL,col(C) < wtL,col(G
(i)) ≤ wtL,col(G

(i+1)).

In either case, we get that diL,col(C) < di+1
L,col(C).

Lastly, the third property follows immediately from the definition of the column Lee weight
of a code C.

The properties in Proposition 4.3.14 allow us to deduce a natural Singleton-like bound for
the Lee metric.

Theorem 4.3.15. Given a linear code C ∈ (Z/psZ)n of rank K. The minimum distance of
C is upper bounded by

dL(C) ≤ wtL,col(C)−K + 1.

Proof. Using the properties given in Proposition 4.3.14 we note that

dL(C) = d1L,col(C) ≤ dKL,col(C)−
K∑
i=2

(
diL,col(C)− di−1

L,col(C)
)
. (4.7)

By the strict inequality between the generalized column Lee weights, we have a difference of
at least one, i.e.,

diL,col(C)− di−1
L,col(C) ≥ 1.

Since dKL,col(C) = wtL,col(C), the desired bound follows.

As for increasing parameters of a linear code C ⊆ (Z/psZ)n of rank K and subtype
(k0, . . . , ks−1) it becomes harder to compute wtL,col(C), applying Proposition 4.3.10 we obtain
a direct consequence of Theorem 4.3.15 which requires no computational effort.

Corollary 4.3.16. Given a linear code C ∈ (Z/psZ)n of rank K. The minimum distance of
C is upper bounded by

dL(C) ≤
s−1∑
i=0

piki +

s∑
i=0

µiMi −K + 1.

The bounds given in Theorem 4.3.15 and Corollary 4.3.16 improve the Singleton bound
by Shiromoto [119] and the one by Alderson and Huntemann [5]. In the proof of Theorem
4.3.15 we bounded the differences diL,col(C)−di−1

L,col(C) by one for every i = 2, . . . ,K. However,
for a relatively small rank K this bound is not very tight. The sum in Equation (4.7) is a
telescoping sum, meaning that

K∑
i=2

(
diL,col(C)− di−1

L,col(C)
)
= dKL,col(C)− d1L,col(C) = wtL,col(C)− dL(C).

Hence, the goal is now to derive a lower bound on the difference wtL,col(C) − dL(C) allowing
us to further tighten the Singleton-like bound.

46 Chapter 4. Bounds on the Minimum Lee Distance

In the following let C ⊆ (Z/psZ)n be a linear code of rank K and subtype (k0, . . . , ks−1).
Let us introduce the maximal subtype i ∈ {0, . . . , s− 1} for which ki is nonzero, that is

σ := max {i ∈ {0, . . . , s− 1} | ki ̸= 0} .

Proposition 4.3.17. Let p be an odd prime. For a linear code C ⊆ (Z/psZ)n of rank K and
subtype (k0, . . . , ks−1) and maximal subtype kσ, we get the following lower bound

wtL,col(C)− dL(C) ≥
σ−1∑
i=0

 i∑
j=0

kj

 ⌊p/2⌋ pi + (kσ − 1)pσ.

Proof. Let us start by focusing on the generalized column Lee weights. Assume that c1 ∈ C
is such that d1L,col(C) = wtL,col(⟨c1⟩). By Lemma 4.3.13, we know that the generalized column
Lee weights can be obtained in an iterative fashion. Hence, to find a subcode D2 of rank 2

we are looking for a codeword c2 ∈ C such that

(
c1
c2

)
is of rank 2 and such that it minimizes

wtL,col

((
c1
c2

))
. We continue with this process until we obtain a matrix

GK :=

 c1
...
cK

of rank K such that wtL,col(GK) = wtL,col(C) = dKL,col(C).

Since the code C is of subtype (k0, . . . , kσ, 0, . . . , 0), the rows of the matrix GK each
correspond to one of the σ blocks formed by the systematic form Gsys of GK . To understand
the difference of wtL,col(C) and the first generalized column Lee weight d1L,col(C) we can think of
successively removing rows from GK until we are only left with the minimum weight codeword
c1. Thinking in the block-wise structure of a generator matrix in systematic form, at some
point we will have cancelled ki rows corresponding to the i-th block of Gsys. Hence, the
minimal difference subtracted is

Mi−1 −Mi = ⌊p/2⌋ pi−1.

Doing this successively for every ki, with i ∈ {0, . . . , σ}, gives

σ−1∑
i=0

 i∑
j=0

kj

 ⌊p/2⌋ pi.
At this point we are left only with a block corresponding to the rows belonging to the maximal
subtype kσ. The minimal difference between the rows of the same block is given by pσ. Hence,
cancelling (kσ − 1) rows yields a difference of pσ(kσ − 1) and the desired result follows.

A natural consequence (combining Propositions 4.3.10 and 4.3.17) is the next bound on
the minimum Lee distance dL(C) of a code C of given rank and subtype.

Corollary 4.3.18. Consider a linear code C ⊆ (Z/psZ)n, where p is an odd prime. Let C
be of rank K and subtype (k0, . . . , ks−1) with maximal subtype kσ and having support subtype
(µ0, . . . , µs−1) in the last n−K positions. Then the following upper bound on the minimum
Lee distance of C holds

dL(C) ≤
s−1∑
i=0

piki +

s∑
i=0

µiMi −

σ−1∑
i=0

 i∑
j=0

kj

 ⌊p/2⌋ pi + (kσ − 1)pσ

 .
Let us give an example over Z/9Z.

4.4. Generalized Lee Distances 47

Example 4.3.19. Consider again the code C generated by

G =

1 0 3 2
0 1 2 0
0 0 3 3

 ,

over Z/9Z. In the last column, the code C has support subtype (1, 0, 0) and minimum Lee
distance 2. Furthermore, we observe that σ = 1 and support subtype (1, 0). Hence, by
Corollary 4.3.18,

dL(C) ≤ 2 + 3 + 1 · 4− [2 · 1 + (1− 1)3] = 7.

Similarly to the join-support, examples of codes attaining this bound are codes generated
by matrices G =

(
ps−1IK ps−1A

)
for A ∈ (Z/psZ)K×(n−K), where p = 3. In fact, for

any odd p these codes have a minimum Lee distance d = ps−1(n − K + 1). Furthermore,
we note that in the last n − K columns we have support subtype (0, . . . , 0, n − K) and
Ms−1 = ⌊p/2⌋ ps−1. Hence, inserting these values in the bound given in Corollary 4.3.18
gives

dL(C) ≤ ps−1(1 + (n−K) ⌊p/2⌋).

This is equal to dL(C) exactly if p ∈ {2, 3}. Consider again the code C ⊆ (Z/9Z)4 of rank
K = 3 with generator matrix

G =

3 0 0 3
0 3 0 6
0 0 3 6

 .

This code has minimum Lee distance dL(C) = 6 and subtype (k0, k1) = (0, 3). Hence, we also
have σ = 1. The support subtype in the last n − K = 1 column is (0, 1, 0) and M1 = 3.
Computing the bound in Corollary 4.3.18 gives then

1∑
i=0

piki +

2∑
i=0

µiMi − (k1 − 1)p = 3 · 3 + 1 · 3− (3− 1)3 = 2 · 3 = 6

and thus this code is optimal with respect to the bound in Corollary 4.3.18. A further analysis
on the density of optimal codes with respect to the column-Lee support (Corollary 4.3.18)
can be found in Section 4.5.2.

4.4 Generalized Lee Distances

The resulting Lee-metric Singleton-like bounds in Theorem 4.2.13 and Corollary 4.3.18 are
improving the previously known bounds. However, their optimal codes are sparse and the
column-Lee weight of a code is computationally difficult to compute. We thus ask if fixing
the rank of the subcode is the correct direction. In fact, a ring-linear code C ⊆ (Z/psZ)n of
rank K has very natural subcodes to consider which are all of rank K.

Definition 4.4.1. Let C ⊆ (Z/psZ)n be a linear code of rank K. For each i ∈ {0, . . . , s− 1}
we define the i-th filtration subcode Ci of C as the intersection of C with the ideal ⟨pi⟩, i.e.,

Ci := C ∩ ⟨pi⟩.

The (s− 1)-st filtration Cs−1 is commonly known as the socle of the code C.

Recall from Equation (3.1) that a finite chain ring Z/psZ has a natural chain of ideals.
Hence, the filtration subcodes naturally form a chain of inclusions, namely

Cs−1 ⊆ Cs−2 ⊆ . . . ⊆ C1 ⊆ C0 = C. (4.8)

We then define a new class of generalized Lee weights, or more concretely generalized Lee
distances, coming from filtration subcodes.

48 Chapter 4. Bounds on the Minimum Lee Distance

Definition 4.4.2. Let C ⊆ (Z/psZ)n be a linear code. For each r ∈ {1, . . . , s} we define
the r-th generalized minimum Lee distance of the code C to be the minimum distance of the
filtration subcode Cr−1, that is

drL(C) = dL(Cr−1).

The generalized minimum Lee distances have some natural properties that are summarized
in the following.

Proposition 4.4.3. Given a linear code C ⊆ (Z/psZ)n of subtype (k0, . . . , ks−1) and rank
K. Let σ := max {i ∈ {0, . . . , s− 1} | ki ̸= 0}. Then the generalized minimum Lee distances
satisfy

1. d1L(C) = dL(C),

2. drL(C) ≤ dr+1
L (C) for every r ∈ {1, . . . s− 1},

3. drL(C) ≤ pr−1 + (n− k)Mr−1 for every r ∈ {σ + 1, . . . , s}.

Proof. The first and second property immediately follow from (4.8).
For the third property we observe that for every r ∈ {σ + 1, . . . , s}, by applying elementary
row operations, we can bring a generator matrix Gr−1 of Cr−1 in the form

Gr−1 =
(
pr−1IK A

)
, (4.9)

where A ∈
(
pr−1Z/psZ

)K×(n−K)
. The r-th minimum Lee distance is upper bounded by the

Lee weight of any row of Gr−1. For each row, the first K positions have a Lee weight of
exactly pr−1. In the last n − K positions of each row we assume the maximal Lee weight
given by Mr−1 :=

⌊
ps−(r−1)/2

⌋
pr−1 and hence the inequality follows.

Note that the upper bound on the generalized minimum Lee distances in property 3.
of Proposition 4.4.3 is relatively loose. This is due to the fact, that we have assumed no
knowledge about the matrix A given in (4.9).

Due to property 2. in Proposition 4.4.3, we cannot use the usual Singleton-like argument
and decrease the weight of the whole code. Instead, we note that any drL(C) is a direct upper
bound on the minimum Lee distance, i.e., for any r ∈ {1, . . . , s} we have dL(C) ≤ drL(C). The
only question that remains, is how far we have to go down in the filtration to expect the
lowest minimum Lee distance drL(C). In the following we identify several parameters of the
code, that are easy to read off from any generator matrix of the code, that indicates which
filtration subcode gives an appropriately low upper bound on dL(C).

As computing the minimum Lee distance of every subcode Ci is an exhausting task, es-
pecially if there is no knowledge about the structure of A, we would like to introduce some
more parameters regarding A for the first filtration subcode of C admitting a generator ma-
trix of the form (4.9). That is the filtration subcode Cσ with a generator matrix of the form

Gσ =
(
pσIK A

)
, for some matrix A ∈ (pσZ/psZ)K×(n−k)

. Let aij denote the entry of A
lying in row i and column j. For each row of A, we determine the maximal power of p
appearing, and we denote it by

ℓi := max
{
k ∈ {σ, . . . , s− 1} | ∃aij : ⟨aij⟩ = ⟨pk⟩, K + 1 ≤ j ≤ n

}
.

Clearly, ℓi ≥ σ. Let n′i denote the number of entries of the i-th row of A that lie within the
ideal ⟨pℓi⟩, i.e.,

n′ℓi :=
∣∣ {j ∈ {K + 1, . . . , n} | aij ∈ ⟨pℓi⟩

} ∣∣ .
For a given linear code C ⊆ (Z/psZ)n, these parameters help us to understand the evolution

of the matrix A in the generator matrices of the filtration subcodes Cr−1, for r ∈ {σ+1, . . . , s}.
In fact, given a generator matrix Gσ of the filtration subcode Cσ in the form (4.9), the
parameters ℓi and n′ℓi for a row i ∈ {1, . . . ,K} allow understanding at which point in the

4.4. Generalized Lee Distances 49

filtration these positions become zero. More precisely, knowing ℓi and n′ℓi implies that in
Cs−ℓi+σ there are n′ℓi many zero entries in i-th row of A.

Knowing the number of entries turning into zero in a certain filtration subcode is a huge
advantage in bounding the minimum distance of a code. Therefore, we define by n′(r−1) the
maximal number of zeros we can get in the last n−K positions of a row of a generator matrix
of the filtration subcode Cr−1. That is, for every r ∈ {σ + 1, . . . , s},

n′(r−1) := max
{
n′ℓi | ℓi > s− r + σ, i ∈ {1, . . . ,K}

}
.

If there is no ℓi with ℓi > s − r + σ, we will set n′(r−1) = 0. Furthermore, let ℓ(r−1) be the
corresponding value ℓi to n

′(r−1), i.e.,

ℓ(r−1) := max
{
ℓi | n′ℓi = n′(r−1), i ∈ {1, . . . ,K}

}
.

We can hence refine the third property in Proposition 4.4.3 as follows.

Lemma 4.4.4. Given a linear code C ⊆ (Z/psZ)n of subtype (k0, . . . , ks−1) with maximal
subtype kσ. Then, for every r ∈ {σ + 1, . . . , s}, the r-th generalized Lee distance can be upper
bounded by

drL(C) = dL(Cr−1) ≤ pr−1 +
(
n−K − n′(r−1)

)
Mr−1.

Proof. This follows similarly as Proposition 4.4.3; by focusing on the row with the maximal
number of zeros in the last n − K columns of Cr−1 which is captured in n′(r−1). Hence,
the remaining (n − K − n′(r−1)) positions are bounded by the maximal Lee weight in the
considered ideal, which is given by Mr−1.

Example 4.4.5. Let us consider a free code C ∈ (Z/27Z)5 spanned by the rows of the matrix1 0 0 21 6
0 1 0 10 7
0 0 1 18 8

 =:
(
I3 A

)
.

We compute

ℓ1 = 1 and n′ℓ1 = 2,

ℓ2 = 0 and n′ℓ2 = 2,

ℓ3 = 2 and n′ℓ3 = 1.

Let us now consider the filtration subcodes C1 and C2 in order to compute the bound given
in Proposition 4.4.3. Note that in this case σ = 0 as the code is free. For Cσ = C0 = C, the
values ℓi and n

′
i are given above. As ℓ3 = 2 and n′3 = 1, at the filtration subcode C3−2+0 = C1

there is one entry equal to zero. Indeed, C1 = C ∩ ⟨3⟩ has a generator matrix of the form3 0 0 9 18
0 3 0 3 21
0 0 3 0 24

 ,

where the last row contains one zero element in the last 2 columns. Note that n′(1) = n′ℓ3 = 1

and hence, d2L(C) ≤ 3 + (5− 3− 1)12 = 15.
Similarly, at the filtration subcode C2 = C ∩ ⟨9⟩ we observe two zero entries in the first

row, as 9 0 0 0 0
0 9 0 9 9
0 0 9 0 18

 .

Here we notice that n′(2) = n′ℓ1 = 2 and thus d3L(C) ≤ 9 + (5− 3− 2)9 = 9.

50 Chapter 4. Bounds on the Minimum Lee Distance

By Proposition 4.4.3, we know that the r-th generalized Lee distances are in non-decreasing
order. Therefore, for any r ∈ {σ + 1, . . . , s} the bound in Lemma 4.4.4 is a valid upper bound
for the minimum Lee distance of a code C. However, as visible in Example 4.4.5, the bounds
on the r-th minimum Lee distances do not have to follow the same non-decreasing order.
As they all hold as an upper bound to the minimum Lee distance of the code, the following
bound is a direct consequence of Lemma 4.4.4 by choosing the smallest among the bounds
given in the statement.

Corollary 4.4.6. Given a code C ⊆ (Z/psZ)n of subtype (k0, . . . , ks−1). For each r ∈
{σ + 1, . . . , s} let ℓ ≥ 1 and (ℓ, n′) be the pair (ℓ(r−1), n′(r−1)) minimizing

ps−ℓ(r−1)+σ +
(
n−K − n′(r−1)

)
Ms−ℓ(r−1)+σ.

Then the codes minimum distance is bounded by

dL(C) ≤ ps−ℓ+σ + (n−K − n′)Ms−ℓ+σ.

As for large rank K it is infeasible to compute this minimum, we can also derive a slightly
weaker bound depending on the maximal value ℓi, which is easy to compute.

Corollary 4.4.7. Given a code C ⊆ (Z/psZ)n of subtype (k0, . . . , ks−1) of maximal subtype
kσ. For each r ∈ {σ + 1, . . . , s} let ℓ := max {ℓi | i = 1, . . . ,K} and define the corresponding
value n′ := max {nℓi | ℓi = ℓ, for i = 1, . . . ,K} Then, the minimum distance is bounded by

dL(C) ≤

{
ps−ℓ+σ + (n−K − n′)Ms−ℓ+σ if ℓ ≥ 1,

pσ + (n−K)Mσ else.

In fact, we can identify conditions, leading to four different cases for the bound provided in
Corollary 4.4.7. For this very last observation, leading to the very last Lee-metric Singleton-
like bound, we first need one last definition. Let C ⊆ (Z/psZ)n be a linear code of maximal
subtype kσ and assume that Cσ is generated by (pσI A).

Let us denote the entries of A as ai,j , for i ∈ {1, . . . ,K} and j ∈ {K + 1, . . . , n}. We
define

N ′ := max{j ∈ {K + 1, . . . , n} | for every i ∈ {1, . . . ,K} : p | ai,j}.

That is N ′ is the maximal number of entries in a row of A, which are divisible by p.

Example 4.4.8. Let us consider the code over Z/27Z generated by

G =

(
1 0 3 6
0 1 18 1

)
.

The previous bound from Corollary 4.4.7 would take ℓ = 2 and n′ = 1. Instead of having
N ′ = 2, as in the first row of A we have two entries that are divisible by p. In fact, this indicates
the minimum Hamming weight codeword lies within the socle, in this case of Hamming weight
1. Clearly, if N ′ is large, it is beneficial to go until the socle.

1. Case ℓ = σ or n′/2 ≤ ps−ℓ−1
ps−σ−1 . In this case we stay in Cσ:

dL(C) ≤ pσ + (n−K)Mσ.

2. Case ℓ = s. In this case we also stay in Cσ, but observed some zero entries:

dL(C) ≤ pσ + (n− k − n′)Mσ.

3. Case ℓ ̸= σ or ℓ ̸= s and n′/2 ≥ ps−ℓ−1
ps−σ−1 . In this case we can move to Cs−ℓ+σ:

dL(C) ≤ ps−ℓ+σ + (n− k − n′)Ms−ℓ+σ.

4.4. Generalized Lee Distances 51

4. Case: if n′ ≤ N ′ pℓ−σ−pℓ−σ−1

pℓ−σ−1
+ (n−K − 2)p

ℓ−σ−1−1
pℓ−σ−1

. In this case we go to the socle:

dL(C) ≤ ps−1 + (n−K −N ′)Ms−1.

Note also, that instead of taking the filtration subcodes Ci = C ∩ ⟨pi⟩, we could have also
considered the torsion subcodes.

Definition 4.4.9. Let C ⊆ (Z/psZ)n. For i ∈ {0, . . . , s − 1}, we call C̃i = C mod ps−i ⊆(
Z/ps−iZ

)n
the i-th torsion code.

We can, however, immediately observe that the i-th torsion code represented as a code
over the ambient space is naturally a subcode of the filtration subcode as

piC̃i ⊆ Ci ⊆ (Z/psZ)n,

with rk(piC̃i) =
∑i−1

j=0 kj < rk(Ci) = K.

In fact, any generator matrix of C̃i is a truncation of a generator matrix of G, i.e., we cut
off the rows belonging to the subtypes ki, . . . , ks−1. Thus, if we defined the r-th generalized

Lee distances through the torsion subcodes, i.e., drL(C) = dL(C̃r), for r ∈ {0, . . . , s− 1}, then
we would observe dL(C) ≤ dL(Ci) ≤ dL(p

iC̃i). Thus, any upper bound on dL(p
iC̃i) would serve

as upper bound on dL(C), but would be worse than taking directly bounds on the smaller
dL(Ci).

Finally, we note that the same considerations also apply to the Hamming metric.

Corollary 4.4.10. Given a code C ⊆ (Z/psZ)n of subtype (k0, . . . , ks−1) with maximal sub-
type kσ. For each r ∈ {σ + 1, . . . , s} let ℓ := max {ℓi | i = 1, . . . ,K} and define the cor-
responding value n′ := max {nℓi | ℓi = ℓ, for i = 1, . . . ,K}. Then, the Hamming minimum
distance is bounded by

dH(C) ≤

{
1 + (n−K − n′) if ℓ ≥ 1,

1 + (n−K) else.

Note, that the Lee-metric version, that is Corollary 4.4.7, is not directly implied by the
Hamming-metric bound. Such a direct bound would state

dL(C) ≤

{
M(1 + (n−K − n′)) if ℓ ≥ 1,

M(1 + (n−K)) else.

This bound is clearly worse than our Lee-metric Singleton-like bound of Corollary 4.4.7.

Let us consider now codes that achieve the bound on the minimum Lee distance based on
filtration subcodes, i.e., Corollary 4.4.7, and check whether this fixes the r-th generalizes Lee
distances. If C has maximal subtype kσ and attains the bound in Corollary 4.4.7, then

dL(C) = d1L(C) = · · · = dσ−1
L (C) = dL(Cσ).

If σ = s− 1 or if we are in case 4, i.e.,

n′ ≤ N ′ p
ℓ−σ − pℓ−σ−1

pℓ−σ − 1
+ (n−K − 2)

pℓ−σ−1 − 1

pℓ−σ − 1
,

we consider the socle and hence all r-th generalized Lee distances drL(C) are equal. If we are
not in case 4, the behaviour of the filtration subcodes Cr with r ≥ σ is more unpredictable.

As already discussed above there are codes with several properties which are attaining
the bound in Corollary 4.4.7. One class of codes that we want to consider are those having
n′ = n − K. Assuming that such a code attains the bound, the following result gives us a
closed expression for the r-th generalized Lee distances for all r.

Proposition 4.4.11. Let C ⊆ (Z/psZ)n of rank K, subtype (k0, . . . , ks−1) of maximal subtype
kσ, and tuple (ℓ, n−K), such that dL(C) = ds−ℓ+σ

L (C). Then the r-th generalized Lee distance

52 Chapter 4. Bounds on the Minimum Lee Distance

is given by

drL(C) =

{
ps−ℓ+σ for every r ≤ s− ℓ+ σ,

pr for every r > s− ℓ+ σ.

Proof. Since dL(C) = ds−ℓ+σ
L (C) and since the r-th generalized Lee distances are increasing

in r, we have drL(C) = ds−ℓ+σ
L (C) for every r ≤ s − ℓ + σ. Hence, the first case is clear. For

the second case, note that Cs−ℓ+σ admits a generator matrix containing only zeros in the last
n−K columns. These entries remain zero for every filtration subcode Cr with r > s− ℓ+ σ.
Hence, the minimum distance dL(Cr) is always given by pr.

4.5 Comparison of the Bounds

At this point let us compare the bound of Corollary 4.4.7 to the bounds derived from the
new puncturing argument (Theorem 4.0.1), to the join-Lee support (Theorem 4.2.13), to the
Lee-column support (Corollary 4.3.18) and to the bounds provided by [5, 119]. We do so by
providing first some examples that attain the bound from Corollary 4.4.7 and compare it to
the other bounds.

Example 4.5.1. 1. Let C ⊆ (Z/9Z)4 be the code generated by

G =

1 0 0 2
0 1 0 6
0 0 1 4

 .

We observe that this code has minimum Lee distance dL(C) = 3. For the last n−K = 1
column, we note, that all the entries lie within the ideal generated by 1. This means
that ℓ = 0 and n′ = n − K = 1. Note that the bounds of Corollary 4.4.6 and 4.4.7
coincide. The bounds are computed as follows.

Filtration: dL(C) ≤ 3 (Corollary 4.4.6 and 4.4.7)

Join-Lee support: dL(C) ≤ 6 (Theorem 4.2.13)

Column-Lee support: dL(C) ≤ 5 (Corollary 4.3.18)

New puncturing: dL(C) ≤ 8 (Theorem 4.0.1)

Shiromoto: dL(C) ≤ 8 ([119])

Alderson - Huntemann: dL(C) ≤ 4 ([5])

2. Let C ⊆ (Z/27Z)5 be the code generated by

G =

(
1 10 4 20 9
0 3 9 18 9

)
.

The minimum Lee distance of this code is dL(C) = 9. For the last n−K = 3 columns,
we quickly compute ℓ′ = 2 and n′ = 1. Then the bounds are computed as follows.

Filtration: dL(C) ≤ 9 (Corollary 4.4.6 and 4.4.7)

Join-Lee support: dL(C) ≤ 36 (Theorem 4.2.13)

Column-Lee support: dL(C) ≤ 38 (Corollary 4.3.18)

New puncturing: dL(C) ≤ 48 (Theorem 4.0.1)

Shiromoto: dL(C) ≤ 40 ([119])

Alderson - Huntemann: not existing ([5])

3. In this example let us consider the code C ⊆ (Z/125Z)6 generated by

G =

(
1 0 25 50 75 100
0 1 2 3 4 5

)
.

4.5. Comparison of the Bounds 53

(n,K, ps, σ) Alderson and
Huntemann
[5]

Shiromoto
[119]

Join-Lee
support (The-
orem 4.2.13)

Filtration
(Corollary
4.4.7) (ℓ, n′)

(6, 3, 9, 0) 12 16 12

(0, 3) : 13
(1, 1) : 9
(1, 2) : 6
(1, 3) : 3
(2, 1) : 9
(2, 2) : 5
(2, 3) : 1

(6, 3, 9, 1) Not existing 16 12

(1, ⋆) : 12
(2, 1) : 9
(2, 2) : 6
(2, 3) : 3

(6, 3, 125, 0) 186 248 200

(0, 3) : 187
(1, 1) : 125
(1, 2) : 75
(1, 3) : 25
(2, 1) : 125
(2, 2) : 65
(2, 3) : 5
(3, 1) : 125
(3, 2) : 63
(3, 3) : 1

(6, 3, 125, 1) 248 200

(1, ⋆) : 185
(2, 1) : 125

248 (2, 2) : 75
(only for subtype (2, 3) : 2
(0, 3, 0)) (3, 1) : 125

(3, 2) : 65
(3, 3) : 5

(6, 3, 125, 2)

310 (only for sub-

248 200

(2, ⋆) : 175
type (0, 0, 3)) (3, 1) : 125
248 (only for sub- (3, 2) : 75
type (1, 1, 1)) (3, 3) : 25

Table 4.1: Comparison of the different bounds on the minimum Lee dis-
tance of a code of given parameters.

This code has minimum distance dL(C) = 5. Note that the two bounds with respect to
the filtration (Corollary 4.4.6 and 4.4.7) coincide. Hence, we obtain

Filtration: dL(C) ≤ 5 (Corollary 4.4.6 and 4.4.7)

Join-Lee support: dL(C) ≤ 200 (Theorem 4.2.13)

Column-Lee support: dL(C) ≤ 247 (Corollary 4.3.18)

New puncturing: dL(C) ≤ 300 (Theorem 4.0.1)

Shiromoto: dL(C) ≤ 249 ([119])

Alderson - Huntemann: dL(C) ≤ 248 ([5])

We now compare the bounds for different parameters. In Table 4.1, we do not consider the
column-Lee support, i.e., Corollary 4.3.18, as we would need to consider too many different
parameters which would not fit in the overview.

Let us focus first on a free code, i.e., σ = 0. Observe, that if the last n−K columns of a
generator matrix consist only of nonunits, i.e., ℓ = 0, the bound by Alderson and Huntemann
beats our bounds. However, as soon as ℓ ̸= 0 the new bound based on the minimum distance

54 Chapter 4. Bounds on the Minimum Lee Distance

of filtration subcodes (Corollary 4.4.7) always outperforms any other bound. In Table 4.1 we
also observe, that the bound provided by Shiromoto is the loosest.

For nonfree codes, recall that the bound in [5] only works for integer Z/psZ-dimensions
k > 1. Furthermore, we note that for a given σ ≥ 1 we always have ℓ ≥ σ and if ℓ = σ the
filtration bound (Corollary 4.4.7) is the same for any n′. This is denoted by n′ = ⋆ in Table
4.1. In any of the parameters presented, the bound based on the minimum Lee distance of a
filtration subcode of the code (Corollary 4.4.7) outperforms all other bounds.

4.5.1 Invariance under Isometry in the Lee Metric

For the generalized Hamming weights of a linear k-dimensional code C ⊆ Fn
q , we also know

that drH(C) = drH(C′), for any equivalent code C′ and any r ∈ {1, . . . , k}. We show here that
the same holds true for all the three definitions of generalized Lee weights and distances,
respectively. That is, we show that the generalized Lee weights and distances are invariant
under isometries. Isometries are (usually bijective) maps between metric spaces preserving
the distance properties. In our case we consider isometries from a linear Lee-metric code
C ⊆ (Z/psZ)n to another C′ ⊆ (Z/psZ)n preserving the Lee-distance properties of C. By the
definition of the Lee weight (see Definition 3.2.1) and the discussion on the scalar multipli-
cation (see Section 5.3.2), the Lee-metric isometries only consist of permuting the positions
and multiplying any position by 1 or −1.

Also, for the generalized join-Lee weights we have the same behaviour.

Proposition 4.5.2. Let C ⊆ (Z/psZ)n be a linear code of rank K, then drL,join(C) = drL,join(C′),
for all r ∈ {1, . . . ,K} and all C′ which are equivalent to C, under the Lee-metric isometries.

Proof. All codewords of C′ can be written as c′ = σ(c) ⋆ v, for some permutation σ ∈ Sn and
v ∈ {1,−1}n, where ⋆ denotes the coordinate-wise multiplication and c ∈ C. Now the claim
follows immediately as

drL,join(C) = min{|(max
c∈C
{wtL(c1)}, . . . ,max

c∈C
{wtL(cn)})| | c ∈ D ≤ C, rk(D) = r}

= min{|σ(max
c∈C
{wtL(c1)}, . . . ,max

c∈C
{wtL(cn)})| | c ∈ D ≤ C, rk(D) = r}

= drL,join(C′).

Similarly, we ask if the r-th generalized column-Lee weights are fixed under isometries.

Proposition 4.5.3. Let C ⊆ (Z/psZ)n be a linear code of rank K, then any equivalent code
C′ ⊆ (Z/psZ)n of C, under the linear Lee-metric isometries is such that

drL,col(C) = drL,col(C′),

for every r ∈ {1, . . . ,K}.

Proof. Recall that any generator matrix G′(i) of a subcode of rank i of a equivalent C′ can
be written as G′(i) = G(i)Pdiag(v), for some permutation matrix P , v ∈ {1,−1}n and some
generator matrix G(i) of a subcode of rank i of C. Both, G′(i) and G(i) have the same column
weight. Now the claim follows immediately as

drL,col(C) = min{wtL,col(G(r)) | ⟨G(r)⟩ ≤ C, rk(⟨G(r)⟩) = r}

= min{wtL,col(G(r)Pdiag(v)) | ⟨G(r)⟩ ≤ C, rk(⟨G(r)⟩) = r}
= drL,col(C′).

Finally, we use a Lee-weight preserving isometry on Z/psZ to observe that the r-th gener-
alized Lee distance for a code C ⊆ (Z/psZ)n coincides with the r-th generalized Lee distance
of a code C′ ⊆ (Z/psZ)n that is equivalent to C.

4.5. Comparison of the Bounds 55

Proposition 4.5.4. Let C ⊆ (Z/psZ)n of rank K and let C′ ⊆ (Z/psZ)n be equivalent to C.
Then, for every r ∈ {1, . . . , s}, we have

drL(C) = drL(C′).

Proof. Let ϕ denote an isometry preserving the Lee distance. Recall the r-th generalized Lee
distance is given by the minimum Lee distance of the r-th filtration subcode Cr−1 of C, i.e.,

drL(C) = dL(Cr−1).

Since C′r−1 := ϕ(Cr−1), we get that the minimum Lee distances of Cr−1 and C′r−1 coincide and
drL(C) = drL(C′).

Hence, all three descriptions of generalized Lee weights and distances, respectively, are
invariant under isometries in the Lee metric.

4.5.2 Density of Optimal Codes

Due to the one-to-one correspondence of the minimum distance of a code and its error-
correction, one interesting quantity is the number of codes of maximum achievable Lee dis-
tance for given parameters. We call a such a code a maximum Lee distance (MLD) code. In
this section we will discuss the density of MLD codes with respect to bounds derived for the
different generalized weights.

Optimal Join-Lee Support Codes

Let us start by discussing the codes that attain the bound on the minimum Lee distance with
respect to the join-Lee support presented in Theorem 4.2.13. Clearly, any code C ∈ (Z/psZ)n
of rank K attaining this bound can be characterized by the following two properties:

1. The socle Cs−1 = C ∩ ⟨ps−1⟩ is an MDS code over Fp.

2. There exists a minimum Lee weight codeword in the socle.

The first property already implies sparsity as n tends to infinity and triviality for p = 2. Even
the second property is problematic: dL(Cs−1) = (n −K + 1)Ms−1, implies that all nonzero
entries of a minimal Hamming weight codeword in the socle must be of maximal Lee weight.
Using the systematic form of the socle,

Gs−1 =
(
ps−1IK ps−1A

)
,

we can immediately see that any row g of Gs−1 is also of minimal Hamming weight n−K+1.
Thus, for g to have all nonzero entries of maximal Lee weight implies ps−1 = Ms−1, which
will restrict optimal codes with respect to this bound to p ∈ {2, 3} and any positive integer
s. Assuming the MDS conjecture over F3 and F2, we must have a block length n ≤ 4,
respectively n ≤ 3.

Example 4.5.5. The code C ⊆ (Z/9Z)4 of rank K = 3 generated by3 0 0 3
0 3 0 6
0 0 3 6

attains the bound in Theorem 4.2.13. In fact, this code has dL(C) = 6 and one can check that
dL(C) = 6 = 3 · (4− 3 + 1) =Ms−1(n−K + 1).

We can drop the second condition, i.e., there exists a minimal Lee weight codeword in the
socle, if we manage to estimate the difference

d1L,join(C)− dL(C).

This task is, however, equally hard as bounding dL(C) itself.

56 Chapter 4. Bounds on the Minimum Lee Distance

Optimal Column-Lee Support Codes

We now discuss the density of codes attaining the bound provided in Corollary 4.3.18. Since
for the join-support looking for a minimal Lee weight codeword is as hard as estimating the
minimum distance of the code, the column-support based on generator matrices should give
a similar result on the density of optimal codes. Recall that the bound is derived by

dL(C) ≤ wtL,col(C)− (wtL,col(C)− dL(C)).

We upper bounded the column weight of the code by

wtL,col(C) ≤
s−1∑
i=0

piki +

s∑
i=0

µiMi.

Hence, in order to have codes attaining the bound on the minimum Lee distance, they must
attain the bound on the column Lee weight too. That is, their generator matrix G must be
in reduced systematic form. Furthermore, the support subtype of the last n−K columns is
(µ0, . . . , µs), where in each of the µi positions the maximum Lee weight Mi is attained. For
instance, a generator matrix may look as follows:

Grsys =

 . . .

µ0 µ1 µs

U

 .

By the generating function (3.10), there are two options to attain a Lee weight Mi. Hence,
the probability that a generator matrix is of this form is given by the number of such matrices
divided by the number of all matrices, i.e.,

s−1∏
i=0

(
2(ps−i)(k−1)

(ps−i)(k−1)(ps−i − ps−i−1)

)µi

=

s−1∏
i=0

(
2

ps−i − ps−i−1

)µi

.

= 2n−K
s−1∏
i=0

(
1

ps−i(1− 1/p)

)µi

= 2n−K
s−1∏
i=0

(
pi+1

ps(p− 1)

)µi

.

Note that ps(p− 1) > pi+1 for every i ∈ {0, . . . , s− 1}. Hence, the fraction in the product is
smaller than 1. Therefore, for p −→∞, the product tends to 0. The same argument holds if
we let s tend to infinity. Similarly, as µi depends on n, we note that 2

ps−i−ps−i−1 < 1. This
implies that if n −→ ∞ the product tends to zero as well. Thus, codes attaining the bound
in Corollary 4.3.18 are sparse with respect to p, s and n.

Given an optimal code with respect to the Lee-metric Singleton-like bound 4.3.18, one
could also ask if the r-th generalized column Lee weights are then fixed. Since the main
problem of the column Lee weight of a code is the computational difficulty, we leave this as
an open question.

Optimal Filtration Codes

We have already seen that codes attaining the bounds based on the Lee-join support and
based on the Lee-column support are sparse as p, s and n tend to infinity. In this subsection
we discuss the density of MLD codes with respect to the new Lee-metric Singleton-like bound
in Corollary 4.4.7 based on the filtration. If nothing else is stated we consider a code C ⊆
(Z/psZ)n of rank K and subtype (k0, . . . , ks−1).

Recall that the bound from Corollary 4.4.7 is especially tight, if there are many zero
positions in a row of a generator matrix of a filtration subcode. Given the rank K of a code
C ⊆ (Z/psZ)n, the probability that an entire row of A is zero, where A are the last n − K
columns of a generator matrix of a filtration Cr−1 with r ∈ {σ + 1, . . . , s}, is depending on

4.5. Comparison of the Bounds 57

σ, i.e., it depends on whether the code C is free or not. For n tending to infinity, it is known
[32] that

P(C is free) =

{
1 if R < 1/2,

0 if R > 1/2.

Hence, in this case we would have to distinguish again the two cases. On the contrary for
p going to infinity, we know from [32], that the code C is free with high probability, which
implies that σ = 0. In this case, we have

1. For every i ∈ {1, . . . ,K}, ℓi = 0. Thus, the bound in Corollary 4.4.7 can be reduced to

dL(C) ≤ 1 + (n−K)M,

which coincides with the Singleton-like bound provided by [119].

2. There is an i ∈ {1, . . . ,K} with ℓi ̸= 0. In this case, we can find the pair (ℓ, n′) as in
Corollary 4.4.7 and the minimum Lee distance is bounded by

dL(C) ≤ ps−ℓ + (n−K − n′)Ms−ℓ.

The following Lemma shows that for p −→∞ the first case occurs with high probability.

Lemma 4.5.6. For a free linear code C ⊆ (Z/psZ)n, as p −→∞, ℓ = 0 almost surely.

Proof. Note that P(ℓ = 0) is the probability that there is no multiple of p contained in the
last n−K columns of a generator matrix G in systematic form of C. More explicitly, it is the
probability that all the entries in the last n−K columns of G are units. That is,

P(ℓ = 0) =

(
(p− 1)ps−1

ps

)K(n−K)

=

(
1− 1

p

)K(n−K)

.

Hence, letting p grow to infinity and keeping n and K fixed, yields the desired result.

This means that, with high probability, MLD codes are sparse as p −→ ∞, as codes
attaining the bound in Theorem 3.4.1 of Shiromoto are sparse.

Note that, letting s grow to infinity and keeping p fixed, we get that the probability
P(ℓ = 0) is a nonzero constant. Thus, codes attaining the bound on the minimum distance
derived from filtration subcodes are not sparse for s −→∞.

We start by discussing the case, where the code C is a free code, hence σ = 0. Free
codes have a generator matrix of the form (IK A), with A ∈ (Z/psZ)K×(n−K). If there

is an 0 < ℓ̃ < s such that n′ = nℓ̃ = n − K, the filtration subcode Cs−ℓ̃ has an entire row
equal to zero. This results in having an (s− ℓ̃)-th generalized Lee distance of ps−ℓ̃ and hence

dL(C) ≤ ps−ℓ̃.

Let us investigate the probability for A having a maximal 0 < ℓi = ℓ̃ < s with corresponding

n′ = n −K. This requires that all other rows of A are contained at most in the ideal ⟨pℓ̃⟩.
The probability that A is of this form is therefore

P :=
(ps−ℓ̃ − ps−ℓ̃−1)(n−K)(ps−1 − ps−ℓ̃−1)(K−1)(ps−ℓ̃ − ps−ℓ̃−1)(n−K−1)(K−1)

(ps)(n−K)K

= (p−ℓ̃ − p−ℓ̃−1)(n−K)(ps−1 − p−ℓ̃−1)(K−1)(p−ℓ̃ − p−ℓ̃−1)(n−K−1)(K−1)

=

(
1

pℓ̃
− 1

pℓ̃+1

)(n−K−1)K+1(
1

p
− 1

pℓ̃+1

)(K−1)

.

This probability tends to zero as n −→ ∞, and thus MLD codes are sparse with respect to
the bound given in Corollary 4.4.7 and n −→ ∞. However, since P does not depend on s
and hence, as s −→∞, it is a nonzero constant. This implies neither sparsity nor density for
s −→ ∞. In any case, we have with probability P(C is free) · P, that the minimum distance

of the code is bounded by dL(C) ≤ ps−ℓ̃.

58 Chapter 4. Bounds on the Minimum Lee Distance

4.6 Summary and Outlook

Following a puncturing argument to derive a Singleton-like bound on the minimum Lee dis-
tance works not as smoothly as in the Hamming metric, meaning that the resulting bound
proposed by Shiromoto [119] is rather loose and can only be achieved by one nontrivial linear
code. On the search of new techniques to bound the minimum Lee distance of a code, we
presented several novel definitions of a support in the Lee metric interpreting the support as
a tuple of weights instead of an index set. This had the advantage to be able to define the
cardinality of the support of a vector to be equal to its total Lee weight and led to desired
properties. Using these new definitions of a support we defined the corresponding generalized
Lee weights of subcodes with a fixed rank. By the increasing property of the generalized Lee
weights, we derived new bounds on the minimum Lee distance of a code which, for some pa-
rameter cases, outperformed the existing bound by Shiromoto as well as the bound provided
by Alderson and Huntemann [5]. More importantly, we showed that there is more than one
nontrivial linear code attaining the bounds in Theorem 4.2.13 and Corollary 4.3.18. However,
their optimal codes are still sparse for n, p or s tending to infinity.

We thus abandoned the idea of defining generalized Lee weights over the support of a
subcode of fixed rank. Instead, we made use of the natural chain of inclusions of integer
residue rings. For a code over Z/psZ we defined the filtrations as intersections of the code with
a corresponding element in the chain of residue rings and observed an increasing property
in terms of the minimum Lee distances of the subcodes. This lead us to the definition of
generalized Lee distances and to a novel approach of bounding the minimum Lee distance
of a code. Since the new bound involves many more parameters of the code, it outperforms
all other bounds by far. Even though this bound is still sparse in the limit of n and p, its
optimal codes are not sparse for s tending to infinity.

As none of the bounds are dense in the limit of all n, p and s, one open question that
remains is to derive bounds in the minimum Lee distance whose optimal codes are dense for
one or even all the parameters. In the case of the join-Lee support and the column-Lee support
we were able to identify a class of codes achieving this bound. However, there are possible
other constructions of codes attaining the presented bounds. Hence, a further open task that
remains is the construction of optimal codes in the Lee metric for the bounds presented.

59

Chapter 5

Channel Coding in the Lee
Metric

The Lee metric has originally been introduced in 1958 by Lee [83] to cope with phase shift
keying modulation. A first notion of a channel “matching” to the Lee metric under maxi-
mum likelihood decoding appeared [42], referring to Massey’s original definition of a channel
matching to a given metric [91]. That is, a memoryless channel whose decoding rule “decode
the received vector to the nearest codeword” always gives the most probable codeword. In
terms of the Lee metric, that means that given two error vectors e and e′, the error e is more
likely to occur with respect to e′ if and only if it has a smaller Lee weight than e′. With this
Chiang and Wolf were the first to define a symmetric, memoryless “Lee Channel” over Z/qZ
as follows. For every Lee weight i ∈ {0, 1, . . . , ⌊q/2⌋}, assuming that x = 0 has been sent, the
probability that the channel output y has Lee weight i is given by

pi = P(y = i | x = 0) = P(y = −i | x = 0).

They proved that this channel model indeed matches to the Lee metric under maximum
likelihood decoding if and only if the probabilities pi are exponentially decreasing in i (see
[42, Theorem 1]).

In this chapter we consider two channel models in the Lee metric: a discrete memoryless
channel matched to the Lee metric and a constant Lee-weight channel. The first channel
is an additive discrete memoryless channel, as introduced in [42], where the additive error
term follows the Boltzmann distribution [30]. We refer to this channel as memoryless Lee
channel. The channel model is motivated by two key observations. Firstly, it matches to the
Lee metric under maximum likelihood decoding following the notation in [42, 91]. Secondly,
the transition probability defining the channel law arises as the marginal distribution of the
second channel model presented which is especially of interest for code-based cryptography.
The second is a channel where a constant-weight error pattern is added to the transmitted
message, where the error pattern is chosen uniformly from the set of vectors with fixed Lee
weight and length equal to the block length. We show that, in the limit of large block length,
and with Lee weights that are proportional to the block length, the marginal distribution
of the additive error term follows the well-known Boltzmann distribution and hence indeed
coincides with the channel law of the memoryless Lee channel. For both channels we provide
finite length bounds on the error probability achievable by a linear code C ⊆ (Z/qZ)n making
use of the entropy of the Boltzmann-like marginal distribution in Section 5.2.

With an eye on the application to code-based cryptography, drawing an error vector
uniformly at random from a set of fixed Lee weight is crucial to hide information on the
structure of the error. In Section 5.3.1 we give two explicit algorithms to draw a vector
a ∈ (Z/qZ)n of fixed Lee weight t ∈ N uniformly among all such vectors. The security of a
code-based cryptosystem relies heavily on the weight of the error vector. In the Lee metric
the weight of a vector can easily be modified by multiplying the vector component-wise by a
nonzero scalar. From a cryptographic point of view, being able to reduce the Lee weight of an
error vector possibly leads to a lack in security of the corresponding cryptographic scheme.
We refer to this problem as the scalar multiplication problem and discuss it in Section 5.3.2.

The results in this chapter were studied in [15, 16] and [17] in collaboration with Hannes
Bartz, Gianluigi Liva and Joachim Rosenthal. Section 5.3.2 contains further results on the

60 Chapter 5. Channel Coding in the Lee Metric

scalar multiplication problem that go beyond the scope of [16].

5.1 Lee Channels

We start by introducing two channel models in the Lee metric. Both channel models are
additive channels over the integer residue ring Z/qZ where q is a positive integer. That is,
we send a message x ∈ (Z/qZ)n and observe at channel output a vector y ∈ (Z/qZ)n possibly
different from x, i.e., for some e ∈ (Z/qZ)n we have y = x+e. The vector e is called the error
vector. There are different ways to introduce errors. Either each symbol xi of x is transmitted
one after the other without any influence of the previous transmissions. In this case, we call
the channel memoryless. Or we transmit the message block-wise, or as a whole vector, where
the error vector is drawn randomly and of a given weight.

We first consider a discrete memoryless channel which we refer to the memoryless Lee
channel. Recall from Definition 2.3.1 that channel is called discrete memoryless, if the input
and output alphabet are discrete, finite sets and the output Y = y at time t only depends on
the input X = x at that time t, i.e.,

P(Y1 = y1, . . . , Yn = yn | X1 = x1, . . . , Xn = xn) =

n∏
i=1

P(Yi = yi | Xi = xi).

We define the channel law in such a way, that it matches to the Lee metric under maximum
likelihood decoding introduced by [91].

Since the Lee metric has interesting applications to code-based cryptography, where errors
are introduced on purpose and of a given Lee weight, in a second step we introduce a non-
memoryless variant of the memoryless Lee channel which we refer to as the constant Lee-
weight channel.

5.1.1 Memoryless Lee Channels

In the following we consider an additive discrete memoryless channel with input and output
alphabet Z/qZ

y = x+ e,

where y is the channel output, x is the channel input and e the additive error term. We
will restrict to the case, where the additive error term e ∈ Z/qZ is a realization of a random
variable E whose distribution is proportional to an exponential function decreasing in the Lee
weight of the error, i.e.,

PE(e) ∝ exp(−β wtL(e)),

where β > 0 is a constant defining the channel. For the channel law that yields

PY | X(y | x) = 1

Z
exp (−β dL(x, y)) , (5.1)

where Z :=
∑q−1

e=0 exp(−β wtL(e)) is the normalization constant. The probability defined in
(5.1) satisfies the definition of a Lee channel given in (5.2). Therefore, from now on we refer
to the Lee channel, the channel defined by (5.1).

Remark 5.1.1. The conditional probability satisfies the properties of a channel “matched
to the Lee metric” under maximum likelihood decoding, introduced in [42, 91]. This is the
channel whose maximum likelihood decoding rule reduces to finding the channel input x that
minimizes the Lee distance from the channel output y;

The expected Lee weight of the additive error term of the channel (5.1) is given by

δ := E(wtL(E)) = −d logZ(β)

dβ

In the following subsection we consider a similar channel model. The main difference is that
the channel introduce an error term of a fixed constant Lee weights.

5.1. Lee Channels 61

Massey was the first one to introduce the notion of channels matching to a given metric.
He defined it in the following way:

Definition 5.1.2. A metric and a discrete, memoryless channel are said to be matched for
maximum likelihood decoding (MLD) if the decoding rule “decode the received vector to the
nearest (or farthest) codeword” always gives a most probable codeword. More precisely, for
two error vectors e and e′ it must hold that

wtL(e) < wtL(e
′) if and only if P(e) > P(e′).

Define the “Lee Channel” over Z/qZ as proposed by [42, Figure 2]:

pi = P(i | 0) = P(−i | 0), for i = 0, . . . , ⌊q/2⌋ . (5.2)

Note, due to symmetry, we have P(i | j) = P(i− j | 0), where i− j is computed modulo q.
Chiang and Wolf in [42] proved, that the channel described above strictly matches to the Lee
metric for maximum likelihood decoding under some assumptions on the probabilities.

Theorem 5.1.3. [42, Theorem 1] The channel described in (5.2) is strictly matched to the
Lee metric for maximum likelihood decoding if and only if the following two properties hold.

p0 > p1 and pi =
pi1
pi−1
0

for all i = 2, . . . , ⌊q/2⌋ .

It follows that the channel distribution defined in (5.1), for β > 0 satisfies the conditions
in Theorem 5.1.3 and hence, the memoryless Lee channel matches to the Lee metric under
maximum likelihood decoding according to the definition introduced in [91].

5.1.2 Constant-Weight Lee Channel

We start by introducing an additive channel model over Z/qZ, that adds to a given codeword
an error vector of a given fixed Lee weight. That is, given two positive integers t, n ∈ Z the
channel output y ∈ (Z/qZ)n is composed by a message x ∈ (Z/qZ)n and an error vector

e ∈ (Z/qZ)n of Lee weight t chosen uniformly at random in S(n)t,q , i.e.,

y = x+ e ∈ (Z/qZ)n.

Hence, the channel transition probability for the constant Lee-weight channel is

PY | X(y | x) =

∣∣∣S(n)t,q

∣∣∣−1

if dL(y, x) = t,

0 otherwise.
(5.3)

The motivation for this model comes from cryptographic applications and more explicitly
from the syndrome decoding problem (see Problem 1.0.1) that underlies most code-based
cryptosystems. There, errors are introduced intentionally and of a given weight. The hardness
of the problem, of course, relies on the weight of the error vector added to the codeword.
Hence, the constant Lee-weight channel mimics such a scenario, where an error vector of given
weight t is added to the codeword. Additionally, the error is drawn uniformly at random from
the sphere of radius t in order not to reveal the structure, or the empirical distribution, of
the error vector.

In this regard, for a vector x ∈ (Z/qZ)n let f(x) = (f0(x), . . . , fq−1(x)) denote the empir-
ical distribution, meaning that

fi(x) :=
1

n
| {j ∈ {1, . . . , n} | xj = i} | .

We call f the type (see Section 2.2.1 for more details on types) of the vector x. For a given
composition φ, the set of vectors in (Z/qZ)n with type φ is defined as

T (n)
φ := {x ∈ (Z/qZ)n | f(x) = φ} .

62 Chapter 5. Channel Coding in the Lee Metric

By [45, Chapter 11.1], we observe that the cardinality of this set is exponentially equivalent
to ∣∣∣T (n)

φ

∣∣∣ .= exp(nHe(φ)),

which means that limn−→∞
1
n log

(
| T (n)

φ |
exp(nHe(φ))

)
= 0.

Marginal Channel Distribution

Recall from Lemma 3.2.3, when drawing an element a uniformly at random from an integer
residue ring Z/qZ, its expected Lee weight is determined by δq and each value of Z/qZ is

equally likely to be drawn. It follows from the construction of a random vector in S(n)t,q that
some underlying error partitions are more likely to occur than others.

We are interested in the marginal distribution of the channel law PY | X(y | x) defined in
(5.3) in the limit of n→∞. The marginal distribution plays an important role, for instance,
in the initialization of iterative decoders of LDPC codes, when used over a constant Lee-
weight channel [114]. While the focus here is in the asymptotic (in the block length n) case,
the derived marginal distribution provides an excellent approximation of the true marginal
down to moderate-length blocks (n in the order of a few hundreds).

In the following, we consider the normalized Lee weight δ := t/n of a vector in S(n)t,q . The

derivation follows by seeking the composition that dominates the set S(n)δn,q. More specifically,

we should look for the empirical distribution φ that maximizes the cardinality of T (n)
φ under

the constraint

q−1∑
i=0

wtL(i)φi = δ. (5.4)

Lemma 5.1.4. Assume that x ∈ (Z/qZ)n has been drawn uniformly at random among all
vectors of Lee weight t. Let X denote the random variable defining the realizations of an entry
of x. As n grows large, for every i ∈ Z/qZ, the probability of X taking the value i is given by

P ⋆
i := P(X = i) =

1

Z(β)
exp (−β wtL(i)), (5.5)

where β is the unique real solution to the weight constraint given in (5.4) and Z(β) denotes
the normalization constant.

Proof. Following [45, Chapter 12], we are looking for a distribution P = (P0, . . . , Pq−1) that
maximizes the entropy function

He(P) := −
q−1∑
i=0
Pi ̸=0

Pi logPi

under the constraint that the Lee weight of the vector is t, or equivalently, that the normalized
Lee weight of the error vector is δ := t/n, i.e.

q−1∑
e=0

wtL(e)Pi = δ.

Let us introduce a Lagrange multiplier β > 0, which is the solution to

δ =
(k − 1)e(k+1)β − kekβ + eβ

(eβk − 1)(eβ − 1)
,

with k = ⌊q/2⌋+ 1. Then the optimization problem has the following solution

P ⋆
i = κ exp (−β wtL(e)) , (5.6)

5.1. Lee Channels 63

−20 −15 −10 −5 0 5 10 15 20
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

0.18

0.2

Elements of Z/47Z

P
ro
b
a
b
il
it
y

δ = 3

δ = 8

δ =
(ps)2−1

4ps
≈ 11.7447

δ = 16

Figure 5.1: Marginal distribution for the elements in Z/47Z for different
values of δ = limn→∞ t(n)/n.

where κ is a normalization constant enforcing
∑

i P
⋆
i = 1.

Note that if δ = δq, thenX is distributed uniformly over Z/qZ and hence β = 0. Moreover,
β > 0 if and only if δ < δq. Furthermore, if β > 0 the relative weight becomes smaller.
Since the marginal distribution (5.5) is an exponential function with negative exponent, it is
decreasing in the weight. This means that for β > 0 the elements of the smallest Lee weight,
i.e., 0, are the most probable, then elements of weight 1 until the least probable Lee weight
⌊q/2⌋. In the other case, where β < 0, the elements of the largest Lee weight, i.e., ⌊q/2⌋, are
the most probable, followed by the elements of weight ⌊q/2⌋ − 1, and so on, until the least
probable of Lee weight 0. Figure 5.1 shows this behaviour over Z/47Z.

The distribution in (5.5) is closely related to the Boltzmann distribution [45, 30]. The
Boltzmann distribution gives the probability that a system will be in a certain state depending
on that states’ energy and temperature. In statistical mechanics the distribution is used for
systems of fixed compositions all being in a thermal equilibrium. Additionally, the distribution
maximizes the entropy subject to a mean energy state. In our case the Lee weight may be
interpreted as the energy value of a state e ∈ Z/qZ. Hence, we will refer to the distribution in
(5.5) as Boltzmann distribution, and we will denote it by Bδ. Note also that for the channel
law determined by Lemma 5.1.4, the optimal decoder will seek for the codeword at minimum
Lee distance from the channel output y.

As a direct consequence of Lemma 5.1.4, we can give the probability of a random entry
E having some given Lee weight

P(wtL(X) = j) =

{
P(X = j) if (j = 0) or (j = ⌊q/2⌋ and q is even),

2P(X = j) else.
(5.7)

Note that the constant Lee weight t grows linearly with n. Hence, in the following instead
of saying that x ∈ (Z/qZ)n has Lee weight t we will always relate to the average Lee weight

δ = t/n of the entries of x. Analogously, instead of S(n)t,q , let us consider the set E of probability
distributions of vectors with an average Lee weight δ over Z/qZ, i.e.

Eδ,q :=

{
P = (P0, . . . , Pq−1)

∣∣∣ q−1∑
i=0

Pi = 1 and

q−1∑
i=0

Pi wtL(i) = δ

}
.

64 Chapter 5. Channel Coding in the Lee Metric

Lemma 5.1.5. The set E is convex.

Proof. By definition, Eδ,q is convex, if for every P1, P2 ∈ Eδ,q and every λ ∈ (0, 1) we have
that λP1+(1−λ)P2 ∈ Eδ,q. Take two arbitrary distributions P and Q of Eδ,q and an arbitrary
λ ∈ (0, 1). Let V := λP + (1− λ)Q. First, V is a probability distribution, since

q−1∑
i=0

Vi =

q−1∑
i=0

Pi + λ(Pi −Qi) =

q−1∑
i=0

Pi + λ

(
q−1∑
i=0

Pi −
q−1∑
i=0

Qi

)
= 1.

Similarly, we have

q−1∑
i=0

Vi wtL(i) =

q−1∑
i=0

Pi wtL(i) + λ

(
q−1∑
i=0

Pi wtL(i)−
q−1∑
i=0

Qi wtL(i)

)
= δ.

Hence, a straightforward application of the conditional limit theorem, Theorem 2.2.9,
yields the following corollary.

Corollary 5.1.6. Let x be a random vector over Z/qZ of average Lee weight δ and with
entries being i.i.d. distributed according to Qx and let P ⋆ denote the distribution given in
Lemma 5.1.4. Then, for every ε > 0 it holds

P (D(Qx ||P ⋆) ≥ ε) −→ 0 as n −→∞.

Proof. Let x = (x1, . . . , xn) ∈ (Z/qZ)n be a random vector whose entries are independent
and uniformly distributed in Z/qZ. The distribution of x is uniform on (Z/qZ)n (denoted by

U(Z/qZ)), and hence on S(n)t,q . We have that

P ⋆ = arg min
P∈Eδ,q

D(P ||U(Z/qZ)).

Then, by Theorem 2.2.9, we obtain the desired result.

5.2 Finite-Length Bounds for Lee Channels

In this section we are going to derive bounds on the error probability achievable by a code
C ⊆ (Z/qZ)n over both the constant Lee-weight channel and the memoryless Lee channel
defined in Section 5.1.1. Several of the bounds on the minimum distance achievable by linear
codes over Z/qZ can be found in [10, 34, 86]. In the first case we will see an attainability
bound in terms of a random coding union bound. For the memoryless Lee channel we will
derive an upper bound again in terms of a random coding union bound as well as a converse
bound, meaning a lower bound, achievable by any [n, k] code in terms of a sphere-packing
bound.

For both channel models we distinguish between maximum likelihood decoding and min-
imum distance decoding, that is, given a received word y ∈ Z/qZ, we consider the maximum
likelihood decoding rule

x̂ML = argmax
x∈C

PY | X(y | x)

and the minimum distance decoding rule

x̂MD = argmin
x∈C

dL(y, x).

Note that the two decoding rules coincide over the memoryless Lee channel for δ ≤ δq. In the
constant Lee-weight channel, the maximum likelihood decoder gives a list of all codewords
which are at distance δn from the received word y, and it outputs one of the codewords in this
list randomly. Hence, the two decoding rules coincide for the constant Lee-weight channel
whenever δn is within the decoding radius of the code C.

5.2. Finite-Length Bounds for Lee Channels 65

5.2.1 Bounds on the Lee Spheres and Lee Balls

Before proceeding with the derivation of the error probability bounds, we first derive upper
bounds on the size of a Lee-sphere and a Lee-ball, respectively. Recall, that spheres and balls
in the Lee metric were introduced in Section 3.3 in terms of generating functions, and we will
adapt the notation provided there. The knowledge of the size of an n-dimensional sphere of
Lee-radius t, in coding theory, can be seen as the number of codewords of length n of Lee
weight t and is crucial for bounds providing information on the possible code rates given the
code’s minimum distance. One of the most known results in the Hamming metric is that the
size of the n-dimensional sphere of radius t over a q-ary alphabet is bounded by qnHq(t/n),
where Hq is the q-ary entropy function. In the Lee metric, similar arguments can be used to
derive bounds using the entropy.

In fact, let F (n)
δ denote the set of empirical distributions of the sequences in Z/qZn with

normalized Lee weight δ, then the size of the n-dimensional Lee-sphere of normalized radius
δ is given by ∑

f∈F(n)
δ

(
n

nf0, . . . , nfq−1

)
.

Individuating the distribution f⋆ ∈ F (n)
δ that maximizes the multinomial coefficient, the

following two bounds on the sphere size follow immediately:

sup
f∈F(n)

δ

(
n

nf0, . . . , nfq−1

)
≤
∣∣∣S(n)δn,q

∣∣∣ < nq sup
f∈F(n)

δ

(
n

nf0, . . . , nfq−1

)

The relation to a bound involving the entropy becomes clear, when recalling that [46, Lemma
2.1] (

n

nf0, . . . , nfq−1

)
.
= 2nH(f).

In [86], Löliger gave an asymptotically tight upper bound on the size of an n-dimensional
ball of radius t given any additive-Lee weight (such as the Lee weight, the Hamming weight
or even the sum-rank weight) based on the distribution given in (5.6). In the Lee metric, this
bound is tight for a normalized weight δ ∈ [0, δq]. Note that for δ > δq the size of the ball
is saturated. Additionally, since the size of an n-dimensional sphere of radius t is naturally
upper bounded by the size of the n-dimensional ball of the same radius, Löliger’s bound also
holds for the size of the sphere. Hence, in the following some results are known by [86].
However, we prove alternative proofs involving the entropy function of the Boltzmann-like
distribution Bδ. The relation of the entropy function and the volume and surface of a sphere
has been pointed out by Shannon in his seminal work [117].

We denote by Hδ := H(Bδ) the entropy of the Boltzmann distribution with parameter δ,
and we introduce the notation

H+
δ :=

{
Hδ 0 ≤ δ ≤ δq
log2(q) δq < δ < r.

Lemma 5.2.1 (Growth rate of the surface spectrum). For any positive integer δn the surface
spectrum is upper bounded by

σ
(n)
δn ≤ Hδ.

In particular, as n grows large it holds that σδ = Hδ.

Proof. Let X = (X1, . . . , Xn) be a finite sequence of random variables Xi chosen uniformly

at random in the Lee-sphere S(n)δn,q. Since X is uniformly distributed in the sphere, its entropy

66 Chapter 5. Channel Coding in the Lee Metric

0 100 200 300 400 500 600 700 800 900 1,000
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

n

S
u
rf
a
ce

sp
ec
tr
u
m
σ
(n

)
n
δ

Surface spectrum σ
(n)
δn

σδ = Hδ

Figure 5.2: Convergence of σ
(n)
δn to σδ = Hδ as a function of n over Z/7Z
with δ = 0.2.

is given by H(X) = log2

(∣∣∣S(n)δn,q

∣∣∣). Hence, the normalized logarithmic surface area is

σ
(n)
δn =

1

n
H(X).

The chain rule for the entropy (see Theorem 2.1.4) and the fact that the Xi´s are identically
distributed, yield

H(X) ≤
n∑

i=1

H(Xi) = nH(X1).

Since the Boltzmann distribution Bδ is the distribution of X1 maximizing the entropy under
the constraint that E(wtL(X1)) = δ, the desired upper bound follows. To get the asymptotic
result it suffices to take limits on both sides of the inequality.

Figure 5.2 shows that the asymptotic limit is tightly approached already for n in the order
of a few hundreds.

Lemma 5.2.2 (Growth Rate of the Volume Spectrum). For any positive integer δn the
volume spectrum is upper bounded by

ν
(n)
δn ≤ H

+
δ .

In particular, as n grows large we have that νδ = H+
δ .

Proof. The proof follows similarly to the proof of the growth rate of the surface spectrum.

Consider a random vector X = (X1, . . . , Xn) chosen uniformly at random over B(n)δn,q. Hence,
wtL(x) ≤ δn, where x denotes the realization of X. It holds that

log2

(∣∣∣B(n)δn,q

∣∣∣) = H(X),

which implies, using again Theorem 2.1.4, that

ν
(n)
δn =

1

n
H(X) ≤ H(X1).

5.2. Finite-Length Bounds for Lee Channels 67

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

Normalized Lee weight δ

S
u
rf
a
ce

sp
ec
tr
u
m
σ
(n

)
δ
n

Surface spectrum σ
(n)
δn

Upper bound, Lemma 5.2.1

Volume spectrum ν
(n)
δn

Figure 5.3: Comparison of exact surface spectrum σ
(n)
δn and the volume

spectrum ν
(n)
δn with the upper bound derived in Lemma 5.2.1 for n = 100

over Z/7Z.

Note that H(X1) ≤ log2(q) for any parameter of δ ∈ [0, r]. Hence, again since Bδ maximizes
the entropy under the constraint E(wtL(X1)) ≤ δ, we observe that H(X1) ≤ H+

δ which yields
the first statement of the lemma. To prove the latter statement it suffices to take the limit
as n tends to infinity.

Figure 5.3 shows the surface spectrum σ
(n)
δn for n = 100 and Z/7Z. Observe that the sphere

surface gets larger as the radius grows, till it reaches a maximum, and then it decreases. The
upper bound from Lemma 5.2.1 is also provided. Note that the upper bound is tight, and it
reaches a maximum at Hδ = log2(q) when δ = δ⋆. It is easy to check that in this case β = 0.
On the same figure, we report the volume spectrum

ν
(n)
δn =

1

n
log2

(
δ∑

i=0

2nσ
(n)
in

)
.

Note that the expression above can be efficiently computed via recursive application of the
Jacobian logarithm.

5.2.2 Error Probability Bounds for the Constant Lee-Weight Chan-
nel

We consider a linear code C ⊆ (Z/qZ)n of cardinality | C | = qk =: M , and we focus on the
constant Lee-weight channel where the additive error term is of fixed Lee weight δn.

Theorem 5.2.3 (Random Coding Union Bound, ML Decoding). Let C ⊂ (Z/qZ)n be a
random code of rate R2. The average maximum likelihood decoding error probability of C used
to transmit over a constant Lee-weight channel satisfies

E (PB(C)) < 2
−n

[
log2(q)−σ

(n)
δn −R2

]+
.

Proof. Consider first the pairwise error probability PEP(x, y) for fixed x and y, where x is

the transmitted codeword, y is the channel output and X̃ is a random codeword distributed
uniformly over (Z/qZ)n. By breaking ties always towards X̃, we can upper bound the pairwise

68 Chapter 5. Channel Coding in the Lee Metric

error probability as

PEP(x, y) ≤ P
(
PY | X(y | x) = PY | X(y | X̃)

)
= P

(
dL(y, X̃) = δn

)
=

∣∣∣S(n)δn,q

∣∣∣
qn

.

The union bound on the block error probability is obtained by multiplying the result by
M − 1. By observing that the pairwise error probability does not depend on x, y, we get

E (PB(C)) ≤ min (1, (M − 1)PEP(x, y))

< min

1, M

∣∣∣S(n)δn,q

∣∣∣
qn

= 2

−n
[
log2(q)−σ

(n)
δn −R2

]+
.

Owing to Lemma 5.2.1, the bound can be loosened yielding the simple form described in
the following corollary.

Corollary 5.2.4. The average maximum likelihood decoding error probability of a random
code C ⊂ (Z/qZ)n of rate R2 used to transmit over a constant Lee-weight channel satisfies

E(PB(C)) < 2−n[log2(q)−Hδ−R2]
+

= 2−n[KLBqU(Z/qZ)−R2]
+

.

In terms of minimum distance decoding, the two results can be proven in a similar fashion,

considering all codewords of distance up to δn, i.e., instead of working over the sphere S(n)δn,q

we only extend to the ball B(n)δn,q. Then the minimum distance counterparts of Theorem 5.2.3
and its consequence, Corollary 5.2.4, are given in the following two results.

Theorem 5.2.5 (Random Coding Union Bound, MD decoding). Let C ⊂ (Z/qZ)n be a
random code of rate R2. The average minimum distance decoding error probability of C used
to transmit over a constant Lee-weight channel satisfies

E(PB(C)) < 2
−n

[
log2(q)−ν

(n)
δn −R2

]+
.

Proof. Consider first the pairwise error probability under the assumption that x is the trans-
mitted codeword, y is the channel output and X̃ is a random codeword distributed uniformly
over (Z/qZ)n. By breaking ties always towards X̃, we have

PEP(x, y) ≤ P
(
dL(y, x) ≥ dL(y, X̃)

)
= P(dL(y, X̃) ≤ δn)

=

∣∣∣B(n)δn,q

∣∣∣
qn

.

5.2. Finite-Length Bounds for Lee Channels 69

The union bound on the block error probability can be obtained by multiplying the result by
M − 1. By observing that the pairwise error probability does not depend on x, y, we get

E(PB(C)) ≤ min (1, (M − 1)PEP)

< min

1,M

∣∣∣B(n)δn,q

∣∣∣
qn

= 2

−n
[
log2(q)−ν

(n)
δn −R2

]+
.

Owing to Lemma 5.2.2, the bound can be loosened yielding the simple form described in
Corollary 5.2.6.

Corollary 5.2.6. The average minimum distance decoding error probability of a random code
C ⊂ (Z/qZ)n of rate R2 used to transmit over a constant Lee-weight channel satisfies

E(PB(C)) < 2−n[log2(q)−H+
δ −R2]

+

.

Figure 5.4 depicts the upper bounds given in Theorem 5.2.5 and Corollary 5.2.6 for mini-
mum distance decoding, for [500, 250] codes over Z/7Z. The bound of Corollary 5.2.6 is only
slightly looser than the one provided by Theorem 5.2.5. A similar result holds for the bounds
of Theorem 5.2.3 and Corollary 5.2.4, under maximum likelihood decoding.

0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Normalized Lee weight δ

B
lo
ck

er
ro
r
p
ro
b
a
b
il
it
y

RCU bound, Theorem 5.2.5

RCU bound, Corollary 5.2.6

Figure 5.4: Random coding union bounds under minimum distance decod-
ing based on Theorem 5.2.5 and Corollary 5.2.6 for the parameters n = 500

and k = 250 over Z/7Z.

5.2.3 Error Probability Bounds for the Memoryless Lee Channel

We consider next a memoryless Lee channel with expected normalized Lee weight of the
error pattern δ. We restrict the attention to the case δ ≤ δq. In this regime, the maximum
likelihood and the minimum distance decoding rules coincide.

Theorem 5.2.7 (Random Coding Union Bound). Let C ⊂ (Z/qZ)n be a random code of rate
R2. The average maximum likelihood/minimum distance decoding error probability of C used
to transmit over a memoryless Lee channel with expected normalized Lee weight of the error

70 Chapter 5. Channel Coding in the Lee Metric

pattern δ satisfies

E (PB(C)) < E
(
2
−n

[
log2(q)−ν

(n)
L −R2

]+)
,

where the expectation is taken over the distribution of the Lee weight L = wtL(E).

A direct consequence using Lemma 5.2.2 is captured in Corollary 5.2.8. Its proof follows
similar to the constant Lee-weight case.

Corollary 5.2.8. The average maximum likelihood/minimum distance decoding error prob-
ability of a random code C ⊂ (Z/qZ)n of rate R2 used to transmit over a memoryless Lee
channel satisfies

E(PB(C)) < E
(
2
−n

[
log2(q)−H+

L/n
−R2

]+)
,

where the expectation is taken over the distribution of the Lee weight L = wtL(E).

Following the idea of [59, Section 5.8], we provide now a lower bound on the block error
probability achievable by any [n, k] code over the memoryless Lee channel.

Theorem 5.2.9 (Sphere Packing Bound). The block error probability of any code C ⊆
(Z/qZ)n of rate R2 over a memoryless Lee channel is lower bounded as

PB(C) >
1

Z(β)n

rn∑
d=d0+1

∣∣∣S(n)d,q

∣∣∣ exp (−βd) + 1

Z(β)n

(∣∣∣S(n)d0,q

∣∣∣− ξ) exp (−βd0) ,
where d0 and ξ are chosen so that

d0−1∑
d=0

∣∣∣S(n)d,q

∣∣∣+ ξ = 2n(log2(q)−R2) and 0 < ξ ≤
∣∣∣S(n)d0,q

∣∣∣ .
Proof. The proof follows closely the analogous proof for the binary symmetric channel pro-
vided in [59, Section 5.8].

Figure 5.5 depicts the random coding union bound of Corollary 5.2.8 and the sphere-
packing bound of Theorem 5.2.9, over a memoryless Lee channel, for [1024, 512] codes over
Z/7Z. The two bounds are close to each other. Hence, they provide an accurate benchmark
to assess the performance achievable over the memoryless Lee channel.

Notice that the Boltzmann-like distribution given in (5.6) and its entropy can be used in
the asymptotic version of the sphere-packing bound and the Gilbert-Varshamov bound which
we state in Theorem 5.2.10 and Theorem 5.2.11, respectively. In [10] some of these bounds
have already been stated using the entropy but without using the Boltzmann-like distribution.

Theorem 5.2.10 (Sphere-Packing Bound, asymptotic). Consider a code C ⊆ (Z/qZ)n of
minimum Lee distance dL(C) = dmin. In the limit of n, denote by δmin = dmin/n. We have

R ≤ 1−H+
δ logq(2),

with δ = δmin/2.

Theorem 5.2.11 (Gilbert-Varshamov Bound, asymptotic). Consider a code C ⊆ (Z/qZ)n of
minimum Lee distance dL(C) = dmin. In the limit of large n, denote by δmin = dmin/n. We
have that the largest rate achievable satisfies

R ≥ 1−H+
δ logq(2), (5.8)

with δ = δmin.

Note that the expected Lee weight distribution for a Lee weight d ∈ N of a code C ⊆
(Z/qZ)n is

Ād = | C |

∣∣∣S(n)d,q

∣∣∣
qn

.

5.3. Fixed Lee Weight Vectors 71

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
10−6

10−5

10−4

10−3

10−2

10−1

100

Normalized Lee weight δ

B
lo
ck

er
ro
r
p
ro
b
a
b
il
it
y

RCU Bound, Corollary 5.2.8

Sphere Packing Bound, Theorem 5.2.9

Figure 5.5: Random coding union (Corollary 5.2.8) and sphere-packing
bounds (Theorem 5.2.9) for the parameters n = 1024 and k = 512 over

Z/7Z.

The result of Theorem 5.2.11 can be recovered by showing that a random (n,M) code C
possesses a minimum distance that is at least nδmin w.h.p. as n grows large, where δmin is
the solution in δ of (5.8). In fact,

P (dL(C) ≤ δn) ≤
δn∑
i=0

Āi = | C |

∣∣∣B(n)δn,q

∣∣∣
qn

≤ 2−n[log2(q)−H+
δ −R2],

where the inequality follows from Markov’s inequality. Note that the exponent of the right-
hand side is negative whenever

R2 < log2(q)−H+
δ .

This means, for large n, we have that P (dL(C) ≤ δn) tends to zero, recovering the result
of Theorem 5.2.11. Figure 5.6 shows the asymptotic sphere-packing bound and Gilbert-
Varshamov bound in the Lee metric over the ring Z/7Z.

5.3 Fixed Lee Weight Vectors

In this section, we turn our focus to the application to code-based cryptography. As mentioned
in Section 5.1.2, the motivation for the constant Lee-weight channel comes inter alia from
code-based cryptography where an error vector of given weight is intentionally added to a
codeword sent to obtain a received message. The task (either as a receiver or an attacker),
when receiving this erroneous codeword, is to reconstruct either the original message or the
error vector. This problem is known as the syndrome decoding problem (see Problem 1.0.1).
From an adversarial point of view, the goal is to reduce the weight of the introduced error
vector in order to reduce the complexity of solving the generic (syndrome) decoding problem.
Thus, sampling the error vector uniformly at random among all vectors of the same Lee
weight is crucial not to leak information. In Section 5.3.1, we present two algorithms that
draw a vector of length n and fixed Lee weight t over the ring of integers Z/qZ uniformly at
random from the set of vectors with the same parameters. The first algorithm is based only
on integer partitions whereas the second algorithm involves also the generating function of

the sphere S(n)t,q . Introducing errors uniformly at random is important from a cryptographic
point of view in order to hide the structure of the error pattern.

72 Chapter 5. Channel Coding in the Lee Metric

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

Sphere-packing

upper bound

Gilbert-Varshamov

lower bound

δmin

R

Figure 5.6: Asymptotic Lee sphere-packing and Gilbert-Varshamov
bounds over Z/7Z.

While the Hamming weight of a vector with entries from a finite field is invariant under
multiplication with a nonzero scalar, the Lee weight of a vector can be increased or decreased
by the product with a scalar. Understanding under which conditions (and with what prob-
ability) the Lee weight on the error vector e is reduced represents a key preliminary step in
the design of Lee-metric code-based cryptosystems. We will refer to this problem as scalar
multiplication problem. The marginal distribution derived in Section 5.1.2 enables to analyze
how the Lee weight of a given error vector changes when multiplied by a random nonzero
scalar, in the asymptotic regime. We show in Section 5.3.2 that, under certain conditions,
the Lee weight of such an error vector will not decrease after scalar multiplication with high
probability.

5.3.1 Construction of Random Error Vectors

Consider the following task: Given two positive integers t and n, construct a vector x ∈
(Z/qZ)n of Lee weight t such that it follows a uniform distribution over the n-dimensional

Lee-sphere S(n)t,q of radius t.

Algorithm Based on Weight Partition

In the following we present an algorithm that draws a vector uniformly at random from S(n)t,q

for given parameters n, t and q. The idea is inspired by the algorithm presented in [114].
We start from partitioning the desired Lee weight t into integer parts of size at most ⌊q/2⌋,
since the maximum possible Lee weight is ⌊q/2⌋. Hence, let us formally introduce integer
partitions.

Definition 5.3.1. Let t and s be positive integers. An integer partition of t into s parts is
an s-tuple λ := (λ1, . . . , λs) of positive integers satisfying the following two properties:

i. λ1 + . . .+ λs = t,

ii. λ1 ≥ λ2 ≥ . . . ≥ λs > 0.

The elements λi are called parts.

Note that the order of the parts does not matter. This means that, for instance, the tuples
(1, 1, 2), (1, 2, 1) and (2, 1, 1) are all identical and represented only by (2, 1, 1). We will denote

5.3. Fixed Lee Weight Vectors 73

by Πλ the set of all permutations of an integer partition λ. Let ni denote the number of
occurrences of a positive integer i in an integer partition λ of t, where i ∈ {1, . . . , t} then

|Πλ | =
(

t

n1, . . . , nt

)
=

t!

n1! . . . nt!
.

In the following, we use P(t) to denote the set of integer partitions of t. We write Pk(t) instead,
if we restrict P(t) to those partitions with part sizes not exceeding some fixed nonnegative
integer value k. If we further restrict Pk(t) to partitions of a fixed length ℓ, we use the notation
Pk,ℓ(t). We denote by ℓλ the length of a given partition λ. Note that for any λ ∈ Pk(t) its
length ℓλ is bounded by

⌈
t
k

⌉
≤ ℓλ ≤ t.

The main difference to the algorithm presented in [114, Lemmas 2 and 3], and crucial

to design the vector uniformly at random from S(n)t,q , is that the integer partition of t is not
chosen uniformly at random from the set of all integer partitions P⌊q/2⌋(t) of t. In fact,

picking a partition uniformly at random from P⌊q/2⌋(t) yields that some vectors in S(n)t,q are
more probable than others. Therefore, we need to understand the number of vectors with
weight decomposition λ, for a fixed partition λ ∈ P⌊q/2⌋(t).

We now introduce a definition describing vectors whose Lee weight decomposition is based
on a given integer partition.

Definition 5.3.2. For a positive integer n and a given partition λ ∈ P⌊q/2⌋(t) of a positive
integer t, we say that a length-n vector x has weight decomposition λ over Z/qZ if there is a
one-to-one correspondence between the Lee weight of the nonzero entries of x and the parts
of λ.

Example 5.3.3. Let n = 5 and let λ = (2, 1, 1) be an integer partition of t = 4 over Z/7Z.
All vectors of length n over Z/7Z consisting of one element of Lee weight 2 and two elements
of Lee weight 1 have weight decomposition λ.

We denote the set of all vectors of length n of the same weight decomposition λ ∈ P(t) by
V(n)
t,λ . The following result gives an answer to the number of vectors with weight decomposition
λ ∈ P⌊q/2⌋(t).

Lemma 5.3.4. Let n, q and t be positive integers with t ≤ n and consider the set of partitions
P⌊q/2⌋(t) of t with part sizes not exceeding ⌊q/2⌋. For any λ ∈ P⌊q/2⌋(t) the number of vectors
of length n over Z/qZ with weight decomposition λ is given by

∣∣∣V(n)
t,λ

∣∣∣ = {2ℓλ |Πλ |
(
n
ℓλ

)
if q is odd

2ℓλ−cr,λ |Πλ |
(
n
ℓλ

)
else

,

where c⌊q/2⌋,λ = | {i ∈ {1, . . . , ℓλ} |λi = ⌊q/2⌋} |.

Proof. Recall from Definition 5.3.2 that V(n)
t,λ consists of all length n vectors x whose nonzero

entries are in one-to-one correspondence with the parts of λ. Let xi1 , . . . , xiℓλ denote the
nonzero positions of x and let us first consider the case where

wtL(xi1) = λ1, . . . , wtL(xiℓλ) = λℓλ . (5.9)

Finding the number of such vectors relies on the “selection with repetition” problem [79,
Section 1.2], which implies that this number is exactly

(
number of zeros + free spaces − 1

free spaces − 1

)
, i.e.,(

(n− ℓλ) + (ℓλ + 1) − 1

(ℓλ + 1) − 1

)
=

(
n

ℓλ

)
,

where with “free spaces” we mean all the possible gaps in front, between and at the end of
the parts of λ. If q is odd, the number ni of elements in Z/qZ having a nonzero Lee weight i
is always 2 for every possible Lee weight i ∈ {1, . . . , ⌊q/2⌋}. Hence, there are 2ℓλ

(
n
ℓλ

)
vectors

satisfying (5.9). On the other hand, if q is even, then ni = 2 for i ∈ {1, . . . , ⌊q/2⌋ − 1} and

74 Chapter 5. Channel Coding in the Lee Metric

n⌊q/2⌋ = 1. Let us define the number of parts of λ equal to ⌊q/2⌋ by

c⌊q/2⌋,λ = | {i ∈ {1, . . . , ℓλ} |λi = ⌊q/2⌋} | .

Then the number of parts of λ that can be flipped is 2ℓλ−c⌊q/2⌋,λ . Hence, the number of
vectors satisfying (5.9) is 2ℓλ−c⌊q/2⌋,λ

(
n
ℓλ

)
.

Finally, since the ordering of the nonzero elements of x is not necessarily the same as the
order of the parts of λ, we multiply

(
n
ℓλ

)
by the number of permutations |Πλ | of λ and obtain

the desired result.

Finally, the actual vector construction over Z/qZ, described in Algorithm 1, mainly con-
sists of picking a partition λ ∈ P⌊q/2⌋(t) of the Lee weight t with part sizes not exceeding

⌊q/2⌋. The probability of x ∈ S(n)t,q with weight decomposition λ ∈ P⌊q/2⌋(t) is given by

pλ :=

∣∣∣V(n)
t,λ

∣∣∣∑
λ̃∈Pr(t)

∣∣∣V(n)

t,λ̃

∣∣∣ .
The idea is to choose the integer partition according to the probability mass function X (n)

t,q

defined by the probabilities pλ, for λ ∈ P⌊q/2⌋(t). We will denote this procedure by

λ
X (n)

t,q←− P⌊q/2⌋(t).

We then randomly flip the elements of the partition modulo q and assign these values to
randomly chosen positions of the error vector. Choosing an element a uniformly at random

from a given set A will be denoted by a
$←− A. Additionally, let Π(x) be a random per-

mutation of a vector x ∈ An. We want to emphasize at this point that for fixed parameters

n, t and q the computation of X (n)
t,q needs to be done only once at the beginning, since the

distribution is only dependent on these parameters and does not change anymore.

Algorithm 1 Drawing a vector uniformly at random from S(n)t,q

Require: n, q, t ∈ N>0, distribution X (n)
t,q

Ensure: e
$← S(n)t,q

1: λ
X (n)

t,q←− P⌊q/2⌋(t)

2: F = {f1, . . . , fℓλ}
$← {±1}ℓλ

3: supp(e)
$← {S ⊂ {1, . . . , n} : |S | = ℓλ}

4: for i = 1, . . . , n do
5: if i ∈ supp(e) then
6: ei ← fi · λi
7: else
8: ei = 0
9: end if

10: end for
11: return Π(e)

Theorem 5.3.5. Let n, q and t be positive integers. Algorithm 1 draws a vector uniformly

at random among S(n)t,q .

Proof. First note that we can describe the n-dimensional Lee-sphere of radius t over Z/qZ as

the disjoint union over all sets V(n)
t,λ where λ ∈ P⌊q/2⌋(t), i.e.,

S(n)t,q =
⊔

λ∈P⌊q/2⌋(t)

V(n)
t,λ .

5.3. Fixed Lee Weight Vectors 75

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2
·10−2

Vectors in S(5)3,7

O
cc
u
rr
en
cy

o
f
ea
ch

ve
ct
o
r

Figure 5.7: Distribution of 106 randomly constructed Lee error vectors
using Algorithm 1 for vectors x ∈ S(5)

3,7 .

Hence, we want to pick λ ∈ P⌊q/2⌋(t) such that all the vectors in S(n)t,q are equally probable to

be drawn. The choice of λ is decisive for the set V(n)
t,λ . Since

∣∣∣V(n)
t,λ

∣∣∣ changes with λ, we pick

λ according to distribution pλ from X (n)
t,q using Lemma 5.3.4 and the result follows.

Figure 5.7 supports the result in Theorem 5.3.5. It shows the distribution for each vector

x ∈ S(5)3,7 when sampling 106 among them using Algorithm 1. Notice, that
∣∣∣S(5)3,7

∣∣∣ = 170 and

the average uniform distribution should be close to 1
170 ≈ 0.00588.

Algorithm Based on Enumerative Coding

Alternatively, we may draw vectors of length n and a fixed Lee weight t over Z/qZ uniformly
at random using ideas from enumerative coding [44]. This idea is also used to draw errors in

the sum-rank and sum-subspace metric [105, 20]. Recall that
∣∣∣S(n)i,q

∣∣∣ denotes the number of

vectors of length n that have Lee weight exactly i. The main idea of this approach is to draw

an integer within the interval
[
0,
∣∣∣S(n)i,q

∣∣∣− 1
]
uniformly at random and consider this as the

index, from which the vector of fixed Lee weight can be constructed uniquely.

Denote the number of elements in Z/qZ that have Lee weight i as Ni. Note, that each Ni

corresponds to a coefficient in the generating function of the one-dimensional Lee-sphere of
radius i over Z/qZ presented in (3.10). Recall that the set of integer partitions of i into part
sizes not exceeding ⌊q/2⌋ was denoted by P⌊q/2⌋(i). As integer partitions are not ordered,
and they do not consider zeros, let us define the set of Lee weight decompositions of the Lee
weight i for vectors of length n as

W(n)
⌊q/2⌋,i :=

ω ∈ (Z/⌊q/2⌋Z)n
∣∣∣ n∑

j=1

ωj = i

 .

Thus, we can rewrite ∣∣∣S(n)i,q

∣∣∣ = ∑
ω∈W(n)

⌊q/2⌋,i

∏
i

Nλi
.

76 Chapter 5. Channel Coding in the Lee Metric

This allows us to compute
∣∣∣S(n)i,q

∣∣∣ recursively as

∣∣∣S(n)i,q

∣∣∣ =

0 if i > ⌊ q2⌋n,
Ni if n = 1 and i ≤ ⌊ q2⌋,

min{i,⌊q/2⌋}∑
i′=max{0,i−(n−1)⌊q/2⌋}

Ni′

∣∣∣S(n−1)
i−i′,q

∣∣∣ if n > 1 and i ≤ ⌊ q2⌋n,

where the lower limit in the sum comes from the restriction that

i− i′ ≤ (n− 1)
⌊q
2

⌋
if and only if i′ ≥ i− (n− 1)

⌊q
2

⌋
.

This leads to an efficient algorithm that draws vectors of length n and Lee weight i over Z/qZ
uniformly at random. In particular, it constructs a Lee weight decomposition ω ∈ W(n)

⌊q/2⌋,i
which is then transformed into the error vector e by randomly choosing the signs of the
nonzero entries.

1. Draw an integer D uniformly at random from
[
0,
∣∣∣S(n)i,q

∣∣∣− 1
]
. This is the index of the

chosen vector.

2. Choose the first entry of the weight decomposition ω1 as the largest integer such that

D′(ω1) =

min{ω1,q/2}∑
i′=max{0,i−(n−1)⌊q/2⌋}

Ni′

∣∣∣S(n−1)
i−i′,q

∣∣∣ ≤ D
holds.

3. Update the number of sequences having a prefix with weight decomposition t1 accord-
ingly. This is necessary since we compute the weight distribution rather than the vector
itself.

4. Repeat the steps with the updated values for D, i− ω1 and n− 1.

5. Once the weight decomposition ω is constructed, choose z signs {+,−}z uniformly at
random and apply them to the z nonzero entries in i to obtain the resulting vector e.

We have sampled 106 Lee-error vectors of length n = 5 and Lee weight i = 3 over Z/7Z. The
results in Figure 5.8 show that this construction also yields a uniform distribution.

5.3.2 The Scalar Multiplication Problem

While we know that the Hamming weight of a vector over a finite field is invariant under mul-
tiplication with a nonzero scalar, the Lee weight can possibly change. We want to emphasize
that over a finite integer ring, that a nonzero element a ∈ Z/qZ can turn into zero under
multiplication with a nonzero scalar b ∈ Z/qZ if and only if both a and b are nonunits. In
this case, both the Hamming weight and the Lee weight of a become zero when multiplying a
by b. However, if one of a and b is a unit, the Hamming weight of a remains invariant under
multiplication by b which is not true for the Lee metric.

In this section, we analyze the behavior of the Lee weight of a vector when multiplied by
a scalar. Let us give a quick example to give an intuition to the problem.

Example 5.3.6. Consider the vector x = (1, 0, 0, 1, 0, 2, 0, 0) over Z/7Z, which has Lee weight
wtL(x) = 4 and Hamming weight wtH(x) = 3. Let us chose a nonzero scalar a = 2 ∈ Z/7Z
and let us stretch x by a, i.e., a · x = (2, 0, 0, 2, 0, 4, 0, 0). Still, the Hamming weight is equal
to 3 but the Lee weight now is given by 7.

Recalling that the Lee metric coincides with the Hamming metric over Z/2Z and Z/3Z, in
the following we focus only on the case where the Lee weight is different from the Hamming
weight, i.e., we focus on Z/qZ with q > 3.

5.3. Fixed Lee Weight Vectors 77

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2
·10−2

Vectors in S(5)3,7

O
cc
u
rr
en
cy

o
f
ea
ch

ve
ct
o
r

Figure 5.8: Distribution of 106 randomly constructed Lee error vectors
using the enumerative coding-based method for vectors x ∈ S(5)

3,7 .

Remark 5.3.7. Even though we will not discuss the following in detail, we want to emphasize
at this point that the Hamming weight is not invariant under multiplication with a nonzero
scalar when working over a finite integer ring that is not a field.

We now formalize the problem we are interested in.

Problem 5.3.8. Consider the ring of integers Z/qZ, with q > 3, and a random vector

x ∈ (Z/qZ)n with Lee weight wtL(x) = t uniformly distributed in S(n)t,q . Let a ∈ (Z/qZ)\ {0}
be chosen uniformly at random. Find the probability that the Lee weight of a · x is less than
the Lee weight t of x, i.e.,

P (wtL(a · x) < t) .

For simplicity, let us define the following event

F := {wtL(a · x) < wtL(x)}.

We denote by Qx the empirical distribution of the elements of x. Recall the distribution P ⋆

defined in (5.6). We rewrite P(F) by distinguishing between vectors x with Qx close to P ⋆

and all others, where by “close” we mean with respect to the Kullback-Leibler divergence (see
Definition 2.1.5), i.e., Qx satisfies D(Qx ||P ⋆) < ε for some ε > 0 small. We have that

P(F) =P (wtL(a · x) < t | D(Qx ||P ⋆) < ε)P (D(Qx ||P ⋆) < ε)

+ P (wtL(a · x) < t | D(Qx ||P ⋆) ≥ ε)P (D(Qx ||P ⋆) ≥ ε)
≤P (wtL(a · x) < t |D(Qx ||P ⋆) < ε) + P (D(Qx ||P ⋆) ≥ ε) , (5.10)

where the inequality (5.10) holds, since every probability can be upper bounded by one. In
the next subesection, we see that the upper bound is well-defined, i.e., that indeed

P (wtL(a · x) < t |D(Qx ||P ⋆) < ε) + P (D(Qx ||P ⋆) ≥ ε) ≤ 1.

Note that the probability P(F) depends on three parameters: the length n of the con-
structed vector x, the size q of the integer ring and the given Lee weight t of x. The evaluation
of the bound (5.10) is challenging for q > 3, finite n and generic t. In the following we describe
how to attack the problem for large n.

78 Chapter 5. Channel Coding in the Lee Metric

We are going to give an answer to Problem 5.3.8 in the asymptotic regime here, i.e., we
consider the case, where the block length n tends to infinity. In fact, Corollary 5.1.6 allows

us to assume that the entries of a sequence x drawn uniformly in S(n)nδ,q follow the distribution
P ⋆ as n grows. Hence, in the asymptotic regime, Problem 5.3.8 reduces to estimating the
probability P (wtL(a · x) ≤ wtL(x) | D(Qx ||P ⋆) < ε). In that case, we apply the definition of
the Lee weight of a vector x, the assumption that the entries of x are distributed as in (5.6)
yields, in the limit of n, the following equivalent description of the desired probability

lim
n−→∞

P(F) = P

(
q−1∑
i=1

e−β wtL(i) wtL([a · i]q) <
q−1∑
i=1

e−β wtL(i) wtL(i)

)
. (5.11)

By the symmetric property of the Lee weight, Property (3.6), we can run the sum only up to
r. Nevertheless, we need to distinguish between even or odd ring order q. In particular, for
q odd we rewrite (5.11) as

lim
n−→∞

P(F) = P

(
0 <

r∑
i=1

e−βi(i− wtL([a · i]q))

)
, (5.12)

whereas for q even (5.11) is equivalent to

lim
n−→∞

P(F) = P

(
0 <

r−1∑
i=1

2e−βi(i− wtL([a · i]q)) + e−βr(r − wtL([a · r]q))

)
, (5.13)

where [a · i]q denotes the reduction of a · i mod q.

Since we want P(F) to be small (or equal to zero), we need to understand under what
circumstances the sums in (5.12) and (5.13) are non-positive. Notice that both the sums∑r

i=1 e
−βi(i − wtL([a · i]q)) and

∑r−1
i=1 2e−βi(i − wtL([a · i]q)) + e−βr(r − wtL([a · r]q)) are

dependent on q and β, where β depends on δ. If we fix these parameters, we are able to
compute the sum and hence (5.11). We therefore fixed q and evaluated the two expressions
for different values of δ. Let us denote by δmax the maximum δ for which (5.12) or rather
(5.13) are equal to zero. The table shows the values of the threshold δmax for different ring
orders q.

q 5 7 8 9 11 15 16 31 32 33 53

⌊q/2⌋ 2 3 4 4 5 7 8 15 16 16 26

δmax 1.2 1.714 2 1.962 2.727 3.310 4 7.741 8 8.242 13.245

Table 5.1: Maximal normalized Lee weight δmax over Z/qZ such that
P(F) = 0 as n −→ ∞, for some values of q compared to the maximal

possible normalized Lee weight ⌊q/2⌋.

Table 5.1 already suggests some bounds on the threshold δmax. For instance, we observe
that if q = 2m, for some m > 0, δmax seems to be 2m−2. In the following let us consider on
different cases.

Field Case

For the case where q is a prime we are able to give an asymptotic answer to Problem 5.3.8.
Indeed, we show that it is never possible to reduce the Lee weight of a vector by a nontrivial
scalar multiplication as the length of the vector grows large.

Theorem 5.3.9. Let q be an odd prime number and let x ∈ (Z/qZ)n where each xi was
drawn following the Boltzmann-like distribution, i.e., for every i = 1, . . . , n it holds P(xi =
k) = κ exp(−λwtL(k)) for every k ∈ Z/qZ. Let δ denote the average Lee weight per entry xi

5.3. Fixed Lee Weight Vectors 79

of x and choose a ∈ (Z/qZ)×. If δ < q2−1
4q , then

lim
n−→∞

P(F) = 0.

It has been shown in [137, Theorem 2] that if we chose an element randomly from Z/qZ
its expected Lee weight is exactly the threshold q2−1

4q mentioned in Theorem 5.3.9. In order
to prove the result, let us first prove the following lemma.

Lemma 5.3.10. Let π = (π1, . . . , πn) a sequence of distinct positive integers satisfying π1 <
π2 < · · · < πn. Define the following swap operation:

“Two elements πi and πj with i < j can only be swapped if πi < πj.”

Applying an arbitrary finite sequence of swap operations we are able to generate every per-
mutation of π.

Let us give a short example to illustrate the above defined swap operation.

Example 5.3.11. Consider the sequence π = (2, 6, 4, 8). We can only swap two elements
πi and πj if the left most of the two is smaller than the right most element of the two. For
instance the elements 2 and 8 can be swapped with any other element of π. On the other
hand the entry 4 can only be swapped with either the element 2 or the element 8.

Proof. We will use induction on the length n of the vector π.
For the base case, we assume that n = 1. Hence, π = (π1) consists only of one positive
integer. Then clearly there is nothing to show.
Assume then that the result of Lemma 5.3.10 applies to a vector π = (π1, . . . , πn) with
π1 < π2 < · · · < πn. We refer to this assumption as the induction hypothesis.
Finally, assume we are given π = (π1, . . . , πn+1) such that π1 < π2 < · · · < πn+1. By the
induction hypothesis, if we focus only on (π2, . . . , πn+1) by applying a sequence of swap oper-
ations we are able to generate every permutation of (π2, . . . , πn+1). Let σ be an arbitrary per-
mutation of it and consider then (π1, σ(π2), . . . σ(πn+1)). Since for every k ∈ {2, 3, . . . , n+ 1}
we have π1 < σ(πk), we can apply the swap operation up to n times to the element π1 and
its right-neighboring element and obtain any permutation of (π1, σ(π2), . . . σ(πn+1)).

Lemma 5.3.12. Let π = (π1, . . . , πn) be a sequence of n positive integers such that π1 <
π2 < · · · < πn. We denote by P [n] the set of permutations of π. Assume that f : N −→ R is
a strictly monotone decreasing function, i.e., f(i) > f(j) whenever i < j. Then

π = arg min
x∈P [n]

n∑
i=1

xif(i).

Proof. By Lemma 5.3.10 we know that starting from π and applying a sequence of swap
operations we can generate any other permutation of π. Let x be a permutation of π obtained
after one arbitrary swap operation, say xi = πj and xj = πi with i < j. The swap rule implies
then that πi < πj . We would like to have

∑n
i=1 πif(i) <

∑n
i=1 xif(i). Since we only switched

two elements this is equivalent to

πif(i) + πjf(j) < πjf(i) + πif(j).

Which, by simultaneous operations on the left and right, yields

(πj − πi)f(j) < (πj − πi)f(i).

This inequality is clearly true, since (πj − πi) > 0, i < j and since f is monotone decreasing.
Since we can apply the same procedure iteratively and by Lemma 5.3.10 the desired result
follows.

80 Chapter 5. Channel Coding in the Lee Metric

Proof of Theorem 5.3.9. Firstly, δ denotes the average Lee weight per entry of a vector x ∈
(Z/qZ)n. Hence, we can write

δ = κ

q−1∑
i=0

wtL(i) exp(−λwtL(i)).

Note that if λ = 0 we have δ = κ
∑q−1

i=0 wtL(i), implying that every Lee weight is equally
likely. More explicitly that means, λ = 0 yields

δ = κ

q−1∑
i=0

wtL(i) =
1

q
2

(q−1)/2∑
i=1

i =
(q − 1)(q + 1)

4q
=
q2 − 1

4q
,

where (⋆) is the closed form of the sum of the first (q − 1)/2 integers. Furthermore, if λ > 0

then δ < q2−1
4q as well as if λ < 0 then δ > q2−1

4q .
Now let us come back to the event E we want to estimate and assume at this point that

δ < q2−1
4q . Note that due to symmetry of the Lee weight, we have for any two nonzero

integers a, b ∈ Z/qZ that

wtL(ab) = wtL(a(q − b)) = wtL(aq − ab) = wtL(q − ab) = wtL(−ab).

Since q is a prime wtL([ai]q) represents a permutation of the Lee weights wtL(i) for every
i ∈ Z/qZ, where a ∈ (Z/qZ)×. Let us denote by πa(i) := wtL([ai]q) the permutation caused
by a. Since the Lee weight should not be able to be reduced by any multiplication with a
nonzero scalar, we want to show that

P

(
0 <

q−1∑
i=1

e−λi(wtL(i)− wtL([a · i]q))

)
= 0.

Equivalently, we show P
(∑q−1

i=1 e−λi wtL([a · i]q) <
∑q−1

i=1 e−λi wtL(i)
)
= 0.

Using the permutation representation πa from above, we can rewrite

q−1∑
i=1

e−λwtL(i) wtL([a · i]q) =
q−1∑
i=1

πa(wtL(i))e
−λi = 2

(q−1)/2∑
i=1

πa(i)e
−λi.

Since λ > 0, the function exp(−λi) is strictly monotone decreasing and convex. Furthermore,
πa is a permutation of the sequence of integers from 1 to (q − 1)/2, hence by Lemma 5.3.12,
for any nonzero a ∈ Z/qZ,

2

(q−1)/2∑
i=1

πa(i)e
−λi ≥ 2

(q−1)/2∑
i=1

ie−λi =

q−1∑
i=1

e−λwtL(i) wtL(i)

and thus, since λ > 0, limn−→∞ P(F) = 0.

Remark 5.3.13. We want to stress at this point that the exact same result applies in the
case where q is non-prime and a ∈ (Z/qZ)× be a unit modulo q.

Special Case: Power of 2

Let us focus on the case where the ring order q is a power of 2, i.e., there exists a positive
integer h ∈ Z such that q = 2h. Let us denote by

Zq := (Z/qZ) \
(
{0} ∪ (Z/qZ)×

)
the set of nonzero non-units modulo q. Since q = 2h, every nonzero non-unit is a multiple of
2, hence we can rewrite

Zq =
{
2m | m ∈

{
1, . . . , 2h−1

}}
. (5.14)

5.3. Fixed Lee Weight Vectors 81

Lemma 5.3.14. Let q = 2h for some positive integer h ∈ Z. For any a ∈ Zq we have

wtL([a(q/2)]q) = 0.

Proof. Let a ∈ Zq be chosen arbitrarily. By (5.14) there exists an integer k ∈
{
1, . . . , 2h−1

}
such that a = 2k. Hence, we obtain

wtL ([a(q/2)]q) = wtL
(
[2k2h−1]q

)
= wtL

(
[k2h]q

)
= wtL (0) = 0.

Similar to Subsection 5.3.2 above, we will show that the limit described in Equation (5.13)
is zero. Explicitly, we show that since β > 0, for any a ∈ (Z/qZ) \ {0} it holds

q/2−1∑
i=1

2e−βii+ e−βq/2q/2 ≤
q/2−1∑
i=1

2e−βi wtL([a · i]q) + e−βq/2 wtL([a · q/2]q). (5.15)

By Remark 5.3.13 we know that this is fulfilled, whenever a is a unit. Therefore, our goal
is to show Inequality (5.15) for a ∈ Zq a nonzero nonunit.

In the following let a ∈ Zq be arbitrary. Let us define the minimal zero-multiplier of a as

µa := min
j>0

(aj ≡ 0 mod q).

Since µa is minimal it holds that aµa = q.

Lemma 5.3.15. The sum of all Lee weights over Z/qZ with q = 2h coincides with the sum
of the scaled Lee weights mod q, i.e.,

q−1∑
i=1

wtL([ai]q) =
q2

4
=

q−1∑
i=1

wtL(i).

Proof. By the symmetry property of the Lee weight, we have

q−1∑
i=1

wtL([ai]q) = 2

q/2−1∑
i=1

wtL([ai]q) + wtL([aq/2]q),

which by Lemma 5.3.14 is just equal to

2

q/2−1∑
i=1

wtL([ai]q).

By Remark 5.3.13 again, we can exclude the cases, where a is not a power of 2, since in that
case it must be a product a = 2ℓu, where u ∈ (Z/qZ)× and hence is a permuted version of
the case where a = 2ℓ. Since a is even, it divides q = 2h. By the symmetry property of the
Lee weight and by Lemma 5.3.14, (wtL([ai]q))i=1,...,q−1 is repeated (permuted) sequence of

a, 2a, . . . ,
µaa

2
, . . . , 2a, a, 0, (5.16)

where this part is repeated a/2 times. Observing the symmetry in Equation (5.16), we get

2

q/2−1∑
i=1

wtL([ai]q) = 2

a2 µa
2∑

i=1

i+ a2h−2

= 2

(
a2

(µa

2 − 1)(µa

2)

2
+ a2h−2

)
= 2

(
2h−3aµa

)
= 22h−2.

82 Chapter 5. Channel Coding in the Lee Metric

Lemma 5.3.15 implies hence, if the distribution of the elements in the vector x ∈ S(n)
δn,2h

is uniform (i.e., for β = 0), asymptotically we are not able to reduce the Lee weight of x by
multiplying it with a nonzero scalar a ∈ Z/qZ.

5.4 Summary and Outlook

This chapter studied two channel models in the Lee metric, a memoryless channel model
and a channel introducing an error of given Lee weight. The discrete memoryless Lee channel
matches to the Lee metric under the decoding rule to decode to the nearest codeword. For the
second channel model, the constant Lee-weight channel, the error vector is drawn uniformly
at random among the set of vectors of the same Lee weight. We studied the typical sequences
under the constraint that the types considered have the same expected value. This in fact
reflects the choice of the error vector of fixed Lee weight. With the help of Sanov’s Theorem
(Theorem 2.2.8) and the conditional limit theorem (Theorem 2.2.9), a main result of this
chapter consisted in the derivation of the marginal distribution of the constant Lee-weight
channel. This distribution, strongly related to the Boltzmann distribution introduced in
statistical mechanics, gave rise to asymptotically tight bounds for the size of n-dimensional
spheres and balls in the Lee metric and bounds on the block error probability for both channel
models which were discussed in Section 5.2.

The chapter was concluded with Section 5.3 with the study on vectors of a fixed Lee weight.
In Section 5.3.1, we derived two algorithms to construct randomly vectors of given Lee weight.
The algorithm requires the precomputation of the set of integer partitions which, for large
parameters, is a complex task. An interesting problem is to come up with different algorithms
to construct such vectors and to analyze their complexities. Additionally, by the central limit
theorem and using the marginal distribution of the constant Lee-weight channel, a vector of
growing length n has entries that follow a Gaussian distribution whose mean and variance
can be determined by the marginal distribution. With this we would be able to construct a
vector that has the desired weight with high probability. It would be interesting to formally
introduce an algorithm in this way with a decision step, discarding vectors of a Lee weight
that does not lie in some ε-neighborhood of the desired Lee weight, and to compare it with
Algorithm 1. Furthermore, in Section 5.3.2 we formalized the scalar multiplication problem
consisting in the problem of reducing or increasing the Lee weight of a given vector when
multiplying it with a nontrivial scalar. Applying the marginal distribution of the constant
Lee-weight channel, we showed that, in the limit of large block lengths, the Lee weight of a
vector can never be reduced. The scalar multiplication problem has only partly been answered
in the finite length regime. The open problem of characterizing the probability in the finite
sequence length remains which would answer also the problem for any Z/qZ.

83

Chapter 6

Regular Lee-LDPC Codes

Low-density parity-check (LDPC) codes were introduced by Gallager in the early 1960’s in
[58]. They are binary linear error-correcting codes characterized by a sparse parity-check
matrix, meaning that the number of nonzero entries in a parity-check matrix is small. Af-
ter their invention they seem to have almost been forgotten for about thirty years. During
these years only few researchers investigated LDPC codes. Among these results, Tanner gave
a representation in terms of a bipartite graph [126]. This representation allows analyzing
LDPC codes from a combinatorial point of view. In the late 1990’s LDPC were then redis-
covered simultaneously introducing different successful LDPC code designs, such as MacKay
and Neal’s near-Shannon capacity LDPC codes [88, 89] or designs based on graphical rep-
resentations [55, 122, 132, 133]. Ever since, LDPC codes were widely studied. Generating
random LDPC codes has the advantage that there is no underlying algebraic structure. Thus,
especially for code-based cryptography LDPC codes seemed to be good candidates for some
McEliece variant and were proposed in various contexts [12, 11]. Nevertheless, LDPC codes
have shown one major drawback for cryptography: the sparsity of their parity-check matrices
which leads to statistical attacks.

As mentioned, we can describe a parity-check matrix H by a bipartite graph G = (V, E)
consisting of a set of vertices V and a set of edges E connecting the vertices. The set of vertices
consists of two disjoint sets; the set of variable nodes {v1, . . . , vn}, representing the columns
of H, and the set of check nodes {c1, . . . , cm}, representing the rows of H. A variable node
vi is connected to a check node cj by an edge if and only if the corresponding entry hij in
the parity-check matrix is nonzero. The degree dv of a variable node v is the number of edges
connected to v. The neighbors N (v) of a variable node v is the set of check nodes connected
to v. Similarly, we define the degree dc and the neighbors N (c) of a check node c. Let us give
an example of the graphical representation of a parity-check matrix.

Example 6.0.1. For instance, consider the following (non-sparse) 4× 8 parity-check matrix
over F2 as a toy example

H =

0 1 0 1 1 0 0 1

1 1 1 0 0 1 0 0

0 0 1 0 0 1 1 1

1 0 0 1 1 0 1 0

 . (6.1)

Then the bipartite graph G describing H is shown in Figure 6.1.

v1 v2 v3 v4 v5 v6 v7 v8

c1 c2 c3 c4

Figure 6.1: Graph representation via check nodes and variable nodes of
the parity-check matrix (6.1).

84 Chapter 6. Regular Lee-LDPC Codes

There are several classes of LDPC codes depending on number of neighbors per variable
node and check node, or other structural properties. Of particular interest in this thesis
are regular LDPC codes which have a constant variable node degree dv = v and a constant
check node degree dc = c. We refer to these LDPC codes as (v, c)-regular LDPC codes.
Furthermore, we denote by C n

v,c the unstructured regular LDPC code ensemble of length n,
i.e., the set of all LDPC codes defined by an (m × n) parity-check matrix, whose associated
bipartite graph has constant variable node degree v and constant check node degree c. This
ensemble has then the designed rate R0 = 1 − m/n. Lately, LDPC codes are also studied
over finite rings. In [124], the authors analyzed LDPC codes over in integer residue ring Z/qZ
defining the nonzero entries of the parity-check matrix over the units (Z/qZ)×. As proposed in
[124], when sampling an LDPC code from C n

v,c, we assume that the nonzero entries are drawn
independently and uniformly at random from the set of units (Z/qZ)×. In the following, let C
always denote an [n, k] linear block code over Z/qZ and let H ∈ (Z/qZ)m×n be a parity-check
matrix of C, where m ≥ n− k.

We start the chapter by introducing the belief propagation algorithm and the message-
passing decoding algorithm, and its adaption to the Lee metric. In a next step, we focus
on the algebraic structure of the regular Lee-LDPC code ensembles discussing its average
weight enumerator in Section 6.2. Lee-LDPC codes have been introduced in [114] together
with a bit-flipping decoding variant, that they introduced as Lee-symbol flipping decoder.
This code family defines the first Lee-metric code which is efficiently decodable. The average
weight enumerator together with the bounds on the block error probabilities of the Lee chan-
nels derived in Section 5.2 yields bounds on the error-correction performance of the regular
LDPC ensembles. Furthermore, the average weight enumerator provides important informa-
tion about the codes performance in the error floor region. Finally, we analyze and compare
the performance of LDPC codes over both channel models introduced in Chapter 5 under
belief propagation and symbol message-passing decoding in Section 6.3. We discuss the main
ingredients to adapt the symbol message-passing decoder to the Lee metric in both of the
channel models. The results presented in this chapter are studied in [15, 17] in collaboration
with Hannes Bartz, Gianluigi Liva and Joachim Rosenthal.

6.1 Message Passing Decoders

We briefly recall two message-passing algorithms for nonbinary LDPC codes. The first algo-
rithm is the well-known (nonbinary) belief propagation algorithm [99]. The second algorithm
is a message-passing algorithm where the messages exchanged between variable and check
nodes are hard symbol estimates. The latter algorithm, dubbed symbol message-passing,
generalizes the Gallager-B algorithm [58] and binary message-passing algorithm [82] to non-
binary alphabets.

Let us fix some notation used in the description of the two decoders. We consider a
nonbinary alphabet Z/qZ, and we denote by mv→c the message sent from variable node v to a
neighboring check node c and vice versa mc→v is the message sent from c to v. Furthermore,
we will denote the likelihood at the variable node v input (associated with the corresponding
channel observation) by

mv :=
(
PY |X(y | 0), . . . , PY |X(y | q − 1)

)
,

i.e., the vector of probabilities of the channel output y, conditioned on the q possible channel
input values. For every connected variable node v and check node c we denote by hcv the
corresponding entry in the parity-check matrix H. Following [124] the nonzero entries of H
are taken from the set of units. In this way, the inverse h−1

cv is guaranteed to exist.

6.1.1 Belief Propagation Decoding

We consider now the belief propagation algorithm for nonbinary LDPC codes over finite
rings. The decoder consists of four main steps that are outlined below, where Step 2 and 3
are repeated at most ℓmax times. For every connected variable node v and check node c we
let Πcv be the q × q permutation matrix induced by hcv.

6.1. Message Passing Decoders 85

1. Initialization. Each variable node v receives the channel observation in the form ofmv.
Then, the variable node v sends to each c ∈ N (v) the permuted channel observation,
i.e.,

mv→c = mv ·Πcv.

2. Check node-to-variable node update. Consider a given check node c and a neigh-
boring variable node v ∈ N (c). For the message mc→v, the check node computes the
circular convolution of the incoming messagesmv′→c from all neighboring variable nodes
v′ ∈ N (c) \ {v} as

u = ⊛
v′∈N (c)\{v}

mv′→c

and sends to every neighboring variable node v ∈ N (c) a permuted version of u according
to the permutation Π−1

cv , i.e., the check node-to-variable node message is

mc→v = u ·Π−1
cv .

3. Variable node-to-check node update. The variable node v computes the Schur
product (i.e., a component-wise product) ⊙ of all incoming messages but the one from
check node c and normalizes the result by a constant K (to obtain a proper probability
vector)

v = K ⊙
c′∈N (v)\{c}

mc′→v.

Finally, it applies the permutation matrix Πcv to the vector v and sends the following
message to the check node c

mv→c = v ·Πcv.

4. Final decision. The final decision happens at the variable node side. After at most
ℓmax iterations of steps 2 and 3 each variable node computes the Schur product of all
incoming messages, yielding the a posteriori probability estimate

mAPP

v = ⊙
c∈N (v)

mc→v.

The decision x̂ is the index of the maximal entry of mAPP
v

x̂ = argmax
i∈Z/qZ

mAPP

v,i .

6.1.2 Symbol Message-Passing Decoding

The symbol message-passing algorithm is a message-passing algorithm for nonbinary LDPC
codes, where each message exchanged by a variable node/check node pair is a symbol, i.e.,
a hard estimate of the codeword symbol associated with the variable node. Following the
principle outlined in [82], the messages sent by check nodes to variable nodes are modeled
as observations at the output a q-ary input, q-ary output discrete memoryless channel. By
doing so, the messages at the input of each variable node can be combined by multiplying
the respective likelihoods (or by summing the respective log-likelihoods), providing a simple
update rule at the variable nodes.

Assume that we have a discrete memoryless channel over Z/qZ with input x ∈ Z/qZ,
output w ∈ Z/qZ and channel law PW | X(w | x). We define the log-likelihood of w given x

by Lx(w) := log
(
PW | X(w | x)

)
and the log-likelihood vector by

L(w) := (L0(w), L1(w), . . . , Lq−1(w)).

86 Chapter 6. Regular Lee-LDPC Codes

With a slight abuse of notation, we will use the L(·) for different channels, where the channel
law to be applied is made clear by the argument.

1. Initialization. The decoder is initialized by forwarding the channel observation y to
every variable node v. Then, the variable node v sends to each c ∈ N (v)

mv→c = y.

2. Check node-to-variable node update. Consider a given check node c and a neigh-
boring variable node v ∈ N (c). For the message mc→v, the check node computes

mc→v = h−1
c,v

∑
v′∈N (c)\{v}

hc,v′mv′→c.

3. Variable node-to-check node update. At each variable node v, incoming messages
are treated as observations of the codeword symbol at the output of an “extrinsic
channel” ([8, 82]) with conditional probability

PM | X(m | x) =

{
1− ξ if m = x

ξ/(q − 1) otherwise
, (6.2)

for a given error probability ξ ∈ [0, 1]. For the calculation of the message to be sent of
each check node c ∈ N (v), (6.2) is used to compute the log-likelihood vector

E = L(y) +
∑

c′∈N (v)\{c}

L (mc′→v) . (6.3)

For each c ∈ N (v), the message sent by the variable node v is then

mv→c = argmax
i∈Z/qZ

Ei.

4. Final decision. After at most ℓmax iterations for each variable node v we compute

LFIN = L(y) +
∑

c∈N (v)

L (mc→v) .

Then the final decision, x̂, is the index of the maximal entry of LFIN, i.e.,

x̂ = argmax
i∈Z/qZ

LFIN

i .

Note that the extrinsic channel of (6.2) is modelled as a q-ary symmetric channel (q-SC)
with error probability ξ. As it will be shown in Section 6.3.2, this choice yields an accurate
description of the extrinsic channel conditional probability, despite its simplicity. The extrin-
sic channel parameter ξ is iteration-dependent. Its evaluation can be performed via Monte
Carlo simulations, or by using estimates that follow from density evolution analysis [81, 82].

6.2 Average Weight Enumerator

The near-capacity performance of LDPC codes under iterative, low-complexity decoders is
analyzed in terms of the distance spectrum of the code. In fact, knowing the distance distri-
bution yields knowledge about the minimum distance of a code which, as discussed in Section
2.3.1, is in direct relation with the error-correction capability of a code. However, Vardy
showed in [128] that for a given LDPC code characterizing its weight distribution (and hence
the minimum distance) is a hard task. In his Ph.D. thesis [58], Gallager therefore considered
an ensemble of regular LDPC codes and studied the average weight spectrum of the ensemble.
Ever since, it is common practice to consider a code ensemble rather than focusing on a spe-
cific LDPC code. The weight spectrum of a code is used to derive bounds on the block error

6.2. Average Weight Enumerator 87

probability over a given channel model. In the case of random LDPC code ensembles it allows
to understand the error floor of the ensemble, and reasonable bounds on the error-correction
performance of a code with given weight distribution can be derived [31, 59, 102].

In this section we provide an expression for the average Lee weight spectrum of a random
regular LDPC code C ⊆ (Z/qZ)n of dimension k. This task has been studied for the Hamming
metric by [43]. However, we derive the average weight spectrum using a different approach
using the type of the Lee weights of a vector together with the group action defined by the
units (Z/qZ)× on Z/qZ.

For each possible Lee weight ℓ ∈ {0, . . . , n ⌊q/2⌋} we define the weight enumerator, i.e.,
the number of codewords of Lee weight ℓ as

W
(n)
ℓ := | {c ∈ C | wtL(c) = ℓ} | .

As the Lee weight of a vector is not identical to the number of nonzero positions but gives
the nonzero entries a specific value, we are interested in the number of entries of a certain
Lee weight in a codeword, i.e., we are interested in the type in terms of the Lee weight of the
codeword (see Section 2.2 for a recap on types).

Definition 6.2.1. For every codeword c ∈ C we define its Lee type to be the (⌊q/2⌋+1)-tuple
θc = (θc(0), . . . , θc(⌊q/2⌋)) consisting of the relative fraction of occurrences of each possible
Lee weight ℓ ∈ {0, . . . , ⌊q/2⌋}, i.e.,

θc(ℓ) =
1

n
| {k = {1, . . . , n} | wtL(ck) = ℓ} | .

We denote the set of all Lee types over (Z/qZ)n by T ((Z/qZ)n). Then, we define the
number of codewords in a code C ⊆ (Z/qZ)n of Lee type θ ∈ T ((Z/qZ)n) as

A
(n)
θ := | {c ∈ C | θc = θ} | .

Note that we can describe the Lee weight of a codeword c ∈ C in terms of its Lee type as

wtL(c) = n

⌊q/2⌋∑
ℓ=1

ℓθc(ℓ).

Given a codeword c and its Lee type θc, by abuse of notation, we will use the notation wtL(θc)

to indicate the Lee weight of c. Thus, there is a natural relation betweenW
(n)
ℓ (C) and A(n)

θ (C).
In fact, we have

W
(n)
ℓ (C) =

∑
θ∈T ((Z/qZ)n)

wtL(θ)=ℓ

A
(n)
θ (C).

In the following, we consider a (dv, dc)-regular LDPC code C of length n and Z/qZ-
dimension k. taken uniformly at random from an ensemble of (dv, dc)-regular LDPC codes
over Z/qZ. Let H be a parity-check matrix of C where the nonzero entries of H lie in the
set of units (Z/qZ)×. As C is a random regular LDPC code, the parity-check matrix H is
a random matrix where each row has dc nonzero entries taken randomly among the unit
elements and each column has dv of them. In the following, we always consider a randomly
chosen c ∈ (Z/qZ)n and denote its Lee type by θc. Recall that c is a codeword if and only if
cH⊤ = 0.

We now briefly discuss what it means for a codeword c of a random LDPC code to
satisfy the check equations of a parity-check matrix H. Considering the Tanner graph of
a code C, given a codeword c we start by repeating each position ci exactly dv times over
the edges connected to the i-th variable node. We denote the resulting vector by z′ :=
(c1, . . . , c1, . . . , cn, . . . , cn). Note that z′ is of length ndv and is of Lee type θz′ = θc. Let then
u ∈ ((Z/qZ)×)ndv be chosen uniformly at random, i.e., every entry ui is chosen uniformly at
random among the units (Z/qZ)×. Finally, choosing a random permutation Π we compute

88 Chapter 6. Regular Lee-LDPC Codes

z := Π(z′ ⊙ u). Now, c satisfies cH⊤ = 0 if and only if z satisfies the m check equations.
Figure 6.2 below visualizes this procedure for a random (dv, dc)-regular LDPC code.

. . .

.

dv dv dv dv

c1 c2 c3 cn

Random permutation of edges via Π and multiplication by random unit elements

. . .

.
dc dc dc

c1 c2 c3 cnc1 c2 c3 cn. = z′

z1 zdc zdc+1 z2dc
z(m−1)dc+1 zmdc

. = z

Figure 6.2: Graphical representation of a random (dv, dc)-LDPC code of
length n.

Note that zi = uiz
′
Π(j), where ui ∈ (Z/qZ)× is chosen uniformly at random from the set of

units modulo q. Having Figure 6.2 in mind, we can say that the average number of codewords
of type θ ∈ T ((Z/qZ)n) of a random LDPC code is given by

A
(n)

θ (C) =
(
n

nθ

)
P (z satisfies the check equations | θc = θ) .

We denote the Lee type of z by ωz in order not to confuse it with the Lee type θc. Note that
ωz highly depends on θc. Further discussions and observations follow in Theorem 6.2.4. For
now, let Tθc

(
(Z/qZ)ndv

)
denote the set of all possible Lee types for a vector z resulting from

the Lee type θc. Hence, we can further break down the conditional probability as

A
(n)

θ (C) =
(
n

nθ

) ∑
ω∈Tθ((Z/qZ)ndv)

P (ωz = ω | θc = θ)P (z satisfies the check equations | ωz = ω) .

(6.4)

In the following we elaborate more on the two probabilities, which we will denote by

f (n)(ω | θ) := P (ωz = ω | θc = θ) and (6.5)

a(n)(ω) := P (z satisfies the check equations | ωz = ω) . (6.6)

6.2.1 Transformation of the Lee Type

We start by analyzing how the Lee type of c changes to the Lee type of the vector z. More
precisely, we now study the probability f (n)(ω | θ) that the vector z has a Lee type ωz = ω
given that the Lee type of the codeword c is θc = θ. Recall that z ∈ (Z/qZ)ndv is formed from
c by repeating the entries ci each dv times and then multiplying each copy by a randomly
chosen unit. This already implies that the fraction of zeros in z must be equal to the fraction
of zeros in c. Focusing on the nonzero entries of c we have to treat several cases separately,
as the multiplication of a random nonzero element x ∈ Z/qZ by a random unit u ∈ (Z/qZ)×
lies in different orbits.

Note that the group of units (Z/qZ)× acts under multiplication on Z/qZ. For an element
a ∈ Z/qZ we define its orbit Oa as

Oa :=
{
a · u | u ∈ (Z/qZ)×

}
. (6.7)

Orbits induce an equivalence relation, i.e., two elements are equivalent if and only if they lie
within the same orbit. Each orbit can be represented by the smallest element in it which

6.2. Average Weight Enumerator 89

corresponds exactly to a divisor of q. Let Dq denote the set of divisors of q, i.e.,

Dq := {ℓ ∈ N | ∃s ∈ N with ℓs = q} .

Then the distinct orbits are given by Od for d ∈ Dq.

Example 6.2.2. We consider the integer residue ring Z/10Z. The set of divisors is given by

D10 = {1, 2, 5, 10} .

Hence, there are four orbits defined by the divisors of ten, namely,

O1 = (Z/10Z)× = {1, 3, 7, 9} , O2 = {2, 4, 6, 8} , O5 = {5} and O0 := O10 = {0} .

By the definition of an orbit in (6.7), we observe that if an element a lies in a given orbit
Od then every multiple of a by a unit element is in the same orbit. Hence, a codeword c and
a vector z resulting from c have the same fraction of elements in an orbit Od for every divisor
d ∈ Dq. For a codeword c with Lee type θc and for every d ∈ Dq the fraction of elements in
orbit Od is denoted as

θc(Od) :=
∑
a∈Od

a≤⌊q/2⌋

θc(a). (6.8)

The tuple of all such fractions is denoted by

θc,O :=
(
θc(Od1), . . . , θc(Od| Dq |)

)
.

Regarding the Lee metric, we can prove that two elements of the same Lee weight are
equivalent.

Lemma 6.2.3. Elements of the same Lee weight in Z/qZ lie in the same orbit, i.e., for every
a ∈ Z/qZ we have Oa = Oq−a.

Proof. Let a ∈ Z/qZ. By symmetry of the Lee weight, q − a is the only element having the
same Lee weight as a. Let b ∈ Oq−a be arbitray. By the definition of an orbit (see Equation
(6.7)), there exists a unit element u ∈ (Z/qZ)× such that b ≡ u(q − a) ≡ −ua mod q. Since
(−1) and u are units, also (−u) is a unit modulo q and thus b ∈ Oa. Since b was chosen
arbitrarily, we have Oq−a = Oa.

Lemma 6.2.3 indicates that we only have to consider elements up to ⌊q/2⌋. Recall from
the generating function of the Lee weight of the elements in Z/qZ (see (3.10)), if q is odd,
then zero is the only element of Lee weight 0. All other weights in this case are represented
by two elements. If instead q is even additionally the Lee weight ⌊q/2⌋ is represented only
by one element, namely ⌊q/2⌋ itself. This fact is important when studying the number of
configurations of a fixed Lee weight. Given the Lee type θx of a vector x we denote the
fraction of Lee weights with only one representative element by

θ̂x :=

{
1− θx(0) if q is odd,

1− θx(0)− θx(⌊q/2⌋) if q is even.

We are then able to state the result on the expression for the probability f (n)(ω | θ) over
Z/qZ.

Theorem 6.2.4. Consider a random c ∈ (Z/qZ)n of Lee type θc. Let z ∈ (Z/qZ)ndv be the
resulting vector when repeating the entries of c dv times and multiplying each position by a
randomly chosen unit element. Furthermore, we denote by ωz the Lee type of z. Given the
set of divisors Dq = {d1, . . . , dr}, then

f (n)(ωz | θc) =

(ndv
ndvωz

)2ndvω̂z

(ndv
ndvθc,O)

∏
d∈Dq | Od |ndvθc(Od) if ωz ∈ Tθc

(
(Z/qZ)ndv

)
,

0 otherwise,
(6.9)

90 Chapter 6. Regular Lee-LDPC Codes

where Tθc
(
(Z/qZ)ndv

)
:=
{
ω ∈ T ((Z/qZ)ndv) | ω(Od) = θc(Od)∀d ∈ Dq

}
.

Proof. Assume the Lee type θc of c is given by θ and let the Lee type ωz be equal to ω. By the
above discussion, when multiplying an element a of a given orbit Od with a randomly chosen
unit u ∈ (Z/dZ)×, the product is still an element of Od. In fact, au can take each element of
Od with the same probability. Therefore, z must have the same fraction of elements in orbit
Od as the codeword c which also yields, that f (n)(ω | θ) = 0 if this is not fulfilled.

Let us assume then that for every divisor d of q it holds that ω(Od) = θ(Od). The
probability that ωz = ω given that θc = θ is given by the number of vectors of length ndv
over Z/qZ of Lee type ω divided by the total number of vectors of a Lee types fulfilling the
constraint on the fraction of orbit elements. The number of configurations of vectors with
Lee type ω is given by the multinomial coefficient(

ndv
ndvω

)
=

(
ndv

ndvω(0), . . . , ndvω(⌊q/2⌋)

)
.

Since the Lee type gives rise only to the number of elements of a certain Lee weight, we
must consider Lee weights reached by two different elements. We hence have to multiply the
multinomial coefficient by a power of 2 considering the two options for Lee weights admitting
two representative elements given by 2ndvω̂. This yields us the numerator of the probability
f (n)(ω | θ) and hence the number of vectors v ∈ (Z/qZ)ndv of Lee type ω.

We are now interested in finding the number of vectors v ∈ (Z/qZ)ndv of Lee type ωv,

satisfying ωv,O(Od) = θO . This number splits into two quantities: first, focusing only on the
orbits, the number of constellation of the orbits, and second the number of choices in each
orbit. The first quantity is again given by a multinomial coefficient regarding the fraction
of elements in orbit Od for every d ∈ Dq given in (6.8). To obtain the latter quantity we
raise the cardinality of the orbit Od to the power of the number of positions with elements
in that orbit. Combining the results yields the denominator and hence, the desired result on
the probability f (n)(ω | θ).

Note that if q is a prime number, there are only two orbits; one containing only the zero
element, and one corresponding to the set of units modulo q (which are all nonzero elements).
Then the expression in Theorem 6.2.4 simplifies to

f (n)(ω | θ) =

{
2ndvω̂

(q−1)ndv(1−θ(0)) if ω(0) = θ(0)

0 otherwise.

Furthermore, there is a closed form for the cardinalities of the orbits which allow for a simple
implementation of the formula given in Theorem 6.2.4.

Lemma 6.2.5. Let q be a positive integer and let Dq be the set of divisors of q. Furthermore,
let φ(q) denote the Euler totient function. Then, for every d ∈ Dq the cardinality of its orbit
is given by

| Od | =

{
1 if d = q,

φ(q)/d otherwise.

Proof. The case where d = q is obvious by the definition of the orbit given in (6.7). Hence,
consider d ∈ Dq \ {q}. Recall that the orbit Od consists of all multiplications of d with a unit
element, i.e., Od = {d · u | u ∈ (Z/qZ)×}. Thus, there are φ(q) multiplications by d. As the
group Z/qZ is cyclic, these multiplications repeat exactly d times. Hence, Od = φ(q)/d.

Using Lemma 6.2.5 the formula in Theorem 6.2.4 becomes

f (n)(ωz | θc) =

(ndv
ndvωz

)2ndvω̂z

(ndv
ndvθc,O)

(
φ(q)(1−θc(O0))

∏
d∈Dq\{q} d−θc(Od)

)ndv
if ωz ∈ Tθc

(
(Z/qZ)ndv

)
,

0 otherwise.

6.2. Average Weight Enumerator 91

Example 6.2.6. To illustrate (6.9) presented in Theorem 6.2.4 consider the following example
over Z/16Z. Note that Z/16Z consists of the following five orbits:

O16 = {0} , O1 = (Z/16Z)×, O2 = {2, 6, 10, 14} , O4 = {4, 12} and O8 = {8} .

Let C ⊂ (Z/16Z)2 be a regular code with regular variable node degree dv = 2. Let c ∈ C be
a codeword of Lee type θc = (0, 0, 1/2, 0, 1/2, 0, 0, 0, 0). Without loss of generality, we can
assume that c = (2, 4). Following the procedure described by Figure 6.2 yields

z′ = (2, 2, 4, 4).

When multiplying each of the entries by a randomly chosen unit, we observe that z can be
one of the following vectors (up to permutation and Lee weight)

(2, 2, 4, 4), (2, 6, 4, 4), and (6, 6, 4, 4).

Hence, the possible types for z are

ω(1) = (0, 0, 1/2, 0, 1/2, 0, 0, 0, 0),

ω(2) = (0, 0, 1/4, 0, 1/2, 0, 1/4, 0, 0) and

ω(3) = (0, 0, 0, 0, 1/2, 0, 1/2, 0, 0).

The number of permutations for each case is given by the multinomial coefficient with respect
to the type ω(i). For instance, the vector (2, 2, 4, 4) admits 6 permutations, i.e.,(

ndv
ndvω(1)(0), . . . , ndvω(1)(8)

)
=

(
2 · 2

2 · 2 · (1/2), 2 · 2 · (1/2)

)
=

4!

2!2!
= 6.

Since the Lee type focuses on the Lee weight only and since every nonzero entry different
from ⌊q/2⌋ admits two representatives, we have two possible entries for each position. In the
case of type ω(1) we would, hence, have 6 ·16 = 96 possible vectors of that type. Similarly, we
have 96 vectors of type ω(3) and 192 vectors of type ω(2). This yields a total of 384 vectors.
Note that this indeed coincides with(

ndv
ndvθc(O1), . . . , ndvθc(O16)

) ∏
d∈Dq

| Od |ndvθc(Od) =

(
4

2

)
| O2 |2 | O4 |2 = 384.

Thus, the probability that z has Lee type ω(1) given that the Lee type of the codeword c is
θc is f (n)(ω(1) | θc) = 96

384 = 1
4 .

Consequently, to Theorem 6.2.4 we determine the asymptotic growth rate of f (n)(ω | θ)
in Corollary 6.2.7

Corollary 6.2.7. Let z ∈ (Z/qZ)ndv be the vector resulting from a vector c ∈ (Z/qZ)n of Lee
type θ after repetition and permutation. Then we obtain the following asymptotic expression
for the probability that z is of Lee type ω.

ϕ(ω | θ) := lim
n−→∞

1

n
log(f (n)(ω | θ)) = dv

H(ω) + ω̂ −H(θO)−
∑
d∈Dq

θ(Od) log(| Od |)

 .

Proof. The proof follows by taking the limit of each summand.

Moreover, Lemma 6.2.8 shows us an even stronger form of convergence.

Lemma 6.2.8. Given a random regular (dv, dc) LDPC code over Z/qZ. Given a Lee type
θ ∈ T ((Z/qZ)n) and the sequence f (n)(ω | θ) defined in (6.9) with ω ∈ Tθ

(
(Z/qZ)ndv

)
.

Then the sequence of functions
(
1
n log(f (n)(ω | θ))

)
n∈N is uniformly convergent to ϕ(ω | θ) as

n −→∞.

92 Chapter 6. Regular Lee-LDPC Codes

Proof. We have to show that for every ε > 0 there is a natural number nε ∈ N such that for
all n ≥ nε it holds ∣∣∣∣ 1n log(f (n)(ω | θ))− ϕ(ω | θ)

∣∣∣∣ < ε.

Applying Theorem 6.2.4 and Corollary 6.2.7, and by using the triangle inequality, we get∣∣∣∣∣ 1n log
(
f (n)(ω | θ)

)
− ϕ(ω | θ)

∣∣∣∣∣
=

∣∣∣∣∣ 1n log

((
ndv
ndvω

))
− dvH(ω)− 1

n
log

((
ndv
ndvθO

))
+ dvH(θO)

∣∣∣∣∣
≤

∣∣∣∣∣ 1n log

((
ndv
ndvω

))
− dvH(ω)

∣∣∣∣∣+
∣∣∣∣∣dvH(θO)− 1

n
log

((
ndv
ndvθO

)) ∣∣∣∣∣.
Let us focus now on

∣∣∣ 1n log
((

ndv

ndvω

))
− dvH(ω)

∣∣∣. Recall from (2.4) that we have the following

bounds on
(

ndv

ndvω

)
:

1

(ndv + 1)⌊q/2⌋+1
2ndvH(ω) ≤

(
ndv
ndvω

)
≤ 2ndvH(ω).

Hence, if 1
n log

((
ndv

ndvω

))
> dvH(ω), we get

∣∣∣ 1
n
log

((
ndv
ndvω

))
− dvH(ω)

∣∣∣ = 0.

On the other hand, we obtain∣∣∣ 1
n
log

((
ndv
ndvω

))
− dvH(ω)

∣∣∣ ≤ (⌊q/2⌋+ 1)
1

n
log (ndv + 1).

By l’Hôpital’s rule this converges to zero as n −→∞.

Note that the same argument holds for
∣∣∣dvH(θO) − 1

n log
((

ndv

ndvθO

)) ∣∣∣ and thus the result

follows.

6.2.2 Valid Check Node Assignment

We now discuss the probability a(n)(ω) given in (6.6). We make use of generating functions to
describe the situation at one check node and then extend the generating function to m check
nodes. In the following let w denote the Lee weight decomposition of a vector x ∈ (Z/qZ)n.
That is, for every i = 0, . . . , ⌊q/2⌋,

wi = | {k = 1, . . . , n | wtL(xk) = i} | .

Furthermore, recall from Equation (6.9) in Theorem 6.2.4 that given a type θ of c, the
type ω of a valid check node assignment has to show the same orbit distribution. Hence,
there is a restricted choice.

Theorem 6.2.9. Consider a vector z ∈ (Z/qZ)ndv of Lee type ω and weight decomposition
w. Furthermore, consider a random regular LDPC code of variable degree dv and check node
degree dc. Then, the probability that z fulfills the check node equations is given by

a(n)(ω) =
coeff

[
G(t), tωndv

](
ndv

ndvω

) ,

6.2. Average Weight Enumerator 93

where

G(t) =
1

qm

 ∑
zi∈(Z/qZ)dc
dcωzi

=w

q−1∑
s=0

dc∏
k=1

e
2πi
q szkt

ndvω(1)
1 · · · tndvω(⌊q/2⌋)

⌊q/2⌋

m

. (6.10)

Proof. Recall that a(n)(ω) describes the probability of z ∈ (Z/qZ)ndv satisfying the check
node equations and being of a given Lee type ω. Furthermore, we have m check nodes each of
degree dc. Hence, we can split z into m parts z1, . . . , zm each one corresponding check node
c1, . . . , cm, respectively.

We now focus on one check node only and describe a generating function for the number of
zi’s satisfying the check node equations of check node ci and having Lee weight decomposition
given by w = (w0, . . . , w⌊q/2⌋). We turn our attention at this point only to the nonzero

elements and note that w0 = dc −
∑⌊q/2⌋

i=1 wi. In that sense, let us define

g(w1,...,w⌊q/2⌋) :=
∣∣∣{zi ∈ (Z/qZ)dc | zi satisfies the check-equation and∣∣ {j = 1, . . . , dc | wtL(zij) = k

} ∣∣ = wk

}∣∣∣.
We can describe this quantity summing over all dc-tuples that sum up to zero using an
indicator function, that is for a given statement Σ the function 1(Σ) is one whenever the
statement Σ is fulfilled, and zero otherwise. Indeed,

g(w1,...,w⌊q/2⌋) =
∑

zi∈(Z/qZ)dc
dcωzi

=w

1

(
dc∑

k=1

zk = 0

)
.

Applying the inversion formula for the discrete Fourier transform over Z/qZ yields

g(w1,...,w⌊q/2⌋) =
∑

zi∈(Z/qZ)dc
dcωzi

=w

1

q

∑
χ character

χ

(
dc∑

k=1

zk

)
. (6.11)

Over the finite Abelian group Z/qZ there are q characters χ0, . . . , χq−1 defined by χk(a) :=

e
2πi
q ka for each element a ∈ Z/qZ. Hence, we can rewrite (6.11) as

g(w1,...,w⌊q/2⌋) =
1

q

∑
zi∈(Z/qZ)dc
dcωzi

=w

q−1∑
s=0

e
2πi
q s

∑dc
k=1 zk . (6.12)

We then define the generating function g(t) by

g(t) :=
∑

w composition
of dc

g(w1,...,w⌊q/2⌋)t
w1
1 · · · t

w⌊q/2⌋
⌊q/2⌋ .

To obtain a similar expression for a configuration regarding all the check nodes, we take
the m-fold convolution of g(w1,...,w⌊q/2⌋), i.e.,

G(w1,...,w⌊q/2⌋) := g(w1,...,w⌊q/2⌋) ⊛ . . .⊛ g(w1,...,w⌊q/2⌋).

Hence, the corresponding generating function for m check nodes is

G(t) :=
∑

w composition
of mdc

g(w1,...,w⌊q/2⌋)t
w1
1 · · · t

w⌊q/2⌋
⌊q/2⌋ = g(t)m.

94 Chapter 6. Regular Lee-LDPC Codes

Let ω denote the type of the decomposition w, i.e., ndvω(i) = wi for every i ∈ {0, . . . , ⌊q/2⌋}.
The number of configurations of given Lee type ω is then the coefficient of the polynomial
G(t) at tndvω = tw1

1 · · · t
w⌊q/2⌋
⌊q/2⌋ . Finally, the probability a(n)(ω) is obtained by dividing the

(ndvω)-th coefficient of G(t) by all the possible permutations of a vector x ∈ (Z/qZ)ndv of
Lee type ω, which is given by the multinomial coefficient

(
ndv

ndvω

)
.

At this point, to simplify the understanding, we would like to discuss the expression in
(6.12) with an example.

Example 6.2.10. Assume the check node degree is dc = 2 and that the underlying integer
ring is Z/5Z. Let us furthermore assume that the Lee weight decomposition of a tuple zi at
a check node is w = (0, 2, 0). This means that zi is one of the following tuples

(1, 1), (1, 4), (4, 1), or (4, 4).

Since only (1, 4) and (4, 1) satisfy the check equation (i.e., sum up to zero modulo five),
the enumerator g(0,2,0) should equal two. In fact, the exponential expression in Equation
(6.12) equals 1 for all tuples satisfying the check equation. For those not satisfying the check
equation the sum of exponentials is the sum of n-th roots of unity (in our case n = 5) and is
hence equal to zero.

Let us now focus on the asymptotic growth rate of a(n) which we define as

α(ω) := lim
n−→∞

1

n
log(a(n)(ω)).

A direct consequence of taking the logarithm and the limit of the sequence a(n) is captured
in Corollary 6.2.11.

Corollary 6.2.11. Let z ∈ (Z/qZ)ndv satisfy the m check equations and denote by ω its Lee
type. Then we obtain the following asymptotic expression for the probability a(n)(ω).

α(ω) = −dvH(ω) + (1−R) inf
t≻0

log

(
g(t)

tωndv

)
,

where t ≻ 0 means that not every entry of t = (t1, . . . , t⌊q/2⌋) is equal to zero.

Taking the infimum over all possibilities of t = (t1, . . . , t⌊q/2⌋) is impractical. We will use
the asymptotic method of Hayman for multivariate polynomials (see [49, 72, 134]) to establish
limn−→∞ 1/n log

(
coeff

[
G(t), tωndv

])
.

Lemma 6.2.12 (Hayman Formula). Let x = (x1, . . . , xd) ∈ Rd and let p(x) be a multivariate
polynomial with p(0) ̸= 0. Furthermore, let β = (β1, . . . , βd) such that 0 ≤ βi ≤ 1 and βin ∈ N
for all i = 1, . . . , d. Assume that x⋆ = (x⋆1, . . . , x

⋆
d) is the unique positive real solution to the

system of equations given by

x1
∂p(x)

∂x1
= β1p(x), . . . , xd

∂p(x)

∂xd
= βdp(x).

Then, as n −→∞, it holds

lim
n−→∞

1

n
ln
(
coeff

[
(p(z))n, znβ

])
=

(
ln(p(x))−

d∑
i=1

βi ln(xi)

)
.

In our case, we have that

lim
n−→∞

1

n
ln
(
coeff

[
(g(t)1/dc)ndv , tωndv

])
= dv lim

n′−→∞

1

n′
ln
(
coeff

[
(g(t)1/dc)n

′
, tωn′

])
.

Hence, Corollary 6.2.13 is a direct consequence of Hayman’s Formula.

6.2. Average Weight Enumerator 95

Corollary 6.2.13. Let ω = (ω(0), . . . , ω(⌊q/2⌋)) ∈ [0, 1]⌊q/2⌋+1 such that ω(i)ndv ∈ N for
every i = 1, . . . , d. Then

α(ω) = dv

H(ω) + ln
(
g(t⋆)1/dc

)
−

⌊q/2⌋∑
i=1

ω(i) ln(t⋆i)

 ,

where t⋆ = (t⋆1, . . . , t
⋆
⌊q/2⌋) is the unique positive real solution to the equations

ti
∂g(t)1/dc

∂ti
= ω(i)g(t)1/dc , i = 1, . . . , ⌊q/2⌋ .

In his paper, Hayman gave an explicit expression for the coefficient of an admissible func-
tion (see [72, p. 69]). Hence, it easily follows that the sequence of functions

(
1
n log(a(n))

)
n∈N

is uniformly convergent.

6.2.3 Asymptotic Growth Rate

Having determined the two probabilities defined in Equations (6.5) and (6.6), respectively, the

expression for the average type enumerator A
(n)

θ (C) follows immediately. We can then deduce
immediately the asymptotics of the average type enumerator and average weight enumerator,
respectively.

Corollary 6.2.14. Let C be a random (dv, dc)-regular LDPC code of length n over Z/qZ. Let

A(θ) := limn−→∞
1
n log(A

(n)

θ (C)) and W(ℓ) := limn−→∞
1
n log(Wℓ

(n)
(C)) be spectral growth

rate of the average Lee type enumerator and weight enumerator, respectively. Then

A(θ) ≤ H(θ) + sup
ω∈Tθ((Z/qZ)ndv)

(ϕ(ω | θ) + α(ω)) , and

W(ℓ) ≤ sup
θ∈T ((Z/qZ)n) : wtL(θ)=ℓ

A(θ). (6.13)

Proof. From Equation (6.4) we observe that

Av
(n)
θ (C) =

(
n

nθ

) ∑
ω∈Tθ((Z/qZ)ndv)

f (n)(ω | θ)a(n)(ω).

Hence, we have

A(θ) = H(θ) + lim
n−→∞

1

n
log

 ∑
ω∈Tθ((Z/qZ)ndv)

f (n)(ω | θ)a(n)(ω)

≤ H(θ) + lim

n−→∞

1

n
log

(
sup

ω∈Tθ((Z/qZ)ndv)

[
f (n)(ω | θ)a(n)(ω)

] ∣∣ Tθ ((Z/qZ)ndv
) ∣∣)

(a)
= H(θ) + lim

n−→∞
sup

ω∈Tθ((Z/qZ)ndv)

[
1

n
log
(
f (n)(ω | θ)a(n)(ω)

)]
= H(θ) + lim

n−→∞
sup

ω∈Tθ((Z/qZ)ndv)

[
1

n
log
(
f (n)(ω | θ)

)
+

1

n
log
(
a(n)(ω)

)]
,

where for (a) we used, that
∣∣ Tθ ((Z/qZ)ndv

) ∣∣ is polynomial in n. By the uniform convergence
shown in Lemma 6.2.8 and in [72], we can switch the limit with the supremum and the
statement follows. The bound in (6.13) for W(ℓ) follows in an analogous manner.

Figures 6.3, 6.4 and 6.5 show the spectral growth rate of the average weight enumerator of
a random regular (3, 6) LDPC code over Z/2Z, Z/3Z and Z/4Z, respectively. Furthermore, it
shows on the little frame the expected smallest weight of a codeword in the respective LDPC
ensemble.

96 Chapter 6. Regular Lee-LDPC Codes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

Normalized Lee weight δ

li
m

n
−
→

∞
1 n
lo
g
(W

(n
)

n
δ
(C
))

0 0.5 1 1.5 2 2.5 3

·10−2

−6

−4

−2

0

2

4

6

·10−3

Figure 6.3: Spectral growth rate of the average weight enumerator of a
regular (3, 6) LDPC code ensembles over Z/2Z.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

Normalized Lee weight δ

li
m

n
−
→

∞
1 n
lo
g
(W

(n
)

n
δ
(C
))

0 0.2 0.4 0.6 0.8 1

·10−2

0

0.2

0.4

0.6

0.8

1

·10−2

Figure 6.4: Spectral growth rate of the average weight enumerator of a
regular (3, 6) LDPC code ensembles over Z/3Z.

6.2. Average Weight Enumerator 97

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

Normalized Lee weight δ

li
m

n
−
→

∞
1 n
lo
g
(W

(n
)

n
δ
(C
))

0 1 2 3 4 5

·10−2

−6

−4

−2

0

·10−3

Figure 6.5: Spectral growth rate of the average weight enumerator of a
regular (3, 6) LDPC code ensembles over Z/4Z.

The average weight spectrum of LDPC codes has been studied mainly over the binary
field F2. It has been shown [58] that for a random regular (dv, dc) LDPC code C over F2 its
average weight spectrum has the following form

(1− dv)H(ω) + dv lim
n−→∞

1

n
log

(
coeff

[(
(1 + x)dc + (1− x)dc

2

)ndv/dc

, xndvω

])
. (6.14)

In fact, this form corresponds to the expression in (6.13) which we can rewrite as

sup
θ∈T ((Z/qZ)n)

(
H(θ)− dv

[
H(θO)−

∑
d∈Dq

θ(Od) log(| Od |)
]

+ dv

[
ω̂ + lim

n−→∞

1

n
log
(
coeff

[
G(t), tndvω

])])
. (6.15)

It is easy to verify that, for q = 2, the generating function G(x) given in Equation (6.10),
coincides with the polynomial

Ḡ(t) :=

(
(1 + x)dc + (1− x)dc

2

)ndv/dc

.

Note as well that ω̂ = 1 − 1 = 0 and that the orbits are given by O0 = {0} and O1 = {1}.
Hence, we observe

H(θ) = H(θO) and
∑
d∈Dq

θ(Od) log(| Od |) = 0.

Thus, Expression (6.14) is identical to Expression (6.15).

98 Chapter 6. Regular Lee-LDPC Codes

6.3 Decoding Performance over Lee Channels

In this section, we analyze the error-correction performance of regular LDPC codes over the
two channel models presented in Sections 5.1.1 and 5.1.2, respectively. First and foremost, we
discuss an upper bound on the block error probability under maximum likelihood decoding
over the memoryless Lee channel using a union bound argument. We then focus on the
performance with respect to the belief propagation algorithm and the symbol message-passing
decoder, respectively. For both decoders we start by adapting the decoders to the Lee metric
over integer residue rings discussing the main changes and assumptions needed for providing
a full density evolution analysis.

6.3.1 Bounds on the Block Error Probability Based on the Lee
Weight Spectrum

We are interested in the average block error probability under maximum likelihood decoding
of random regular LDPC code ensembles over Z/qZ in the memoryless Lee channel. As the
channel is symmetric, we can assume the transmission of the zero codeword. The maximum
likelihood decoder fails if and only if there is a nonzero codeword c ∈ C \ {0} satisfying

PY | x(y | 0) ≤ PY | x(y | c).

We refer to the probability of this event as the pairwise error probability and denote it
by PEP(0 → c). Note that, in the spirit of obtaining an upper bound on the block error
probability, we break ties always in favor of the erroneous codeword. Using a union bound
argument, we observe that the block error probability is upper bounded by the sum of all
pairwise error probabilities, i.e.,

PB(C) ≤
∑

c∈C\{0}

PEP(0→ c). (6.16)

We can rewrite the pairwise error probability as

PEP(0→ c) = P
(
PY | x(y | 0)
PY | x(y | c)

≤ 1

)
. (6.17)

Denoting the log-likelihood ratio as

Λ(y, c) := log

(
PY | X(y | 0)
PY | X(y | c)

)
we have PEP(0 → c) = P (

∑n
i=1 Λ(yi, ci) ≤ 0). Hence, the analysis reduces to the analysis

of the distribution of the random variables Λℓ := Λ(Y, c = ℓ), where Y is a random variable
distributed following the Boltzmann-like distribution Bδ as defined in (5.5). Owing to the
symmetry of the Boltzmann distribution, we have that

PY | X(y | c) = PY | X(−y | − c),

and therefore also
Λ(y, c = ℓ) = Λ(−y, c = −ℓ).

It follows that the distribution of Λℓ equals the distribution of Λ−ℓ. Hence, the evaluation
of (6.17) can be carried out by counting the number of elements in c possessing Lee weight
ℓ with ℓ ∈ {0, . . . ⌊q/2⌋}. We will therefore again make use of the Lee type of a codeword
(see Definition 6.2.1). Thus, we can rewrite the pairwise error probability for any nonzero
codeword c ∈ C as follows

PEP(0→ c) = P

⌊q/2⌋∑
ℓ=1

nθc(ℓ)∑
j=1

Λj ≤ 0

 .

6.3. Decoding Performance over Lee Channels 99

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

10−4

10−3

10−2

10−1

Normalized Lee weight δ

P
ai
rw

is
e
er
ro
r
p
ro
b
ab

il
it
y

Hamming weight 11
Hamming weight 9
Hamming weight 7
Hamming weight 4
Hamming weight 3

Figure 6.6: Comparison of the pairwise error probabilities over Z/9Z of
vectors of Lee weight 11 and varying Hamming weight.

This gives us an exact value of the pairwise error probability under maximum likelihood
decoding. However, this expression requires eventually to iterate over every Lee type in the
code C and is therefore inefficient for codes with large parameters. In the following we present
a “worst case” candidate for the pairwise error probability, as long as wtL(c) = t ≤ n, which
ultimately serves to upper bound the block error probability.

Lemma 6.3.1. Consider a nonzero codeword c ∈ C such that wtL(c) = t ≤ n. Let x(t) ∈
(Z/qZ)n be of Lee type θx(t) = (1 − t/n, t/n, 0, . . . , 0). Over a memoryless Lee channel with
δ ≤ δq we have

PEP(0→ c) ≤ PEP(0→ x(t)),

where equality holds if and only if c is of the same Lee type θc = θx(t) .

Observe that the nonzero positions of x(t) consist only of elements of Lee weight 1. There-
fore, it holds that wtL(x

(t)) = wtH(x
(t)) = wtL(c). Figure 6.6 gives empirical evidence sup-

porting the result of Lemma 6.3.1.
For the case t > n there is a similar scenario stated in Lemma 6.3.2.

Lemma 6.3.2. Consider a nonzero codeword c ∈ C such that wtL(c) = t > n. Let x(n) ∈
(Z/qZ)n be of Lee type θx(n) = (0, 1, 0, . . . , 0). Over a memoryless Lee channel with δ ≤ δq
we have

PEP(0→ c) ≤ PEP
(
0→ x(n)

)
.

We can use these results to upper bound on the block error probability of a linear code
over the memoryless Lee channel as a function of the codes Lee distance spectrum, for δ ≤ δq.

Corollary 6.3.3. Consider an [n, k] linear code C ⊂ (Z/qZ)n. For all ℓ ∈ {0, . . . , n ⌊q/2⌋}
let W

(n)
ℓ (C) denote the Lee weight enumerator of C. The block error probability of C under

maximum likelihood decoding over the memoryless Lee channel δ ≤ δq is upper bounded as

PB(C) ≤
n⌊q/2⌋∑
ℓ=1

W
(n)
ℓ (C)P

min(ℓ,n)∑
i=1

Λ1 < 0

 . (6.18)

100 Chapter 6. Regular Lee-LDPC Codes

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10−2

10−1

100

Normalized Lee weight δ

B
lo
ck

er
ro
r
p
ro
b
a
b
il
it
y

Monte Carlo simulation
Bound from Corollary 6.3.3

Figure 6.7: Comparison of the union bound from Corollary 6.3.3 with
respect to the performance measured via Monte Carlo simulation for the
linear code over Z/7Z of length n = 6 and dimension k = 2 from Example

6.3.4.

Proof. The proof follows by applying Lemma 6.3.1 and Lemma 6.3.2 to the PEP-terms in the
classical union bound. In fact, we can upper bound the block error probability (6.16) by∑

c∈C\{0}
wtL(c)<n

PEP
(
0→ x(wtL(c))

)
+

∑
c∈C\{0}
wtL(c)≥n

PEP
(
0→ x(n)

)
.

Now for both x(wtL(c)) and x(n) the nonzero elements have Lee weight 1. Hence, we obtain∑
c∈C\{0}
wtL(c)<n

PEP
(
0→ x(wtL(c))

)
+

∑
c∈C\{0}
wtL(c)≥n

PEP
(
0→ x(n)

)

=
∑

c∈C\{0}
wtL(c)<n

P

wtL(c)∑
i=1

Λ1 < 0

+
∑

c∈C\{0}
wtL(c)≥n

P

(
n∑

i=1

Λ1 < 0

)

=
∑

c∈C\{0}

P

min(wtL(c),n)∑
i=1

Λ1 < 0

 . (6.19)

Since P
(∑min(wtL(c),n)

i=1 Λ1 < 0
)
is the same for all codewords sharing the same Lee weight, we

can take the sum over all possible Lee weights and multiply this probability by the number
of codewords of that Lee weight. This yields the result.

Example 6.3.4. Figure 6.7 depicts the union bound provided in Corollary 6.3.3, together
with the block error probability estimated via Monte Carlo simulation. For the comparison
we used a linear code over Z/7Z of length n = 6 and dimension k = 2 with generator matrix

G =

(
1 0 3 3 3 0

0 1 0 4 3 3

)
.

As usually observed, the union bound provide accurate estimates at sufficiently low error
probability.

6.3. Decoding Performance over Lee Channels 101

2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1 0.12 0.14 0.16 0.18 0.2
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Normalized Lee weight δ

B
lo
ck

er
ro
r
ra
te

Belief propagation
Union bound, Corollary 6.3.3

Figure 6.8: Union bound versus belief propagation over Z/4Z for a random
(3, 6) LDPC code of length n = 256.

The union bound of Corollary 6.3.3 can be readily used to study the error floor performance
of regular LDPC code ensembles. To do so, it is sufficient to replace the weight enumerator

W
(n)
ℓ in (6.18) with the ensemble average enumerator W

(n)

ℓ . An example is provided in
Figure 6.8, where the union bound on the maximum likelihood decoding average block error
probability for the (3, 6)-LDPC code ensemble of length n = 256 over Z/4Z is depicted. The
result is compared with the numerical simulation for a code from the ensemble, under belief
propagation decoding. As typical of union bounds on the block error probability, the bound
is not informative above the cut-off rate of the channel. However, it provides an indication
of the error probability regime at which an error floor may be observed, allowing for a quick
estimation of the capability of certain code ensembles to attain given target error probabilities.

To get a better impression of this bound, let us focus on Λ1 a bit more. The following
result states mean and variance of the random variable Λ1.

Lemma 6.3.5. Let Λ1 be defined as above for every i ∈ Z/qZ. Then Λ1 has the following
mean and variance.

E(Λ1) = P(Y = 1)− P(Y = ⌊q/2⌋),

Var(Λ1) =

{(
1− P(Y = ⌊q/2⌋)

)
− E(Λ1)

2 q odd

1− E(Λ1)
2 q even

.

Proof. Recall that Λ1 := wtL(Y − 1) − wtL(Y), where Y is a random variable following
the distribution in (5.5). Applying the definition of the Lee weight, we easily observe that
Λ1 ∈ {−1, 0, 1} if q is odd and Λ1 ∈ {−1, 1} if q is even. Moreover, for k ∈ Z/qZ we obtain

P(Λ1 = k) =

P(Y ∈ {1, . . . , ⌊q/2⌋}) if k = −1
P(Y = ⌊q/2⌋+ 1) if k = 0

P(Y ∈ {⌊q/2⌋+ 2, . . . , q}) if k = 1

, for q odd, and

P(Λ1 = k) =

{
P(Y ∈ {1, . . . , ⌊q/2⌋}) if k = −1
P(Y ∈ {⌊q/2⌋+ 1, . . . , q}) if k = 1

, for q even.

The proof of the expected value then follows easily by applying its definition. For the variance,
we use Var(Λ1) = E(Λ2

1)− E(Λ1)
2.

102 Chapter 6. Regular Lee-LDPC Codes

Let I ⊂ {1, . . . , n} be an index set. With the help of the law of large numbers and the
central limit theorem, we deduce that the sum

∑
i∈I Λ1, as | I | grows, follows a Gaussian

distribution with mean and variance equal to the | I |-th multiple of the values in Lemma
6.3.5, respectively. Hence, the probabilities in (6.19) can be approximated by the tail of a
Gaussian distribution approximating the distribution of Λ1 with corresponding | I |. However,
if I is relatively small it is convenient to work with the empirical distribution, given by the
| I |-fold convolution of the distribution of Λ1. Furthermore, for a fixed I we notice that the
distribution of

∑
i∈I Λ1 varies depending on whether I is even or odd. In fact, if I is even, it

is more likely that the sum
∑

i∈I Λ1 is even too and vice versa. Both cases can mutually be
approximated by a Gaussian distribution and both cases will coincide as I tends to infinity.

6.3.2 Density Evolution Analysis

The analysis of the Lee spectrum of LDPC code ensembles can be used, in conjunction with
the union bound, to analyze the ensembles behaviour under maximum likelihood decoding
at low error rates. Nevertheless, it fails to capture the block error probability behaviour in
the waterfall region, under iterative decoding. We hence complement the distance spectrum
analysis with a density evolution characterization of the ensemble in the limit of large block
lengths. In particular, we estimate the asymptotic iterative decoding threshold over the
memoryless Lee channel under belief propagation and symbol message-passing decoding. The
iterative decoding threshold δ⋆ is defined as the largest value of the channel parameter δ for
which, in the limit of large n and large maximal number of iterations ℓmax, the symbol
error probability of an LDPC code picked randomly from a (dv, dc) code ensemble becomes
vanishing small [107]. Owing to the complexity of tracking the evolution of the distribution of
multidimensional messages, under belief propagation decoding we resort to the Monte Carlo
method [47]. We denote by δ⋆BP the decoding threshold under belief propagation decoding.

For the sake of completeness let us quickly recall the Monte Carlo method used in each
iteration of the decoders to generate as much randomness as possible. Given a sparse parity-
check matrix H of a regular LDPC code, the overall idea for each iteration i is the following:

1. Each variable node receives a vector L(i) = (log(y1), . . . , log(yn)), where each yi ∈ Z/qZ
is independently and uniformly generated following the distribution (5.5).

2. Scramble the entries of the parity-check matrix H, i.e., permute the edges between the

variable nodes and the check nodes with some permutation Π
(i)
1 .

3. Label each edge in the graph by a randomly chosen unit u ∈ (Z/qZ)× and perform the
variable node-to-check node messages.

4. Randomly permute the edges between the check nodes and variable nodes again using

some permutation Π
(i)
2 . Transmit the check node-to-variable messages.

Figure 6.9 illustrates this process in a message-passing algorithm between check nodes and
variable nodes.
The Monte Carlo simulation allows to model the labels of the edges as random variables
over (Z/qZ)× which yields a distribution for the check node-to-variable node messages. This
means, we are able to model the extrinsic channel according to some probability distribution.
In fact, the extrinsic channel can then be viewed as a q-SC which we discuss below. Knowing
the extrinsic channel model is then used in the density evolution analysis (see Section 6.3.2)
to determine the iterative decoding thresholds.

6.3. Decoding Performance over Lee Channels 103

. . .

. . .

dv

. . .

dv

. . .

dv

. . .

dv

Π1

Π2

. . .CNs

. . .
dc

dc

. . .

. . .
dc

dc

. . .

. . .
dc

dc

. . .

. . .VNs

. . .
dv

. . .
dv

. . .
dv

. . .
dv

L(i) i.i.d. as log(y) with y ∼ Bδ

Figure 6.9: Illustration of one iteration using a Monte Carlo simulation.

The density evolution analysis for the symbol message-passing decoder has been intro-
duced in [81, Sec. IV]. We briefly sketch the idea and emphasize the respective modifications
according to the new memoryless Lee channel. For the symbol message-passing decoder the
density evolution analysis not only aims at estimating the decoding threshold δ⋆SMP, but it
also provides bounds on the error probabilities ξ of the extrinsic channel modelled as q-SC
which are needed in the computation of the aggregated extrinsic log-likelihood vector (6.3).
Since the memoryless Lee channel is symmetric and the code is linear, we can assume that
the all-zero codeword has been transmitted. Similar to the notation used in the description

of the symbol message-passing decoder, we let m
(ℓ)
v→c denote the message sent from variable

node v to check node c in the ℓ-th iteration. For every a ∈ Z/qZ, let us define the probability
of sending a message m

(ℓ)
v→c = a, knowing that originally zero has been transmitted as

p(ℓ)a := P
(
m(ℓ)

v→c = a | X = 0
)
.

Hence, recalling the memoryless Lee channel transition probability PY | X(y | x) from (5.5),
we initialize the density evolution analysis routine by computing for each a ∈ Z/qZ the
probabilities

p(0)a = PY | X(a | 0).

As indicated above, except from the computation of the aggregated extrinsic likelihood vector,
the remaining steps of the density evolution analysis are identical to [81, Sec. IV]. In particular,
we employ the q-SC approximation for the extrinsic channel.

Table 6.1 records the decoding thresholds δ⋆SMP and δ⋆BP for the symbol message-passing
and belief propagation decoder, respectively, for both (3, 6) and (4, 8) regular LDPC code
ensembles with q ranging from 5 to 8, as well as the Shannon limit δ⋆SH for the rate R = 1/2.

Remark 6.3.6. The choice of the discrete memoryless channel used to model the extrinsic
channel plays a crucial role for the symbol message-passing algorithm, especially concerning
the decoding performance. In [82], for the case of binary message-passing decoding, it was
suggested to model the variable node inbound messages as observations of a binary symmetric
channel, whose transition probability was estimated by means of density evolution analysis.
The approach was generalized in [81] for symbol message-passing, where the variable node
inbound messages are modelled as observations of a q-SC. In our setting we also model
the extrinsic channel as a q-SC defined in (6.2). However, the q-SC model holds only in an
approximate sense.

104 Chapter 6. Regular Lee-LDPC Codes

Table 6.1: Decoding thresholds for regular LDPC code ensembles under
belief propagation and symbol message-passing decoding.

q (v, c) δ⋆BP δ⋆SMP δ⋆SH

5
(3, 6) 0.2148 0.1039

0.2684
(4, 8) 0.1802 0.1200

6
(3, 6) 0.2485 0.1151

0.3147
(4, 8) 0.2217 0.1405

7
(3, 6) 0.3086 0.1261

0.3560
(4, 8) 0.2686 0.1539

8
(3, 6) 0.3135 0.1374

0.3950
(4, 8) 0.2690 0.1623

The adoption of the q-SC approximation is particularly useful from a practical viewpoint
since the variable node processing in symbol message-passing decoding becomes particularly
simple if the variable node-to-check node messages are assumed to be observations of an ex-
trinsic q-SC. Moreover, this specific choice is motivated by the fact that, for LDPC codes
over finite fields, the extrinsic channel transition probabilities, averaged over a uniform dis-
tribution of nonzero elements in the parity-check matrix, yield (in the limit of a large block
length) a q-SC [81]. The Lemma 6.3.7 for q prime, supports this statement.

Lemma 6.3.7. Consider a prime number q. Let H be a random variable drawn uniformly at
random form the multiplicative group (Z/qZ)× and let X be any random variable over Z/qZ.
Define the random variable V = X ·H. Then V follows a q-SC-like distribution given as

P(V = v) =

{
P(X = 0) if v = 0
1

q−1 (1− P(X = 0)) else.

Proof. Since H is drawn uniformly at random from (Z/qZ)× and q is a prime, for every
h ∈ (Z/qZ)× it holds that

P(H = h) =
1

q − 1
. (6.20)

Firstly, let us focus on P(V = 0). Since over a finite field zero is the only zero-divisor and
since H is defined only over the multiplicative group (Z/qZ)×, the first case follows, i.e.,

P(V = 0) = P(X = 0).

Consider than P(V = v), where v ∈ (Z/qZ)×. Recall that over a finite field for every unit
x ∈ (Z/qZ)× there exists a unique h ∈ (Z/qZ)× such that x · h = v. We denote this by (⋆).
Furthermore, note that X and H are independent, denoted by X ⊥⊥ H.

P(V = v) = P(X ·H = v) =
∑

x∈(Z/qZ)×

∑
h∈(Z/qZ)×

x·h=v

P(X = x, H = h)

⊥⊥
=

∑
x∈(Z/qZ)×

∑
h∈(Z/qZ)×

x·h=v

P(X = x)P(H = h)

(⋆), (6.20)
=

∑
x∈(Z/qZ)×

1

q − 1
P(X = x)

=
1

q − 1
(1− P(X = 0)).

6.3. Decoding Performance over Lee Channels 105

Even though for q is non-prime the average extrinsic channel transition probabilities can
not be represented by a q-SC, we still make this assumption. This might result in a suboptimal
decoding performance but yields a good estimate on the asymptotic density evolution. Recall,
that the nonzero entries of a parity-check matrix of an LDPC code over Z/qZ lie in the set of
units (Z/qZ)× and label the edges of the corresponding bipartite graph. Assuming that we
consider an integer ring Z/qZ consisting of relatively many units and that these nonzero entries
are chosen uniformly at random from (Z/qZ)×, the q-SC assumption is fair. In fact similar
assumptions for other channels have been made in the past (see for instance [138]) and helps to
provide a density evolution analysis for the considered message-passing algorithms. Empirical
evidence obtained by measuring the total variation distance between the true extrinsic channel
and the q-SC shows that the q-SC can still be used to accurately model the actual extrinsic
channel, especially if the ring possesses relatively many unit elements. More precisely, we
show numerically that the total variation distance between the two message distributions
tends to zero as the number of iteration grows. We denote by Uq the fraction of units in
Z/qZ, i.e.,

Uq :=
| (Z/qZ)× |
|Z/qZ |

.

In order to cover different cases and support the conjecture that the q-SC assumption is es-
pecially accurate for integer rings with relatively many units, we chose three integer rings
having different fractions of units. Namely, we chose Z/8Z, Z/9Z and Z/12Z with corre-
sponding fraction of units

U8 = 1/2, U9 = 2/3, U12 = 1/3.

Figures 6.10 and 6.11 show the evolution of the total variation distance with the number
of iterations for (3, 6)-regular and (4, 8)-regular LDPC code ensembles, respectively. In each
figure and for each integer ring, we consider three different situations:

1. the relative Lee weight δ is below δ⋆SMP,

2. the relative Lee weight δ is close to δ⋆SMP, and

3. the relative Lee weight δ exceeds δ⋆SMP.

As shown by the Figures 6.10 and 6.11 in all the three cases the total variation distance
between the extrinsic channel distribution and the q-SC converges to zero as the number of
iterations increase. Hence, the figures clearly support the conjecture on the fraction of units
Uq as well as the choice to model the average extrinsic channel transition probabilities by a
q-SC.

106 Chapter 6. Regular Lee-LDPC Codes

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3
·10−3

Number of iterations

T
o
ta
l
va
ri
a
ti
on

d
is
ta
n
ce

Z/8Z with δ = 0.11 and δ⋆ = 0.1374

Z/8Z with δ = 0.15 and δ⋆ = 0.1374

Z/8Z with δ = 0.18 and δ⋆ = 0.1374

Z/9Z with δ = 0.11 and δ⋆ = 0.1491

Z/9Z with δ = 0.15 and δ⋆ = 0.1491

Z/9Z with δ = 0.18 and δ⋆ = 0.1491

Z/12Z with δ = 0.11 and δ⋆ = 0.1873

Z/12Z with δ = 0.15 and δ⋆ = 0.1873

Z/12Z with δ = 0.18 and δ⋆ = 0.1873

Figure 6.10: Evolution of the total variation distance between the extrinsic
channel distribution and the q-SC for regular (3, 6) LDPC code ensembles

in the symbol message-passing decoder.

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3
·10−3

Number of iterations

T
ot
al

va
ri
at
io
n
d
is
ta
n
ce

Z/8Z with δ = 0.11 and δ⋆ = 0.1623

Z/8Z with δ = 0.15 and δ⋆ = 0.1623

Z/8Z with δ = 0.18 and δ⋆ = 0.1623

Z/9Z with δ = 0.11 and δ⋆ = 0.1681

Z/9Z with δ = 0.15 and δ⋆ = 0.1681

Z/9Z with δ = 0.18 and δ⋆ = 0.1681

Z/12Z with δ = 0.11 and δ⋆ = 0.1795

Z/12Z with δ = 0.15 and δ⋆ = 0.1795

Z/12Z with δ = 0.18 and δ⋆ = 0.1795

Figure 6.11: Evolution of the total variation distance between the extrinsic
channel distribution and the q-SC for regular (4, 8) LDPC code ensembles

in the symbol message-passing decoder.

6.3. Decoding Performance over Lee Channels 107

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3
·10−3

Number of iterations

T
o
ta
l
va
ri
a
ti
on

d
is
ta
n
ce

Z/8Z with δ = 0.11 and δ⋆ = 0.1437

Z/8Z with δ = 0.15 and δ⋆ = 0.1437

Z/8Z with δ = 0.18 and δ⋆ = 0.1437

Z/9Z with δ = 0.11 and δ⋆ = 0.1553

Z/9Z with δ = 0.15 and δ⋆ = 0.1553

Z/9Z with δ = 0.18 and δ⋆ = 0.1553

Z/12Z with δ = 0.11 and δ⋆ = 0.1760

Z/12Z with δ = 0.15 and δ⋆ = 0.1760

Figure 6.12: Evolution of the total variation distance between the extrinsic
channel distribution and the q-SC for regular (5, 10) LDPC code ensembles

in the symbol message-passing decoder.

6.3.3 Numerical Results

We finally present numerical results showing the decoding performance (in terms of block
error rates) of (3, 6) regular LDPC codes of length n = 256 under both belief propagation
and symbol message-passing decoding. We chose to analyze the performances over three
different integer rings, namely Z/5Z, Z/7Z and Z/8Z. The performances will additionally
be compared to the Lee-symbol flipping decoder presented in [114, Algorithm 2]. Following
the suggestions of [114], we assumed a decoding threshold τ = dv

2 for the Lee-symbol flipping
decoder. All the results were obtained using Monte Carlo simulations where we generated the
parity-check matrices via the progressive edge growth (PEG) algorithm [77] assuming that
the nonzero entries are chosen uniformly at random from (Z/qZ)×. The error vectors in the
constant Lee-weight channel are drawn uniformly at random from the Lee sphere of a given
radius representing the desired weight according to [16, Algorithm 1 and 2], whereas in the
memoryless Lee channel the entries of the error vector are drawn according to the distribution
defined in (5.5). In both cases, the performance is compared to the random coding union
bounds established in Corollary 5.2.4 and Theorem 5.2.7, respectively.

The block error probability evaluated over the memoryless Lee channel is shown in Figure
6.13. The random coding union bounds (dotted in the graph) show clearly the impact of the
size q of the finite integer ring, i.e., larger q admit a larger relative Lee weight δ. This is
also observed in the performance under both belief propagation and symbol message-passing
decoding as well as in the Lee-symbol flipping decoder. The impact of q in the symbol
message-passing is not only important for the admissible choices of δ, it also shows clearly
the difference between q being prime and composite. While a small gain is achieved when
considering Z/8Z instead of Z/7Z under belief propagation decoding, the performance slightly
suffers under symbol message-passing decoding meaning there is almost no gain. This might
be due to the q-SC assumption which holds only in an asymptotic sense for the non-field case,
as discussed in Section 6.3.2.

We observe the same effect in the performance over the constant Lee-weight channel
in Figure 6.14, i.e., there is almost no gain visible when moving from q = 7 to q = 8
under the symbol message-passing decoder. Analogous to the memoryless case, we observe
the same impact of the size of Z/qZ on the possible choices of δ which is captured by the
RCU bound for the constant Lee-weight channel. In both channel models we observe that

108 Chapter 6. Regular Lee-LDPC Codes

the symbol message-passing decoder outperforms the Lee-symbol flipping decoder despite
the q-SC assumption in the extrinsic channel of the symbol message-passing. We want to
emphasize and acknowledge here that the Lee-symbol flipping was originally designed for
low-Lee-density parity-check codes which form a special class of LDPC codes. Hence, when
comparing the performances over the two decoders the difference of the code classes might be
taken in consideration. Nevertheless, we will not focus deeper on this argument and leave this
subject to future investigations. However, we believe that the additional knowledge about
the marginal distribution plays a crucial part in the performance gain under symbol message-
passing decoding. Observe that the estimated threshold values obtained via density evolution
analysis and stored in Table 6.1 match well to the actual block error rates achieved by both
belief propagation and symbol message-passing decoding. As expected from the predictions in
Table 6.1, belief propagation clearly outperforms symbol message-passing decoding. However,
the symbol message-passing algorithm shows a performance that is appealing for applications
demanding low-complexity decoding [114].

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35
10−4

10−3

10−2

10−1

100

RCU

Z/5Z Z/7Z Z/8Z

Normalized Lee weight δ

B
lo
ck

er
ro
r
ra
te

BP Z/5Z
BP Z/7Z
BP Z/8Z
SMP Z/5Z
SMP Z/7Z
SMP Z/8Z
LSF Z/5Z
LSF Z/7Z
LSF Z/8Z

Figure 6.13: Block error rate vs. δ for regular (3, 6) nonbinary LDPC
codes of length n = 256 over the memoryless Lee channel. Lee-symbol
flipping compared to the random coding union bound from Theorem 5.2.7,

symbol message-passing and belief propagation decoding.

6.4. Summary and Outlook 109

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4
10−4

10−3

10−2

10−1

100

RCU

Z/5Z Z/7Z Z/8Z

Normalized Lee weight δ

B
lo
ck

er
ro
r
ra
te

BP Z/5Z
BP Z/7Z
BP Z/8Z
SMP Z/5Z
SMP Z/7Z
SMP Z/8Z
LSF Z/5Z
LSF Z/7Z
LSF Z/8Z

Figure 6.14: Block error rate vs. δ for regular (3, 6) nonbinary LDPC code
ensembles of length n = 256 and rate R = 1/2 on the constant Lee-weight
channel under Lee-symbol flipping, symbol message-passing and belief prop-
agation decoding compared to the random coding union bound from Theo-

rem 5.2.3.

6.4 Summary and Outlook

In this chapter we introduced a code family in the Lee metric, namely the family of regular
Lee-LDPC codes over the integer residue ring Z/qZ, for any positive integer q. We analyzed
the ensemble in its algebraic structure and in terms of its error-correction performance over
the Lee channels. More specifically, the group action of the set of units (Z/qZ)× on Z/qZ
was used to understand how the Lee type of a vector changes when passing it along the edges
of a parity-check matrix. Together with generating functions to enumerate the number of
valid check node assignments an expression for the expected weight enumerator of a regular
LDPC ensemble in the Lee metric with its asymptotic growth rate has been discussed (see
Section 6.2 and especially Corollary 6.2.14). The average weight enumerator of the regular
LDPC ensemble was then used to derive an upper bound on the maximum likelihood block
error probability. Especially in the regime of low error probability, generally known as the
error floor region, the bound provides relevant information about the code’s performance.
For a full analysis we simulated the decoding performance of (3, 6) regular LDPC codes
of length n = 256 over the Lee channels. Here, two decoding algorithms were considered:
a nonbinary belief propagation algorithm, and a low-complexity message-passing algorithm
where the exchanged messages are elements of the residue ring Z/qZ. The simulation results
confirmed the outcomes of the density evolution analysis, that is belief propagation decoding
outperforms symbol message-passing decoding. Nevertheless, the performance under symbol
message-passing decoding seems a promising option for applications asking for low complexity
(such as code-based cryptosystems involving the Lee metric).

For this thesis only regular LDPC code ensembles have been considered. In the future,
this work could be extended to other families of LDPC codes, such as irregular or protograph-
based ensembles, or to MDPC code families. On a more algebraic side, the expected weight

110 Chapter 6. Regular Lee-LDPC Codes

enumerator of the LDPC codes have been derived applying the method of types to the Lee-
weight decomposition of a vector. Since the MacWilliams identities do not hold for the
weight enumerator of Lee-metric codes, we might consider the Lee-type spectrum instead
which would subdivide the class of codewords of given Lee weight into even smaller groups
depending on their underlying weight decomposition.

111

Chapter 7

Restricted Information Set
Decoding

In this final chapter we present an application of the marginal distribution of a vector of
given Lee weight (Lemma 5.1.4) to code-based cryptography. More explicitly, we discuss its
impact on information set decoding in the Lee metric. To start this chapter, in Section 7.1
we will give an overview on Information Set Decoding (ISD) as originally introduced over
finite fields endowed with the Hamming metric. Since many improvements of Prange’s plain
ISD algorithm are based on solving sub-problems of the syndrome decoding problem using
a generalized birthday algorithm approach, we recap this technique too. Information set de-
coding is the yet best known method to attack the syndrome decoding problem which is the
underlying NP-hard problem to most code-based cryptosystems (like the McElice cryptosys-
tem [93] or the Niederreiter scheme [97]). Even though McEliece’s scheme is as old as RSA
and yet unbroken, modern code-based cryptography is moving away from the classical idea
of McEliece, where the distinguishability of the secret code obstructs a security reduction to
the syndrome decoding problem, and moving towards ideas from lattice-based cryptography
such as the ring learning with error problem. Note, that the Lee metric is the closest metric
in coding theory to the Euclidean metric used in lattice-based cryptography, in the sense that
both metrics take into consideration the magnitude of the entries.

Due to new challenges in code-based cryptography, such as the search for efficient signature
schemes, also other metrics are now investigated. For example the rank metric has gained a lot
of attention due to the NIST submission ROLLO [1] and RQC [2]. While the understanding
on the hardness of the rank-metric syndrome decoding problem is still rapidly developing (see
the new benchmark achieved in [13]), it is still unknown whether the rank-metric syndrome
decoding problem is an NP-hard problem.

The situation for the Lee metric is quite different. The Lee-metric syndrome decoding
problem was first studied for codes over Z/4Z in [75]. Later, in [130] the problem was shown
to be NP-hard over any Z/psZ and several generic decoding algorithms to solve the problem
have been provided. Also, the paper [40] confirmed the cost regimes of [129] and more
importantly the observation, that Lee-metric ISD algorithms cost more than their Hamming
metric counterparts for fixed input parameters. Thus, the Lee metric has a great potential to
reduce the key sizes or signature sizes in code-based cryptosystems. This could be of special
interest, since NIST recently launched a second call for post-quantum signature schemes to
be standardized.

For the syndrome decoding problem in any metric, we assume that the instance is given
by a randomly chosen parity-check matrix and an error vector of fixed weight which was also
chosen uniformly at random. In the Lee metric, for such a vector, in the limit of its length,
we know almost surely of which Lee weights its positions are composed, namely they follow
the Boltzmann-like distribution discussed in 5.1.4. In Section 7.3 we use this result on the
marginal distribution of such a vector of given Lee weight to reduce the cost of the Lee-metric
ISD algorithms further and thus contribute to the recent advances in understanding the
hardness of this problem, with the final goal of deeming this setting secure for applications.

The results presented in Section 7.2, 7.3 and 7.4 were studied in collaboration with Karan
Khathuria and Violetta Weger in [18].

112 Chapter 7. Restricted Information Set Decoding

7.1 Background to Information Set Decoding

Code-based cryptosystems are based on a mathematically hard problem, such as the syndrome
decoding problem. This problem aims to decode a random linear code over a finite field
endowed with some metric using a parity-check matrix of the code. Originally, this metric
has been defined to be the Hamming metric. Note that there is a generator-matrix equivalent
description of the problem which we refer to as generic decoding problem.

In the following let us consider an [n, k]-linear code C ⊆ Fn
q , where q = ps.

Problem 7.1.1 (Generic Decoding Problem). Let k ≤ n be two positive integers and G ∈
Fk×n
q a generator matrix of C. Given t be a positive integer, m ∈ Fk

q and y ∈ Fn
q , find e ∈ Fn

q

such that

y = mG+ e and wtH(e) = t.

Problem 7.1.2 (Syndrome Decoding Problem). Let k < n be two positive integers and

H ∈ F(n−k)×n
q a generator matrix of C. Given t be a positive integer and s ∈ Fn−k

q , find
e ∈ Fn

q such that

s = eH⊤ and wtH(e) = t.

Fixing the dimension k and letting the block length n tend to infinity, then the Gilbert-
Varshamov bound provides us a threshold value τGV for the weight t of the error vector by(

n

τGV

)
= qn−k.

If wt(e) = t < τGV then we expect that there is a unique solution to the syndrome (or generic)
decoding problem. If t exceeds the threshold τGV, we expect q

k−n
(
n
t

)
solutions to the problem.

Both of the problems have been shown to be NP-complete [14, 22]. A brute-force algorithm
would run through every vector x ∈ Fn

q and check whether the two conditions are satisfied.
This would yield a cost of (

n

t

)
(q − 1)tt(n− k) bits.

Recently, these decoding problems have also been considered in other metrics like, for instance,
the Lee metric [130].

If the instances of the syndrome decoding problem are random, then the best known
methods to tackle the problem are ISD and the generalized birthday algorithm. If only a
few solutions are given, we prefer ISD over the generalized birthday decoding. The first
ISD algorithm was proposed by Prange [104] in 1962. This was even before code-based
cryptosystems have been proposed. All other ISD algorithms are based on Pranges version
and all of them define improvements of Pranges original decoding algorithm. Although the
literature on ISD algorithms in this classical case is vast (see [21, 26, 36, 37, 39, 54, 84, 85,
92, 125]), the cost of generic decoding has only decreased little and is considered stable. The
fastest algorithm over the binary until this day is called BJMM algorithm [21] and uses the
idea of representation technique from [76]. For an overview of the binary case see [94]. With
new cryptographic schemes proposed over general finite fields, most of these algorithms have
been generalized to Fq (see [69, 74, 78, 96, 100]).

7.1.1 General Framework and Prange’s Algorithm

For a given code C of length n and dimension k over the finite field Fq let us introduce the
notion of an information set.

Definition 7.1.3. Let k ≤ n be two positive integers and let C be an [n, k]q-linear code. We
call a set I ⊂ {1, . . . , n} an information set of size k if it satisfies

| C | = | CI | .

7.1. Background to Information Set Decoding 113

An information set is hence a set of k positions that uniquely determines every codeword.
As we know from an encoding map induced by a generator matrix G of C, C is completely
defined by k positions. Hence, the definition of an information set makes sense. Furthermore,
there exist at most

(
n
k

)
many information sets.

Assume that a word y = c + e ∈ Fn
q has been received, where c is a codeword and e an

error term of fixed weight t. In principle, the main idea behind this algorithm is to guess
a random information set I of size k and hope that it does not contain any error positions.
That means we would like to have

yI = cI

or equivalently eI = 0. More explicitly, Pranges algorithm [104] works as follows:

1. Choose an information set I ⊂ {1, . . . , n} of size k for C.

2. Bring the parity-check matrix H ∈ F(n−k)×n
q into standard form corresponding to I.

That is, find an invertible matrix U ∈ F(n−k)×(n−k)
q satisfying

(UH)I ∈ F(n−k)×k
q and (UH)Ic = In−k.

3. Go through every e ∈ Fn
q with wtH(e) = t and given weight distribution. Check whether

e(UH)
⊤
= eH⊤U⊤ = sU⊤.

(a) If satisfied, return the vector e.

(b) Otherwise, restart with step 1 by choosing a new information set.

Complexity Anaylsis

All the variants of ISD repeat a (large) number of independent iterations N all consisting of
K, the (expected) cost per iteration, and a success probability P reciprocal to N , i.e., P = 1

N .
The cost of an ISD is then given by:

C := O
(
1

P
· K
)
.

Considering Prange’s ISD algorithm, an error is found if it has the form e = (e1, 0, . . . , 0)
where e1 ∈ Fn−k

q is of weight t. Assuming that there exists a unique solution to the syndrome
decoding problem (i.e., t is below the threshold given by the Gilbert-Varshamov bound), the
success probability is given by

PPrange =

(
n−k
t

)(
n
t

) .

For each iteration, Prange’s algorithm requires K = n(n− k) column operations (mainly due
to Gaussian elimination). Hence, we obtain a cost of

CPrange = O

(
n(n− k)

(
n
t

)(
n−k
t

))
.

7.1.2 Improved ISD Variants

Prange’s ISD Algorithm has been generalized by Stern [125] and Dumer [53], respectively.
In contrast to Prange’s algorithm, they did not assume that all the erroneous positions lie
outside an information set. Instead, their idea was to decompose the problem into a smaller
instance, i.e., another syndrome decoding problem with smaller parameters. To solve the
smaller instance they represented the error term as a sum of two vectors of a specific form.
Given an instance of the syndrome decoding problem in the Lee metric, the highlevel idea is
the following:

114 Chapter 7. Restricted Information Set Decoding

1. Find an invertible matrix U ∈ (Z/psZ)(n−k)×(n−k) such that

UH⊤ =

(
In−k−ℓ 0

A⊤ B⊤

)
.

2. Transform the syndrome equation accordingly to(
e1 e2

)
UH⊤ =

(
s1 s2

)
= sU.

3. Assume, wtL(e1) = t− v and wtL(e2) = v. Hence, we need to solve

e1 + e2A
⊤ = s1

e2B
⊤ = s2

4. Solve the smaller instance of the Lee-syndrome decoding problem given by e2B
⊤ = s2.

Immediately check whether e1 = s1 − e2A⊤ has Lee weight t− v.

To find all the solutions of the smaller instance e2B
⊤ = s2, Stern and Dumer applied an

enumeration technique In a nutshell, we split the matrix B and the syndrome s into two
parts, B⊤

1 , B⊤
2 and s11, s22, respectively. Then we enumerate the following two sets

L1 :=
{
x1 ∈ Fn/2

q | x1B⊤
1 = s11 and wt(x1) = v/2

}
, and

L2 :=
{
x2 ∈ Fn/2

q | x2B⊤
2 = s22 and wt(x2) = v/2

}
.

If L1 ∩ L2 ̸= ∅ then solutions exist.

Further improvements have been proposed by May, Meurer and Thomae [92], and by
Becker, Joux, May and Meurer in [21]. In the ISD variant proposed in [21] the authors
gave an improved version of the representation technique by introducing an additional level
of recursive call and an requiring that the weight of the elements in the lists L1 and L2 is
increased ε, i.e., given by v/2 + ε. creating an overlap of (in average) ε nonzero positions in
two words. The idea is, that two words of weight t/2 + ε and length n are expected to have
a sum of weight t. We refer to this algorithm as the BJMM algorithm.

In the Lee metric, the BJMM algorithm on two levels was shown to be the fastest algorithm
among the Lee-variants of the ISD algorithms [130].

7.2 Restricted Lee-Spheres

For a prime number p and a positive integer s, we focus on the integer residue ring Z/psZ.
Recall from (4.1) that the maximum Lee weight in Z/psZ is given by M = ⌊ps/2⌋. In our
restricted version of the BJMM-algorithm we do not use the full n-dimensional Lee-sphere
of a given radius t. In fact, we restrict the entries of the vectors in the sphere to a certain
maximum or minimum Lee weight threshold that we denote by r ∈ {0, . . . ,M}. We are
interested in the expected number of entries that have Lee weight smaller or larger than this
threshold r. Let ψ(r, t, n, ps) denote the expected number of entries of e which have a larger
Lee weight than r and let φ(r, t, n, ps) denote the expected Lee weight of e without the entries
of larger Lee weight than r. In addition, for some randomly chosen subset I ⊂ {1, . . . , n} of
size 0 ≤ ℓ ≤ n, let us denote by σ(ℓ, t, n, ps) the expected support size of eI .

7.2. Restricted Lee-Spheres 115

Lemma 7.2.1. Let e be chosen uniformly at random in S(n)t,ps , r ∈ {0, . . . ,M} and 0 ≤ ℓ ≤ n.
Then

ψ(r, t, n, ps) = n

M∑
i=r+1

P(wtLE = i),

φ(r, t, n, ps) = n

r∑
i=0

i · P(wtLE = i),

σ(ℓ, t, n, ps) = ℓ

M∑
i=1

P(wtLE = i).

Proof. The proof easily follows from (5.7) and using the assumption that each entry of e is
independent.

Thus, we let S(n)v,ps(r), respectively S(n)v,ps(r), denote the Lee-sphere of radius v ∈ N centered
at the origin with entries restricted to {0,±1, . . . ,±r}, respectively to {±r, . . . ,±M}. That
is,

S(n)v,ps(r) := {x ∈ {0,±1, . . . ,±r}n|wtL (x) = v },

S(n)v,ps(r) := {x ∈ {±r, . . . ,±M}n|wtL (x) = v }.

The size of the sphere is crucial to understand the number of representatives and to analyze
the complexity of the proposed algorithm, as the list sizes depend on the sphere size. Let
us describe the sphere sizes in terms of generating functions. Then, use the saddle point
technique (see Section 3.3) to compute their limit in the dimension n.

Similarly to the generating function for the n-dimensional Lee-sphere of fixed radius t in

(3.10), the generating function for S(n)t,ps(r) and S(n)t,ps(r) are given by Φr(x) := fr(x)
n and

Φr(x) := fr(x)
n, respectively, where

fr(x) :=

{
1 + 2

∑M−1
i=1 xi + xM if p = 2 and r =M,

1 + 2
∑r

i=1 x
i otherwise.

fr(x) :=

fM (x) if r = 0,

2
∑M−1

i=r xi + xM if p = 2 and r > 0,

2
∑M

i=r x
i if p ̸= 2 and r > 0.

Note that the coefficient of xt in Φr(x) is equal to the coefficient of xt−rn in Ψr(x) := gr(x)
n,

where

gr(x) :=

fM (x) if r = 0,

2
∑M−1−r

i=0 xi + xM−r if p = 2 and r > 0,

2
∑M−r

i=0 xi if p ̸= 2 and r > 0.

In particular, we have that ∣∣∣S(n)t,ps(r)
∣∣∣ = coeff

[
Ψr(x), x

t−rn
]
.

Hence, the sizes of the spheres are computed, respectively, as∣∣∣S(n)t,ps(r)
∣∣∣ = coeff

[
Φr, x

t
]
,∣∣∣S(n)t,ps(r)

∣∣∣ = coeff
[
Ψr(x), x

t−rn
]
.

Using Lemma 3.3.1, we get the following asymptotic behavior of restricted Lee-spheres.

Corollary 7.2.2. Let T ∈ [0,M) and t = t(n) be a function of n such that t(n) := Tn for
large n. Then,

116 Chapter 7. Restricted Information Set Decoding

1. for p ̸= 2 or r < M , we get

lim
n→∞

1

n
logps

(∣∣∣S(n)t,ps(r)
∣∣∣) = logps(fr(ρ))− T logps(ρ),

where ρ is the unique real positive solution of 2
∑r

i=1(i− T)xi = T and

fr(ρ) = 1 + 2

r∑
i=1

ρi =
r(ρ+ 1) + 1

(1− ρ)(r − T) + 1
,

2. for p = 2 and r =M , respectively r′ = 0, we get

lim
n→∞

1

n
logps

(∣∣∣S(n)t,ps(r)
∣∣∣) = logps(fr(ρ))− T logps(ρ),

where ρ is the unique real positive solution of 2
∑M−1

i=1 (i− T)xi + (M − T)xM = T and

gr(ρ) = fr(ρ) = 1 + 2

M−1∑
i=1

ρi + ρM

=
ρM+1(T −M) + ρM (T −M + 1) + ρ(T −M) + T +M + 1

ρ(T −M) +M + 1− T
.

Proof. We apply Lemma 3.3.1 to the generating function Φr(x) and obtain the mentioned
results, similar to r =M for fr case proved in [130, Lemma 2.6].

Corollary 7.2.3. Let T ∈ [0,M) and t = t(n) be a function of n such that t(n) := Tn for
large n. Then,

1. for p = 2 and 0 < r ≤ T , we get

lim
n→∞

1

n
logps

(∣∣∣S(n)t,ps(r)
∣∣∣) = logps(gr(ρ))− (T − r) logps(ρ),

where ρ is the unique real positive solution of

2

M−1−r∑
i=1

(i− T + r)xi + (M − T)xM−r = 2(T − r),

and

gr(ρ) = 2

M−1−r∑
i=0

ρi + ρM−r =
ρM−r+1 + ρM−r − 2

ρ− 1
,

2. for p ̸= 2 and 0 < r ≤ T , we get

lim
n→∞

1

n
logps

(∣∣∣S(n)t,ps(r)
∣∣∣) = logps(gr(ρ))− (T − r) logps(ρ),

where ρ is the unique real positive solution of 2
∑M−r

i=1 (i− T + r)xi = 2(T − r) and

gr(ρ) = 2

M−r∑
i=0

ρi =
2ρM−r+1 − 2

ρ− 1
.

Proof. We apply Lemma 3.3.1 to the generating function Ψr(x) and obtain the mentioned
results.

Remark 7.2.4. Note that, for p odd (respectively, even), we get T ≥ M(M + 1)/(2M + 1)
(respectively, T ≥M/2) if and only if

lim
n→∞

1

n
logps

(∣∣∣B(n)Tn,ps

∣∣∣) = 1.

7.3. Restricted Lee-BJMM Algorithm 117

Hence, if 0 < R, then a code that attains the asymptotic Gilbert-Varshamov bound has

lim
n→∞

1

n
logps

(∣∣∣B(n)Tn,ps

∣∣∣) = 1−R < 1,

and we immediately get that T < M(M + 1)/(2M + 1) if p is odd, or T < M/2 if p is even.

7.3 Restricted Lee-BJMM Algorithm

We are now going to present an adapted version of the Lee-BJMM algorithm. The idea
is to make use of the marginal distribution presented in Lemma 5.1.4 of the entries of a
vector e ∈ (Z/psZ)n drawn uniformly at random. This means that with high probability we
can assume that the less probable Lee weights lie outside the information set. Hence, the
erroneous positions lie in a restricted subset of Z/psZ.

We are interested in algorithms that have as input a code generated by a matrix chosen
uniformly at random. Due to the result in [32, Proposition 16], we are therefore allowed to
assume that our code is free, i.e., k = K and a generator matrix and a parity-check matrix
have up to permutations of columns the following form

G =
(
Ik A

)
, H =

(
In−k B

)
,

where A ∈ (Z/psZ)k×(n−k)
and B ∈ (Z/psZ)(n−k)×k

. In addition, in [32, Theorem 20] it
was shown that such a random code also attains the Gilbert-Varshamov in the Lee metric
(Theorem 3.4.5) bound with high probability.

Let C ⊆ (Z/psZ)n be a linear code with parity-check matrix H, then for an x ∈ (Z/psZ)n

we say that s = xH⊤ is a syndrome. The aim is to solve the Lee-syndrome decoding problem
below which was shown to be NP-complete in [130].

Problem 7.3.1 (Lee Syndrome Decoding Problem). Given H ∈ (Z/psZ)(n−k)×n
, t ∈ N and

s ∈ (Z/psZ)n−k
, find e ∈ (Z/psZ)n such that s = eH⊤ and wtL(e) = t.

To this end, we assume that the input parity-check matrix H is chosen uniformly at

random in (Z/psZ)(n−k)×n
and that there exists a solution e ∈ (Z/psZ)n, which was chosen

uniformly at random in the n-dimensional sphere of Lee-radius t over Z/psZ, S(n)t,ps , and set

s to be its syndrome s = eH⊤. We provide two new algorithms, taking care of two different
scenarios. The main idea of these new algorithms is to use the results of [16], which provide us
with additional information on the unique solution e ∈ (Z/psZ)n. For example, the expected
number of entries of e having a fixed Lee weight.

In the first scenario, Section 7.3.1, we want to decode up to the minimum distance of
the code having H as parity-check matrix. For this, we let dL(C) be the minimum distance
from the Gilbert-Varshamov bound. With this even if we assume full distance decoding, i.e.,
t = dL(C), we expect to have a unique solution e to Problem 7.3.1 for large n. In fact, the
expected number of solutions to the Lee syndrome decoding problem is given by

N =

∣∣∣S(n)t,ps

∣∣∣
ps(n−k)

=

∣∣∣S(n)dL(C),ps

∣∣∣
ps(n−k)

≤ 1.

In the second scenario given in Section 7.3.2, we consider a fixed Lee weight t which is
beyond the minimum distance, and solve this new problem by reversing the idea of the first
algorithm. For a vector e ∈ (Z/psZ)n of given Lee weight t we are interested in its Lee
weight decomposition. Let us therefore recap the definition of an integer composition. For a
given integer m a weak integer composition of k of length n is an n-tuple λ = (λ1, . . . , λn) of
nonnegative integers satisfying

λ1 + · · ·+ λn = k.

We can think of the Lee weight decomposition of a vector e ∈ (Z/psZ)n with wtL(e) as a
weak integer composition λ = (λ1, . . . , λn) of t of length n such that λi = wtL(ei). Note that
the maximal part size of λ is then restricted by M .

118 Chapter 7. Restricted Information Set Decoding

A weak composition π of a positive integer v of length n is said to fit into a weak compo-
sition λ of a positive integer t of the same length n, if the part sizes of π are upper bounded
by the part sizes of λ, i.e., for every i ∈ {1, . . . , n} it holds πi ≤ λi. Owing to the aim of
decomposing the Lee weight, let us denote by C(v, t, λ, n, ps) the set of all weak compositions
of v of length n fitting into the weak decomposition λ of π of length n, where additionally
the part sizes of λ are at most M . For a given composition λ of t, let m denote the maximal
part size, i.e.,

m = max {λi | i ∈ {1, . . . , n}} .

7.3.1 Bounded Minimum Distance Decoding

Consider here the scenario where there exists a unique solution to the Lee syndrome decoding
problem. This is, we introduce an error of weight t, where t is bounded by the Gilbert-
Varshamov bound 3.4.5. Normalizing the weight t by the length n of the error vector e, the
Gilbert-Varshamov bound in the Lee metric directly implies that t/n < M

2 . Hence, as n grows
large, zero is the most likely Lee weight to occure in e, followed by elements of Lee weight 1
and so forth. The maximum Lee weight M = ⌊ps/2⌋ in (Z/psZ)n is the least likely. Defining
a threshold Lee weight r ∈ [0,M], we assume that with high probability all entries of e of Lee
weight larger than r lie outside the information set. Note that this assumption is justified
by Theorem 5.1.6. Thus, using the partial Gaussian elimination algorithms, we are left with
finding a smaller error vector, which only takes values in {0,±1, . . . ,±r}. This will make a
huge difference for algorithms such as the Lee-metric BJMM [130], where the list sizes are
the main factor in the cost and these can now be immensely reduced.

Let us consider a random instance of the Lee syndrome decoding problem given by

H ∈ (Z/psZ)(n−k)×n
, s ∈ (Z/psZ)n−k

and t ∈ N with t/n < M/2.

The framework takes as input (H, s, t, r,S), where S denotes a solver for the smaller instance
in the space {0,±1, . . . ,±r}, which instead of outputting a list of possible solutions for the
smaller instance immediately checks whether the smaller solution at hand leads to a solution
of the original instance. The framework on (H, s, t, r,S) works as follows:

1. For some 0 ≤ ℓ ≤ n − k, we bring the parity-check matrix into partial systematic

form by multiplying H with some invertible U ∈ (Z/psZ)(n−k)×(n−k)
and adapting the

syndrome accordingly to s′ = sU⊤. For simplicity, assume that we have an information
set in the last k positions. Thus, the Lee syndrome decoding problem becomes

(
e1 e2

)(Idn−k−ℓ 0

A⊤ B⊤

)
=
(
s1 s2

)
,

with A ∈ (Z/psZ)(n−k−ℓ)×(k+ℓ)
, B ∈ (Z/psZ)ℓ×(k+ℓ)

, s1 ∈ (Z/psZ)n−k−ℓ
and s2 ∈

(Z/psZ)ℓ . Thus, we have to solve two parity-check equations:

e1 + e2A
⊤ = s1,

e2B
⊤ = s2. (7.1)

Here, we assume that e2 has Lee weight v and e1 has Lee weight t−v, for some positive
integer 0 ≤ v ≤ t.

2. We solve the smaller instance of the Lee syndrome decoding problem given by Equation
(7.1) using algorithm S. In particular, we find an error vector e2 such that e2B

⊤ = s2,
wtL(e2) = v, and it has entries in {0,±1, . . . ,±r}. Instead of storing a list of solutions
e2, S will immediately check whether e1 = s1 − e2A⊤ has the remaining Lee weight
t− v. Clearly, v will also depend on the choice of r.

Solving the smaller instance can be achieved using various techniques, for example via Wag-
ner’s approach used in [40, 130] or via the representation technique used in [130]. However,
we have to slightly adapt these techniques to make use of the assumption that the entries are
restricted to {0,±1, . . . ,±r}.

7.3. Restricted Lee-BJMM Algorithm 119

Recall, that we S(n)v,ps(r) denote the Lee-sphere of weight v ∈ N centered at the origin with
entries restricted to {0,±1, . . . ,±r}, i.e.,

S(n)v,ps(r) := {x ∈ {0,±1, . . . ,±r}n|wtL (x) = v }.

In the following lemma, we show that if e is a random vector of length n and Lee weight t

which splits as (e1, e2) with e2 ∈ S(k+ℓ)
v,ps (r), then e2 has a uniform distribution in S(k+ℓ)

v,ps (r).

Lemma 7.3.2. Let e be chosen uniformly at random in S(n)t,ps such that e = (e1, e2) with

e2 ∈ S(k+ℓ)
v,ps (r). Then e2 follows a uniform distribution in S(k+ℓ)

v,ps (r), and henceforth e1 follows

a uniform distribution in S(n−k−ℓ)
t−v,ps (r).

Proof. For an arbitrary e2 ∈ S(k+ℓ)
v,ps (r), there are exactly

∣∣∣S(n−k−ℓ)
t−v,ps (r)

∣∣∣ possible e that restrict
to e2 in their last k+ ℓ coordinates. Therefore, if e is chosen uniformly at random, then each

e2 has an equal chance of being chosen from S(k+ℓ)
v,ps (r).

As a corollary, we see that this splitting of e comes with a probability of

P =
∣∣∣S(k+ℓ)

v,ps (r)
∣∣∣ ∣∣∣S(n)t−v,psn− k − ℓ

∣∣∣ ∣∣∣S(n)t,ps

∣∣∣−1

.

Lee-BJMM Algorithm with Small Weights

Let us consider an adaption of the Lee-BJMM algorithm from [130], where two levels were the
optimal choice and proved to remain the optimal choice also for this new algorithm. Although
the smaller error vector e2 now only has entries in {0,±1, . . . ,±r}, to enable representation
technique, we will assume that such a vector e2 is built from the sum of two vectors y1 + y2,
where ε many of their positions cancel out and thus are allowed to live in the whole ring
Z/psZ. Let us denote these positions by E . We also denote the symmetric group of size n by
Sn.

Let us recall the high level idea of BJMM on two levels.
First, we split e2 as

e2 = y1 + y2 = (x
(1)
1 , x

(1)
2) + (x

(2)
1 , x

(2)
2).

Thus, for the syndrome equation to be satisfied, we want that

s2 = e2B
⊤ = y1B

⊤ + y2B
⊤.

Let us also split B ∈ (Z/psZ)ℓ×(k+ℓ)
into two matrices B =

(
B1 B2

)
, where Bi ∈

(Z/psZ)ℓ×(k+ℓ)/2
, for i ∈ {1, 2}. Then in a first merge to get yi = (x

(i)
1 , x

(i)
2) we want for

i = 1, that they give the syndrome 0, i.e.,

x
(1)
1 B⊤

1 = −x(1)2 B⊤
2 ,

and for i = 2 that they give the syndrome s2, i.e.,

x
(2)
1 B⊤

1 = s2 − x(2)2 B⊤
2 .

This choice is motivated by the fact that each partial syndrome is equally likely. Let us split
E evenly into two disjoint index sets, i.e., E = E1 ∪ E2 such that | E1 |=| E2 | and E1 ∩ E2 = ∅.
The base lists Bi for i ∈ {1, 2} are then built as follows

Bi =
{
ν(x) | xEC

i
∈ {0, . . . ,±r}(k+ℓ−ε)/2, xEi ∈ (Z/psZ)ε/2 ,wtL(xEC

i
) = v/4, ν ∈ S(k+ℓ)/2

}
.

120 Chapter 7. Restricted Information Set Decoding

e2

k + ℓ

︸ ︷︷ ︸
supp(e2) ∈ {±1, . . . ,±r}| supp(e2) |

v

y1 v/4

ε/2

︸ ︷︷ ︸
x
(1)
1

v/4

ε/2

︸ ︷︷ ︸
x
(1)
2

y2 v/4

ε/2

︸ ︷︷ ︸
x
(2)
1

v/4

ε/2

︸ ︷︷ ︸
x
(2)
2

Figure 7.1: Illustration of two levels decomposition of the vector e2 into
y1 and y2, where yi = (x

(i)
1 , x

(i)
2) for i = 1, 2. The gray areas denote the

support of the vectors and the values inside the area are the corresponding
Lee weights.

For some positive integer u ≤ n and x, y ∈ (Z/psZ)n, we write x =u y, to denote that
x = y in the last u positions. Let us define the following two sets.

L1 =
{
µ(y) | yEC ∈ {0, . . . ,±r}k+ℓ−ε, yE ∈ (Z/psZ)ε ,

wtL(yEC) = v/2, yB⊤ =u 0, µ ∈ Sk+ℓ

}
,

L2 =
{
µ′(y) | yEC ∈ {0, . . . ,±r}k+ℓ−ε, yE ∈ (Z/psZ)ε ,

wtL(yEC) = v/2, yB⊤ =u s2, µ
′ ∈ Sk+ℓ

}
.

Performing a concatenation merge (see Algorithm 2), we compute yi = (x
(i)
1 , x

(i)
2) for (x

(i)
1 , x

(i)
2) ∈

B1 × B2 on the syndromes 0 and s2 and u positions. Hence, to get y1 ∈ L1, we merge

y1 = (x
(1)
1 , x

(1)
2), such that

x
(1)
1 B⊤

1 =u −x(1)2 B⊤
2 ,

and to get y2 ∈ L2, we merge y2 = (x
(2)
1 , x

(2)
2), such that

x
(2)
1 B⊤

1 =u s2 − x(2)2 B⊤
2 .

We then merge L1 ▷◁ L2 as shown in Algorithm 3 on the syndrome s2 and ℓ positions,
computing e2 = y1 + y2, for (y1, y2) ∈ L1 × L2 such that the positions E of y1 and y2 cancel
out, i.e., y1E + y2E = 0 and wtL(e2) = v.

Remark 7.3.3. Note that our base lists, as well as the lists Li employ a permutation. Hence,
it might happen that the E positions are not equal for y1 and y2, and these positions might
not cancel out. However, the algorithm still succeeds, since we check within the merge, that
yi ∈ Li have the correct weight v. The only implication for the workfactor is that the success
probability in this case would even be larger, thus we are giving an upper bound on the cost.

Asymptotic Complexity Analysis

We now present the merging algorithms and their asymptotic costs. Since the cost depends
on the sizes of the list B1, B2, L1 and L1 which are partly defined over the restricted spheres,
we use the results presented in Section 7.2 and expected values of the quantities given in
Lemma 7.2.1.

We fix the real numbers V,L,E, U with

0 ≤ V ≤ min{T, φ(r, t, n, ps)}, 0 ≤ L ≤ 1−R, 0 < E < R+ L,

7.3. Restricted Lee-BJMM Algorithm 121

such that 0 ≤ T − 2V ≤ M(1 − R − L) and 0 < U < L. Then we fix the internal algorithm
parameters and v, ℓ, ε, u which we see as functions depending on n, such that

lim
n→∞

v

n
= V, lim

n→∞

ℓ

n
= L, lim

n→∞

ε

n
= E and lim

n→∞

u

n
= U.

Algorithm 2 Merge-concatenate

Require: The lists B1,B2, the positive integers 0 ≤ u ≤ ℓ, B1, B2 ∈ (Z/psZ)ℓ×(k+ℓ)/2
and

t ∈ (Z/psZ)ℓ.
Ensure: L = B1 ++t B2.
1: Lexicographically sort B1 according to the last u positions of x1B

⊤
1 for x1 ∈ B1. We also

store the last u positions of x1B
⊤
1 in the sorted list.

2: for x2 ∈ B2 do
3: for x1 ∈ B1 with x1B

⊤
1 =u t− x2B⊤

2 do
4: L = L ∪ {(x1, x2)}.
5: end for
6: end for
7: Return L.

Lemma 7.3.4 ([130, Lemma 4.3]). The asymptotics of the average cost of Algorithm 2 is

lim
n→∞

1

n
max

{
logps (| B1 |) , logps (| B2 |) , logps (| B1 |) + logps (| B2 |)− U

}
.

From this we get the lists

L1 = B1 ++0 B2, L2 = B1 ++s2 B2.

The second merge should not only merge to the target vector s2, it should also check the
Lee weight of the merged vector y1+ y2 and also the Lee weight of the remaining error vector
e1 = s1 − (y1 + y2)A

⊤.

Algorithm 3 Last Merge

Require: The input lists L1,L2, the positive integers 0 ≤ v ≤ t, 0 ≤ u ≤ ℓ, B ∈
(Z/psZ)ℓ×(k+ℓ)

, s2 ∈ (Z/psZ)ℓ and s1 ∈ (Z/psZ)n−k−ℓ
, A ∈ (Z/psZ)(n−k−ℓ)×(k+ℓ)

.
Ensure: e ∈ L1 ▷◁ L2.
1: Lexicographically sort L1 according to y1B

⊤ for y1 ∈ L1. We also store y1B
⊤ in the

sorted list.
2: for y2 ∈ L2 do
3: for y1 ∈ L1 with y1B

⊤ = s2 − y2B⊤ do
4: if wtL y1 + y2 = v and wtL s1 − (y1 + y2)A

⊤ = t− v then
5: Return (s1 − (y1 + y2)A

⊤, y1 + y2).
6: end if
7: end for
8: end for

Corollary 7.3.5 ([130, Corollary 2]). The asymptotic average cost of the last merge (Algo-
rithm 3) is given by

lim
n→∞

1

n
max

{
logps(| L1 |), logps(| L2 |),

(
logps(| L1 |) + logps(| L2 |)

)
− (L− U)

}
.

Note that the L − U comes from the fact that the vectors already merge to s2 on U
positions due to the first merge. Also, it might happen that y1 + y2 results in a vector of Lee
weight v, but the E positions did not cancel out, or the positions of low Lee weight are going
above the threshold r. This will not be a problem for us, as this only results in a larger final
list, which does not need to be stored and the success probability of the algorithm would then
even be larger than P .

122 Chapter 7. Restricted Information Set Decoding

The way we choose u, is such that we ensure that there exists at least one representative
y1 ∈ L1 of the solution e2, i.e., such that there exists y2 ∈ L2 with y1+y2 = e2. Thus, we have
to compute the expected total number of such representatives for a fixed e2. From Lemma

7.3.2, we know that e2 follows a uniform distribution in S(k+ℓ)
v,ps (r).

Using the marginal distribution in (5.5) and (5.7), we can compute the expected Lee
weight distribution for e2. Let λ be the expected Lee weight composition of e2, and σ be the
expected support size of e2. Also recall that for a weak composition λ of v, we denote by
C(v/2, v, λ, k+ ℓ, ps) the number of weak compositions π of v/2 which fit into a composition
λ of length k + ℓ, i.e., the maximal part sizes are given by λ.

Lemma 7.3.6. The expected number of representatives (y1, y2) ∈ L1×L2 for a fixed solution
e2 is at least given by

C(v/2, v, λ, k + ℓ, ps)

(
k + ℓ− σ

ε

)
(ps − 1)ε,

where λ is the expected Lee weight composition of e2, and σ is the expected support size of e2.

Proof. Consider the Lee weight composition of e2 to be λ = (λ1, . . . , λk+ℓ), which is such
that λi = wtL((e2)i). Thus, e2 = (s1λ1, . . . , sk+ℓλk+ℓ), for si ∈ {1,−1}. Then, to get all
possible representatives y1, we need the number of weak compositions π of v/2 fitting into
λ. In fact, for any π = (π1, . . . , πk+ℓ) fitting into λ, there exist exactly one eligible y1 with
wtL((y1)i) = πi and (y1)i = siπi. Note that the Lee weight composition of y2 ∈ L2 is then

| λ− π |= (| λ1 − π1 |, . . . , | λk+ℓ − πk+ℓ |).

On the other hand, for any representative y1, we cannot have πi = wtL((y1)i) > wtL((e2)i)
and (y1)i = −siπi for any i ∈ {1, . . . , σ}. In fact, let us assume we have A many positions
in y1 which are such that πi = wtL((y1)i) > wtL((e2)i) = λi. Then due to the entry-wise
additivity of the Lee weight, we have that y2, with composition | λ− π |, has wtL(y2) > v/2 :
in the considered A positions we have that wtL((y2)j) = πj − λj and the Lee weight of the
remaining σ−A positions is given by wtL((y2)j) = λj −πj , which if we sum over all positions
gives

wtL(y2) =

A∑
j=1

(πj − λj) +
k+ℓ∑

j=A+1

(λj − πj)

=

A∑
j=1

(πj − λj) + v −
A∑

j=1

λj −

v/2− A∑
j=1

−πj

= v/2 + 2

 A∑
j=1

πj − λj

 ̸= v/2.

It is easy to see, that for each fixed π, there exists only one representative y1, which has in
each position the same sign as e2.

Recall that C(v/2, v, λ, k+ ℓ, ps) denotes the number of weak compositions π of v/2 which
fit into λ. Now, since y1 can take any non-zero value on the ε positions outside the support of
e2, we get the claim. Finally, the exact number of representations might even be larger than
this, since a solution e2 might also be formed from positions E which will not cancel out, as
assumed for this computation.

In order to ensure the existence of at least one representative y1 ∈ L1 of e2, we now choose

u =

⌊
logps

(
C(v/2, v, λ, k + ℓ, ps)

(
k + ℓ− σ

ε

)
(ps − 1)ε

)⌋
.

Thus, in the asymptotic cost we need to compute U = lim
n→∞

u/n. Again we use the saddle

point technique for the asymptotic growth rate. Then, the asymptotics of C(v, t, λ, n, ps) is
summarized in Lemma 7.3.7 below.

7.3. Restricted Lee-BJMM Algorithm 123

Lemma 7.3.7. Let us consider a weak composition λ = (λ1, . . . , λn) of t and the asymptotic
relative Lee weight T := lim

n→∞
t(n)/n. In addition, let us consider a positive integer v ≤ t with

V := lim
n→∞

v(n)/n. Let m = max{λi | i ∈ {1, . . . , n}}. If 0 ≤ V < M , then

lim
n→∞

1

n
logps(C(v, t, λ, n, ps)) = logps(f(ρ))− V logps(ρ),

where ρ is the unique real positive solution of

m∑
i=1

ci
z + 2z2 + · · ·+ izi

1 + z + · · ·+ zi
= V.

Proof. Note the generating function of the set of compositions C(v, t, λ, n, ps) is given by

Φ(z) :=

n∏
i=1

 λi∑
j=0

zj

 =

m∏
i=1

 i∑
j=0

zj

cin

,

where ci corresponds to the multiplicity of i in the composition λ, i.e., there are cin entries
of e ∈ (Z/psZ)n which have Lee weight i. Thus, Φ(z) = f(z)n, for

f(z) =

m∏
i=1

 i∑
j=0

zj

ci

.

To get the asymptotics of C(v, t, λ, n, ps) we are interested in the coefficient of zv in Φ(z).
For this, let us define the asymptotic relative decomposition

V := lim
n−→∞

v(n)/n.

Now, using the saddle point technique of [60], we define ∆(f(z)) := zf ′(z)
f(z) . Let ρ be the unique

positive real solution to ∆(f(z)) = V , then

lim
n→∞

1

n
logps (C(v, t, λ, n, ps)) = logps(f(ρ))− V logps(ρ).

Let us denote the asymptotics of the binomial coefficient by

H(F,G) := lim
n→∞

1

n
logps

((
f(n)

g(n)

))
= F logps(F)−G logps(G)− (F −G) logps(F −G),

where f(n), g(n) are integer-valued functions such that lim
n→∞

f(n)
n = F and lim

n→∞
g(n)
n = G.

By Lemma 7.3.7, we have computed

γ(v/2) = lim
n′→∞

1

n′
logps (C(v/2, v, λ, n′, ps)) .

For us n′ = k + ℓ, which also tends to infinity for n going to infinity. Thus,

lim
n→∞

k + ℓ

n
lim

k+ℓ→∞

1

k + ℓ
logps (C(v/2, v, λ, k + ℓ, ps)) = (R+ L)γ(v/2).

Then,

U = (R+ L)γ(v/2) +H(R+ L− S,E) + E,

where S = lim
n→∞

σ/n.

124 Chapter 7. Restricted Information Set Decoding

Algorithm 4 Lee-BJMM with Small Balls

Require: H ∈ (Z/psZ)(n−k)×n
, s ∈ (Z/psZ)n−k

, t ∈ N, and the positive integers ℓ, v, ε
satisfying 0 ≤ ℓ ≤ n− k, 0 ≤ v ≤ t and 0 ≤ ε ≤ k + ℓ.

Ensure: A vector e ∈ (Z/psZ)n satisfying s = eH⊤ and wtL(e) = t.

1: Choose an n×n permutation matrix P and an invertible matrix U ∈ (Z/psZ)(n−k)×(n−k)

such that

UHP =

(
Idn−k−ℓ A

0 B

)
,

where A ∈ (Z/psZ)(n−k−ℓ)×(k+ℓ)
and B ∈ (Z/psZ)ℓ×(k+ℓ)

.
2: Compute

sU⊤ =
(
s1 s2

)
,

where s1 ∈ (Z/psZ)n−k−ℓ
and s2 ∈ (Z/psZ)ℓ .

3: Choose a set E ⊂ {1, . . . , k + ℓ} of size ε.
4: Build the lists B1,B2 as

Bi = {x | xEC ∈ {0,±1, . . . ,±r}(k+ℓ−ε)/2, xE ∈ (Z/psZ)ε/2 ,wtL(xEC) = v/4}.

5: Compute L1 = B1 ++0 B2 and L2 = B1 ++s2 B2.
6: Compute e ∈ L1 ▷◁ L2.
7: If this fails, return to Step 1.
8: Return P⊤e.

To ease the notation, we denote the asymptotics of the restricted Lee-metric sphere by

A
(n)
t,ps(r) := lim

n→∞

1

n
logps

(∣∣∣S(n)t(n),ps(r)
∣∣∣) .

Recall that A
(n)
t,ps(r) is computed according to Corollary 7.2.2. Furthermore, let us denote by

W = ψ(r, t, n, ps)/n.

Theorem 7.3.8. The asymptotic average time complexity of the Lee-metric BJMM algorithm
on two levels is at most given by I + C, where

I = A
(n)
t,ps(M)−A(k+ℓ)

t−v,ps(r)−A(n−k−ℓ)
t−v,ps (M),

is the expected number of iterations and C = max{B, 2D − L+ U,D} is the expected cost of
one iteration with

B = A
((k+ℓ−ε)/2)
v/4,ps (r) +H((R+ L)/2, E/2) + E/2,

D = A
(k+ℓ−ε)
v/2,ps (r) +H(R+ L,E) + E − U.

In addition, we have an expected memory of at mostM = max{B,D}. On a capable quantum
computer, the average time complexity is given by at most

I/2 + max

{
B,D,

1

2
(2D − L+ U)

}
.

Proof. For our base lists Bi, we have that

| Bi | =
∣∣∣S((k+ℓ−ε)/2)

v/4,ps (r)
∣∣∣ ((k + ℓ)/2

ε/2

)
(ps − 1)ε/2.

Due to Lemma 7.2.2, the cost of the first merge is then given by

B = A
((k+ℓ−ε)/2)
v/4,ps (r) +H((R+ L)/2, E/2) + E/2.

7.3. Restricted Lee-BJMM Algorithm 125

For the second merge we also need to compute the asymptotic sizes of Li. First, we note that

| Li |=

∣∣∣S(k+ℓ−ε)
v/2,ps (r)

∣∣∣ (k+ℓ
ε

)
(ps − 1)ε

psu
.

Thus,

D = lim
n→∞

1

n
logps (| Li |) = A

(k+ℓ−ε)
v/2,ps (r) +H(R+ L,E) + E − U.

Using Corollary 7.3.5, the second merge costs asymptotically

2D − L+ U =2A
(k+ℓ−ε)
v/2,ps (r) + 2H(R+ L,E) + 2E − U − L.

We recall that the success probability of the algorithm is given by P , hence for 0 ≤ V ≤
φ(r, t, n, ps)/n, we get the following asymptotic number of iterations

A
(n)
t,ps(M)−A(k+ℓ)

t−v,ps(r)−A(n−k−ℓ)
t−v,ps (M).

The average memory required for the algorithm is given by | Bi | and | Li |, thus taking
the asymptotics of these lists the claim follows. Finally, note that Grover’s algorithm can be
used to speed up on a capable quantum computer whenever a list L has to be searched. In
particular, instead of O(| L |), Grover’s algorithm only requires O(

√
| L |) operations. Thus,

this results asymptotically in limn→∞
1
2n logps(| L |). In our classical asymptotic cost, every

term stems from a searched list, except for B and D, which are intermediate lists that have
to be stored in full.

Observe that ℓ, v, r, ε are internal parameters, which can be chosen optimal, i.e., such that
the algorithm achieves the minimal cost. Clearly, the choice for the threshold r will influence
the possible choices for v.

Amortized Version

If we only consider psu many vectors from the base lists Bi, we could potentially reduce the
cost and memory.

The algorithm is going to work exactly the same way, with the only difference that the
base lists B′i have size psu. Thus, after using the merging Algorithm 2 on u positions we get
lists L′

i of size psu as well. Finally, we merge these lists using Algorithm 3 on ℓ positions.
Note that the conditions on U = limn→∞ u(n)/n are

L/3 ≤ U ≤ min{(R+ L)γ(v/2) +H(R+ L− S,E) + E,B,L},

where B denotes the asymptotic size of the original base lists, i.e.,

B = A
((k+ℓ−ε)/2)
v/4,ps (r) +H((R+ L)/2, E/2) + E/2.

The condition L/3 ≤ U , comes from the size of the final list, i.e., the number of solutions for

the smaller instance, which is ps2u

ps(ℓ−u) = ps(3u−ℓ). In order to have at least one solution, we

require 3u ≥ ℓ. Recall that (R + L)γ(v/2) + H(R + L − S,E) + E denotes the asymptotic
number of representations, thus the condition U ≤ (R + L)γ(v/2) + H(R + L − S,E) + E
is the same as for the original algorithm. The condition U ≤ B, as well as U ≤ L are
straightforward.

Note that in the amortized case, the success probability of splitting e = (e1, e2) is not
simply given by

P =
∣∣∣S(k+ℓ)

v,ps (r)
∣∣∣ ∣∣∣S(n−k−ℓ)

t−v,ps

∣∣∣ ∣∣∣S(n)t,ps

∣∣∣−1

as in the non-amortized case, since our list of e2 is by construction smaller. That is instead of

all solutions to the smaller problem
∣∣∣S(k+ℓ)

v,ps (r)
∣∣∣ p−sℓ, we only consider Z many solutions to

126 Chapter 7. Restricted Information Set Decoding

the smaller problem. In other words, Z is the number of distinct e2 in our last list. Similar
to the approach of [40], we have a success probability of

P ′ = Zpsℓ
∣∣∣S(n−k−ℓ)

t−v,ps

∣∣∣ ∣∣∣S(n)t,ps

∣∣∣−1

.

In order to compute Z, let us denote by X the maximal amount of collisions of the last
merge which would lead to an e2 (that is with possible repetitions), by Y the total number

of solutions to e2B
⊤ = s2 with e2 ∈ S(k+ℓ)

v,ps (r), namely

Y =
∣∣∣S(k+ℓ)

v,ps (r)
∣∣∣ p−sℓ,

and finally by W the number of collisions that we are considering, that is

W = ps(3u−ℓ) = ps2up−s(ℓ−u).

This leaves us with a combinatorial problem: having a basket with X balls having Y colors,
if we pick W balls at random, how many colors are we going to see on average? This will
determine the number of distinct tuples e2 in the final list. This number is on average

Y

(
1−

(
X −X/Y

W

)(
X

W

)−1
)
,

which can be lowerbounded by W. In fact,

1−
(
X −X/Y

W

)(
X

W

)−1

= 1− (X −X/Y + 1−W) · · · (X −W)

(X −X/Y + 1) · · ·X
≥ 1− (1−W/X)X/Y ∼W/Y.

Hence, Z ≥ ps(3u−ℓ) and we get a success probability of at least

ps3u
∣∣∣S(n−k−ℓ)

t−v,ps

∣∣∣ ∣∣∣S(n)t,ps

∣∣∣−1

.

The asymptotic cost of the amortized version of Algorithm 4 is then given by I ′ +
max{U, 3U − L}, where I ′ is the expected number of iterations, i.e.,

I ′ ≤ A(n)
t,ps(M)− 3U −A(n−k−ℓ)

t−v,ps (M).

Hence, we can see that the restriction to the smaller balls does not influence the amortized
version of BJMM, as the idea of amortizing is already to restrict the balls. The restriction
only influences the conditions and thus the possible choices of U.

7.3.2 Decoding Beyond the Minimum Distance

There could be scenarios where one wants to decode more errors than the minimum Lee
distance of the code at hand allows. In the classical case, i.e., in the Hamming metric, the
cost can then be divided by the expected number of solutions N . This follows from the fact
that for each of the N solutions we have a success probability P for one iteration to succeed.
Assuming that the solutions are independent, this implies that to find one solution we expect
the number of iterations to be 1

PN .
In a scenario where we have t > Mn/2, the marginal distribution of e ∈ (Z/psZ)n implies

that ±M is the most likely entry of e, then the second most likely is ±(M−1) and so on, until
the least likely entry is 0. In this case, we will reverse the previous algorithm and for some
threshold Lee weight 0 ≤ r ≤M , we want the vector e2 of Lee weight t− φ(r − 1, t, n, ps) ≤
v ≤ t to live in {±r, . . . ,±M}k+ℓ. In order to construct such a vector, we will use a similar
construction as before, where we exchange the set {0,±1, . . . ,±r} with {±r, . . . ,±M}. Thus,
we similarly denote the n-dimensional Lee-sphere of weight v ∈ N centered at the origin with

7.3. Restricted Lee-BJMM Algorithm 127

entries restricted to {±r, . . . ,±M} by

S(n)v,ps(r) := {x ∈ {±r, . . . ,±M}n|wtL (x) = v}.

Note that the success probability of such splitting is now given by

P =
∣∣∣S(k+ℓ)

v,ps (r)
∣∣∣ ∣∣∣S(n−k−ℓ)

t−v,ps

∣∣∣ ∣∣∣S(n)t,ps

∣∣∣−1

.

Let us first illustrate the idea and then compute the sizes of the lists involved. Note,

e2

ε

(v − εM)/2︸ ︷︷ ︸
Lee weights in {r, . . . ,M}

(v − εM)/2︸ ︷︷ ︸
Lee weights in {r, . . . ,M}

εM

=

+

y1 (v − εM)/4︸ ︷︷ ︸
x
(1)
1

(v − εM)/4︸ ︷︷ ︸
x
(1)
2

y2 (v − εM)/4︸ ︷︷ ︸
x
(2)
1

(v − εM)/4︸ ︷︷ ︸
x
(2)
2

Figure 7.2: Illustration of two levels decomposition of the vector e2 into y1
and y2, where yi = (x

(i)
1 , x

(i)
2) for i = 1, 2. The gray areas denote the support

of the vectors and the values inside the area are the corresponding Lee
weights. For (y1)i and (y2)i with i ∈ E , we require wtL (y1)i + (y2)i = M .

that one of the main differences to the previous algorithm is that we require to partition
the weights in order to guarantee that the large weight entries of y1 will not be decreased
after adding y2. For this let us introduce the following set of indices Z1, Z2,W1,W2, E1, E2
satisfying

|Zi | = |Wi | = (k + ℓ− ε)/4,
Z1 ∩ Z2 =W1 ∩W2 = E1 ∩ E2 = ∅, and

Zi ∩Wi ∩ Ei = ∅ for i ∈ {1, 2} .

Let us denote their union by

E = E1 ∪ E2, Z = Z1 ∪ Z2,W =W2 ∪W2.

For i ∈ {1, 2}, the base lists Bi are then given by

Bi =
{
νi(x)

∣∣ xZi
∈ {0}(k+ℓ−ε)/4, xWi

∈ {±r, . . . ,±M}(k+ℓ−ε)/4, xEi
∈ (Z/psZ)ε/2 ,

wtL(xWi
) = (v − εM)/4, νi ∈ S(k+ℓ)/2

}
.

All the base lists have the same size, which is given by(
(k + ℓ)/2

ε/2

)
psε/2

(
(k + ℓ− ε)/2
(k + ℓ− ε)/4

)
F (r)

(
(v − εM)/4, (k + ℓ− ε)/4, ps

)
.

128 Chapter 7. Restricted Information Set Decoding

Performing the concatenation merge of Algorithm 2, we build L1 and L2 from B1 and B2 as

L1 =
{
µ1(y1)

∣∣ µ1 ∈ Sk+ℓ, y1B
⊤ =u 0, (y1)Z ∈ {0}(k+ℓ−ε)/2, (y1)E ∈ (Z/psZ)ε ,

(y1)W ∈ {±r, . . . ,±M}(k+ℓ−ε)/2,wtL((y1)W) = (v − εM)/2
}
,

L2 =
{
µ2(y2)

∣∣ µ2 ∈ Sk+ℓ, y2B
⊤ =u s2, (y2)Z ∈ {0}(k+ℓ−ε)/2, (y2)E ∈ (Z/psZ)ε ,

(y2)W ∈ {±r, . . . ,±M}(k+ℓ−ε)/2,wtL((y2)W) = (v − εM)/2
}
.

Both lists are of size (
k + ℓ

ε

)
ps(ε−u)

(
k + ℓ− ε

(k + ℓ− ε)/2

) ∣∣∣S((k+ℓ−ε)/2)
(v−εM)/2,ps(r)

∣∣∣ .
For this procedure to work, we also need the additional condition on v, r and ε, that

v ≥ ε(M − r) + r(k + ℓ).

Then, a final merge using Algorithm 3 will produce a final list of all smaller solutions of the
smaller instance which does not require to be stored.

Lemma 7.3.9. The number of representations e2 = y1 + y2 for (y1, y2) ∈ L1 × L2 is then
given by at least

RB =

(
k + ℓ

ε

)(ε∑
i=0

(
ε

i

)
(M − r + 1)irε−i

(
ε′

i

)
(M − r + 1)i

(
ε′ − i

(ε′ − i)/2

))
,

for ε′ = k + ℓ− ε.

Proof. To give a lower bound on the number of representations it is enough to give one
construction.
The overall idea of this construction is to split the E1 positions of y1 and E2 positions of y2
into those parts where they overlap and those parts where they do not overlap. In the parts
where E1 does not overlap with E2, we can only allow small Lee weights in y1 such that, by
adding large Lee weight entries of y2, we can still reach the large Lee weight entries of e2.

So let us consider a fixed e2 ∈ S(k+ℓ)
v,ps (r). As a first step we fix the E1 positions which

gives
(
k+ℓ
ε

)
. Then, within the E1 position we fix those of small Lee weight. This means for

a fixed position we can assume that the entry in e2 is a with r ≤ wtL(a) ≤ M . Small Lee
weights of y1 now refer to the possible values of y1 in this position such that a can be reached
through large Lee weight entries of y2. That is, for example if a = r, we allow in y1 the entries
{0,−1, . . . , r−M}, or if a =M we allow in y1 the entries {M − r, . . . , 0}. These allowed sets
of small Lee weight always have size M − r + 1, independently of the the value a. Thus, in
E1 of size ε we choose i entries of small Lee weight, which give

(
ε
i

)
(M − r+1)i many choices.

For the remaining ε − i positions in E1 we have large Lee weights in y1, which cannot reach
the large Lee weight entries of e2 through large Lee weight entries in y2. Thus, they must
come for the E2 positions. In these entries we have rε−i possible choices. Note that out of
the ε many positions of E2 we have only assigned ε− i many. Hence, as a next step we choose
of the remaining k + ℓ − ε positions the remaining i positions to have small Lee weight in
y2. Thus, the fixed large Lee weight entries of e2 can be reached by adding these positions
to large Lee weight entries of y1. For this we have

(
k+ℓ−ε−i

i

)
(M − r + 1)i possibilities. As a

final step we then partition the remaining positions to be either zero or of large Lee weight,
i.e.,

(
k+ℓ−ε−i

(k+ℓ−ε−i)/2

)
.

Thus, we will need the additional condition ε ≤ (k + ℓ)/2, and we choose

u =
⌊
logps(RB)

⌋
. (7.2)

7.3. Restricted Lee-BJMM Algorithm 129

Asymptotic Complexity Analysis

At this point, let us discuss the asymptotic complexity of our ISD variant when decoding
beyond the minimum Lee distance. Since we cannot take the asymptotics of an infinite sum,
we need to bound the quantity in (7.2). In fact, setting i = ε gives such lower bound.

RB ≥
(
k + ℓ

ε

)
(M − r + 1)2ε

(
k + ℓ− ε

ε

)(
k + ℓ− 2ε

(k + ℓ− 2ε)/2

)
.

Then,

U = lim
n→∞

U(n)/n =H(R+ L,E) + 2E logps(M − r + 1)

+H(R+ L− E,E) +H(R+ L− 2E, (R+ L− 2E)/2).

In addition, since we decode beyond the minimum distance, the Lee syndrome decoding
problem has several solutions. Since the inputs have been chosen uniform at random, we can
assume that these solutions are independent of each other. Thus, to find just one of all the
expected

N =

∣∣∣S(n)t,ps

∣∣∣
ps(n−k)

solutions we have an expected number of iterations given by (NP)−1, instead of P−1. Note
that asymptotically this value is bounded by R, as

X = lim
n→∞

1

n
logps

(∣∣∣S(n)t,ps

∣∣∣ p−s(n−k)
)
= A

(n)
t,ps(M)− 1 +R ≤ R.

Let us denote by A
(n)
t,ps(r) = lim

n→∞
1
n logq

(∣∣∣S(n)t,ps(r)
∣∣∣). Using Corollary 7.2.3 we then deduce

the asymptotic average time complexity of the restricted Lee-BJMM algorithm when decoding
beyond the minimum Lee distance.

Corollary 7.3.10. The asymptotic average time complexity of the Lee-metric BJMM algo-
rithm on two levels for t > Mn/2 is given by at most I + C, where

I =(1−R)−A(k+ℓ)
v,ps (r)−A(n−k−ℓ)

t−v,ps (M)

is the expected number of iterations and C = max{B,D, 2D − L + U} is the cost of one
iteration, where

B = E/2+H((R+ L)/2, E/2) +H((R+ L− E)/2, (R+ L− E)/4)

+A
((k+ℓ−ε)/4)
(v−εp2/2)/4,ps(r),

D = E − U+H(R+ L,E) +H(R+ L− E, (R+ L− E)/2)

+A
((k+ℓ−ε)/2)
(v−εp2/2)/2,ps(r).

In addition, we have an expected memory of at mostM = max{B,D}. On a capable quantum
computer, the average time complexity is given by at most I/2+max{B,D, 12 (2D−L+U)}.

Amortized Version

We consider again the amortized version of this algorithm, i.e., we only take psu many vectors

from the base lists B(1)i , respectively B(2)i .
The algorithm is going to work exactly the same way, similar to the amortized version for

the first scenario. The asymptotic cost of the amortized version of Algorithm 4 is then given
by I ′ +max{U, 3U − L}, where I ′ is as before the expected number of iterations, i.e.,

I ′ ≤(1−R)− 3U −A(n−k−ℓ)
t−v,ps (M).

130 Chapter 7. Restricted Information Set Decoding

7.4 Comparison to other Lee Metric ISD Algorithms

In this section we want to see how much cost reduction we were able to achieve by using
this additional information on the error vector. For this we compare the new Lee-metric
BJMM algorithm to the Lee-metric BJMM algorithm from [130] and to the algorithm using
Wagner’s approach in [40], which were until now the fastest algorithms to solve the Lee
syndrome decoding problem. We denote by e(R, ps) the exponent of the asymptotic cost and
compare e(R∗, ps) for R∗ = arg max

0≤R≤1
(e(R, ps)).

In the first scenario, we only decode up to the Gilbert-Varshamov bound, i.e., we consider

B(n)d(n),ps = 1−R. Hence, we give an immediate relation between T := limn→∞ d(n)/n and R,

i.e., we are considering full-distance decoding.

0 0.2 0.4 0.6 0.8 1.0
0

0.05

0.10

0.15

R

e
(R
,
p
s
)

BJMM

Restricted BJMM

Amortized BJMM

Amortized Restricted BJMM

Amortized Wagner

Amortized Restricted Wagner

Figure 7.3: Comparison of asymptotic costs of full-distance decoding of
different algorithms and their restricted versions, for p = 47, s = 1 and

assuming the asymptotic Gilbert-Varshamov bound.

Algorithm e(R∗, ps) R∗

Lee-BJMM 0.1618 0.451

Restricted Lee-BJMM for r = 5 0.1539 0.408

Amortized Lee-BJMM 0.1205 0.396

Amortized Restricted Lee-BJMM 0.1189 0.406

Amortized Lee-Wagner 0.1441 0.445

Amortized Restricted Lee-Wagner 0.1441 0.445

Table 7.1: Comparison of asymptotic costs for full-distance decoding for
ps = 47.

In the second scenario, where we have N > 1 solutions, one possible technique proposed
in [40] is to fix a rate R ∈ {0.1, . . . , 0.9} and go through all M/2 ≤ T ≤M , to see at which T
the largest cost is attained for this fixed rate. However, this approach gives for the algorithm
in [40] as well as for our algorithm always T = M . This is a very particular weight, where
e will only have entries ±M . The problem of decoding such instance is then a completely
different one from the original problem and more like a binary syndrome decoding problem.
As the algorithm in [40] and also our algorithm work for any large T , they will clearly not be
suitable for this special scenario.

Another possible technique is the following: the asymptotic value for N is given by

X = A
(n)
t,ps(M)− 1 +R ≤ R,

7.5. Summary and Outlook 131

0 0.2 0.4 0.6 0.8 1.0
0

0.01

0.02

0.03

0.04

0.05

R

e
(R
,
p
s
)

Amortized Restricted BJMM

Amortized Wagner

Amortized Restricted Wagner

Figure 7.4: Comparison of asymptotic costs of decoding beyond the mini-
mum distance of different algorithms and their restricted versions, for q = 47.

thus we can fix X to be a function in R, e.g. X = R/2. This will also directly lead

to a T = lim
n→∞

t(n)/n, for which A
(n)
t,ps(M) = 1 − R/2. If we had fixed X to be a constant

independent of R instead, this would have obstructed the comparison for all rates smaller than
this constant. To compare the asymptotic costs of several algorithms we then determine the
rate for which the cost is maximal. Since there is no other non-amortized algorithm which
considers the second case, we will only compare our amortized version with the algorithm
provided in [40].

We observed that in the second case, where we decode beyond the minimum distance, ε is
very small. Note that ε was introduced in [76] to increase the number of positions on which
we can merge u. In our algorithm, however, u can be chosen very large, in fact, very close to
ℓ, even for ε = 0. Thus, ε > 0 would only increase the size of the lists. We also want to note
here that the program we are considering in Figure 7.4 takes the minimum of the cost of our
algorithm and the cost of brute forcing. For this note that we fixed the number of solutions
to be ps(k/2), thus going through all vectors e of weight t we expect to find a solution after∣∣∣S(n)t,ps

∣∣∣ p−s(k/2) many steps, that has an asymptotic cost of A
(n)
t,ps(M)−R/2 = 1−R. On the

other hand, we might go through all solutions of the parity-check equations, which are psk

many and expect to find a solution after ps(k−k/2) many steps, which has an asymptotic cost
of R/2.

Algorithm e(R∗, q) R∗

Amortized Restricted Lee-BJMM 0.0349 0.368

Amortized Lee-Wagner 0.0418 0.301

Amortized Restricted Lee-Wagner 0.0372 0.270

Table 7.2: Comparison of asymptotic cost of different Lee metric ISD
algorithms for p = 47, s = 1 beyond the minimum distance.

Remark 7.4.1. This approach can work for any metric and ambient space, as long as the
distribution of the error vector allows us to solve the smaller instance in a smaller space. This
might have an impact for the ring-learning with errors problem, since also there the error
vector is drawn from a certain distribution, in this case the Gaussian.

7.5 Summary and Outlook

In this chapter, the marginal distribution of vectors of a given Lee weight has been used
to improve the fastest information set decoding algorithm for the Lee metric known, i.e.,
the Lee-BJMM algorithm on two levels. The knowledge about the marginal distribution

132 Chapter 7. Restricted Information Set Decoding

allowed us to assume that, almost surely, the erroneous positions lie in a restricted Lee-sphere.
That means that the entries in the erroneous positions have a Lee weight that is smaller (or
larger) than a given threshold value r ∈ [0, ⌊ps/2⌋] for bounded minimum distance decoding
(or decoding beyond the minimum distance). The restricted Lee-spheres then showed their
impact on the size of the lists needed to store the possible candidates. As the complexity
depends on the size of the lists, using the restricted Lee-spheres induced a slight reduction
in the complexity of the Lee-BJMM algorithm. In the bounded minimum distance decoding,
compared to an amortized version of the algorithm the novel Lee-BJMM variant does not
show any improvement nor does it have a worse complexity. However, when decoding beyond
the minimum Lee distance, the restricted-BJMM version presented outperforms the amortized
Wagner algorithm especially for code rates up to 1/2.

As mentioned, the Lee metric has a direct connection to the L2-norm used in lattice-based
cryptography. In the ring-learning with error problem in lattice-based cryptography the error
vectors are drawn given a aussian distribution. Therefore, approaches used in the setting
of lattices might be used in the Lee metric to further improve algorithms like information
set decoding. Lattice-based cryptosystems are promising candidates in the standardization
process of post-quantum cryptosystems imposted by the NIST. Hence, using lattice-based
tools in the Lee metric could yield to Lee-metric code-based cryptosystems of the same or
similar advantages as lattice-based schemes.

133

Chapter 8

Conclusions and Future Work

In this thesis we studied ring-linear codes in the Lee metric. In a first step, we focused
on the algebraic aspects of codes over integer residue rings endowed with the Lee metric.
More explicitly, we restricted to chain rings Z/psZ and introduced the concept of generalized
weights to the Lee metric. Adapting the existing theory in the Hamming metric to the Lee
metric is not always straightforward. In fact, instead of defining the Lee-support of a vector as
a set of indices, we represent the Lee-support in terms of a tuple storing the Lee weights of its
entries. To extend the Lee-support from a vector to a code, we used three different approaches
focussing on the maximum Lee weight, the minimum nonzero Lee weight and the maximum
weight in a given column of a generator matrix, respectively. Eventually, we abandoned the
classical idea of deriving a Singleton-like bound using generalized Lee weights and focused
on the chain structure of the underlying chain ring Z/psZ. We introduced generalized Lee
distances using the natural chain of inclusion of Z/psZ together with more parameters on
a generator matrix in systematic form. Finally, we derived a bound on the minimum Lee
distance of a code which clearly outperforms all other bounds for most parameters.

One main motivation to study the Lee metric is its increasing interest in applications
to code-based cryptography. Indeed, the NP-hardness of the underlying syndrome decoding
problem and the ability to reduce the key size when using the Lee metric instead of the
Hamming metric, makes Lee-metric codes a promising candidate for post-quantum cryptog-
raphy. In code-based cryptosystems errors of a fixed weight are intentionally introduced to
a codeword. In order to understand errors of fixed Lee weight, we introduced a block-wise
channel model (the constant Lee-weight channel) adding an error vector of fixed weight to the
transmitted message. We derived the marginal distribution of this channel model and used
it to bound the size of n-dimensional spheres and balls of a given Lee-radius. The marginal
distribution states the expected Lee-weight decomposition of vectors over Z/qZ of given Lee
weight in the limit of large block length. Additionally, we considered a discrete memoryless
channel counterpart to the constant Lee-weight channel, referred to as the memoryless Lee
channel. We showed that both channels coincide for growing block length. In a finite-length
setting, we provided two algorithms to construct vectors of length n over Z/qZ with given
Lee weight t based on partitioning t. We noticed that the weight of such vectors can be
increased or decreased by multiplying the vector component-wise with a suitable nonzero
constant a ∈ Z/qZ. From a cryptographic viewpoint, reducing the Lee weight of a received
word or even error vector would simplify the underlying syndrome decoding problem and
could therefore lead to a possible reduction of the security level. We proved that the proba-
bility of this scenario is negligible as the length n grows large for any Z/qZ. For n constant,
the same result applies to q being a prime number or a power of 2.

With the introduction of the two channel models, we studied the block error probability
of both channels and the error-correction performance of regular low-density parity-check
(LDPC) code families over the two channel models under belief propagation and symbol
message-passing decoding. We derived the expected weight enumerator of a randomly chosen
LDPC code in a regular LDPC ensemble using combinatorial tools and generating functions.
This allowed us to understand the error-floor of the LDPC code family and enabled to derive
bounds on the error-correction performance. As we restricted to parity-check matrices with
nonzero entries lying in the set of units (Z/qZ)×, we adapted the decoders accordingly. By
means of density evolution and finite-length Monte Carlo simulations this restriction is visible
when decoding using symbol message-passing. We showed, however, that belief propagation

134 Chapter 8. Conclusions and Future Work

and symbol message-passing outperform the Lee symbol flipping decoding algorithm designed
for Lee-LDPC codes.

In a last step, we applied the result on the marginal distribution to the yet fastest known
Lee-BJMM information set decoding algorithm on two levels. Given the marginal distribution
of vectors of fixed Lee weight in the limit of large block length, we restricted the Lee weight
of the erroneous positions to a subset of Z/qZ, optimizing a threshold value of the largest
(respectively smallest) Lee weight an erroneous position achieves. This restriction leads to a
reduction in the complexity and, hence, to an improvement of the Lee-BJMM variant.

The foundation of Lee-metric codes still shows gaps, when comparing it to other metrics
used in coding theory. The study of novel techniques to derive bounds on Lee-metric code
parameters is an important task. This thesis might inspire to move away from classical
techniques and tools, and to focus more on the algebraic structure of an integer residue
ring underlying a code in the Lee metric. Furthermore, the Lee metric is an interesting
and promising candidate for code-based cryptography. Its strong connection to lattice-based
cryptography might be used to improve code-based schemes or information set decoding in
the Lee metric applying lattice-based techniques.

135

Bibliography

[1] C. Aguilar Melchor, N. Aragon, M. Bardet, S. Bettaieb, L. Bidoux, O. Blazy, J.-
C. Deneuville, P. Gaborit, A. Hauteville, A. Otmani, O. Ruatta, J.-P. Tillich, and
G. Zémor. ROLLO- Rank-Ouroboros, LAKE & LOCKER. NIST PQC Call for Pro-
posals, 2020.

[2] C. Aguilar Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, M. Bros, A. Couvreur,
J.-C. Deneuville, P. Gaborit, A. Hauteville, and G. Zémor. Rank Quasi-Cyclic (RQC).
NIST PQC Call for Proposals, 2020.

[3] C. Aguilar Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville,
P. Gaborit, E. Persichetti, G. Zémor, and J. Bos. HQC – Submission to the
fourth round of the NIST post-quantum project, 2023. https://pqc-hqc.org/doc/

hqc-specification_2023-04-30.pdf.

[4] M. R. Albrecht, D. J. Bernstein, T. Chou, C. Cid, J. Gilcher, T. Lange, V. Maram,
I. von Maurich, R. Misoczki, R. Niederhagen, K. G. Paterson, E. Persichetti, C. Peters,
P. Schwabe, N. Sendrier, J. Szefer, C. J. Tjhai, M. Tomlinson, and W. Wang. Classic
McEliece – Submission to the fourth round of the NIST post-quantum project, 2023.
https://classic.mceliece.org/nist/mceliece-20221023.pdf.

[5] T. L. Alderson and S. Huntemann. On maximum Lee distance codes. SIAM Journal
of Discrete Mathematics, 2013.

[6] J. Antrobus and H. Gluesing-Luerssen. Maximal Ferrers diagram codes: constructions
and genericity considerations. IEEE Transactions on Information Theory, 65(10):6204–
6223, 2019.

[7] N. Aragon, P. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville, P. Gaborit,
S. Gueron, T. Guneysu, C. A. Melchor, R. Misoczki, E. Persichetti, N. Sendrier, J.-P.
Tillich, G. Zemor, V. Vasseur, S. Ghosh, and J. Richter-Brokmann. BIKE – Submission
to the fourth round of the NIST post-quantum project, 2022. https://bikesuite.org/
files/v5.0/BIKE_Spec.2022.10.10.1.pdf.

[8] A. Ashikhmin, G. Kramer, and S. ten Brink. Extrinsic information transfer func-
tions: Model and erasure channel properties. IEEE Transaction of Information Theory,
50(11):2657–2673, Nov. 2004.

[9] E. Assmus Jr and H. F. Mattson. Error-correcting codes: An axiomatic approach.
Information and Control, 6(4):315–330, 1963.

[10] J. Astola. On the asymptotic behaviour of Lee-codes. Discrete Applied Mathematics,
8(1):13–23, 1984.

[11] M. Baldi, G. Cancellieri, F. Chiaraluce, E. Persichetti, and P. Santini. Using non-binary
LDPC and MDPC codes in the McEliece cryptosystem. In Proc. AEIT International
Annual Conference, Sept. 2019.

[12] M. Baldi, F. Chiaraluce, R. Garello, and F. Mininni. Quasi-cyclic low-density parity-
check codes in the McEliece cryptosystem. In 2007 IEEE International Conference on
Communications, pages 951–956. IEEE, 2007.

[13] M. Bardet, M. Bros, D. Cabarcas, P. Gaborit, R. Perlner, D. Smith-Tone, J.-P. Tillich,
and J. Verbel. Improvements of algebraic attacks for solving the rank decoding and
MinRank problems. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 507–536. Springer, 2020.

https://pqc-hqc.org/doc/hqc-specification_2023-04-30.pdf
https://pqc-hqc.org/doc/hqc-specification_2023-04-30.pdf
https://classic.mceliece.org/nist/mceliece-20221023.pdf
https://bikesuite.org/files/v5.0/BIKE_Spec.2022.10.10.1.pdf
https://bikesuite.org/files/v5.0/BIKE_Spec.2022.10.10.1.pdf

136 BIBLIOGRAPHY

[14] S. Barg. Some new NP-complete coding problems. Problemy Peredachi Informatsii,
30(3):23–28, 1994.

[15] J. Bariffi, H. Bartz, G. Liva, and J. Rosenthal. Analysis of Low-Density Parity-Check
Codes over Finite Integer Rings for the Lee Channel. In 2022 IEEE Global Communi-
cations Conference, pages 1–6, 2022.

[16] J. Bariffi, H. Bartz, G. Liva, and J. Rosenthal. On the properties of error patterns in
the constant Lee weight channel. In International Zurich Seminar on Information and
Communication (IZS 2022), Zurich, Switzerland, March 2–4, 2022, pages 44–48, 2022.

[17] J. Bariffi, H. Bartz, G. Liva, and J. Rosenthal. Error-Correction Performance of Regular
Ring-Linear LDPC Codes over Lee Channels. arXiv preprint arXiv:2312.14674, 2023.

[18] J. Bariffi, K. Khathuria, and V. Weger. Information Set Decoding for Lee-Metric Codes
using Restricted Balls. In Code-Based Cryptography: 10th International Workshop,
CBCrypto 2022 Trondheim, Norway, May 29–30, 2022 Revised Selected Papers. Lecture
Notes in Computer Science, Springer, 2022.

[19] J. Bariffi and V. Weger. Better bounds on the minimal Lee distance. arXiv preprint
arXiv:2307.06079, 2023.

[20] H. Bartz and S. Puchinger. Decoding of Interleaved Linearized Reed-Solomon Codes
with Applications to Network Coding, 2021.

[21] A. Becker, A. Joux, A. May, and A. Meurer. Decoding random binary linear codes
in 2n/20: How 1+ 1= 0 improves information set decoding. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 520–
536. Springer, 2012.

[22] E. Berlekamp, R. McEliece, and H. Van Tilborg. On the inherent intractability of certain
coding problems (corresp.). IEEE Transactions on Information Theory, 24(3):384–386,
1978.

[23] E. R. Berlekamp. Negacyclic codes for the Lee metric. Technical report, North Carolina
State University. Dept. of Statistics, 1966.

[24] E. R. Berlekamp. Algebraic coding theory. McGraw Hill, 1968.

[25] D. J. Bernstein, J. Buchmann, and E. Dahmen. Post-Quantum Cryptography. Springer,
2009.

[26] D. J. Bernstein, T. Lange, and C. Peters. Smaller decoding exponents: ball-collision
decoding. In Annual Cryptology Conference, pages 743–760. Springer, 2011.

[27] S. Bhattacharya and A. Banerjee. A method to find the volume of a sphere in the Lee
metric, and its applications. In 2019 IEEE International Symposium on Information
Theory (ISIT), pages 872–876. IEEE, 2019.

[28] I. F. Blake. Codes over certain rings. Information and Control, 20(4):396–404, 1972.

[29] I. F. Blake. Codes over integer residue rings. Information and Control, 29(4):295–300,
1975.

[30] L. Boltzmann. Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten
materiellen Punkten (Studies of the equilibrium and the life force between material
points). 1868.

[31] D. Burshtein and G. Miller. Asymptotic enumeration methods for analyzing LDPC
codes. IEEE Transactions on Information Theory, 50(6):1115–1131, 2004.

[32] E. Byrne, A.-L. Horlemann, K. Khathuria, and V. Weger. Density of free modules over
finite chain rings. Linear Algebra and its Applications, 651:1–25, 2022.

BIBLIOGRAPHY 137

[33] E. Byrne and A. Ravagnani. Partition-balanced families of codes and asymptotic enu-
meration in coding theory. Journal of Combinatorial Theory, Series A, 171:105169,
2020.

[34] E. Byrne and V. Weger. Bounds in the lee metric and optimal codes. Finite Fields and
Their Applications, 87:102151, 2023.

[35] A. R. Calderbank and N. J. Sloane. Modular and p-adic cyclic codes. Designs, Codes
and Cryptography, 6:21–35, 1995.

[36] A. Canteaut and F. Chabaud. A new algorithm for finding minimum-weight words in
a linear code: application to McEliece’s cryptosystem and to narrow-sense BCH codes
of length 511. IEEE Transactions on Information Theory, 44(1):367–378, 1998.

[37] A. Canteaut and N. Sendrier. Cryptanalysis of the original McEliece cryptosystem. In
International Conference on the Theory and Application of Cryptology and Information
Security, pages 187–199. Springer, 1998.

[38] S. D. Cardell, M. Firer, and D. Napp. Generalized column distances. IEEE Transactions
on Information Theory, 66(11):6863–6871, 2020.

[39] F. Chabaud. Asymptotic analysis of probabilistic algorithms for finding short code-
words. In Eurocode’92, pages 175–183. Springer, 1993.

[40] A. Chailloux, T. Debris-Alazard, and S. Etinski. Classical and quantum algorithms for
generic syndrome decoding problems and applications to the Lee metric. In Interna-
tional Conference on Post-Quantum Cryptography, pages 44–62. Springer, 2021.

[41] L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. A. Perlner, and D. Smith-
Tone. Report on post-quantum cryptography, volume 12. US Department of Commerce,
National Institute of Standards and Technology, 2016.

[42] J. C.-Y. Chiang and J. K. Wolf. On channels and codes for the Lee metric. Information
and Control, 19(2):159–173, 1971.

[43] G. Como and F. Fagnani. Average spectra and minimum distances of low-density parity-
check codes over abelian groups. SIAM Journal on Discrete Mathematics, 23(1):19–53,
2009.

[44] T. Cover. Enumerative source encoding. IEEE Transactions on Information Theory,
19(1):73–77, 1973.

[45] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, New York,
2nd edition, 2006. chapter 15.

[46] I. Csiszár, P. C. Shields, et al. Information theory and statistics: A tutorial. Foundations
and Trends® in Communications and Information Theory, 1(4):417–528, 2004.

[47] M. C. Davey and D. J. MacKay. Monte carlo simulations of infinite low density parity
check codes over GF(q). In Proc. of Int. Workshop on Optimal Codes and related Topics,
pages 9–15. Citeseer, 1998.

[48] P. Delsarte. Bilinear forms over a finite field, with applications to coding theory. Journal
of Combinatorial Theory, Series A, 25(3):226–241, 1978.

[49] C. Di. Asymptotic and finite-length analysis of low-density parity-check codes. Technical
report, EPFL, 2004.

[50] S. T. Dougherty. Algebraic coding theory over finite commutative rings. Springer, 2017.

[51] S. T. Dougherty, M. Gupta, and K. Shiromoto. On generalized weights for codes over
finite rings. preprint, 2002.

[52] S. T. Dougherty and K. Shiromoto. MDR codes over Zk. IEEE Transactions on
Information Theory, 46(1):265–269, 2000.

138 BIBLIOGRAPHY

[53] I. I. Dumer. Two decoding algorithms for linear codes. Problemy Peredachi Informatsii,
25(1):24–32, 1989.

[54] M. Finiasz and N. Sendrier. Security bounds for the design of code-based cryptosys-
tems. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 88–105. Springer, 2009.

[55] B. J. Frey and F. R. Kschischang. Probability propagation and iterative decoding. In
Proceedings of the Annual Allerton Conference on Communication Control and Com-
puting, volume 34, pages 482–493. University of Illinois, 1996.

[56] E. M. Gabidulin. Theory of codes with maximum rank distance. Problemy peredachi
informatsii, 21(1):3–16, 1985.

[57] R. Gabrys, H. M. Kiah, and O. Milenkovic. Asymmetric Lee distance codes for DNA-
based storage. IEEE Transactions on Information Theory, 63(8):4982–4995, Aug. 2017.

[58] R. G. Gallager. Low-Density Parity-Check Codes. M.I.T. Press, Cambridge, MA, 1963.

[59] R. G. Gallager. Information Theory and Reliable Communication. Wiley, New York,
1968.

[60] D. Gardy and P. Solé. Saddle point techniques in asymptotic coding theory. InWorkshop
on Algebraic Coding, pages 75–81. Springer, 1991.

[61] E. N. Gilbert. A comparison of signalling alphabets. The Bell System Technical Journal,
31(3):504–522, 1952.

[62] H. Gluesing-Luerssen. On the sparseness of certain linear MRD codes. Linear Algebra
and its Applications, 596:145–168, 2020.

[63] S. W. Golomb and L. R. Welch. Algebraic coding and the Lee metric. Error Correcting
Codes, pages 175–194, 1968.

[64] E. Gorla and A. Ravagnani. Generalized weights of codes over rings and invariants of
monomial ideals. arXiv preprint arXiv:2201.05813, 2022.

[65] E. Gorla and F. Salizzoni. Generalized column distances. arXiv preprint
arXiv:2212.12265, 2022.

[66] E. Gorla and F. Salizzoni. Generalized weights of convolutional codes. IEEE Transac-
tions on Information Theory, 2023.

[67] M. Greferath. An introduction to ring-linear coding theory. In Gröbner Bases, Coding,
and Cryptography, pages 219–238. Springer, 2009.

[68] A. Gruica and A. Ravagnani. Common complements of linear subspaces and the sparse-
ness of MRD codes. SIAM Journal on Applied Algebra and Geometry, 6(2):79–110,
2022.

[69] C. T. Gueye, J. B. Klamti, and S. Hirose. Generalization of BJMM-ISD using May-
Ozerov nearest neighbor algorithm over an arbitrary finite field Fq. In Codes, Cryptology
and Information Security, pages 96–109. Springer International Publishing, 2017.

[70] R. W. Hamming. Error detecting and error correcting codes. The Bell System Technical
Journal, 29(2):147–160, 1950.

[71] A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. Sloane, and P. Solé. The Z4-
linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Transactions on
Information Theory, 40(2):301–319, 1994.

[72] W. K. Hayman. A generalisation of Stirling’s formula. Journal für die reine und
angewandte Mathematik, 1956.

BIBLIOGRAPHY 139

[73] T. Helleseth, T. Kløve, and J. Mykkeltveit. The weight distribution of irreducible
cyclic codes with block lengths n1((q

ℓ−1)/n). SIAM Journal on Discrete Mathematics,
18(2):179–211, 1977.

[74] S. Hirose. May-Ozerov Algorithm for Nearest-Neighbor Problem over Fq and Its Ap-
plication to Information Set Decoding. In International Conference for Information
Technology and Communications, pages 115–126. Springer, 2016.

[75] A.-L. Horlemann-Trautmann and V. Weger. Information set decoding in the Lee met-
ric with applications to cryptography. Advances in Mathematics of Communications,
15(4):677–699, 2021.

[76] N. Howgrave-Graham and A. Joux. New generic algorithms for hard knapsacks. In An-
nual International Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 235–256. Springer, 2010.

[77] X.-Y. Hu, E. Eleftheriou, and D. Arnold. Regular and irregular progressive edge-growth
Tanner graphs. IEEE Transaction of Information Theory, 51(1):386–398, Jan. 2005.

[78] C. Interlando, K. Khathuria, N. Rohrer, J. Rosenthal, and V. Weger. Generalization of
the ball-collision algorithm. Journal of Algebra Combinatorics Discrete Structures and
Applications, 7(2):195–207, 2018.

[79] S. Jukna. Extremal combinatorics: with applications in computer science. Springer
Science & Business Media, 2011.

[80] Y. Komamiya. Application of logical mathematics to information theory. 3rd Japanese
National Congress on Applied Math, 437, 1953.

[81] F. Lázaro, A. G. i Amat, G. Liva, and B. Matuz. Symbol message passing decoding
of nonbinary low-density parity-check codes. In 2019 IEEE Global Communications
Conference (GLOBECOM), pages 1–5. IEEE, 2019.

[82] G. Lechner, T. Pedersen, and G. Kramer. Analysis and design of binary message passing
decoders. IEEE Transactions on Communications, 60(3):601–607, 2011.

[83] C. Lee. Some properties of nonbinary error-correcting codes. IRE Transactions on
Information Theory, 4(2):77–82, 1958.

[84] P. J. Lee and E. F. Brickell. An Observation on the Security of McEliece’s Public-
Key Cryptosystem. In Workshop on the Theory and Application of of Cryptographic
Techniques, pages 275–280. Springer, 1988.

[85] J. S. Leon. A probabilistic algorithm for computing minimum weights of large error-
correcting codes. IEEE Transactions on Information Theory, 34(5):1354–1359, Sept.
1988.

[86] H.-A. Loeliger. An upper bound on the volume of discrete spheres. IEEE Transaction
of Information Theory, 40(6):2071–2073, 1994.

[87] P. Loidreau. Asymptotic behaviour of codes in rank metric over finite fields. Designs,
Codes and Cryptography, 71:105–118, 2014.

[88] D. J. MacKay. Good error-correcting codes based on very sparse matrices. IEEE
Transactions on Information Theory, 45(2):399–431, 1999.

[89] D. J. MacKay and R. M. Neal. Near Shannon limit performance of low density parity
check codes. Electronics Letters, 33(6):457–458, 1997.

[90] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes, volume 16.
Elsevier, 1977.

[91] J. L. Massey. Notes on coding theory. Waltham Research Center, 1969.

140 BIBLIOGRAPHY

[92] A. May, A. Meurer, and E. Thomae. Decoding random linear codes in Õ(20.054n). In
International Conference on the Theory and Application of Cryptology and Information
Security, pages 107–124. Springer, 2011.

[93] R. J. McEliece. A public-key cryptosystem based on algebraic coding theory. Deep
Space Network Progress Report, 44:114–116, Jan. 1978.

[94] A. Meurer. A coding-theoretic approach to cryptanalysis. PhD thesis, Ruhr Universität
Bochum, 2013.

[95] A. Neri, A.-L. Horlemann-Trautmann, T. Randrianarisoa, and J. Rosenthal. On the
genericity of maximum rank distance and Gabidulin codes. Designs, Codes and Cryp-
tography, 86(2):341–363, 2018.

[96] R. Niebuhr, E. Persichetti, P.-L. Cayrel, S. Bulygin, and J. Buchmann. On Lower
Bounds for Information Set Decoding over Fq and on the Effect of Partial Knowledge.
IInternational Journal of Information and Coding Theory, 4(1):47–78, 2017.

[97] H. Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Prob. Contr.
Inform. Theory, 15(2):157–166, 1986.

[98] G. H. Norton and A. Sălăgean. On the structure of linear and cyclic codes over a
finite chain ring. Applicable Algebra in Engineering, Communication and Computing,
10:489–506, 2000.

[99] J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference.
Morgan kaufmann, 1988.

[100] C. Peters. Information-set decoding for linear codes over Fq. In International Workshop
on Post-Quantum Cryptography, pages 81–94. Springer, 2010.

[101] M. S. Pinsker. Information and information stability of random variables and processes.
Holden-Day, 1964.

[102] G. Poltyrev. Bounds on the decoding error probability of binary linear codes via their
spectra. IEEE Transactions on Information Theory, 40(4):1284–1292, 1994.

[103] E. Prange. The use of coset equivalence in the analysis and decoding of group codes.
Electronics Research Directorate, Air Force Cambridge Research Center, 1959.

[104] E. Prange. The use of information sets in decoding cyclic codes. IRE Transactions on
Information Theory, 8(5):5–9, 1962.

[105] S. Puchinger, J. Renner, and J. Rosenkilde. Generic decoding in the sum-rank metric.
arXiv preprint arXiv:2001.04812, 2020.

[106] A. Ravagnani. Generalized weights: an anticode approach. Journal of Pure and Applied
Algebra, 220(5):1946–1962, 2016.

[107] T. Richardson and R. Urbanke. The Capacity of Low-Density Parity-Check Codes
Under Message-Passing Decoding. IEEE Transaction of Information Theory, 47(2):599–
618, Feb. 2001.

[108] S. Ritterhoff, G. Maringer, S. Bitzer, V. Weger, P. Karl, T. Schamberger, J. Schupp,
and A. Wachter-Zeh. FuLeeca: A Lee-based signature scheme. In CBCrypto 2023:
Lecture Notes in Computer Science, Springer, 2023.

[109] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[110] J. Rosenthal and R. Smarandache. Maximum distance separable convolutional codes.
Appl. Algebra Engrg. Comm. Comput., 10(1):15–32, 1999.

[111] R. M. Roth. Maximum-rank array codes and their application to crisscross error cor-
rection. IEEE Transactions on Information Theory, 37(2):328–336, 1991.

BIBLIOGRAPHY 141

[112] R. M. Roth. Introduction to coding theory. IET Communications, 47, 2006.

[113] I. N. Sanov. On the probability of large deviations of random variables. Selected
Translations in Mathematical Statistics and Probability, 1:213–244, 1961.

[114] P. Santini, M. Battaglioni, F. Chiaraluce, M. Baldi, and E. Persichetti. Low-Lee-
Density Parity-Check Codes. In 2020 IEEE International Conference on Communi-
cations (ICC), pages 1–6. IEEE, 2020.

[115] C. Satyanarayana. Lee metric codes over integer residue rings. IEEE Transactions on
Information Theory, 25(2):250–254, 1979.

[116] B. Segre. Curve razionali normali e k-archi negli spazi finiti. Annali di Matematica
Pura ed Applicata, 39(1):357–379, 1955.

[117] C. E. Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27(3):379–423, 1948.

[118] M. Shi, A. Alahmadi, and P. Solé. Codes and rings: theory and practice. Academic
Press, 2017.

[119] K. Shiromoto. Singleton bounds for codes over finite rings. Journal of Algebraic Com-
binatorics, 12(1):95–99, 2000.

[120] P. W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Loga-
rithms on a Quantum Computer. SIAM review, 41(2):303–332, 1999.

[121] R. Singleton. Maximum distance q-nary codes. IEEE Transactions on Information
Theory, 10(2):116–118, 1964.

[122] M. Sipser and D. A. Spielman. Expander codes. IEEE Transactions on Information
Theory, 42(6):1710–1722, 1996.

[123] E. Spiegel. Codes over Zm. Information and Control, 35(1):48–51, 1977.

[124] D. Sridhara and T. E. Fuja. LDPC codes over rings for PSK modulation. IEEE
Transaction of Information Theory, 51(9):3209–3220, Sept. 2005.

[125] J. Stern. A method for finding codewords of small weight. In International Colloquium
on Coding Theory and Applications, pages 106–113. Springer, 1988.

[126] R. Tanner. A recursive approach to low complexity codes. IEEE Transactions on
Information Theory, 27(5):533–547, 1981.

[127] J. H. Van Lint. Introduction to Coding Theory, volume 201. Springer, 1971.

[128] A. Vardy. The Intractability of Computing the Minimum Distance of a Code. IEEE
Transactions on Information Theory, 43(6):1757–1766, 1997.

[129] V. Weger, M. Battaglioni, P. Santini, F. Chiaraluce, M. Baldi, and E. Persichetti.
Information set decoding of Lee-metric codes over finite rings. arXiv preprint
arXiv:2001.08425, 2020.

[130] V. Weger, K. Khathuria, A.-L. Horlemann, M. Battaglioni, P. Santini, and E. Per-
sichetti. On the hardness of the Lee syndrome decoding problem. Advances in Mathe-
matics of Communications, 2022.

[131] V. K. Wei. Generalized Hamming weights for linear codes. IEEE Transactions on
Information Theory, 37(5):1412–1418, 1991.

[132] N. Wiberg. Codes and decoding on general graphs. Department of Electrical Engineering,
Linköping University Sweden, 1996.

[133] N. Wiberg, H.-A. Loeliger, and R. Kotter. Codes and iterative decoding on general
graphs. European Transactions on Telecommunications, 6(5):513–525, 1995.

142 BIBLIOGRAPHY

[134] H. S. Wilf. generatingfunctionology. CRC press, 2005.

[135] E. L. Wilmer, D. A. Levin, and Y. Peres. Markov chains and mixing times. American
Mathematical Society, Providence, 2009.

[136] J. Wood. The structure of linear codes of constant weight. Transactions of the American
Mathematical Society, 354(3):1007–1026, 2002.

[137] A. D. Wyner and R. L. Graham. An upper bound on minimum distance for a k-ary
code. Information and Control, 13(1):46–52, 1968.

[138] K. Xie and J. Li. On accuracy of Gaussian assumption in iterative analysis for LDPC
codes. In 2006 IEEE International Symposium on Information Theory, pages 2398–
2402. IEEE, 2006.

[139] M. Yadegari. The binomial theorem: a widespread concept in medieval islamic mathe-
matics. Historia Mathematica, 7(4):401–406, 1980.

	Introduction
	Organization
	Overview of Results

	Preliminaries
	Entropy
	Typicality
	Method of Types
	Typical Sequences

	Coding Theory
	Linear Block Codes over Finite Fields
	Bounds on Linear Block Codes

	Introduction to the Lee Metric
	Codes over Integer Residue Rings
	Basic Definitions and Results
	Spheres and Balls
	Bounds on Lee-Metric Codes

	Bounds on the Minimum Lee Distance
	Defining Lee-supports and Generalized Lee Weights over Chain Rings
	Generalized Join-Lee Weight
	Generalized Column-Lee Weight
	Generalized Lee Distances
	Comparison of the Bounds
	Invariance under Isometry in the Lee Metric
	Density of Optimal Codes

	Summary and Outlook

	Channel Coding in the Lee Metric
	Lee Channels
	Memoryless Lee Channels
	Constant-Weight Lee Channel

	Finite-Length Bounds for Lee Channels
	Bounds on the Lee Spheres and Lee Balls
	Error Probability Bounds for the Constant Lee-Weight Channel
	Error Probability Bounds for the Memoryless Lee Channel

	Fixed Lee Weight Vectors
	Construction of Random Error Vectors
	The Scalar Multiplication Problem

	Summary and Outlook

	Regular Lee-LDPC Codes
	Message Passing Decoders
	Belief Propagation Decoding
	Symbol Message-Passing Decoding

	Average Weight Enumerator
	Transformation of the Lee Type
	Valid Check Node Assignment
	Asymptotic Growth Rate

	Decoding Performance over Lee Channels
	Bounds on the Block Error Probability Based on the Lee Weight Spectrum
	Density Evolution Analysis
	Numerical Results

	Summary and Outlook

	Restricted Information Set Decoding
	Background to Information Set Decoding
	General Framework and Prange's Algorithm
	Improved ISD Variants

	Restricted Lee-Spheres
	Restricted Lee-BJMM Algorithm
	Bounded Minimum Distance Decoding
	Decoding Beyond the Minimum Distance

	Comparison to other Lee Metric ISD Algorithms
	Summary and Outlook

	Conclusions and Future Work
	Bibliography

