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Abstract

This master thesis presents a new construction of MDPC-codes. MDPC-codes are
binary linear codes of length n characterized by a parity check matrix of row-weight
O(
√
n). We provide a construction of a parity check matrix for these MDPC-codes

using finite geometry. To be precise, we work in the Desarguesian projective plane
PG(2, q) of order q, where q is an odd prime power. The projective plane is an
incidence structure consisting of a set of points and a set of lines united with a set
of non-degenerate conics. These non-degenerate conics are mutually intersecting in
a unique point of the Desarguesian plane and we call the collection of all these non-
degenerate conics a projective bundle. We give a full characterization of the, in total,
three types of projective bundles in this master thesis and discuss its existence and
how we are able to use them. In fact the non-degenerate conics of a projective bundle
in PG(2, q) can be interpreted as lines which yields the structure of a projective
plane. To simplify the idea we can say that we work with the distinct union of
two projective planes, namely Π consisting of a set of points and a set of lines
and Γ consisting of a set of points and a projective bundle in the Desarguesian
plane. The partiy-check matrix that we present is the concatenation of the two
incidence matrices H ′ and H ′′ of the two projective planes Π and Γ, respectively.
It characterizes the family of MDPC-codes C2(Π t Γ)⊥ of length 2(q2 + q + 1) and
dimension q2 + q + 2. Due to the fact that lines intersect a non-degenerate conic
at most in two points, two randomly chosen columns of the parity check matrix
share at most two positions where they both have a non-zero entry. The smaller
this number of positions is, the better the error-correction performance becomes.
Indeed, applying one round of Gallager’s bit-flipping algorithm to a parity check
matrix constructed in that way implies that we are able to correct b q+1

4 c errors in a
received word. Additionally we have lower bounded the minimum distance of these

MDPC-codes C2(Π t Γ)⊥ by
⌈
2(q+2)

3

⌉
.
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Chapter 1

Introduction

There exist many public key cryptosystems based on factorization of large numbers
or based on the so-called discrete logarithm. One of the most famous and established
examples of such a cryptosystem is RSA. Nowadays all these public key cryptosys-
tems can be attacked in polynomial time by a quantum computer (for details see
[32] and [6]). Of course quantum computers do not exist for now but they are ex-
pected to exist in the near future. Mathematicians and cryptographers are trying
to develop new crpytosystems that are resistant against quantum computers. Code-
based cryptography is believed to be quantum-resistant and is hence considered a
judicious solution in future applications. Code-based cryptosystems offer a lot more
advantages other than being quantum-resistant. They also show a high algorithmic
efficiency. The first code-based cryptosystem is the McEliece cryptosystem pub-
lished in 1978 [23]. McEliece proposed this system using binary Goppa codes. Even
if it provided fast encryption and decryption, one disadvantage of the cryptosystem
is its extremely large key size. So the goal was then to reduce the key size. This was
achieved with the introduction of Low-density parity-check codes (LDPC-codes) in
1963 by Robert Gallager [10]. These codes are binary linear error-correcting codes
with a parity-check matrix that consists only of a few nonzero entries per column
and row. Despite the efficient error-correction performance, LDPC-codes can not
be used in the way they were proposed for the McEliece cryptosystem. Since the
parity-check matrix of an LDPC-code is the generator matrix of its dual code, the
codewords of its dual code are of low weight and can easily be computed and used
to identify the rows of the parity-check matrix.
Therefore the idea of LDPC-codes needed to be modified. This is where Moderate-
density parity-check codes (MDPC-codes) were introduced. The parity-check matrix
of these codes is not sparse anymore, but its row weight is of order O(

√
n), where n

is the length of the code, which seems to prevent the attacks used on LDPC-codes.
MDPC-codes were used instead of Goppa codes in the McEliece cryptosystem and
there have been various constructions based on quasi-cyclic structures or randomness
(for example in [24], [37]). However, the error-correction performance of MDPC-
codes has slightly suffered when compared to LDPC-codes. There have been several
improvements of the error-correction performance using a modified version of Gal-
lagers bit-flipping algorithm [37], [18]. Depending on the construction of the code
and the decoding algorithm used the performance varies.
The aim of this master thesis is to develop a construction based on finite geometry to
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1. INTRODUCTION

improve the error-correction capability when performing one round of bit-flipping.
We make use of the idea of constructing codes from projective planes, characterized
by their incidence matrices. We consider the natural Desarguesian plane PG(2, q)
of odd order q which consists of a set of points and a set of lines. Moreover we
study packings of non-degenerate conics in PG(2, q), which are sets of q + 1 points
satisfying a quadratic equation. Such a packing of conics in the Desarguesian plane,
also called projective bundles, together with the set of points is again a projective
plane. Hence a conic in PG(2, q) can be interpreted as a line. Furthermore a line
intersects a conic in at most two points. We make use of this property in order to
provide a good error-correction capacity (see section 6.4).

Chapter 2 and 3 give a short introduction to coding theory and to finite geometry,
respectively. There we define and state the most important concepts and results
that will be useful in the course of the thesis.
In Chapter 4 we discuss the structure of projective bundles and we will see under
which circumstances they do, or do not, exist. We will also give some important
properties and behaviours of projective bundles which will be of great use in Chapter
6.
An introduction of MDPC-codes will then be given in Chapter 5. We will explore
some decoding algorithms that can be used for MDPC-codes with the main focus
on the bit-flipping algorithm. For this specific algorithm we will also discuss the
performance when used with MDPC-codes instead of LDPC-codes. We will quickly
discuss one variant of the McEliece cryptosystem using MDPC-codes to get an idea
of how MDPC-codes can be used in practice.
Finally, in Chapter 6 we present a new construction of MDPC-codes based on finite
geometry. More explicitly, we construct a parity-check matrix that characterizes an
MDPC-code. For this family of codes we determine its dimension and we provide
upper and lower bounds on the minimum distance. Furthermore, we discuss the
error-correction capability of the code using the bit-flipping algorithm.
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Chapter 2

Background in Coding Theory

We start with a preliminary Section on coding theory to introduce the most basic
definitions and notions needed in the course of the following pages. The theory has
been taken mainly from Guruswami, Rudra and Sudan [14, Part I, Chapter 1, 2.1
and 2.2, pp. 17-44], from Assmus and J.D. Key [1, Chapters 1 and 2] and from
Lindell [20, Chapters 1 and 2].

2.1 Goals of Coding Theory

In our lives communication plays a central role. We are trying to send messages to
our person opposite to tell him or her what we want. Sometimes, even tough we do
not find explicit words or if we are surrounded by too much noise, the other person
is able to understand what we are saying. This shows that a language has some
redundancy that allows to communicate even if some small errors occur. Not only
in communication between humans, but also in the digital world redundancy is used
to correct errors.

One goal of coding theory is to improve the trustworthiness of a communication. To
achieve this, coding theory deals with error-correcting codes to add redundancy. In
1948 Claude Elwood Shannon published a paper (see [31]), in which he showed that
for a given degree of noise in a communication channel one can communicate nearly
error-free. Error-correcting codes were then introduced to implement this theorem.
The message or data sent is first encoded, which means that it will be transformed
into a codeword, by adding redundancy. After the message is sent through the chan-
nel, the receiver decodes the received word into the original message. Of course there
is the possibility of errors occurring during the transmission, meaning that possibly
not every symbol of the message is transmitted correctly. We call these possibly
changed symbols errors. The goal is to add as little redundancy as possible needed
to correct a certain amount of errors in a code. So the central question that arises
is: How much redundancy is needed?
At the same time, we are trying to efficiently encode some information by not using
much space. Indeed, one can achieve this by removing redundancy from the received
information. Thus, the idea is to find a clever way of introducing redundancy in
order to encode efficiently but at the same time one has to be able to correct as
many errors as possible.
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2.2. Block Codes and Their Parameters 2. BACKGROUND IN CODING THEORY

Finally, coding theory is also used in cryptography since we want to construct sys-
tems that are secure but that are also usable in noisy channels.

2.2 Block Codes and Their Parameters

First and foremost we introduce the general notions of coding theory such as the
definition of a code and its parameters. In Section 2.3 we then focus on a specific
class of codes, which are of interest in the course of this thesis.

Let A = {a1, . . . , aq} denote a finite set of q elements which we call an alphabet of q
letters. Furthermore, let M be a finite set of information words and define a map

ϕ : M −→ An.

If ϕ is an injective map we call C := Im(ϕ) a q-ary block code of block length n
with encoder ϕ. So a q-ary block code C is a subset of An. The elements of a code
C, called codewords, are n-tuples c = (c1, . . . , cn) ∈ An. The ambient space An can
be viewed as a set of vectors, if the set A admits some structure, as we will see for
linear codes in the next Section 2.3. In other situations the ambient space can also
be viewed as a set of sequences or as a set of functions.

Another parameter which is important for the description of a code is its dimension.
Given a q-ary block code C ⊂ An we define the dimension k of C by

k = logq |C| .

As already mentioned, coding theorists are interested in the amount of redundancy
needed. Redundancy, informally speaking, is the amount of superfluous space needed
to transmit a certain message or data through a channel. It is the part of the
message that contains no information but which is used to detect errors in the
transmission. Therefore, we want to define the redundancy of a block code of length
n and dimension k as the difference n − k. The importance of the amount for
redundancy motivates the definition of a measure of redundancy. We define the
rate, denoted R(C), of an [n, k]-block code C to be the ratio

R(C) =
k

n
.

We can say that the rate of a code measures the amount of useful information in all
of the n symbols. Note that k ≤ n and hence R(C) ≤ 1.

As mentioned, we would like to have an optimal error-correction performance. Usu-
ally a codeword is expected to contain less errors than expected. To be able to
discuss about the number of errors in a codeword we want to give the definition of
the Hamming distance.

Definition 2.2.1. [14, Definition 1.4.1] Consider a finite field F. Let x, y ∈ Fn.
Then the Hamming distance d(x, y) is the number of positions in which x and y
differ, i.e.

d(x, y) = |{i ∈ {1, . . . , n} |xi 6= yi}| .

5



2.2. Block Codes and Their Parameters 2. BACKGROUND IN CODING THEORY

In fact the Hamming distance is dependent on the positions i in which x and y differ
and not in the actual values of xi and yi. Therefore the following result holds for a
finite field F (note that finite fields will be introduced in the next Section).

Lemma 2.2.2. [20, Proposition 1.5] The Hamming distance d : Fn × Fn −→ N
defines a metric.

Proof. First, we show that the Hamming distance is positive definite. Let x, y ∈ C
be arbitrary codewords. The Hamming distance of x and y is the number of entries
in which x and y differ

d(x, y) = |{i ∈ {1, . . . , n} |xi 6= yi}| .

Therefore, it has to be non-negative. Further, the Hamming distance is zero if and
only if there is no position in which x and y differ. Then x and y must be the same
codeword.
Secondly, we need to prove that the Hamming distance is symmetric. Again let x
and y be arbitrary codewords of C. The definition gives that

d(x, y) = |{i ∈ {1, . . . , n} |xi 6= yi}| ,

which is equivalent to

|{i ∈ {1, . . . , n} | yi 6= xi}| = d(y, x).

Therefore, we obtain that the Hamming distance is symmetric.
Lastly, we need to show, that the triangle inequality1 holds for any codewords x, y
and z of the code C. We do this by induction on the code length n. For this we
define Sn to be the set of sequences of bits of length n. For all x, y ∈ Sn let dn(x, y)
be the number of positions in which x and y differ.
For n = 1 we have S1 = {0, 1} and therefore d1 is the discrete metric for S1. Hence,
it satisfies the triangle inequality.
Now assume that for arbitrary but fixed n−1, the distance dn−1 satisfies the triangle
inequality. We must then deduce that also dn does.
Let x, y, z ∈ Sn. Decompose x into its first bit x′ and its last n− 1 bits x′′, so that
x = x′x′′. Similarly we can decompose y = y′y′′ and z = z′z′′. Then the distance
dn(x, z) is equal to d1(x

′, z′) plus the number of positions in which x′′ and z′′ differ,
which is

dn(x, z) = d1(x
′, z′) + dn−1(x

′′, z′′).

Since d1 and dn−1 both satisfy the triangle inequality, we obtain by the induction
hypothesis

dn(x, z) ≤ d1(x′, y′) + d1(y
′, z′) + dn−1(x

′′, y′′) + dn−1(y
′′, z′′)

= d1(x
′, y′) + dn−1(x

′′, y′′) + d1(y
′, z′) + dn−1(y

′′, z′′)

= dn(x, y) + dn(y, z).

Hence we conclude that the Hamming distance satisfies the triangle inequality.

1The triangle inequality for the Hamming distance d : F2 × F2 −→ N is satisfied, if for any
x, y, z ∈ C it holds d(x, z) ≤ d(x, y) + d(y, z)
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2.2. Block Codes and Their Parameters 2. BACKGROUND IN CODING THEORY

Another important quantity is the minimum distance of a code C, denoted d(C),
which is defined to be the smallest possible Hamming distance between two code-
words,

d(C) := min{d(c, c̃) | c, c̃ ∈ C, c 6= c̃}.

Knowing the minimum distance of a code C, one can estimate the number of errors
that can be detected as well as the number of errors that can be corrected. Indeed,
the higher the minimum distance of a code, the more errors can be detected and
corrected. The following result summarizes these facts.

Proposition 2.2.3. [14, Proposition 1.4.1] Let C ⊂ GF (q)n be a code of length n
with minimum distance d(C) ≥ 2. Then the following hold:

i) If d(C) = 2t+ 1 for some t ∈ N, then C can correct up to t errors,

ii) C can detect up to d(C)− 1 errors,

iii) C can correct up to d(C)− 1 erasures.

Proof. Assume first that C has an odd minimum distance d(C) = 2t + 1. Suppose
that a codeword c1 ∈ C is transmitted and y ∈ GF (q)n is received with c1 6= y.
Since t is the number of errors we note that

d(c1, y) ≤ t. (2.1)

We claim now, that c1 ∈ C is the only codeword satisfying (2.1). Indeed, if c2 ∈ C
is another codeword with d(c2, y) ≤ t then by the triangle inequality we obtain

d(c1, c2) ≤ d(c1, y) + d(y, c2)

≤ 2t

= d(C)− 1.

Since we have assumed that d(C) = 2t+ 1 it follows that c1 = c2.

To prove the second statement assume again that a codeword c ∈ C is sent and y
is received such that y 6= c. We need to check, if the received word is a codeword of
C. If it is a codeword of C, then the errors could have been detected. On the other
hand if d(c, y) ≤ d(C)− 1, then y is not a codeword of C.

For the last statement let y ∈ (F∪{?})n be a received codeword, where ? denotes the
erasure. We claim that there is a unique codeword c ∈ C that agrees with y. Indeed,
if there are two codewords c1, c2 ∈ C agreeing with y in the unerased positions, then

d(c1, c2) ≤ |{i = 1, . . . , n | yi =?}| ≤ d(C)− 1,

which is impossible since d(C) is the minimum possible distance between two code-
words of C. Hence, y is still a unique codeword of C.

7



2.3. Linear Block Codes 2. BACKGROUND IN CODING THEORY

2.3 Linear Block Codes

We will now introduce a family of codes called linear codes. They have more struc-
ture than other codes and therefore admit some nice properties. We will explore
how this family of codes can be represented using matrices and how these matrices
are used to determine the minimum distance of a linear code. Later in this thesis
we will exclusively focus on binary linear codes.

2.3.1 Finite Fields

In order to define a linear code we need the definition of a finite field. Finite fields
were discovered by the mathematician Évariste Galois. In his honour, finite fields
are often called Galois fields and are denoted by GF (q), where q is the number of
elements in this field. More commonly, in the literature, the notation Fq is also used
for a finite field of q elements. These fields play an important role in cryptography
and coding theory, since we deal with a finite amount of symbols, signs or numbers.

Recall that a field F is a triple (S,+, ·) consisting of a set of elements S and two
functions +/· : F× F −→ F, both satisfying the following properties:

(F1) The functions are both well-defined, i.e. for any two elements x, y ∈ S it holds
that x+ y ∈ S and x · y ∈ S.

(F2) Both functions + and · are associative, i.e. for any x, y, z ∈ S it holds that
(x+ y) + z = x+ (y + z) and (x · y) · z = x · (y · z).

(F3) Both functions + and · are commutative, i.e. for any x, y ∈ S it holds that
x+ y = y + x and x · y = y · x.

(F4) The functions follow the distributivity law, i.e. for any x, y, z ∈ S it holds that
(x+ y) · z = x · z + y · z.

(F5) For each of the functions there exists a neutral element, 0 or 1 respectively,
such that for every x ∈ S we have x+ 0 = x and x · 1 = x.

(F6) For every element x ∈ S there is a unique additive inverse (−x) such that
x+ (−x) = 0 and for each nonzero y ∈ S there is a multiplicative inverse y−1

such that y · y−1 = 1.

A finite field is a field consisting of a finite number of elements. We will denote
such a field by GF (q), where q is the number of elements in that field. In fact, the
number of elements is always a prime power as the following theorem states.

Theorem 2.3.1. [14, Theorem 2.1.1] The size of any finite field GF (q) is q = pk,
where p is a prime number and k ≥ 1 an integer.

Finite fields do not exist for any choice of q. In fact, they only exist for prime powers.
The following result clarifies this question.

8
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Theorem 2.3.2. [14, Theorem 2.1.3] For every prime power q there is a unique
finite field with q elements (up to isomorphism2).

Example 2.3.3. A well-known example for finite fields are the fields formed by
the integers modulo p for a prime number p. We denote this field by GF (p) =
({0, 1, . . . , p− 1},+p, ·p), where +p and ·p denote the addition and multiplication
modulo p, respectively.

It is well-known that the multiplicative group (F ?, ·q) of the field GF (q) = (F,+q, ·q)
is isomorphic to the cyclic group of order q − 1, i.e.

(F ?, ·q) ∼= (Z/〈q−1〉,+).

This leads to the definition of a generator or primitive element of GF (q).

Definition 2.3.4. [11, Definition 0.2.2] A generator of the multiplicative group of
GF (q) is an element of order q − 1.

We can define a linear subspace S ⊂ GF (q)n to be a non-empty set satisfying the
following two properties:

i) For every element x, y ∈ S, x+ y ∈ S.

ii) For every x ∈ S and every scalar a ∈ GF (q), a · x ∈ S.

Example 2.3.5. Consider the finite fieldGF (3)2, then the set S = {(0, 0), (1, 1), (2, 2)}
is a simple example for a linear subspace of GF (3)2.

Finally, a semi-field is a non-associative division-ring. Hence, a semi-field differs
from a field in that their multiplication is not required to be commutative.

2.3.2 Definitions and Representations

Now having the theory of finite fields ready, we can define a linear code. For this,
let GF (q) always denote a finite field of q elements, where q = pk is a power of the
prime p.

Definition 2.3.6. [14, Definition 2.0.1] A q-ary linear code C of length n and
dimension k is a linear subspace of GF (q)n of dimension k.

Therefore, the length of a q-ary linear code C can be derived directly from the
dimension of the ambient space GF (q)n. Recall further from Section 2.2 that the
dimension of a code C is k = logq |C|. The dimension of C, denoted by dim(C), is
the dimension of C as a vector space of GF (q)n.
We denote a q-ary linear code C by [n, k]q−linear code.

Since we know that the dimension k = dim(C) is logq |C|, the number of elements
in an [n, k]q−linear code is given by

|C| = qk.

2An isomorphism is a bijective map ϕ : A −→ B between two mathematical structures
(A,+A, ·A) and (B,+B , ·B) such that for every x, y ∈ A it holds ϕ(x +A y) = ϕ(x) +B ϕ(y)
and ϕ(x ·A y) = ϕ(x) ·B ϕ(y).

9



2.3. Linear Block Codes 2. BACKGROUND IN CODING THEORY

For example, a binary linear code of dimension k has 2k codewords.

We can represent an [n, k]q−linear code C using matrices. In order to do so, we
need to define a dual code as well.

Definition 2.3.7. [20, Definition 2.4] Let C be an [n, k]q−linear code. Its dual code
C⊥ is given by

C⊥ = {x ∈ GF (q)n |x · c> = 0, ∀c ∈ C}.

Since C is a subspace of GF (q)n, it can be represented by a basis. Therefore, we
define a generator matrix G of the code to be a (k × n)−matrix over GF (q) whose
rows are formed by any k linearly independent vectors of C, that form a basis of C.
Similarly, we define a matrix H ∈ GF (q)(n−k)×n, the parity-check matrix of C, to
be the generator matrix of the dual code C⊥.

The following result gives a necessary and sufficient condition for a matrix H to be
a parity-check matrix of an [n, k]q−linear code C.

Lemma 2.3.8. [20, Lemma 2.14] Let C be an [n, k]q−linear code with generator
matrix G. Then a vector v ∈ GF (q)n is a codeword of the dual code C⊥ if and only
if v ·G> = 0. In particular, an ((n−k)×n)−matrix H over GF (q) is a parity-check
matrix of the code C if and only if its rows are linearly independent and it satisfies
H ·G> = 0.

Proof. Let us start by proving the first part. For this, assume that an arbitrary
vector v ∈ GF (q)n is a codeword of the dual code C⊥. Denote the rows of the
generator matrix G by g1, . . . , gk, where each gi ∈ GF (q)n. Since the rows of G form
a basis for the code C, for each codeword c ∈ C there exist k scalars λ1, . . . , λk ∈
GF (q) satisfying

c =

k∑
i=1

λi · gi.

Since v ∈ C⊥, and by the definition of the dual code, it holds that v · g>i = 0 for
each i = 1, . . . , k. Hence, v ·G> = 0.
Conversely, assume that for an arbitrary vector v ∈ GF (q)n we have v · G> = 0.
This means that for every i = 1, . . . , k v · gi = 0. Furthermore, let c ∈ C be any
codeword such that it holds that c =

∑k
i=1 λi ·gi for some λ1, . . . , λk ∈ GF (q). Then,

we obtain

v · c =
k∑
i=1

vi · λi · g>i =
k∑
i=1

λi · (vi · g>i ) =
k∑
i=1

λi · 0 = 0.

Thus we conclude v ∈ C⊥.

For the second part of the statement let us assume that H ∈ GF (q)(n−k)×n is a
parity-check matrix of C. Hence, H is a generator matrix of C⊥, which implies that
its rows are linearly independent in C⊥. Hence, by the above computations we have

10
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H ·G> = 0.
If conversely we assume that H ·G> = 0, where H is any matrix in GF (q)(n−k)×n,
then for each row v of H, and hence in C⊥, we have that v · G> = 0. Since the
rows are all linearly independent, H is a generator matrix of C⊥ and hence it is a
parity-check matrix of C, which concludes the proof.

Note that this means that every matrix generating the dual C⊥ is a characterization
of the code C. Equivalently to the statement above we could say, that a vector
c ∈ GF (q)n is a codeword of an [n, k]q−linear code C with parity-check matrix H if
and only if it satisfies H · c> = 0.

Example 2.3.9. Let C be a [4, 2] binary linear code with parity-check matrix H
given by

H =

[
0 0 1 1
1 1 0 0

]
.

By the definition of a linear code, this code C has dimension dim(C) = 2 and hence,
by the above discussion, 22 = 4 elements. Furthermore, we know that each element
c ∈ C has to satisfy H · c> = 0, which gives(

c3 + c4
c1 + c2

)
=

(
0
0

)
.

Thus, every codeword c = (c1, c2, c3, c4) of C has to satisfy c3+c4 = 0 and c1+c2 = 0.
So we conclude that the codewords of C are the following four:

c1 = (0, 0, 0, 0), c2 = (0, 0, 1, 1), c3 = (1, 1, 0, 0), c4 = (1, 1, 1, 1).

2.3.3 Distance and Weight

We have mentioned the general definition of the distance of a code C earlier in this
preliminary Section on coding theory. For an [n, k]q−linear code there is another
description, called the weight of a codeword. We will see that for linear codes the
minimum distance and minimum weight are equivalent. In this subsection let C
always denote an [n, k]q−linear code if nothing else is stated.

We define the weight of a vector x = (x1, . . . , xn) ∈ GF (q)n to be the number of
non-zero positions of x, i.e.

wt(x) = |{i = 1, . . . , n |xi 6= 0}|.

If every row x of a matrix H has a constant weight wt(x) = w then we say that H
has row-weight w. Similarly, we say that H has column-weight v, if each column of
H has a constant weight v.

Lemma 2.3.10. [14, Proposition 2.3.4] Let C be an [n, k]q−linear code of minimum
distance d(C). Then the distance is the minimum possible weight of the non-zero
codewords, i.e.

d(C) = min{wt(c) | c ∈ C, c 6= 0}.

11
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Proof. Consider two distinct non-zero codewords x, y ∈ C that are a distance
d(x, y) = d apart. Since C is linear and binary, x − y is also a codeword of C
and has d non-zero elements. Therefore

d(x, y) = d(x− y, 0) = wt(x− y).

Thus we can say that the minimum distance d(C) is equal to the minimum weight
of all the qk − 1 non-zero codewords.

In general, knowing the minimum weight of a code C does not give an exact result
on the minimum weight of its dual code C⊥. The following shows that the minimum
distance of a code C can be determined using a parity-check matrix.

Theorem 2.3.11. [14, Proposition 2.3.5] Let C be an [n, k]q−linear code with parity-
check matrix H. Then C has minimum distance d(C) ≥ d if and only if every set
of d− 1 columns of H is linearly independent.

Proof. Assume first that the minimum distance is d(C) ≥ d. Further assume that
there is a set of s < d columns of H, say h1, . . . , hs, that are linearly dependent.
This means that there are constants λ1, . . . , λs not all zero such that

s∑
i=1

hi · λi = 0.

The idea is to construct a codeword c of weight wt(c) < d. For this let c =
(λ1, . . . , λs, 0, . . . , 0). We see that c is indeed a codeword of C because

H · c> =
s∑
i=1

hi · λi = 0.

But wt(c) = s < d which is a contradiction since d(C) ≥ d.

Conversely, assume that every set of d− 1 columns of H is linearly independent and
let c = (c1, . . . , cn) ∈ C be a codeword of weight wt(c) ≤ d−1. Since c is a codeword
of C it holds that

H · c> =
n∑
i=1

hi · ci = 0,

where h1, . . . , hn denote the columns of H. Hence, because wt(c) < d−1, there exist
d− 1 columns of H summing to zero. Thus there are d− 1 columns of H which are
linearly dependent, which is a contradiction to the assumption. So we obtain that
wt(c) ≥ d and since C is linear and c ∈ C was chosen arbitrarily we conclude that
d(C) ≥ d.

We know now that the minimum distance gives the smallest difference between two
codewords. Since it describes a minimum value, we are interested in the maximal
possible distance among all [n, k]q−linear codes. In 1964 Richard Collom Singleton
[35] has found an upper bound for the minimum distance of an arbitrary code C of
length n and dimension k.

12
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Theorem 2.3.12 (Singleton-bound, [35]). For any [n, k]q−linear code C its mini-
mum distance satisfies d(C) ≤ n− k + 1.

Proof. Assume that C = kerH, where H ∈ GF (q)(n−k)×n is a parity check matrix
of C. We will make use of the previous theorem by giving the number of linearly
dependent columns of H. Since H has n−k rows and because the number of linearly
dependent columns is equal to the number of linearly dependent rows, we obtain
that at most any n− k columns of H are linearly independent. Hence, we conclude
by the previous Theorem that d(C) ≤ n− k + 1.

A code C attaining this bound is called a maximum distance separable code, or
shortly MDS code. In this thesis we will not focus on this family of codes, therefore
we will not go into details here.
The following bound, which for binary linear block codes is even more precise, is the
Griesmer bound which was published by Griesmer in 1960 in his article ”A bound
for Error-Correcting Codes” [12].

Theorem 2.3.13 (Griesmer-bound, [12]). Let C be an [n, k]2−linear code. Then
the following estimation holds

n ≥
k−1∑
i=0

⌈
d

2i

⌉
.

2.4 Encoding and Decoding

As already mentioned in Section 2.1, coding theory is used to improve the commu-
nication. We said that a message is first encoded, which is the process of adding
redundancy to transform a message into a codeword, and then decoded after the
transmission. In this section we shorty describe encoding and decoding using the
tools examined earlier.
The codewords of an [n, k]q−linear code are usually described as row vectors. An
encoding map is defined by a (k × n)−generator matrix G of C as a linear map

ϕ : GF (q)k −→ GF (q)n

m = (m1, . . . ,mk) 7−→ m ·G = c = (c1, . . . , cn)

mapping any message m to a codeword c ∈ C and satisfying

C = Im(ϕ).

We define a syndrome former of C using a parity-check matrix H. It is defined by
the linear map

ψ : GF (q)n −→ GF (q)n−k

c = (c1, . . . , cn) 7−→ H · c>,

such that it holds that

C = ker(ψ).

The syndrome former checks whether a vector y ∈ GF (q)n is a codeword or not.

13
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Remark 2.4.1 ([5], Remark 1.9). An encoding map ϕ : GF (q)k −→ GF (q)n is
necessarily injective and a syndrome former ψ : GF (q)n −→ GF (q)n−k is necessarily
surjective.

Proof. Let us first prove, that ϕ is injective. By the rank nullity Theorem3 we know
that

dim(GF (q)k) = dim(Im(ϕ)) + dim(ker(ϕ)). (2.2)

We have that dim(GF (q)k) = k and by definition of the encoding map Im(ϕ)) = C.
Therefore we obtain

dim(Im(ϕ)) = dim(C) = k.

Using this and (2.2) we can conclude that dim(ker(ϕ)) = 0, hence ϕ is injective.
Similarly for the syndrome former ψ we have

dim(GF (q)n) = dim(Im(ψ)) + dim(ker(ψ)). (2.3)

Again using the definition of a syndrome former of C, we get that

dim(ker(ψ)) = dim(C) = k.

Substituting this in (2.3) we obtain

n = dim(Im(ψ)) + k

and hence

dim(Im(ψ)) = n− k = dim(GF (q)n−k).

Therefore we conclude that ψ is surjective.

With the help of these two maps we can decode a linear code. For this, assume that
C ⊂ GF (q)n is an [n, k]-linear code of distance d(C) = 2t + 1. From proposition
2.2.3 it follows that we can correct up to t errors and detect up to 2t errors. Suppose
that ψ : GF (q)n −→ GF (q)n−k is a syndrome former of C. Let us then look at the
error correction and detection in detail.

Error correction:
Suppose that a codeword c ∈ C is sent and that y = c+e ∈ GF (q)n is received, where
e denotes the error-vector. Suppose that wt(e) ≤ t. Compute then the syndrome of
the received word

ψ(y) = ψ(c) + ψ(e) = ψ(e).

Error detection:
Assume that we sent a codeword c ∈ C and then receive y = c+ e ∈ GF (q)n, with

3The generalization of the rank nullity Theorem states, that for a linear map T : V −→ W it
holds dim(V ) = dim(Im(T )) + dim(ker(T )).
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the error-vector e. Since we can detect up to 2t errors, suppose that wt(e) ≤ 2t.
Then we compute

ψ(y) = ψ(c) + ψ(e) = 0.

Note that the error-vector e = 0 if and only if ψ(e) = 0 since wt(e) ≤ 2t.

Syndrome Decoding:
Assume that y ∈ GF (q)n is received. The goal now is to find the codeword c ∈ C
which is at shortest distance from y, i.e.

d(c, y) ≤ d(c′, y), for each c′ ∈ C.

Assume that up to t = d(C)/2 errors happened in the transmission. For each
ei ∈ GF (q)n with wt(ei) ≤ t compute its syndrome ψ(ei) and create a table. Find
in the table the one ei satisfying ψ(ei) = ψ(y). Then decode y as c := y − ei.

15



Chapter 3

Introduction to Finite Geometry

This Section serves as an introduction to finite geometry where we will introduce
the general notions of incidence structures, projective spaces and planes.
The material has mainly been taken from the paper of Ball and Weiner [4, Chapters
1 and 2]. Additional theory for this Chapter was used from Assmus and Key [1,
Chapter 1], Dembowski [9, Chapter 1.1], Glynn [11, Chapter 0], Liu and Pados [21,
pp. 3890-3891] and Cameron [8, Chapter 2].

3.1 Incidence Structures

We are going to introduce the definitions of incidence structures which will be needed
for the construction of codes using projective planes.

An incidence structure is a triple S = (P,L, I), consisting of a set of points P, a set
of lines L and an incidence relation I ⊂ P ×L between the points and the lines. In
literature, the set L is sometimes also called the set of blocks instead. We say that
a point p ∈ P is incident to a line l ∈ L and we write p ∈ l, if (p, l) ∈ I. Instead of
saying p is incident to l we may also say p lies on l or l passes through p.

The relative position of two points or two lines can be analysed by checking whether
they lie on a common line or they contain a common point, respectively. More pre-
cisely, two or more points are said to be collinear if they are incident to a common
line. Similarly, two or more lines are called concurrent if they are incident to a single
point.

In order to be able to represent an incidence structure S, we define an incidence
graph of S to be an undirected bipartite graph Γ = (V,E), where the set of points P
and the set of lines L are the vertex partitions V and the elements of the incidence
relation I represent the set of edges E. If all point vertices have degree t + 1 and
all line vertices have degree s + 1, where t and s are positive integers, we call the
incidence structure S regular and we say that Γ has order (s, t).
From this, we define an incidence matrix of a structure S consisting of n points and
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m lines to be the (n×m) matrix A = (aij) 1≤i≤n
1≤j≤m

defined by

aij =

{
0, if Pi does not lie on lj

1, if Pi lies on lj ,

where P1, . . . , Pn and l1, . . . , lm are some labellings of the n points and the m lines
of S, respectively.

Example 3.1.1. Consider an incidence structure consisting of the following sets of
points and lines.

P = {p1, p2, p3, p4},
L = {l1 = {p1, p2}, l2 = {p2, p3}, l3 = {p3, p4}, l4 = {p1, p4}}.

Since p1 is an element of l1 and l4, we say that p1 is incident to these two lines. This
implies that the entries a11 and a14 of an incidence matrix A must be 1. If we do so
for all the points pi, we obtain the following incidence matrix

A =



l1 l2 l3 l4

p1 1 0 0 1

p2 1 1 0 0

p3 0 1 1 0

p4 0 0 1 1

.
The dual structure of an incidence structure S = (P,L, I) is defined to be the triple
S⊥ = (P⊥,L⊥, I⊥), where P⊥ = L,L⊥ = P and (l, p) ∈ I⊥ if and only if (p, l) ∈ I.
An incidence structure S is called self-dual if it is isomorphic to its dual S⊥. This
means that the set of points of the structure S is the same as the set of points of
S⊥ and analogously for the set of lines. Also it means that incidence is preserved.

Usually we will work with structures that show a certain degree of regularity in their
definition. We will call these designs t-designs, but let us give a formal definition.

Definition 3.1.2. [1, Definition 1.2.1] An incidence structure S = (P,L, I) is called
a t− (v, k, λ) design, where t, v, k and λ are non-negative integers, if

i) |P| = v,

ii) every line l ∈ L passes through precisely k points,

iii) every t distinct points are together incident to precisely λ lines.

A 2− (v, k, λ) design is said to be symmetric, if the number of points is equal to the
number of lines. We will see later, that a two-dimensional projective plane of order
q is a symmetric 2− (q2 + q + 1, q + 1, 1)-design.
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3.2 Finite Projective Spaces

Let us first introduce finite projective spaces via the definition of incidence struc-
tures.

Definition 3.2.1. [11, Definition 0.3.1] A finite projective space is an incidence
structure S consisting of a finite number of points and a finite number of lines, that
satisfies the following three properties:

i) Every two distinct points of S are incident to a unique line.

ii) The number of points on each line of S is greater or equal to three.

iii) Let l1 and l2 be two lines of S intersecting in a unique point P of S. If two
points Q and R distinct from P additionally lie on l1 and another two points
T and V distinct from P lie on l2, then the line joining Q and T and the line
joining R and V intersect in a unique point.

We say a subset U of points of a finite projective space S is a projective subspace,
if for any two distinct points P and Q in U the points lying on the line passing
through P and Q are also contained in U .

Example 3.2.2. The empty set is always a subspace of a finite projective space, as
well as the set {P} consisting of only one point P of the projective space.

The system of all subspaces of a finite projective space S is called a finite projective
geometry. Note that a finite projective geometry T is again an incidence structure.
Indeed, the points of T define the points of the incidence structure and the subspaces
of T are the lines of the incidence structure. The incidence relation is then given by
the set-theoretical inclusion.

For a finite projective geometry T we can define its dimension and its order.

Definition 3.2.3. [11, Definitions 0.3.6 and 0.3.7] The dimension n of a finite
projective geometry T is one less than the size of the maximal set of points of T
that are linearly independent. We define the order q of a finite projective geometry
T to be one less than the number of points lying on any line of T .

The following theorem is an important result stating the uniqueness of finite pro-
jective geometries of dimension n ≥ 3.

Theorem 3.2.4. [11, Theorem 0.3.1] All finite projective geometries of the same
dimension n ≥ 3 and order q ≥ 2 are isomorphic. Also a finite projective geometry
exists only if the order q is a prime power.

Let us now focus on a finite field GF (q) of q elements, where q is a prime power,
and see how we can define a finite projective geometry over GF (q).

Let us denote by V (n+ 1, q) a vector space of dimension n+ 1 over GF (q). Similar
to the definition above, a projective space, denoted by PG(n, q), is the projective ge-
ometry whose points, lines, planes, . . . , hyperplanes are the subspaces of V (n+ 1, q)
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of dimension 1, 2, 3, . . . , n.

Alternatively, we can define the finite projective space PG(n, q) to be the set of
equivalence classes V (n + 1, q)\{0}/∼, where the equivalence relation is defined by
x ∼ y if there is a non-zero constant k ∈ GF (q)\{0} such that x = k · y. Since a
finite projective geometry is an incidence structure, we can define the points and
lines of PG(n, q) using the equivalence relation.
Hence, two (n + 1)−tuples (x0, . . . , xn) and (y0, . . . , yn) are equivalent if there is a
non-zero constant k ∈ GF (q)\{0} such that

(x0, . . . , xn) = (k · y0, . . . , k · yn).

The lines of the finite projective space PG(n, q) are defined to be the sets of points

〈a0, . . . , an〉 = {[x0, . . . , xn] ∈ PG(n, q) | a0 · x0, . . . , an · xn = 0},

where ai ∈ GF (q) for all i = 0, . . . , n and not all zero.

Remark 3.2.5. Let ei denote the ith unity-vector, i.e. ei is the all-zero vector with
a one-entry at position i. Then the set {ei | i = 0, . . . , n} is a maximal set of linearly
independent points of PG(n, q). Hence, by Definition 3.2.3, the finite projective
space PG(n, q) has dimension n.

One can explicitly state the number of subspaces of a given dimension of V (n, q)
using the following proposition.

Proposition 3.2.6. [4, Proposition 1.2.1] The number of subspaces of dimension k
of the vector space V = V (n, q) is[

n
k

]
q

:=
(qn − 1)(qn − q) · · · (qn − qk−1)
(qk − 1)(qk − q) · · · (qk − qk−1)

.

Proof. A subspace of dimension k is spanned by k linearly independent vectors of V ,
say v1, . . . , vk. To find the number of all such subsets, we need to find all the possible
variations of those vectors vi for 1 ≤ i ≤ k. To start, we take any non-zero vector
v1. Since V has qn elements, there are qn−1 choices for v1. Then choose v2 another
non-zero vector in V , which is not in the span of v1. Therefore the number of choices
for v2 is qn−q. Proceed in this way for all other vectors vl for l ≤ k and observe, that
the number of k linearly independent vectors in V is (qn − 1)(qn − q) · · · (qn − qk).
Similarly, the number of bases for a subspace of dimension k of V is (qk − 1)(qk −
q) · · · (qk− qk−1). The number of subspaces of dimension k of V is then the quotient
of the number of all possible combinations of these k vectors and the number of
bases for such a subspace of V . Hence, we obtain the desired result.

A set S of a finite projective space PG(2n−1, q) that consists of qn+1 subspaces of
dimension n− 1 of pG(2n− 1, q) which are mutually disjoint is called a spread set.
Let us define a bijection between the set of subspaces of a projective geometry to
itself.

Definition 3.2.7. [11, Definition 0.3.12] We call a bijection φ of the set of subspaces
of a projective geometry to itself a collineation, if it preserves the dimension and the
incidence.
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Another value needed is a quadric of a projective space PG(n, q). We will later in
this chapter define a concrete example of a quadric of PG(2, q), called a conic, which
is of high importance for the construction presented in Chapter 6.

Definition 3.2.8. [11, Definition 0.3.15] A set of points {x0, . . . , xn} in a finite
projective space PG(n, q) satisfying a quadratic equation

∑n
i,j=0 aijxixj = 0, where

aij ∈ GF (q) for all i and j and not all aij zero, is called a quadric of PG(n, q).

The associated matrix with a quadric of PG(n, q) is the (n + 1) × (n + 1) matrix
B = (bij), where bij = aij + aji for all i and j.

The associated matrix B completely determines a quadric of PG(n, q) when q is
odd. Furthermore B is a symmetric matrix and it can be used to distinguish two
types of quadrics of PG(n, q).

Definition 3.2.9. [11, Definition 0.3.17] A quadric of PG(n, q) with associated
matrix B is called non-degenerate if it satisfies one of the following properties:

i) q is odd, or q is even and n odd, and det(B) 6= 0,

ii) q and n are even, rk(B) = n and the unique point x ∈ PG(n, q) satisfying
Bx> = 0 is not an element of the quadric.

A quadric which is not non-degenerate will be called degenerate.

According to this property we will make a distinction between the cases where q is
even or odd. Concretely, we will mainly focus on the case where q is odd.

3.3 Projective Planes

In Theorem 3.2.4 we have seen that for all n ≥ 3 there is a unique PG(n, q). For
n = 2, there can be finite projective geometries different to what we have defined be-
fore. These geometries are called projective planes and extend the concept of affine
planes. We will present here the definition and properties of a projective plane.
Later in this thesis we will mainly focus on the two-dimensional projective plane
PG(2, q).

A projective plane is an incidence structure Π of points and lines satisfying the
following properties:

(P1) Any two distinct points are incident with exactly one line,

(P2) Any two distinct lines are incident with exactly one point,

(P3) There are four points such that no three of them are collinear.

We observe that there is a map σ from a projective plane to its dual plane mapping
points to lines and lines to points preserving incidence. The above properties then
imply that the dual of a projective plane is a projective plane as well. This means
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that (P1)-(P3) are self-dual and whenever a theorem is proven for points in a pro-
jective plane then the result automatically holds for lines.

We say that a projective plane is finite, if it consists of finitely many points and
lines. The following two propositions state the number of points and lines in a finite
projective plane of a given order q, as well as the number of points (lines) incident
to a line (point).

Proposition 3.3.1. [4, Proposition 1.4.2] Every point in a projective plane of order
q is incident to q + 1 lines and every line is incident to q + 1 points.

Proof. Since we are in a projective plane and the properties (P1)-(P3) are self-dual,
it suffices to show the result for every point.
Take a point P and a line l in a projective plane, which are not incident. Using the
properties (P1) and (P2) we get that the number of lines incident to P is equal to
the number of points incident to l. Since a projective space is an incidence structure,
there is a bijection between the points on the line l and the lines passing through
the point P . So by property (P3), given any two lines, there is a point Q 6= P which
is not incident with l. Therefore, the number of lines passing through Q is equal
to the number of points lying on l which is equal to the number of lines passing
through P . Since P and Q were chosen arbitrarily, we conclude that every point is
incident with the same constant number of lines.

Proposition 3.3.2. [4, Proposition 1.4.3] There are q2 + q + 1 points and also
q2 + q + 1 lines in a projective plane of order q.

Proof. Again we will prove the proposition only for points, since the result for lines
follows by duality. Let P be a point in the projective plane. Since the order of the
projective plane is q, by the previous proposition there are q + 1 lines incident to
P . In addition, each of these q+ 1 lines passing through P contain q further points,
without repetition. Hence there are totally q(q + 1) + 1 = q2 + q + 1 points in the
projective plane of order q.

A configuration consists of a finite set of points and a finite set of lines, such that
each point is incident to the same number of lines and dually each line is incident
to the same number of points. Hence, a finite projective plane is a configuration.

Projective planes cannot only be defined using incidence structures. In fact, there are
projective planes which can be constructed from a three-dimensional vector space.

To make this more clear, consider a three-dimensional vector space V (3, q) over
GF (q). The projective planes, which will be denoted by PG(2, q), that can be con-
structed from V (3, q), are called Desarguesian planes, named after Girard Desargues.
Similarly, projective planes that can not be constructed from that vector space are
called non-Desarguesian. In this thesis we will only focus on Desarguesian planes.

Lemma 3.3.3 ([8]). The projective space PG(2, q) is a projective plane.

Proof. Recall that the geometry PG(2, q) contains a set of points consisting of
the one-dimensional subspaces of V (3, q) and a sets of lines consisting of the two-
dimensional subspaces of V (3, q). Let U and W be two set of lines. Both U and
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W are subspaces of dimension 2. This implies that U + W = V (3, q) and so the
intersection U∩W is a subspace of dimension 1. Hence, U∩W is a point. Therefore,
we can conclude that in PG(2, q) every two lines are incident to a (unique) point.
Similarly, one can show that every two points in PG(2, q) are incident with exactly
one line. We can therefore say that PG(2, q) is a projective plane.

Similarly to the parametrization seen in Section 3.2, there is an alternative way to
construct a projective plane using equivalence relations. The points of a projective
plane PG(2, q) over a finite field GF (q) are identified with the equivalence classes
of the set GF (q)3\{0} modulo the following equivalence relation ∼

(x, y, z) ∼ λ(x, y, z) = (λx, λy, λz), for λ ∈ GF (q)/{0}.

We therefore get that the set of points P of a projective plane is given by

P = {[1, b, c] | b, c ∈ GF (q)} ∪ {[0, 1, c] | c ∈ GF (q)} ∪ {[0, 0, 1]}.

For a given point P = [x, y, z] ∈ P, the set of lines LP with respect to P is defined
to be the set of points

〈a, b, c〉 := {[a, b, c] ∈ PG(2, q) | ax+ by + cz = 0}.

Example 3.3.4. A famous example of a projective plane is the Fano plane PG(2, 2),
introduced by the Italian mathematician Gino Fano. It is the finite projective plane
consisting of 7 points and 7 lines, which is indeed the smallest possible number of
lines and points for a finite projective plane. Using the above definition we obtain
the following set of points and lines

P = {[1, 0, 1], [1, 1, 0], [0, 1, 1], [1, 1, 1], [0, 0, 1], [1, 0, 0], [0, 1, 0]},
L = {〈1, 0, 1〉, 〈1, 1, 0〉, 〈0, 1, 1〉, 〈1, 1, 1〉, 〈0, 0, 1〉, 〈1, 0, 0〉, 〈0, 1, 0〉}.

This means for instance that the line 〈1, 0, 1〉 is the set of all points [x, y, z] satisfying
a + c = 0, i.e. all the points for which x = z. Hence the line 〈1, 0, 1〉 contains the
points [1, 1, 1], [1, 0, 1] and [0, 1, 0].

Figure 3.1: The Fano plane PG(2, 2).
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We observe that indeed each line passes through three points and each point is
incident to three lines. Since in the Fano plane there are three points on each line
and similarly three lines passing to each point, the order of the Fano plane is 2.
We can represent the Fano plane with an incidence matrix. Let p0, . . . , p6 denote
the seven points of P on the plane and l0, . . . , l6 the seven lines of L. We label the
rows with the points and the columns with the lines. Then an incidence matrix is
of the form

Γ =

l0 l1 l2 l3 l4 l5 l6



p0 1 0 0 1 0 0 1
p1 0 1 0 1 1 0 0
p2 0 0 1 1 0 1 0
p3 1 1 1 0 0 0 0
p4 0 1 0 0 0 1 1
p5 0 0 1 0 1 0 1
p6 1 0 0 0 1 1 0

.

Note that this incidence matrix is not unique but it depends on the labelling.

We have seen that PG(2, q) is a projective plane. Using Proposition 3.2.6, we can
compute the number of points on a projective line over GF (q) as follows[

2
1

]
q

=
(q2 − 1)

(q − 1)
= q + 1.

This means that there are q + 1 points incident to each line and thus the order of
the projective plane PG(2, q) is q.

3.4 Arcs and Ovals

Now that we are familiar with the basic definitions of finite projective planes, we can
start to define the structure of some objects, such as conics and ovals, in the finite
projective plane PG(2, q). We will see that in PG(2, q) all conics are equivalent
and that for q odd conics are ovals. The structure of conics will later be needed to
construct MDPC-Codes.

Consider a finite projective plane Π of order q. An r-arc is a set of r points of Π with
the property that no three distinct points are collinear. The number r of points of
an r-arc is dependent on whether the order q is even or odd. The following theorem
gives an upper bound on this number r. Since we do not need this result in the
course of the following pages, we will state it without proof.

Theorem 3.4.1. [11, Theorem 0.4.1] Let A be an r-arc in a finite projective plane
of order q, then it holds

if q is odd, then r ≤ q + 1,

if q is even, then r ≤ q + 2.
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We call a (q+1)−arc in a finite projective plane of order q an oval. If a line intersects
an oval in exactly one point we call this line a tangent. In fact there is a unique tan-
gent in every point of an oval. This means, since an oval O consists of q + 1 points,
there are exactly q + 1 tangents to an oval O. If a line meets an oval in two points
we call it a secant. Finally, lines not intersecting with an oval are called external lines.

For a fixed projective plane Π of order q there are some general properties of tangents,
secants and external lines of an oval in Π.

Proposition 3.4.2. [11, page 44] Let O be an oval in a projective plane of order q.

Then O admits q+ 1 tangents, q2+q
2 secants and q2−q

2 external lines. If additionally

q is odd, then the tangents to O form a dual-oval such that exactly q2+q
2 points lie on

exactly two tangents to the oval O and exactly q2−q
2 points do not lie on any tangent

to O.

The following figure illustrates this situation.

Figure 3.2: External lines, secants and tangents to an oval O.

Other than ovals we need to introduce another structure in PG(2, q), called a conic.
We will give a proper definition of this structure since it plays a central role in this
master thesis.

Definition 3.4.3. [11, Definition 0.4.4] A quadric of a projective plane PG(2, q) is
called a conic.

Hence, by Definition 3.2.8, a conic C satisfies a quadratic equation. In fact, for some
constants a, b, c, d, e, f ∈ GF (q) the general quadratic equation defining the points
of a conic C is

ax2 + by2 + cz2 + dyz + exz + fxy = 0. (3.1)

Similarly, we define the associated matrix A of a conic to be the homogeneous,
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symmetric (3× 3)−matrix given by

A =



2a f e

f 2b d

e d 2c

 , if q is odd,

0 f e

f 0 d

e d 0

 , if q is even.

Conics of PG(2, q) are distinguished in two types, the non-degenerate and the de-
generate ones. Recall from Definition 3.2.9 that a conic is said to be non-degenerate
if the associated matrix A is non-singular, when q is odd, or if the associated matrix
has rank 1 and the unique point x ∈ PG(2, q) satisfying Ax> = 0 is not an element
of the conic.

We will focus on the case when q is odd since we want to work with non-degenerate
conics. As we will see in Section 4.1, non-degenerate conics mimic the properties
of lines in PG(2, q). Also their oval shape, see Table 3.1 below, provide some nice
properties which will also be discussed in Chapter 4.

If we fix q to be odd, with a change of variables in the general quadratic equation
3.1 defining a conic, we are able to use the quadratic equation

Y 2 = XZ or X2 + Y 2 − Z2 = 0,

which is more convenient and customary.

With this definition one gets that every non-degenerate conic of the Desarguesian
plane PG(2, q) is an oval. In 1955, Segre [29] proved the converse statement for q
odd, which in 1949 was conjectured by Järnefelt and Kustaanheimo [19]. Several
different proofs have been presented, the original proof can be found in [29], another
more involved one in [4].

Theorem 3.4.4 (Segre, [29]). If char(GF (q)) 6= 2, every oval of PG(2, q) is a conic
(i.e., can be represented by an equation of second degree).

Indeed the converse is true when the conic is non-degenerate, which is the following
theorem:

Theorem 3.4.5. [11, Theorem 0.4.5] A conic of a Desarguesian plane of order q is
an oval if and only if it is non-degenerate.

In Segre’s lectures of modern geometry from 1961 we find that there are in fact
three types of degenerate conics (i.e. conics that are not non-degenerate) and only
one type of non-degenerate conics, the ovals (concern [30] for detailed definitions of
the particular types of conics). The following table shows the four different types
of conics (see [11], p. 86) with the corresponding diagram and number of points
contained.
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Type of conic Number of points in conic Diagram

non-degenerate q + 1

repeated line q + 1

two real lines 2q + 1

two imaginary lines
(intersecting in a real point)

1

Table 3.1: The four distinct types of conics in PG(2, q).

3.5 Codes from Projective Planes

In this section we are going to show the relation between coding theory and finite
geometry. Indeed, the idea of constructing error-correcting codes using projective
planes came up in the late 1950s. Prange studied the construction of error-correcting
codes using projective planes of order 8 (see [27] for more details). Also Rudolph in-
vestigated the use of projective planes for the construction of error-correcting codes.
He actually was the first person who showed that codes of least redundancy are
achieved with projective planes (see [28]).

One of the most basic example showing the relation is given by the projective plane
of order 2 (i.e. the Fano plane) and the [7, 4, 3] binary Hamming code. In Example
3.3.4 we have given a possible incidence matrix Γ of the Fano plane. If we define
C = ker(Γ), then Γ is a parity-check matrix of the code C. From the parity-check
matrix we obtain that C is a [7, 4, 3] binary Hamming code.

For the general definition of a code from a projective plane we need a projective
plane Π of order n and a field F . Then we define the code CF (Π) to be the row-
space of on incidence matrix H of Π over the field F .
From this it follows that the dual code is the linear code

CF (Π)⊥ = ker(H).

If the field F consists of p elements we denote the code CF (Π) by Cp(Π).
If the number of elements p of a field F is a prime number dividing the order q of
the projective plane, the code Cp(Π) is an [q2 + q + 1, k, q + 1]2−linear code (see
[1], p.204). Clearly, the code length is given by the number of lines in a projective
plane, which by Proposition 3.3.2, is q2 + q+1, since the plane is of order q. Usually
it is quite easy to determine the dimension of a code and rather difficult to find the
minimum distance. In the case here it is the other way around, since the dimension
is highly dependent on the structure of the projective plane Π. Therefore, we will
denote the dimension of the code only by k without giving a concrete value.

We are mainly interested in the dual code Cp(Π)⊥. Assmus and Key gave an estimate
on the minimum distance of this code Cp(Π)⊥, which is the following corollary.
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Corollary 3.5.1. [1, Corollary 6.3.1] If Π is a projective plane of order q and p is
a prime number dividing q, then the minimum weight of Cp(Π)⊥ is at least q + 2.
If the minimum weight is exactly q + 2 then, necessarily, p = 2 and q is even.

This provides a lower bound on the minimum distance for the code Cp(Π)⊥.

Other lower bounds on the minimum distance for arbitrary binary linear codes were
provided by Robert Michael Tanner in 2001 using a bipartite code constraint graph
([36]). Given a parity-check matrix H = (hij)1≤i≤r

1≤j≤n
of size r × n of a binary linear

code C of length n, we can deduce a bipartite graph G = (V,E), where the set of
vertices (or nodes) V is the union of the set of parity nodes and the set of check
nodes. The set of edges is denoted by E. There is an edge between a parity node
i and a check node j if and only if hij = 1 in the parity-check matrix H. Note
that this graph representation of the code is not unique since also the parity-check
matrix is not unique, and the bounds are dependent on that representation.
Let A denote the real matrix product HH> having distinct ordered eigenvalues
λ1 > · · · > λs. Since the matrix A is symmetric, the eigenvalues are all real-valued.
The first bound shows a relation between the bit nodes in a minimum distance
codeword of a binary linear code.

Theorem 3.5.2. [36, Theorem 3.1] Let G be a bipartite graph deduced from an
(r×n) parity-check matrix H of a binary linear code C of length n. If G is a regular
connected graph with n bit nodes all of degree m, and r parity nodes all of degree j,
the minimum distance d(C) of the code satisfies

d(C) ≥ n(2m− λ2)
mj − λ2

.

Note that the bound becomes meaningless if λ2 ≥ 2m.
Another bound, which was found by Tanner, considers the connectivity between
parity nodes.

Theorem 3.5.3. [36, Theorem 4.1] Let G be a bipartite graph deduced from an
(r×n) parity-check matrix H of a binary linear code C of length n. If G is a regular
connected graph with n bit nodes all of degree m, and r parity nodes all of degree j,
the minimum distance d(C) of the code satisfies

d(C) ≥ n(2m+ j − 2− λ2)
j(mj − λ2)

.

If here λ2 ≥ 2m, then this bound can still be meaningful, whereas the above bound
is not. However, this does not imply that this bound is always stronger.
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Chapter 4

Projective Bundles

The aim of this Section is to discuss the construction and existence of projective
bundles which are a collection of non-degenerate conics of the Desarguesian projec-
tive plane PG(2, q) of order q which are mutually intersecting in a unique point.
We will mainly focus on the case where q is odd. Projective bundles will play an
important role in our construction of MDPC-codes.
The material for this Chapter is mainly taken from Chapter 0 and 1 of Glynn’s Ph.D.
Thesis [11], who studied projective bundles, which he called packings of k-arcs. He
studied three different types of those packings and the connection between conics in
the Desarguesian plane PG(2, q) and points of the projective plane PG(5, q). In fact
he showed that those three types of projective bundles correspond to certain planes
of PG(5, q). Additional material has been taken inter alia from Baker, Brown, Ebert
and Fisher [2].

4.1 Definitions and Basic Results

Consider the Desarguesian projective plane PG(2, q) of odd order q coordinatized
over GF (q) in the classical way, which is the construction over a three-dimensional
vector space over GF (q) presented in Section 3.3. Recall from Section 3.4, that a
conic is a set C of q + 1 points of PG(2, q) satisfying a quadratic equation and that
C is called non-degenerate if its associated matrix has a non-zero determinant.

Glynn introduced projective bundles as packings of (q+ 1)-arcs giving the following
definition.

Definition 4.1.1. [11, Definition 1.1.4] A packing of (q + 1)-arcs of a projective
plane Π of order q is a set C of (q + 1)-arcs of Π satisfying the following conditions:

i) |C| = q2 + q + 1.

ii) For all K,L ∈ C,K 6= L =⇒ |K ∩ L| = 1.

iii) There is a unique (q + 1)-arc of C containing any two distinct points of Π.

iv) There are q + 1 elements of C which are passing through any particular point
of Π.
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Earlier we have seen that (q + 1)-arcs are called ovals and from Segres theorem,
Theorem 3.4.4, we know that if q is odd every oval in the Desarguesian plane PG(2, q)
is a non-degenerate conic. Using this we can rewrite Glynn’s definition of a packing
of (q + 1)-arcs as the following definition of a projective bundle.

Definition 4.1.2 ([2]). A projective bundle is a collection of q2+q+1 non-degenerate
conics of PG(2, q) for q odd, satisfying that every two distinct conics are mutually
intersecting in a single point.

One can easily see that projective bundles represent a projective plane of order q. In
that setting one can consider the conics to be the lines of PG(2, q). Hence, we can
say that in PG(2, q) the set of points P is represented in the set of lines L by a pro-
jective bundle. We recall furthermore, that there is a bijection f from the projective
plane PG(2, q) to its dual mapping the points to the lines and vice versa preserving
incidences. In addition, if A is an incidence matrix corresponding to PG(2, q) and
B an incidence matrix of the dual of PG(2, q), there is a bijection f mapping the
ith row of A to the ith column of B.

Let P ∈ P be a point of the Desarguesian plane of order q and l ∈ L a line. We
define CP with respect to a point P to be the pre-image of all lines passing through
P under the bijection f . Similarly, define Cl with respect to a line will be defined
as the image of the set of points lying on the line l under f , i.e.

CP = f−1(lines of PG(2, q) through P ),

Cl = f(points of PG(2, q) lying on l).

The row of A corresponding to point P gives the intersection numbers of lines of
PG(2, q) with CP . Since this row is made up of zero- and one-entries, it follows that
CP is a (q + 1)-arc in PG(2, q). Denote by A(P,l) the entry of an incidence matrix
A of PG(2, q) at the point P and line l. Then we can deduce

A(P,l) = 1⇐⇒ Point P is on line l,

⇐⇒ l is tangent to CP ,

⇐⇒ P is on one line of Cl.

Additionally, if we have two distinct points P and Q, we have that the conics CP
and CQ, defined as above, satisfy

CP ∩ CQ = f−1(〈P,Q〉).

Hence, the conics CP and CQ intersect in a unique common point and by duality
they have a unique common tangent as shown in the following figure.

Figure 4.1: Intersection of two distinct conics.
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Another quantity needed is the notion of pencil of conics. Assume we have two
distinct conics represented by the two independent quadratic equations C1 = 0 and
C2 = 0. Then for every λ ∈ GF (q) the equation C1 + λC2 = 0 also represents a
conic.

Definition 4.1.3 ([11]). The set P consisting of the conics represented by C2 = 0
and C1 + λC2 = 0, for all λ ∈ GF (q), is called a pencil of q + 1 conics generated by
C1 = 0 and C2 = 0.

Previously, in Section 3.4, we have seen that there are 4 types of conics, namely
non-degenerate conics, repeated lines, line pairs and two imaginary lines intersect-
ing in one point. Hence, there are various types of pencils of conics that contain
non-degenerate conics. In fact, Glynn has shown that there are exactly nine differ-
ent types of pencils containing non-degenerate conics (for more details see [11, table
1.2.2]). Since we are only interested in a packing of conics containing only non-
degenerate conics, we also are interested in a pencil containing only non-degenerate
conics. It turns out, that there is indeed only one type of pencil that consists of q+1
conics which are all non-degenerate. In addition, every two distinct non-degenerate
conics in this type of pencil intersect in exactly one point.

4.2 Existence of Projective Bundles

As mentioned at the beginning of this chapter, we will only focus on the conditions
for projective bundles to exist in the Desarguesian plane PG(2, q) of odd order q.

We already know how to represent a non-degenerate conic by a (3× 3)−matrix (see
Section 3.4). The goal now is to find a matrix-representation of a projective bundle.
The following statement gives such a characterization of matrices being associated
to projective bundles of the Desarguesian plane.

Theorem 4.2.1. [11, Theorem 1.2.1] Let PG(2, q) be coordinatized over GF (q) in
the classical way, where q is an odd prime power. The matrices A1, . . . , Aq2+q+1 are
the associated matrices of a projective bundle in PG(2, q) if and only if

i) each matrix Ai is a non-singular symmetric, (3 × 3)−matrix over GF (q) for
all i = 1, . . . , q2 + q + 1, and

ii) AiA
−1
j is fixed point free, meaning that its characteristic polynomial is irre-

ducible over GF (q) for all i 6= j with i, j = 1, . . . , q2 + q + 1.

Proof. Let us first assume that A1, . . . , Aq2+q+1 are the matrices of a projective
bundle in PG(2, q). That means that each Ai is an associated matrix to the conic
Ci of the packing. By the definition of an associated matrix to a non-degenerate
conic (see Section 3.4 for definition), all Ai satisfy property i) of the theorem.
For the second property, we make use of pencils of conics. For this, let Ci and Cj be
the conics associated to the matrices Ai and Aj , where i 6= j. Since both belong to
a projective bundle and by the bijection discussed in Section 4.1, they need to have
a unique intersection point as well as a unique common tangent not passing through

30



4.2. Existence of Projective Bundles 4. PROJECTIVE BUNDLES

this common point. Therefore, the pencil generated by Ci = 0 and Cj = 0 must only
contain non-degenerate conics. If this was not the case, two distinct non-degenerate
conics of the pencil would have either one line of the line pair in the pencil or the
unique repeated line of the pencil as a common tangent, which by construction must
also pass through the common point.
Since the pencil contains the conics represented by Cj = 0 and Ci+λCj = 0 for any
λ ∈ GF (q), the matrices of these conics are Aj and Ai+λAj . Furthermore, we have
that all the conics of the pencil are non-degenerate which, by definition, implies that
Aj and Ai + λAj are non-singular for every λ ∈ GF (q). Hence,

det(Ai + λAj) 6= 0, for all λ ∈ GF (q),

or equivalently
det(AiA

−1
j + λI3) 6= 0, for all λ ∈ GF (q),

where I3 is the (3× 3) identity-matrix.
Therefore, we conclude that the matrix AiA

−1
j has no eigenvalues and thus, by

Cayley-Hamilton, satisfies an irreducible cubic equation.

For the converse statement, assume that A1, . . . , Aq2+q+1 satisfy the properties i)
and ii) of the theorem. We need to check that they represent non-degenerate conics.
Let Ai and Aj be two of these matrices which are distinct. Since AiA

−1
j is non-

singular, the matrices Ai and Aj correspond to non-degenerate conics say Ci and
Cj , by the argument used above. Since q is odd, there exist dual conics represented
by the matrices A−1i and A−1j in dual coordinates. Therefore, since AiA

−1
j satisfies

an irreducible cubic equation, also
(
A−1i

) (
A−1j

)−1
= A−1i Aj satisfies an irreducible

cubic equation, which implies that Ai and Aj have a unique common tangent not
passing through the common point. Hence, the distinct conics Ci and Cj represented
by Ai and Aj , respectively, intersect as shown in Figure 4.1.
Let C be the set of the conics corresponding to the matrices A1, . . . , Aq2+q+1 and
let P be a point of PG(2, q). Since we are in a projective plane, there are q + 1
lines through P all of them being tangent to at most one conic of C passing through
P . Therefore, we can say that there are at most q + 1 conics of C passing through
P . Since PG(2, q) consists of q2 + q + 1 points and C consists of q2 + q + 1 conics
all having q + 1 points, there are exactly q + 1 conics of C through each point of
PG(2, q). Hence, we conclude that C is a projective plane of order q and thus it is
a projective bundle in PG(2, q).

Recall from Section 3.2 that a spread set of a finite projective space PG(2n− 1, q)
is a set of qn + 1 subspaces of PG(2n− 1, q) of dimension n− 1 which are mutually
disjoint. Hence, a spread set of PG(5, q) is a set of q3 + 1 subspaces of dimension 1
that are mutually disjoint.
However, applying the above theorem to a spread of PG(5, q), we observe that it
corresponds to a projective bundle in PG(2, q) for odd order q. Generally, a spread
set is closed under addition and can be viewed as vector space of dimension n over
GF (q). This implies that it is also closed under multiplication by elements of GF (q)
and that it corresponds to a set of (n × n)-matrices over GF (q) which correspond
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to a semi-field of order qn. Hence, it has a basis of n matrices in S. Therefore, the
previous theorem has the following important corollary.

Corollary 4.2.2. [11, Corollary 1.2.1] For every commutative semi-field of dimen-
sion 3 over GF (q) there exists a projective bundle in PG(2, q).

We observe that GF (q3) is the unique field of dimension 3 over GF (q), which is
clearly also a commutative semi-field. Hence, there is always a projective bundle in
PG(2, q) for q odd.

4.3 Geometrical Representation in PG(5, q)

From the above discussion we conclude that there is a connection of projective
bundles in PG(2, q) and spread sets in PG(5, q). In the following we will see that
non-degenerate conics and projective bundles are related to certain points and planes
in PG(5, q), respectively. To see this, we need to introduce the Veronese surface and
its properties and relationship to conics in the Desarguesian plane.

Definition 4.3.1. [11, Definition 1.2.2] The Veronese surface V is a surface in the
five-dimensional projective plane PG(5, q) of odd order q consisting of q2 + q + 1
points that satisfy the parametric equations

[x0, x1, x2, x3, x4, x5] = [a20, a
2
1, a

2
2, a1a2, a0a2, a0a1],

where a0, a1, a2 ∈ GF (q) not all zero. Furthermore, no three points of V are collinear.

More precisely, V can be represented by the image of the map

ν : PG(2, q) −→ PG(5, q)

[x, y, z] 7−→ [x2, y2, z2, yz, xz, xy].

Let us identify the points [x0, x1, x2, x3, x4, x5] of PG(5, q) with the symmetric, ho-
mogeneous (3× 3)-matrix over GF (q)x0 x5 x4

x5 x1 x3
x4 x3 x2

 . (4.1)

Therefore, the Veronese surface can be characterized using points [x, y, z] of PG(2, q)
by matrices x2 xy xz

xy y2 yz
xz yz z2

 .

Remember from Section 3.4 and from Display 3.1, that non-degenerate conics in the
Desarguesian plane satisfy a general quadratic equation ax2+by2+cz2+dyz+exz+
fxy = 0 and that their associated matrix is of the form

A =

2a f e
f 2b d
e d 2c

 .
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Therefore, there is a natural connection of the Veronese surface in PG(5, q) and the
conics in PG(2, q). Indeed, the homogeneous, symmetric (3× 3)-matrix over GF (q)
identifying the points of PG(5, q) correspond exactly to the conics of PG(2, q).
Hence, we can say that there is a one-to-one correspondence between the points of
the five-dimensional projective plane with the conics of the Desarguesian plane.

Related to the Veronese surface V in PG(5, q) there are two sets of planes which we
need to mention.

Definition 4.3.2. [11, page 98 ff.] Let V be a Veronese surface in PG(5, q) and q
an odd prime power. A set C of q2 + q+ 1 planes of PG(5, q) is called a set of conic
planes of V if it satisfies the following properties:

i) The points in each A ∈ C correspond to the degenerate conics of PG(2, q).

ii) For every plane A ∈ C, the intersection with the Veronese surface V is a non-
degenerate conic of the Desarguesian plane.

iii) For every plane A ∈ C, the configuration formed by the intersection A ∩ V is
isomorphic to PG(2, q), hence a projective plane of odd order q.

Furthermore, a set T of q2 +q+1 planes of PG(5, q) is called a set of tangent planes
of V if the following properties are fulfilled:

i) For every point P of V there is a unique plane T ∈ T that intersects V only
in P , i.e. T ∩ V = P .

ii) Let T1 and T2 be two distinct planes of T . Then they intersect in a unique
point. Additionally, there are at most two distinct tangent planes passing
through the same point.

It can be shown that for each Veronese surface V there exist a set C of conic planes
and a set T of tangent planes. But since we do not want to go into details about
the properties of the Veronese surface, we will not prove this fact.

Knowing the connection between conics of PG(2, q) and the points of PG(5, q), we
want to find an object of PG(5, q) corresponding to projective bundles in PG(2, q).
The next theorem provides exactly such a correspondence.

Theorem 4.3.3. [11, Theorem 1.2.2] There is a one-to-one correspondence between
the projective bundles in the Desarguesian plane and the sets P of q2 + q + 1 points
in PG(5, q) satisfying that the line connecting two distinct points P,Q ∈ P does not
intersect the set of points in PG(5, q) corresponding to a degenerate conic.

Proof. From Theorem 4.2.1 we get that a projective bundle exists in PG(2, q) if
and only if there exist q2 + q + 1 non-singular, symmetric (3× 3)−matrices Ai such
that AiA

−1
j satisfies an irreducible cubic equation. This is if and only if the pencil

corresponding to each pair of conics of the projective bundle consists only of non-
degenerate conics. Hence, such pencils correspond exactly to the lines of PG(5, q)
not passing through points which belong to degenerate conics. Therefore, we have
found a correspondence of projective bundles in PG(2, q) with a set of points in
PG(5, q) and the desired result follows.
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Hence, planes of the five-dimensional projective plane PG(5, q) of odd order q not
intersecting degenerate conics are examples of such sets of points described in the
above theorem.

4.4 Classification

There is indeed a one-to-one correspondence between any set of q2 + q + 1 points
of PG(5, q) not intersecting in a degenerate conic of PG(2, q) and the projective
bundles of PG(2, q). Heretofore we only know that there exists such a correspon-
dence but we do not know which sets of points satisfy this. This section is meant
to classify all the planes in PG(5, q) that correspond to a projective bundle in the
Desarguesian plane PG(2, q).

Let us first introduce some notation to simplify the terminology. We will denote
by Ω the set of points of PG(5, q) corresponding to degenerate conics of PG(2, q).
As we have seen in Table 3.1, there are three different types of degenerate conics,
namely repeated lines, two real lines or two imaginary lines intersecting in a real
point. We will denote the sets of points of PG(5, q) corresponding to one of these
three types of degenerate conics by V , Ωe and Ωi, respectively, where Ωe is called
the set of external points of Ω and Ωi the set of internal points. Note that V denotes
a Veronese surface. Thus, we have Ω = V ∪ Ωe ∪ Ωi.

Secondly, consider the symmetric, homogeneous (3×3)−matrix identifying a Veronese
surface, given in Definition 4.3.1. Indeed, such a matrix is of rank 1 if and only if
it is an element of the Veronese surface V. This means that each point of V can be
represented by a symmetric, homogeneous (3× 3)−matrix of rank 1. The points of
Ωe and Ωi can be represented by such a matrix which is of rank 2.

Recall from Section 4.2 and Section 4.3, that any semi-field of dimension 3 over
GF (q) characterized by symmetric (3 × 3)−matrices over GF (q) corresponds to a
plane of PG(5, q) which does not intersect Ω, i.e. a plane which corresponds to a
non-degenerate conic in PG(2, q).

In the following, whenever we speak of a point P of PG(5, q) we will always work
it with its representation as a (3 × 3) homogeneous symmetric matrix, shown in
Display (4.1). This representation enables us to define the product of two points P
and Q in PG(5, q) by the matrix product of their associated matrices. In addition,
if the determinant of the matrix is non-zero, we are able to define the inverse P−1

of a point P ∈ PG(5, q) via the inverse of the matrix representing P .

Another field of PG(5, q) not intersecting Ω is the field plane, given by the following
definition:

Definition 4.4.1. [11, Definition 1.2.3] A field plane is a plane Π =
〈
P,Q, PQ−1P

〉
of PG(5, q) spanned by the points P,Q and PQ−1P , where P and Q are two distinct
points of PG(5, q) corresponding to a non-degenerate conic in PG(2, q) and PQ−1

satisfies an irreducible cubic equation.
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Note that the point Q in PG(5, q) mentioned in this definition indeed admits an
inverse, since it corresponds to a non-degenerate conic. A non-degenerate conic,
by Definition 3.2.9, is represented by a non-singular associated matrix. Hence this
matrix is invertible and its inverse represents the inverse Q−1.

The following is an important property of a field plane.

Theorem 4.4.2. [11, Theorem 1.2.3] The field planes of PG(5, q) with respect to
the Veronese surface V are permuted amongst themselves by the collineations that
fix V.

Proof. Consider a field plane Π of PG(5, q) with respect to the Veronese surface V.
By the above definition the field plane is of the form Π =

〈
P,Q, PQ−1P

〉
, where P

and Q are two distinct points of PG(5, q) satisfying the properties to span a field
plane. Let σ be a collineation of PG(5, q) that fixes V. This implies that only the
planes intersecting V in a non-degenerate conic are permuted by σ. As we have seen,
these planes are exactly the q2 + q + 1 conic planes of V. Since, by Definition 4.3.2,
the configuration formed by the intersections of conic planes and V is isomorphic
to PG(2, q), φ corresponds exactly to a collineation of PG(2, q). Hence, a general
point of V is

X =

 a20 a0a1 a0a2
a0a1 a21 a1a2
a0a2 a1a2 a22

 =

a0a1
a2

 · (a0 a1 a2
)
,

where [a0, a1, a2] ∈ PGF (2, q). Also, a general collineation of PG(2, q) is of the form

[a0, a1, a2] 7−→ (a0, a1, a2)
σG>,

where G is a non-singular (3× 3)−matrix over GF (q) and σ is an automorphism of
GF (q). Therefore, it follows that φ is of the form

φ : PG(5, q) −→ PG(5, q)

X 7−→ GXσG>.

We need to check that Π transformed under φ is still a field plane. If we do so, we
obtain that Π has been transformed to

φ(Π) =
〈
GP σG>, GQσG>, G(PQ−1P )σG>

〉
.

Consider the last point G(PQ−1P )σG> spanning φ(Π). Using simple computations
we get

G(PQ−1P )σG> = GP σ(Qσ)−1P σG>

= GP σG> · (G>)−1(Qσ)−1G−1 ·GP σG>

= GP σ(Qσ)−1G−1 ·GP σG>

= G(PQ−1)σG−1 ·GP σG>,

which satisfies an irreducible cubic equation since PQ−1 does, by Definition 4.4.1 of
a field plane. Hence φ(Π) =

〈
GP σG>, GQσG>, G(PQ−1)σG−1 ·GP σG>

〉
is a field

plane too and the result follows.
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From this theorem we can therefore deduce that a field plane Π does not intersect
the set Ω of points of PG(5, q) corresponding to degenerate conics in PG(2, q), which
means Π ∩ Ω = ∅.

Recall, from Theorem 4.3.3, that a projective bundle corresponds to a set of q2+q+1
points of PG(5, q)\Ω with the property that each line passing through two points
of this set does not intersect Ω. By duality arguments we can deduce that there is a
dual projective bundle corresponding to a set of tangents to the projective bundle.
Therefore, we have the following classification of such a set P of q2 + q + 1 points.

Lemma 4.4.3. [11, Lemma 1.2.3] A set P of q2 +q+1 points of PG(5, q) not inter-
secting Ω satisfies the properties of Theorem 4.3.3 if and only if its inverse P−1 =
{P−1 |P ∈ P} satisfies the same properties.

Proof. The statement is an immediate consequence of the discussions above.

An example of such a set of points would be a field plane, since it consists of q2+q+1
points of the five-dimensional projective plane of order q and is not intersecting Ω.

Thus, the natural question that arises is when such a set of points of PG(5, q) not
intersecting Ω is in fact a field plane. The following theorem gives a characterization
of field planes in the five-dimensional projective plane of order q.

Theorem 4.4.4. [11, Theorem 1.2.4] A plane Π of PG(5, q) not intersecting Ω is
a field plane if and only if Π−1 = {P−1 |P ∈ Π} is a field plane of PG(5, q).

Proof. Firstly, assume that Π =
〈
P,Q, PQ−1P

〉
is a field plane. Since P,Q, PQ−1P ∈

Π, Π−1 contains the field
〈
P−1, Q−1, P−1QP−1

〉
which, by definition, is a field plane.

Let in addition X ∈
〈
I, PQ−1, (PQ−1)2

〉
be a generator of GF (q)[PQ−1], then the

field plane Π can be rewritten as

Π = {XnP |n = 1, . . . , q2 + q + 1}.

Hence, we obtain

Π−1 = {P−1X−n |n = 1, . . . , q2 + q + 1},

which is contained in a plane
〈
P−1, P−1X,P−1X2

〉
not intersecting Ω. Therefore

we conclude that Π−1 =
〈
P−1, Q−1, P−1QP−1

〉
is a field plane of PG(5, q) not in-

tersecting Ω.

For the converse statement, assume that both Π and Π−1 are planes of PG(5, q)
not intersecting Ω. Let A and B be two distinct points of Π. Then, by definition,
A−1, B−1 and (A+λB)−1 are points of Π−1 for any non-zero λ ∈ GF (q). Since Π is
a plane that does not intersect Ω, the line 〈A,B〉 passing through A and B does not
intersect Ω either. Hence, the point A−1B satisfies an irreducible cubic equation,
say f(x) = x3 + rx2 + sx + t = 0. Hence, the points A−1, B−1 and A−1BA−1

generate a field plane
〈
A−1, B−1, A−1BA−1

〉
. Furthermore, we have

(A+ λB)−1 = (B−1A+ λI)−1B−1

= (aI + b ·A−1B + c ·A−1BA−1B)B−1,
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and hence,

(B−1A+ λI)−1 = (aI + b ·A−1B + c ·A−1BA−1B)

for some constants a, b, c ∈ GF (q).
Solving this equation yields

a

c
= λt,

b

c
= r − 1

λ
and

1

c
= λ2f

(
−1

λ

)
.

Since λ is non-zero and the function f is irreducible, c is non-zero too. Therefore,
and because A−1, B−1 and A−1BA−1 generate a field plane, Π−1 is a field plane.
Hence, by the first part of the proof we conclude that Π must be a field plane as
well.

Having now fully characterized the field planes of PG(5, q) and knowing that they
correspond to projective bundles of PG(2, q) for any odd prime power q, we want
to figure out whether or not there exist any other planes in PG(5, q) not intersect-
ing a degenerate conic of the Desarguesian plane PG(2, q). The following theorem
classifies all these planes in PG(5, q), for q odd. It is the main result for projective
bundles in PG(2, q).

Theorem 4.4.5. [11, Theorem 1.2.6] Suppose q is an odd prime power. Then
through each line of PG(5, q) which does not intersect Ω there are exactly two planes
not intersecting Ω. One is the field plane and the other will be called a semi-field
plane.

Glynn’s proof of this Theorem 4.4.5 does not only verify the statement but in addi-
tion it provides a complete construction of the two desired planes. The proof makes
use of a result due to Dickson and Segre, stating that a cubic curve in PG(2, q)
with no real points consists of three conjugate lines forming a triangle in the plane
PG(2, q3) over a cubic extension of the base field GF (q).

Proof. Let Π be a plane of PG(5, q) not intersecting Ω, hence not intersecting any
degenerate conic of PG(2, q). In order to be able to make use of Dickson-Segre’s
Theorem, we embed the Desarguesian projective plane into PG(2, q3) and let σ be
the automorphic period 3 collineation of PG(2, q3) that fixed the points of PG(2, q).
This implies that for any point P of PG(2, q) the points P , P σ and P σ

2
form a

triangle. Furthermore, we denote by V? and Ω? the extensions in PG(5, q3) of the
Veronese surface V and Ω, respectively.
Since Ω is a cubic hypersurface in PG(5, q), by Dickson-Segre’s theorem, Π intersects
Ω? in three conjugate lines, say l, lσ and lσ

2
, forming a triangle. In order to identify

these lines, recall that Ω? corresponds to the degenerate conics in PG(2, q3). From
the discussion in Section 4.1 we have that there is a one-to-one correspondence of
pencils of degenerate conics in PG(2, q3) with the lines of PG(5, q3) completely
contained in Ω?. Indeed, there are only four types of pencils of degenerate conics in
PG(2, q3) (see [11, Table 1.2.3], for detailed description) which implies follows that
there are exactly the following four types of lines completely contained in Ω?:

i) Lines passing through two points of V?,
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ii) Lines in a conic plane A of V? not intersecting V?,

iii) Lines being in the intersection of a tangent plane of V? at a point P of V? with
a conic plane A through P ,

iv) Lines of a tangent plane T of V? not passing through the point of tangency of
V?.

From this characterization we can deduce that a line of PG(2, q3) is completely con-
tained in Ω? if and only if is belongs to either a conic plane of V? or a tangent plane
of V?. Note that the first three types are the ones belonging to a conic plane of V?
and the latter one belongs to a tangent plane of V?. Let us consider the two cases
separately.

Assume first that the line l mentioned above belongs to a conic plane A of V?.
Therefore the lines lσ and lσ

2
belong to the conic planes Aσ and Aσ

2
of V?, respec-

tively. By Definition 4.3.2 item iii), we have that any two distinct conic planes of
V? intersect in a unique point of V?. Since the lines l, lσ and lσ

2
belong to three

pairwise distinct conic planes, the vertices P, P σ and P σ
2

of the triangle formed
by these lines are points of V? which, by Definition 4.3.2 item ii), are points of a
non-degenerate conic in PG(2, q).
Secondly, assume that the line l belongs to a tangent plane T of V? and does not in-
tersect V?. Then, similarly, the lines lσ and lσ

2
correspond to the tangent planes T σ

and T σ
2
, respectively. From Definition 4.3.2 of a tangent plane and since the lines

l, lσ and lσ
2

all lie on pairwise distinct tangent planes it follows that they mutually
intersect in a unique point. Explicitly this means

l ∩ lσ = P, lσ ∩ lσ2
= P σ and l ∩ lσ2

= P σ
2
,

where P, P σ and P σ
2

are points of Ωe? . Therefore we have that P and P σ belong to
the same tangent plane T σ and thus we can express the matrix coordinates of the
three points by those of a line pair in PG(2, q3). Let, for instance, (a, b) represent
the line pair in PG(2, q3) whose coordinates correspond to the matrix coordinates
of P . Since P σ belongs to the same tangent plane T σ, its matrix coordinates can
be represented by those of a line pair (b, c) in PG(2, q3). It follows that

(a, b)σ = (aσ, bσ) = (b, c),

and b = bσ, which implies that b = aσ and c = bσ = bσ
2
.

Analogously we have that the matrix coordinates of P σ
2

correspond to the coordi-
nates of the line pair (c, a) in PG(2, q3). Hence the matrix coordinates of P, P σ and
P σ

2
are those of the line pairs (a, aσ), (aσ, aσ

2
) and (aσ

2
, a), respectively.

We have seen before that P , P σ and P σ
2

lie all on distinct conic planes. This im-
plies that no point of the Desarguesian plane lies on the line a. Let us denote the
intersection of two line pairs by

a ∩ aσ = A, aσ ∩ aσ2
= Aσ and a ∩ aσ2

= Aσ
2
.

Note that the three intersection points are all points of PG(2, q3). Furthermore, let

Π =
〈
P, P σ, P σ

2
〉

. Then the matrix coordinates of all points of Π coincide with the
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matrices of conics of PG(2, q3) passing through the points A,Aσ and Aσ
2
. On the

other hand, since a is a line of PG(2, q3), the plane Π of PG(2, q3) can be repre-
sented by the line pairs (a, aσ), (aσ, aσ

2
) and (aσ

2
, a) described above and Π does

not intersect Ω?. Furthermore the plane Π =
〈
P, P σ, P σ

2
〉

is the set of all points

of PG(5, q3) whose matrix coordinates correspond exactly to those of the conics of
PG(2, q3) passing through A,Aσ and Aσ

2
.

To summarize, we have now found two types of planes of PG(5, q) which do not
intersect in any degenerate conic of PG(2, q) with the help of the characterization
of a line. These two types are:

Type 1: A plane that intersects V? in the points P, P σ and P σ
2

and that intersects

Ω? in the points of the three lines 〈P, P σ〉,
〈
P σ, P σ

2
〉

and
〈
P, P σ

2
〉

, where

these line belong to some conic plane of V?.

Type 2: A plane corresponding to the conics of PG(2, q3) passing through three
points A,Aσ and Aσ

2
, where the lines passing through two of them are not of

PG(2, q). This plane intersects Ω? in the three lines belonging to a tangent
plane of V?.

Finally, we need to determine which of the following types is a field plane and which
one a semi-field plane. For this, let P and Q be distinct points of a line m of PG(5, q)
which does not intersect Ω.

Claim: Type 1 describes a field plane Π =
〈
P,Q, PQ−1Q

〉
.

Proof: The plane Π =
〈
P,Q, PQ−1Q

〉
is indeed a field plane, by the choice of P and

Q and hence, by Definition 4.4.1, PQ−1 satisfies a cubic equation which is irreducible
over GF (q). Say this cubic equation is given by

(PQ−1 − λI)(PQ−1 − λqI)(PQ−1 − λq2I) = 0,

where λ ∈ GF (q3)\GF (q). Hence the eigenvalues of PQ−1 are λ, λq and λq
2
. We

denote the corresponding eigenvectors by x, xq and xq2
, respectively. Note that

they are linearly independent over GF (q3). Furthermore, note that (PQ−1 − λI)
and (PQ−1 − λqI) commute. This leads to the equation

(PQ−1 − λI)(PQ−1 − λqI)x = (PQ−1 − λI)(PQ−1 − λqI)xq = 0,

where 0 denotes the all-zero vector. Hence, (PQ−1 − λI)(PQ−1 − λqI) is of rank 1
and thus (PQ−1 − λI)(PQ−1 − λqI)Q is of rank 1 as well. Since it is of rank 1, it
corresponds to V?. But it belongs to Π as well. Therefore

(PQ−1 − λI)(PQ−1 − λqI)Q ∈ Π ∩ V?.

By the analogous arguments it holds that

(PQ−1 − λqI)(PQ−1 − λq2I)Q ∈ Π ∩ V? and

(PQ−1 − λI)(PQ−1 − λq2I)Q ∈ Π ∩ V?.
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This implies that the field plane Π =
〈
P,Q, PQ−1Q

〉
is indeed of type 1 above. �

If the plane Π =
〈
P,Q, PQ−1Q

〉
is not a field plane then (PQ−1 − λI) is of rank

2. A symmetric, homogeneous (3× 3) matrix of rank 2 represents either the points
of Ωe? or the points of Ωi? . This implies that the line m passing through P and Q
intersects in the three points (PQ−1 − λI)Q, (PQ−1 − λqI)Q and (PQ−1 − λq2I)Q.
Hence the plane Π does not intersect V?. Finally, we have that the conics of PG(2, q)
that are represented by the same matrices as the line m is a pencil of conics pass-
ing through a point of PG(2, q) and the three conjugate points A, Aσ and Aσ

2
of

PG(2, q3)\PG(2, q). Thus m belongs to a unique plane which we refer to a semi-field
plane. This semi-field plane is therefore indeed of type 2 above.

With this theorem we finally have classified the projective bundles in PG(2, q) by
field-planes and semi-field planes of PG(5, q). By Corollary 4.2.2 and Theorem 4.4.5,
we are certain that projective bundles in PG(2, q) exist. From the construction of the
type 2 plane in the proof it follows as well that this semi-field plane is commutative.
Indeed, the following corollary is an immediate consequence of the construction in
the proof and Corollary 4.2.2.

Corollary 4.4.6. [11, Corollary 1.2.4] There are essentially exactly two commutative
semi-field planes of dimension three over GF (q), where q is odd. These are first the
field GF (q3) and second the semi-field plane of order q3 of type 2 in the proof of the
previous theorem.

Additionally, we have seen that there is a one-to-one correspondence between the
points of the Veronese surface in PG(5, q) and the conics of PG(2, q) whose associ-
ated matrices are of rank 1. With the classification of projective bundles of PG(2, q),
Theorem 4.4.5, and the characterization of field planes in PG(5, q), Theorem 4.4.4,
it is possible to prove the identification of a semi-field plane of PG(5, q) with a
Veronese surface V. We will at this point only state the theorem without proving
it. A detailed proof can be found in [11].

Theorem 4.4.7. [11, Theorem 1.2.7] Let Π be a semi-field plane of PG(5, q). Then
the set of q2+q+1 points Π−1 = {P−1 |P ∈ Π} is isomorphic to a Veronese surface.

Concluding this section we have identified three projective bundles of PG(2, q).
Baker et al. have named them in the following manner (see [2] Chapter 3):

1. Circumscribed bundles: These are the projective bundles of PG(2, q) corre-
sponding to the field GF (q3) in PG(5, q). These projective bundles indeed
exist for even order q as well. A circumscribed bundle in PG(2, q) contains all
the three vertices of the triangle PP σP σ

2
introduced in the proof of Theorem

4.4.5.

2. Inscribed bundles: They are identified with the semi-field planes of PG(5, q)
and are hence projective bundles of PG(2, q) corresponding to the points of a
Veronese surface, by Theorem 4.4.7. These bundles consist of non-degenerate
conics being tangent to the three sides of the triangle PP σP σ

2
and they exist

only for odd q.
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3. Self-polar bundles: Finally this class of projective bundles of PG(2, q) corre-
sponds to a field plane of PG(5, q) and consists of non-degenerate conics with
respect to which the triangle PP σP σ

2
is self-polar.

4.5 Alternative Representation

We have now classified all projective bundles by embedding PG(2, q) into P (2, q3)
and using the properties of conic and tangent planes of a Veronese surface V in
PG(5, q). As mentioned above, Baker et al. have named the three classes of pro-
jective bundles. In their paper (see [2], Chapter 3) they present an alternative
parametrization for each of the three projective bundles, which is of a more algebraic
nature and more intuitive to apply. In this section we will study this representation.

Still consider the projective plane PG(2, q), where q is an odd prime power. The key
idea, compared to Glynns idea, is not going to five dimensions but instead to identify
each point of the Desarguesian plane PG(2, q) with an integer modulo N = q2+q+1.

We would like to have a general description for the set of lines. Let us therefore
introduce perfect difference sets.

Definition 4.5.1. [15, page 177] If a set A of r + 1 distinct integers a0, . . . , ar has
the property that (ai − aj)0≤i 6=j≤r are distinct mod r2 + r + 1, then A is called a
perfect difference set.

Example 4.5.2. Let r = 2 then the set A = {1, 2, 4} is a perfect difference set,
since the differences

2− 1 = 1, 1− 2 = −1, 4− 2 = 2, 2− 4 = −2, 4− 1 = 3 and 1− 4 = −3

are all distinct mod 22 + 2 + 1 = 7.

However, perfect difference sets do not exist for any choice of r. Similar to the
existence of finite fields, Singer has shown in his paper [34] from 1938 that perfect
difference sets exist, whenever r is a prime power. In our setting the number r is
the order q of the projective plane PG(2, q) which, by assumption, is an odd prime
power. Therefore a perfect difference set can exist in our case.

Perfect difference sets are used to describe a line in PG(2, q). But since there are
various perfect difference sets, a natural question arising is: How to construct a
perfect difference set? We will follow the instructions given by Hirschfeld (see [17]
pages 77 - 79 for further details).
Let A0, A1, . . . , Aq2+q+1 be the points of PG(2, q). Each of these points Ai has a
coordinate representation Ai = (ai, bi, ci), where ai, bi, ci ∈ GF (q) not all zero. Let
λ be a generator element of the multiplicative group of GF (q3). This means that
{1, λ, λ2} forms a basis for GF (q3). Hence, every element of GF (q3) (and thus each
power of λ) can be described by λ2 and λ using the coordinates of the points Ai of
PG(2, q), i.e.

λi = ai · λ2 + bi · λ+ ci.
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Conversely, of course the three elements ai, bi and ci, for i = 0, . . . , q2 + q, can
uniquely be determined by a power of λ and hence they are all non-zero elements of
GF (q3).

Remember that we identify the points of PG(2, q) with the integers modulo q2+q+1.
Let us focus on the points A0, which will be the point of PG(2, q) identified with 0,
and A1, which analogously will be the point of PG(2, q) identified with the integer
1. We are looking for points of PG(2, q) which are collinear to A0 and A1. Namely,
point Ai of PG(2, q) different from A0 and A1 is collinear to A0 and A1 if there exist
non-zero elements k0, k1, k2 ∈ GF (q) such that

k0 · λ0 + k1 · λ+ k2 · λi = 0,

which can be simplified to

1 + k · λ+ l · λi = 0,

for k and l some non-zero elements of GF (q). Since we identify the points of PG(2, q)
with the integers modulo q2 + q + 1, a point Ai is identified with the integer i for
i = 0, . . . , q2 + q + 1.
We will rename A0 and A1 by d0 and d1, respectively. Suppose that the points
of PG(2, q) collinear with d0 and d1 are labelled by d2, . . . , dq. Consider then the
following array

A =


d0 d0 + 1 . . . d0 + q2 + q
d1 d1 + 1 . . . d1 + q2 + q
...

... . . .
...

dq dq + 1 . . . dq + q2 + q

 .

Then the following theorem by Hirschfeld holds.

Theorem 4.5.3. [17, Theorem 4.2.2 and Corollary] The matrix A described above
with integers reduced mod q2 + q + 1 represents the points and lines of PG(2, q).
Moreover, the set D = {d0, . . . , dq} is a perfect difference set.

Proof. Observe, that the first row of A (when reduced modulo q2 + q+ 1) represents
all the points of PG(2, q), since the points of PG(2, q) are identified with the integers
modulo q2 + q + 1 and d0 is referred to the point identified with 0. Since we chose
d2, . . . , dq to be the points which are collinear with the points identified with d0
and d1, the first column represents a line passing through these q + 1 points. As a
consequence, each successive column is a shifting of the previous one by 1. Hence,
each successive column also represents the points of a line. Therefore the matrix A
with integers reduced modulo q2 + q+ 1 represents the points and lines of PG(2, q).
In order to show, that D is a perfect difference set, let us consider the matrix A′
formed by the columns of A which contain the point denoted by d0. If we reduce
then modulo q2 + q + 1, we obtain

A′ =


d0 − d0 d0 − d1 . . . d0 − dq
d1 − d0 d1 − d1 . . . d1 − dq

...
... . . .

...
dq − d0 d1 − dq . . . dq − dq

 .
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Hence, each column represents a line passing through the point denoted by d0. Apart
from the point denoted by d0 each point lies just on one of these lines. Thus, apart
from the main diagonal, the q2 + q integers in the matrix A′ are distinct and consist
of all the differences di − dj . If we apply the same idea to each point of the matrix
A, we can deduce that every column of A forms a perfect difference set. Hence, the
result follows.

We have implemented the computation of the perfect difference sets in Python using
SageMath (see Listing 1 in Appendix A). The following table shows the perfect
difference sets for some values of q.

q perfect difference set D

2 {0, 1, 3}
3 {0, 1, 3, 9}
5 {0, 1, 3, 8, 12, 18}
7 {0, 1, 3, 13, 32, 36, 43, 52}
9 {0, 1, 3, 9, 27, 49, 56, 61, 77, 81}

Table 4.1: Perfect difference sets for some initial values of q.

The above theorem yields that the lines of PG(2, q) are the images of the perfect
difference set D under the Singer cycle S(i) = i + 1 for all integers i ∈ Z/〈q2+q+1〉.
Hence the set of lines is given by

L =
{
{d0 + i, d1 + i, . . . , dq + i} | i ∈ Z/〈q2+q+1〉

}
.

For instance, consider Example 3.3.4 given in Section 3.3, the Fano plane PG(2, 2).
Instead of labelling the points by their coordinates, we can identify each point with
an integer modulo 7. Hence the set of points is

P = {0, 1, 2, 3, 4, 5, 6}.

Figure 4.2: The Fano plane: Points identified with integers mod 7.
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From the figure we can see that the set of lines is given by

L = {〈0, 1, 3〉, 〈0, 2, 6〉, 〈0, 4, 5〉, 〈1, 5, 6〉, 〈1, 2, 4〉, 〈2, 3, 5〉, 〈3, 4, 6〉}.

Since we will mainly focus on the case, where q is an odd prime power we give
another example for q = 3.

Example 4.5.4. Consider the projective plane PG(2, 3). The order of the plane
is q = 3. Then the set of points is given by the integers mod q2 + q + 1 = 13,
i.e. P = {0, 1, . . . , 12}. From table 4.1 we obtain that the perfect difference set is
D = {0, 1, 3, 9} which implies that the set of lines is given by

L =
{
{0 + i, 1 + i, 3 + i, 9 + i} | i ∈ Z/〈q2+q+1〉

}
.

The incidence matrix of points and lines of PG(2, q) is then defined analogously to
the definition given in Section 3.1. Hence we obtain an incidence matrix of the form

A =



1 0 0 0 1 0 0 0 0 0 1 0 1
1 1 0 0 0 1 0 0 0 0 0 1 0
0 1 1 0 0 0 1 0 0 0 0 0 1
1 0 1 1 0 0 0 1 0 0 0 0 0
0 1 0 1 1 0 0 0 1 0 0 0 0
0 0 1 0 1 1 0 0 0 1 0 0 0
0 0 0 1 0 1 1 0 0 0 1 0 0
0 0 0 0 1 0 1 1 0 0 0 1 0
0 0 0 0 0 1 0 1 1 0 0 0 1
1 0 0 0 0 0 1 0 1 1 0 0 0
0 1 0 0 0 0 0 1 0 1 1 0 0
0 0 1 0 0 0 0 0 1 0 1 1 0
0 0 0 1 0 0 0 0 0 1 0 1 1



.

Having the tools ready we are able to identify the projective bundles. As we have
discussed in Section 4.1, projective bundles can be viewed as lines in PG(2, q). Thus
we can imagine that a projective bundle, which is a set of non-degenerate conics,
of PG(2, q) has a similar description as the set of lines in PG(2, q). Indeed the
following theorem holds.

Theorem 4.5.5. [2, Theorem 3.2] For N = q2 + q + 1, if r ∈ Z/〈N〉 is relatively
prime to N and D = {d0, . . . , dq} is a perfect difference set for PG(2, q), then the
set D/r = {d0/r, . . . , dq/r} is the point set of some curve of degree r.

Note that the elements di/r are computed mod N for each i ∈ Z/〈N〉.

In our setting, q is an odd prime power and N = q2 + q + 1 is odd too. Hence the
values r ∈ {−1, 2−1, 2} are always relatively prime to N . As a consequence, we get
with the help of Bruck (see [7, Chapter 8]) and Hall (concern [16, Theorem 4.5 and
p.1085]) that the three projective bundles classified by Glynn can be represented in
the following way:

1. Circumscribed bundle: Can be described as the image of D/(−1) = −D under
the Singer cycle S(i) = i+ 1, i.e.

BC = {{−d0 + i,−d1 + i, . . . ,−dq + i} | i ∈ Z/〈q2+q+1〉}.

A conic of a circumscribed bundle satisfies the equation x−1 + y−1 + z−1 = 0
or equivalently yz + xz + xy = 0.
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2. Inscribed bundle: An inscribed bundle is characterized by the image ofD/(1/2) =
2D under the Singer cycle, which means

BI = {{2 · d0 + i, 2 · d1 + i, . . . , 2 · dq + i} | i ∈ Z/〈q2+q+1〉}.

This implies that it satisfies an equation x1/2 + y1/2 + z1/2 = 0 or equivalently
x2 + y2 + z2 − 2xy − 2xz − 2yz = 0.

3. Self-polar bundle: The set D/2 describes a non-degenerate conic for which the
triangle with vertices P , P σ and P σ

2
from Section 4.4 is a self-polar triangle.

Hence S takes D/2 to the self-polar bundle, namely

BS = {{d0 · 2−1 + i, d1 · 2−1 + i, . . . , dq · 2−1 + i} | i ∈ Z/〈q2+q+1〉}.

To get a more intuitive understanding let us give a short example for q = 3.

Example 4.5.6. Consider the finite projective plane PG(2, 3). As we have already
discussed in Example 4.5.4, a perfect difference set is given by D = {0, 1, 3, 9}.
Therefore the three types of projective bundles are given by the following sets:

1. The circumscribed bundle is described by the shifts of −D, which in our case
will be the set

−D = {0,−1,−3,−9} = {0, 4, 10, 12}.

Hence a circumscribed bundle in PG(2, 3) is given by

BC = {{0 + i, 4 + i, 10 + i, 12 + i} | i ∈ Z/〈q2+q+1〉}
= {{0, 4, 10, 12}, {1, 5, 11, 0}, {2, 6, 12, 1}, {3, 7, 0, 2}, {4, 8, 1, 3},
{5, 9, 2, 4}, {6, 10, 3, 5}, {7, 11, 4, 6}, {8, 12, 5, 7}, {9, 0, 6, 8},
{10, 1, 7, 9}, {11, 2, 8, 10}, {12, 3, 9, 11}}.

2. For the inscribed bundle we first compute 2D. Hence we obtain

2D = {0, 2, 6, 13} = {0, 2, 5, 6}.

Then an inscribed bundle in PG(2, 3) corresponds to

BI = {{0 + i, 2 + i, 5 + i, 6 + i} | i ∈ Z/〈q2+q+1〉}.

3. Lastly we compute D/2, where 2−1 = 7 mod q2 + q + 1 = 13. This implies
that

D/2 = 7D = {0, 7, 21, 63} = {0, 7, 8, 11}.

Hence a self-polar bundle in PG(2, 3) will be given by the set

BS = {{0 + i, 7 + i, 8 + i, 11 + i} / i ∈ Z/〈q2+q+1〉}.
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Chapter 5

Moderate Density Parity-Check
Codes

In this chapter Moderate Density Parity-Check Codes (MDPC-Codes) are intro-
duced. We will first give a little background on why they are important in cryptog-
raphy, then give a few necessary definitions. Definitions and notions have been taken
from various sources such as Gallager’s PhD Thesis on Low-Density Parity-Check
Codes (LDPC-Codes) [10] or Tillich’s (joint) papers on MDPC-Codes ([37] and [24]).

5.1 Motivation and Definitions

In 1963 Gallager developed the Low Density Parity-Check Codes ([10]) which are
binary linear error-correcting codes with a sparse parity-check matrix and constant
row- and column-weight. This means that the matrix has just a few number of
one-entries in each row and column and that this number of one-entries is the same
for each row and is the same for each column. This class of error-correcting codes
have been forgotten for a long time but were restudied and came up as suggestions
for the McEliece crpytosystems in various papers ([25], [3]). LDPC-codes were often
generated randomly by a computer and with the help of belief propagation processes
the generator was able to produce codes providing a very good performance (actu-
ally extremely close to Shannon limit). Randomly generated LDPC-codes have no
algebraic structure and small minimum distance. Due to their sparse parity-check
matrix they provide an efficient and fast error-correction performance. This made
them seem to be good candidates for some McEliece cryptosystem variants. LDPC-
codes were studied more and more and there have been presented various combi-
natorial and algebraic constructions (see for example [22] or [38]). These codes
then have an algebraic structure and are therefore easier to encode. Even their
description is simpler to understand and the minimum distance is better. Later
more and more LDPC-codes were constructed using finite geometry (such as [21],
[39]). Nevertheless, there is one serious disadvantages in using LDPC-codes in the
McEliece cryptosystem: insecurity. The parity-check matrix is of low weight and
since a parity-check matrix generates the dual code, the rows of the parity-check
matrix can be identified with codewords of the dual code, which then are also of
low weight. This makes the use of LDPC-codes in the McEliece cryptosystem inse-
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cure since an attack consists of finding dual low weight codewords and building a
sparse parity-check matrix with them. Hence one can reconstruct a part of the code.

The idea was then to slightly increase the row-weight of the parity-check matrix.
This is how moderate density parity-check codes got introduced. Even though all
known attacks seem to be avoided, the error-correction performance becomes signif-
icantly less efficient in comparison with LDPC-codes, but it is sufficient to provide
efficient decoding algorithms. In coding theory the focus mainly lies on correcting a
certain number of errors to ensure the trustworthiness of a communication and not
in correcting as many errors as possible. MDPC-codes fulfill this requirement and
are thus adequate candidates for a cryptosystem.

Throughout the whole paper we define an MDPC-code in the following way.

Definition 5.1.1. [37, Definition 1] A moderate density parity-check code, or simply
MDPC-code, is a binary linear code of length n with a parity-check matrix H whose
row weight is O(

√
n). If the weight of every column of H is a constant v and the

weight of every row of the H is a constant w we say the MDPC-code is of type (v, w).

Hence MDPC-codes are linear block codes which use a parity-check matrix in a
decoder. Our goal is to be capable to correct as many errors as possible in one
round of a decoding algorithm. To be able to study the amount of errors that
can be corrected, another quantity will be needed which is the maximum column
intersection introduced in the following definition.

Definition 5.1.2. [37, Definition 2] Let H = (hij)1≤i≤r
1≤j≤n

be a binary matrix. The

intersection number of two different columns j and j′ of H is equal to the number
of rows i for which hij = hij′ = 1. The maximum column intersection of H, denoted
sH , is equal to the maximum intersection number of two distinct columns of H.

Example 5.1.3. Consider a [7, 4]-binary linear code with parity-check matrix

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

We can see that any two different columns have an intersection number of either
zero, one or two. Therefore H has maximum column intersection sH = 2.

The notion of maximum column intersection will be needed to analyse and under-
stand the error-correction capability and decoding performance of MDPC-codes.
We will also see, that a small maximum column intersection provides a better error-
correction capability.

5.2 Decoding Algorithms

There exist several decoding algorithms for LDPC and MDPC-codes such as Gal-
lager A, Gallager B or the bit-flipping decoding algorithm (see [10] and [13]). In
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his Ph.D. thesis, Gallager has presented these decoding algorithms for LDPC-codes.
Janoska has modified Gallager bit-flipping algorithm for MDPC-codes (see [18] p.
1087). We will introduce some well-known decoding algorithms in the section here.
Later, we will only focus on the bit-flipping decoding algorithm and on the modified
version presented by Artur Janoska and analyse its performance using a parity-check
matrix of MDPC-codes.

5.2.1 The Bit-Flipping Algorithm

Let us start with the bit-flipping decoding algorithm, introduced by Gallager in 1963
for LDPC-codes. As the name of the algorithm might already suggest, in the bit-
flipping decoding algorithm some bits of the received word will be flipped in order
to get back the original message, whereas a bit refers to an entry of a binary linear
code. This decoding algorithm is well-known and simple to use. Unfortunately,
it only works over a binary alphabet, i.e. over GF (2). A modified version of the
bit-flipping decoding algorithm for MDPC-codes was later presented in [24].

The bit-flipping decoding algorithm works as follows. Assume that a parity-check
matrix H of size (r × n) for a binary linear code C is given and say that a word y
is received. The decoding algorithm computes for each column j in a parity-check
matrix H the number of one-entries nj and compares it to the number of unsatisfied
check equations uj involving bit j, i.e.

uj =
∣∣{i ∈ {1, . . . , r} |hij = 1,

∑
l

hilyl = 1 (mod 2)}
∣∣.

If for a certain bit j the number of unsatisfied check equation is more than half of
the number of one-entries in the j-th position of the received word y, the bit in the
corresponding column gets flipped (i.e. a one-entry becomes a zero-entry and vice-
versa) and the syndrome is recomputed. The algorithm stops if either the syndrome
becomes zero or if a maximum number of iterations bmax is reached.
The decoding algorithm has complexity O(nwb), where n is the code-length, w the
column weight and b the average number of iterations. Furthermore, the error-
correction capability is depending on two sizes of the code; its length and its row-
weight. Indeed it is linearly increasing with the code-length and almost linearly
decreasing with the row-weight. Since the row-weight of MDPC-codes is increased
when compared to LDPC-codes, the error-correction capability decreases.

Rafael Misoczki et. al. have suggested three modifications for choosing the number
of iterations b in order to minimize the problem (see [24]):

1. Precompute a sequence of b’s (see [10], p. 46, Inequality (4.16)).

2. At each iteration, choose b to be the maximum number of unsatisfied parity-
check equations, denoted by Maxupc.

3. For a variable small integer δ let b := Maxupc − δ.
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The following shows the pseudocode of the bit-flipping decoding algorithm for MDPC-
codes([18]).

Algorithm 1 Bit-flipping decoding algorithm

Require: Parity-check matrix H = (hi,j) ∈ {0, 1}r×n,
received codeword y ∈ {0, 1}n,
maximal number of iterations bmax

Ensure: decoded codeword.

s← Hy> . compute the syndrome.
for j = 1 to n do

nj ← |{i ∈ {1, . . . , r} |hij = 1}| . Number of 1-entries per column.
end for

for a = 1 to bmax do . Round 1 to bmax of algorithm.
for j = 1 to n do

uj ← |{i ∈ {1, . . . , r} |hij = 1,
∑

l hilyl = 1 (mod 2)}| . Number of
unsatisfied parity checks.

end for
for j = 1 to n do

if uj > nj/2 then . Flipping condition.
yj ← 1− yj . Flip bit j.
s = Hy> . Recompute the syndrome.

end if
end for
if s = 0 then . Algorithm stops if syndrome is the zero-vector.

return y
end if

end for
return error

Example 5.2.1. Consider a binary linear code C with parity-check matrix

H =


0 0 1 1 0 1
1 0 0 0 1 1
0 1 1 0 1 0
1 1 0 1 0 0

 ,

and assume that the received word is y = (1, 0, 1, 0, 1, 1).

Step 1: Compute the syndrome, s = Hy> = (0, 1, 0, 0)>. So we obtain, that the
syndrome is not the all-zero vector, which means that there is an error in the
received word.

Step 2: Compute for each column j the number of nonzero entries nj . We obtain

nj = 2, for all j = 1, . . . , 6.
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Step 3: For each column we compute the number of unsatisfied parity-check equations
uj = |{i ∈ {1, . . . , r} |hij = 1,

∑
l hilyl = 1 (mod 2)}|.

u1 = |{i = 2, 4}| = 2,

u2 = |{i = 4}| = 1,

u3 = |{}| = 0,

u4 = |{i = 4}| = 1,

u5 = |{i = 2}| = 1,

u6 = |{i = 2}| = 1.

Step 4: This is the flipping condition. Check now for each column j if uj > nj/2. If
so, then flip the bit yj . We see that only for j = 1 the flipping condition is
satisfied. Hence we flip the bit y1 from 1 to 0. Therefore the updated received
word is y = (0, 0, 1, 0, 1, 1).

Step 5: Recompute the syndrome s. We now get that s = Hy> = (0, 0, 0, 0)> is the
allzero vector. Hence we have found the correct codeword y = (0, 0, 1, 0, 1, 1).
If the syndrome s was not the all-zero vector here, we would need to repeat
steps 2 to 5.

Gallager has presented in [10] a computation of the threshold for the number of
errors that can be corrected by an LDPC-code. This technique has been used in
[24] for MDPC-codes. Even if it is not precise for MDPC-codes it provides an upper
bound. In order to estimate the threshold of the bit-flipping algorithm we estimate
the probability that a bit is in error after a given number of iterations. We then
achieve a reliable error-correction if this probability converges to zero.

For this, consider an MDPC-code of length n and parity-check matrix H of size
(n2 × n). We denote by dc = O (

√
n) the degree of the check nodes (i.e. the row-

weight) and by dv = O
(√

n
2

)
the degree of the variable nodes (i.e. the column-

weight). Furthermore, let p0 denote the probability that a bit is received in error.
With this we get

pi+1 =p0 − p0
dv−1∑
l=bd

(
dv − 1

l

)(
1 + (1− 2pi)

dc−1

2

)l (
1− (1− 2pi)

dc−1

2

)dv−l−1

+ (1− p0)
dv−1∑
l=bd

(
dv − 1

l

)(
1 + (1− 2pi)

dc−1

2

)l (
1− (1− 2pi)

dc−1

2

)dv−l−1
,

where the integer bd is chosen to be an integer between dv − 1 and dv/2 (see [24])
satisfying

1− p0
p0

≤
(

1 + (1− 2pi)
dc−1

1− (1− 2pi)dc−1

)2bd−dv+1

,

which minimizes the function pi.
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5.2.2 The Gallager A Algorithm

Another algorithm also due to Gallager is the Gallager A algorithm. In comparison
to the bit-flipping algorithm, where we worked over the alphabet GF (2), Gallager
A uses the set M = {−1, 1} as alphabet. This algorithm also uses the alphabet
of the channel, which will be denoted by Y. There is also a Gallager B algorithm
which extends the first one to an arbitrary long alphabet (see [10] or [14] for more
information).

Gallager has defined this algorithm over a binary symmetric channel (BSC) with
crossover probability p, which is the probability that a bit which was transmitted
correctly is flipped. This means, if X is the transmitted variable and Y the received
one, we get the following probabilities.

P(Y = −1|X = −1) = P(Y = 1|X = 1) = p,

P(Y = −1|X = 1) = P(Y = 1|X = −1) = 1− p.

Gallager’s A algorithm is a message-passing iterative decoding algorithm. This
means that messages are exchanged between variable nodes vi and check nodes cj in
discrete time steps. Each check nodes processes the message received from its neigh-
bours and sends back a suitable message in the alphabetM to each of its neighbours.
Then each variable uses that information together with its own received value ri to
produce new messages which are sent back to the neighbouring check nodes.

In order to define this message-passing process we need to define for each iteration
step l the two message maps

ψ(l)
v : Y ×Mdv−1 −→M,

ψ(l)
c :Mdc−1 −→M,

where ψ
(l)
v is the message map for a variable node v of degree dv and ψ

(l)
c is the

message map for a check node c of degree dc. Then the algorithm works as follows.

Initially the algorithm says that its channel output is either -1 or 1 and it is going
to request the variable to send out whatever it receives from the channel along all
its outgoing edges, i.e.

ψ(0)
v (m) = m,

where m is the message that is received.
Thereafter the variable node v is going to send out the input unless there is overwrit-
ing evidence provided by all of the other inputs. Meaning if all other inputs have a
sign that disagrees with the sign of the channel input, then v sends the reverse sign,

ψ(l)
v (m0,m1, . . . ,mdv−1) =

{
−m0, if mj = −m0 for all 1 ≤ j ≤ dv − 1,

m0, else.

Finally the check node c sends the product of all incoming messages to v,

ψ(l)
c (m1, . . . ,mdc−1) =

dc−1∏
j=1

mj .
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The computation of the threshold is the same as for the bit-flipping algorithm. The
only difference is that the value bi is concretely given by bi = bdv+1

2 c, for all i.

We have computed some thresholds for Gallagers A algorithms using codes of lengths
n = 2k for k = 4, . . . , 10. The following table shows the corresponding threshold for
these code-lengths.

length n dv dc threshold p0

24 2 4 8.8818 · 10−17

25 2 5 8.8818 · 10−17

26 4 8 0.04762

27 5 11 0.025

28 8 16 0.00952

29 11 22 0.00476

210 16 32 0.00215

Table 5.1: Some threshold computations for MDPC-codes.

5.2.3 Belief Propagation

Belief propagation is another type of message-passing algorithm. It is sometimes
also called sum-product algorithm. The algorithm, which was first introduced by
Judea Pearl in 1982 (see [26]), computes for each variable node its marginal distri-
bution, conditioned on any check node.

Compared with the other algorithms each variable and check node has a probabilis-
tic value instead of a fixed value 0 or 1. It further has shown empirical success in
the use with LDPC-codes.

Due to this fact, an interesting topic would be to study the performance of this
algorithm on MDPC-codes, but we will not treat this in this master thesis.

5.3 Error-Correction Capacity

Now that we have the most important tools, we can study the error correction
capability of MDPC-codes using the bit-flipping algorithm. With the maximum
column intersection we can lower bound the worst-case error-correction performance
for one round of bit-flipping and we can correct more errors for small maximum
column intersection. In fact, Tillich has shown the following result.

Proposition 5.3.1. [37, Proposition 1] Let C be an MDPC-Code of type (v, w) with
parity-check matrix H = (hij)1≤i≤r

1≤j≤n
. Let s be the maximum column intersection

with respect to the parity check matrix H. Performing one round of the bit-flipping
decoding algorithm based on the matrix H one can correct all errors of weight at
most b v2sc.

52



5.3. Error-Correction Capacity 5. MODERATE DENSITY PARITY-CHECK CODES

Proof. Let e = (e1, . . . , en) denote the error vector and assume that t is the number
of errors and that t ≤ b v2sc. We define the set of positions j in error that are in the
support of the i-th parity-check equation by

Ei = {j ∈ {1, . . . , n} |hij = 1 and hijej = 1}.

Now let us perform one round of bit-flipping and see what happens to yj . There are
two options: Either yj is in error or not. Just as in the description of the algorithm
we denote by uj the number of unsatisfied parity-check equations involving bit j,
similarly sj is the number of satisfied parity-check equations and nj the number of
one-entries involving bit j.

1. yj is in error: Use a bipartite graph Gj associated to bit j. Let Aj be the
set of positions different from j being in error and Bj the set of parity-check
equations involving bit j such that |Ei| ≥ 2. Then define the set of vertices
to be Aj ∩ Bj . Therefore we have an edge between a position l ∈ Aj and a
parity-check equation i ∈ Bj if and only if hil = 1.
We note, that sj can be upper bounded by the number of parity-check equa-
tions involving bit j satisfying |Ei| ≥ 2.

sj ≤ |{i ∈ {1, . . . , r} |hij = 1 and |Ei| ≥ 2}|
≤ Ej ,

where Ej is the total number of edges of Gj .
Since s is the maximum column intersection, the degree of any vertex of Gj is
smaller than s. Hence it follows

Ej ≤ s · |Aj |
≤ s(t− 1)

≤ s
(⌊ v

2s

⌋
− 1
)

≤ v

2
,

because Aj is the set of positions different from j that are in error and t ≤ b v2sc
by assumption. Finally since v

2 ≤
nj

2 , we conclude sj ≤ nj

2 and the flipping
condition is satisfied and yj is flipped.

2. yj is correct: Again we consider a bipartite graph G′j consisting of the set
of edges E ′j and the set of vertices A′j ∩ B′j , where A′j is defined in the same
way as Aj in the case before and let B′j be the set of parity-check equations
involving bit j satisfying |Ei| ≥ 1. Then similarly there is an edge between a
position l ∈ A′j and a parity-check equation i ∈ B′j if and only if hil = 1.
Instead of upper-bounding sj , we can upper bound uj using the same argu-
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ments as in the first case by

uj ≤ |{i ∈ {1, . . . , r} |hij = 1 and |Ei| ≥ 1}|
≤ E ′j
≤ s ·

∣∣A′j∣∣
≤ st

≤ s
(⌊ v

2s

⌋)
≤ v

2
.

Again since v
2 ≤

nj

2 we obtain uj ≤ nj

2 . This means that the flipping condition
is not satisfied and hence yj is not flipped.

We deduce this result: the smaller the maximum column intersection of a parity-
check matrix of an MDPC-code, the more errors can be corrected within one round of
the bit-flipping decoding algorithm. Hence a small column intersection effects good
error-correction capability. In fact, if we use the random construction provided by
Tillich (see [37], p. 5) we can construct MDPC-codes that are able to correct all

errors of order O
(√

n·log log(n)
log(n)

)
. More precisely with this construction for any ε > 0

the maximum column intersection, with some probability 1 − o(1), is smaller than

(2 + ε) log(n)
log log(n) .

The goal of this master thesis is to construct MPDC-codes of maximum column
intersection equal to 2, which is formalized in Chapter 6.

5.4 McEliece Cryptosystem

As mentioned MDPC-codes were used in McEliece cryptosystem instead of Goppa
codes, since Goppa codes had a too large key size. There exist different variants of
this cryptosystem also depending on the different constructions of the code. Rafael
Misoczki et al. have presented a variant using either a normal MDPC-code or a
quasi-cyclic MDPC-code (see [24] for the definition and construction).

Their McEliece variant then works as follows.

1. Key-Generation:
Construct an MDPC-code of length n and row weight w that can correct up
to t errors. For this, generate a parity-check matrix H ∈ GF (2)r×n and its
corresponding generator matrix with one of the possible constructions.
Public key: generator matrix G.
Private key: parity-check matrix H.

2. Encryption:
Let m ∈ GF (2)n−r be a message to be encrypted into x ∈ GF (2))n. For this
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generate a codeword e ∈ GF (2)n of weight less than t, wt(e) ≤ t. Then the
message m is encrypted by

x = mG+ e.

3. Decryption:
For decryption choose a decoding algorithm ψH (such as the modified bit-
flipping decoding algorithm) which knows the parity-check matrix H. To de-
crypt the received word x ∈ GF (2)n into the original message m, compute
first

mG = ψH(x).

Then extract m from the first (n− r) positions of mG.
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Chapter 6

Construction

Finally, we are getting to the core of this master thesis. Namely, in this chapter we
are going to present a new construction for MDPC-codes using finite geometry in
the Desarguesian plane PG(2, q) of odd order q. We make use of projective bun-
dles, which exist in the Desarguesian plane as we have seen in Chapter 4, and the
properties of the Desarguesian plane PG(2, q) for a fixed odd prime power q. There
have been several constructions for LDPC-codes based on geometry. For example
Liu and Pados have constructed LDPC-codes from generalized polygons (for more
information see [21]). Furthermore, there exist constructions of binary linear codes
using conics in PG(2, q) [33]. But the idea of using similar tools for MDPC-code as
well is new.

MDPC-codes have been constructed in many different ways. One of the most fre-
quent is to construct MDPC-codes as quasi-cyclic codes4 (see [24] and [18]). In that
case a parity-check matrix is constructed from n0 circulant matrices Hi all of size
p×p, where r = p denotes the codimension of the code. Hence a parity-check matrix
is n× r array of the form

H = [H0|H1| . . . |Hn0−1] ,

where n = n0p and r = p.
Quasi-cyclic constructions for MDPC-codes are convenient, since they show a very
good performance on embedded systems. There are some improvements on the bit-
flipping algorithm using quasi-cyclic MDPC-codes in an McEliece system.
Another more general construction is the random model presented by Tillich (see
[37] Subsection 2.2). Using Proposition 5.3.1, he showed that for this construction

the maximum column intersection is of order O
(

log(n)
log log(n)

)
, which is only small for

small n.

Our goal is to give a construction which minimizes the maximum column intersection
of a parity-check matrix as much as possible. Then the error-correction capability
increases. Indeed we will show that this number is exactly 2.

4An [n, k]-linear code C is called quasi-cyclic, if there is an integer n0 such that every codeword
in C shifted by n0 places is again a codeword in C.
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6.1 Parity-Check Matrix

Let us start by constructing a parity-check matrix, since we have seen that a linear
code is fully characterized by those ones (see Section 2.3). The goal is to construct
an MDPC-code of a certain length n and some fixed order (v, w) such that the row-
weight w is roughly

√
n. We will step by step determine the parameters of the code.

In the course of this section let q always be an odd prime power and consider the
projective plane PG(2, q) of order q. The following table gives a short review on the
number of points and lines in the Desarguesian plane and their relation.

Number of lines q2 + q + 1

Number of points q2 + q + 1

Number of points on a line q + 1

Number of lines through a point q + 1

Table 6.1: Overview of points and lines in PG(2, q)

Furthermore, we have seen that a projective bundle is a set of q2 + q + 1 non-
degenerate conics in PG(2, q) and that the configuration of points and non-degenerate
conics of a projective bundle in PG(2, q) is isomorphic to PG(2, q) of order q, where
the non-degenerate conics can be interpreted as lines. Hence the above table can
be modified by replacing lines by non-degenerate conics of a fixed projective bundle
in PG(2, q). For the relation between conics and lines, we have seen in Section 3.4
that a line meets a non-degenerate conic in at most two points.

In the construction we use the idea of an incidence structure with a corresponding
incidence matrix (see Section 3.1). We will use the incidence matrix of points and
lines of the projective plane PG(2, q) and the incidence matrix of non-degenerate
conics of a fixed projective bundle and points of PG(2, q).
For a fixed odd prime power q define a parity-check matrix H of the form

H = [H ′|H ′′]

where H ′ and H ′′ are the following two incidence matrices (see Section 3.1 for the
definition).

Let P1, . . . , Pq2+q+1 denote the q2 + q + 1 points of PG(2, q) and let l1, . . . , lq2+q+1

denote the q2 + q + 1 lines of PG(2, q). The matrix H ′ is an incidence matrix of
these points and lines in PG(2, q), namely

H ′ = (h′ij) =

{
0, if Pi does not lie on lj

1, if Pi lies on lj
.

Hence, in each row and each line there are q + 1 one-entries. By the definition of a
projective plane, every two distinct lines intersect in a unique point and each two
points lie on exactly one line. Hence, the maximum column intersection s′H of H ′

equals 1.
For matrix H ′′ we consider a fixed projective bundle of PG(2, q). Let us denote the
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q2 + q + 1 non-degenerate conics of this bundle by c1, . . . , cq2+q+1. Since there we
view the non-degenerate conics of a projective bundle as lines of PG(2, q), we define
similarly matrix H ′′ to be the incidence matrix of the non-degenerate conics and
points in PG(2, q).

H ′′ = (h′′ij) =

{
0, if Pi is not contained in conic cj

1, if Pi is contained in conic cj
.

Again there are q + 1 one-entries in each row and each column and the maximum
column intersection of H ′′ is sH′′ = 1.

To summarize, we get a binary matrix H of size (q2 + q+ 1)× 2(q2 + q+ 1) defined
by the points, lines and non-degenerate conics of PG(2, q) in the following way

H =

l1 l2 . . . lq2+q+1 c1 c2 . . . cq2+q+1


p1
p2
...

pq2+q+1

Let us denote the Desarguesian plane used for matrix H ′ by Π and the one used for
H ′′ by Γ. Similar to the definition used in Section 3.5 we let C2 (Π t Γ) denote the
row-space of H. Then the code whose parity-check matrix is H, is given by

C2 (Π t Γ)⊥ = ker(H).

Remark 6.1.1. C2 (Π t Γ)⊥ is an MDPC-code of length n = 2(q2 + q + 1) and of
type (v, w) = (q + 1, 2(q + 1)).

Example 6.1.2. Consider the Desarguesian plane PG(2, q) with order q = 3. We
will use the representation of points, lines and non-degenerate conics of a projective
bundle in PG(2, q) presented in Section 4.5, i.e. we identify the set of points with
the integers modulo N = q2 + q+ 1 = 13 and the set of lines with the images of the
perfect difference set D = {0, 1, 3, 9} under repeated applications of the Singer cycle
S(i) = i+ 1. Thus we have

P = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
L = {{0 + i, 1 + i, 3 + i, 9 + i} | i ∈ Z/<13>}

= {{0, 1, 3, 9}, {1, 2, 4, 10}, {2, 3, 5, 11}, {3, 4, 6, 12}, {4, 5, 7, 0}, {5, 6, 8, 1}, {6, 7, 9, 2},
{7, 8, 10, 3}, {8, 9, 11, 4}, {9, 10, 12, 5}, {10, 11, 0, 6}, {11, 12, 1, 7}, {12, 0, 2, 8}}.
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An incidence matrix of the points and lines in PG(2, q) is then given by

H ′ =



1 0 0 0 1 0 0 0 0 0 1 0 1
1 1 0 0 0 1 0 0 0 0 0 1 0
0 1 1 0 0 0 1 0 0 0 0 0 1
1 0 1 1 0 0 0 1 0 0 0 0 0
0 1 0 1 1 0 0 0 1 0 0 0 0
0 0 1 0 1 1 0 0 0 1 0 0 0
0 0 0 1 0 1 1 0 0 0 1 0 0
0 0 0 0 1 0 1 1 0 0 0 1 0
0 0 0 0 0 1 0 1 1 0 0 0 1
1 0 0 0 0 0 1 0 1 1 0 0 0
0 1 0 0 0 0 0 1 0 1 1 0 0
0 0 1 0 0 0 0 0 1 0 1 1 0
0 0 0 1 0 0 0 0 0 1 0 1 1



.

For the projective bundle we are free to choose which of the three types we take. Let
us take the inscribed bundle which is the images of 2D under repeated applications
of the Singer cycle, by Section 4.5. Hence, the projective bundle is the following set
of non-degenerate conics

BI = {{0 + i, 2 + i, 5 + i, 6 + i} | i ∈ Z/<13>}
= {{0, 2, 5, 6}, {1, 3, 6, 7}, {2, 4, 7, 8}, {3, 5, 8, 9}, {4, 6, 9, 10}, {5, 7, 10, 11}, {6, 8, 11, 12},
{7, 9, 12, 0}, {8, 10, 0, 1}, {9, 11, 1, 2}, {10, 12, 2, 3}, {11, 0, 3, 4}, {12, 1, 4, 5}},

which leads to the following incidence matrix of points and non-degenerate conics
of an inscribed bundle in PG(2, 3)

H ′′ =



1 0 0 0 0 0 0 1 1 0 0 1 0
0 1 0 0 0 0 0 0 1 1 0 0 1
1 0 1 0 0 0 0 0 0 1 1 0 0
0 1 0 1 0 0 0 0 0 0 1 1 0
0 0 1 0 1 0 0 0 0 0 0 1 1
1 0 0 1 0 1 0 0 0 0 0 0 1
1 1 0 0 1 0 1 0 0 0 0 0 0
0 1 1 0 0 1 0 1 0 0 0 0 0
0 0 1 1 0 0 1 0 1 0 0 0 0
0 0 0 1 1 0 0 1 0 1 0 0 0
0 0 0 0 1 1 0 0 1 0 1 0 0
0 0 0 0 0 1 1 0 0 1 0 1 0
0 0 0 0 0 0 1 1 0 0 1 0 1


We set then H to be the concatenation of the two incidence matrices H ′ and H ′′.

H =



1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0
1 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 1
0 1 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 0 0
1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0
0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1
0 0 1 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1
0 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 1 0 0 0 0
1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0
0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0
0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0
0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1
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This matrix is then the parity-check matrix of a code C2(Π t Γ)⊥, where Π and Γ
are the projective planes isomorphic to PG(2, 3) defined by a set of points and a set
of lines and non-degenerate conics of the inscribed bundle, respectively.

In this example we have chosen one of the three possible projective bundles. It
would indeed be interesting to compare the three variants in how they perform. Do
they all show the same error-correction performance and are they equally useful in
different situations? These could be interesting questions for further studies.

We have implemented the three different types of parity-check matrices in Python
using SageMath (see Listing 2 in Appendix A), in order to compute also parity-check
matrices with an arbitrary parameter q.

6.2 Dimension

Earlier, in Section 3.5, we have discussed that over a prime field GF (p), where p is
a prime, it is rather difficult to determine the dimension of a code generated from
projective planes if p divides the order q of the projective plane. This is because the
structure of the projective plane is highly influencing the value of the dimension.
In our case, since we know exactly how the parity-check matrix H ′ of C2(Π) looks
like and since 2 does not divide the odd order q of the projective plane, we are able
to compute its dimension using the eigenvalues of H ′H ′> over GF (2). The following
result states the exact rank of the matrix H ′. Note that for H ′′ the same result is
true, since both matrices are incidence matrices of PG(2, q) of odd order q.

Lemma 6.2.1. The eigenvalues of H ′H ′> are λ1 = 0 and λ2 = 1, where λ1 has
multiplicity 1 and λ2 has multiplicity q2 + q. Moreover, the rank of H ′ is q2 + q.

Proof. First compute H ′H ′>. For this we note that

(H ′H ′>)ij =

{
q + 1 if i = j,

1 else
.

In order to compute the eigenvalues we recall that for any eigenvalue λ and any
non-zero vector x ∈ GF (2)q

2+q+1 it holds

(H ′H ′>) · x = λ · x.

By computing (H ′H ′>) · x we obtain that
...

q2+q+1∑
i=1

xi

...

 = (λ− q) · x,

which is equivalent to

q2+q+1∑
i=1

xi ·

1
...
1

 = (λ− q) · x.
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If
∑q2+q+1

i=1 xi 6= 0 then x =

1
...
1

 is an eigenvector with eigenvalue λ1 = q2 + 2q+ 1,

which, when reduced over GF (2), is λ1 = 0. We in addition see that this eigenvalue
has multiplicity 1.

If
∑q2+q+1

i=1 xi = 0, then at least two entries of x must be reciprocal to each other.
Therefore, we must have that

λ− q = 0.

This gives the second eigenvalue λ2 = q, which reduced over GF (2) is λ2 = 1. Indeed
λ2 has q2+q pairwise distinct eigenvectors. Therefore, λ2 = 1 is of multiplicity q2+q.

Hence, we can compute the rank of H ′H ′> by

rkH ′H ′> = q2 + q + 1− dim(kerH ′H ′>)

= q2 + q + 1− 1

= q2 + q.

Therefore H ′ must have rank q2 +q as well, otherwise if it has full rank, H ′> has full
rank too and then H ′H ′> has full rank which, as shown above, is not the case.

With the help of the above Lemma 6.2.1 we are able to explicitly determine the
dimension of the code we have constructed.

Proposition 6.2.2. An MDPC-code C2(Π t Γ)⊥ has dimension q2 + q + 2.

Proof. In order to determine the dimension of the code, we need to compute the rank
of a parity-check matrix H = (H ′|H ′′). Since H is of size (q2 + q+ 1)×2(q2 + q+ 1),
we can already say that the rank of H is at most q2 + q+ 1. From the above lemma
we have that both H ′ and H ′′ have rank q2 + q, which gives us a lower bound on
the rank of H.
H has full rank q2 + q + 1 if and only if there exists no element in the left-kernel,
i.e. if there is no non-zero vector x ∈ GF (2)q

2+q+1 such that

x> ·H = 0> over GF (2).

Indeed, if x is the all-one vector then this equation is satisfied. Hence, there is an
element in the cokernel which implies that H cannot have full rank and we conclude
that dimC2(Π t Γ)⊥ = q2 + q + 2.

As a consequence we have parametrized our MDPC-Code C2(Π t Γ)⊥ which is a
[2(q2 + q + 1), q2 + q + 2]2−linear code.

6.3 Minimum Distance

Earlier we have seen that the minimum distance of a code is relevant to determine
how many errors can be corrected and detected (see Proposition 2.2.3). In favour to
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be able to correct and detect errors, we want to find an estimate on the minimum
distance.

To give more detailed information on the error-correction and -detection capability
we want to find lower and upper bounds on the minimum distance.

Let us first prove the following lemma which we will then use to find bounds on the
minimum distance.

Lemma 6.3.1. Let C2 (Π t Γ)⊥ be an MDPC-code with parity-check matrix H as
constructed. Consider an arbitrary but minimal set S = {l1, ..., lr, c1, ..., cs} of lin-
early dependent columns of H, where li are some columns corresponding to lines and
ci are some columns corresponding to non-degenerate conics of a projective bundle
of PG(2, q). Then the following equality holds(

r⋃
i=1

li

)
∪

(
s⋃
i=1

ci

)
=

⋃
i<j

li ∩ lj

 ∪
⋃
i<j

ci ∩ cj

 ∪
⋃
i,j

li ∩ cj

 .

Proof. We will show that the two sets are each contained in the other.
First observe, that the inclusion from right to left is clearly given for all of the
columns of H. So it remains to show the inclusion form left to right.
Let S = {l1, ..., lr, c1, ..., cs} be a minimal set of linearly dependent columns of H.
Since we work over GF (2), we get

l1 + · · ·+ lr + c1 + · · ·+ cs = 0, (6.1)

where 0 here denotes the zero-vector.
Let pj be the jth point of PG(2, q) and assume that pj lies on one of these lines or
conics, i.e.

pj ∈

(
r⋃
i=1

li

)
∪

(
s⋃
i=1

ci

)
.

Without loss of generality, we can say that pj lies on the line li ∈ S. Then the jth

entry of li is a 1. By linear dependence and (6.1) there must be at least one other
column having a one-entry at position j. Hence for some lk, ck′ ∈ S\{li}, we have
that

pj ∈ lk or pj ∈ ck′ .

Hence we conclude

pj ∈

(⋃
i<k

li ∩ lk

)
or pj ∈

⋃
i,k′

li ∩ ck′

 .

Analogously if pj ∈ ci we get that

pj ∈

(⋃
i<k′

ci ∩ ck′
)

or pj ∈

⋃
i,k′

li ∩ ck′

 .

Therefore, we can deduce the inclusion from left to right.
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With the help of this Lemma 6.3.1 we are able to find a lower bound on the minimum
distance of C2(Π t Γ)⊥.

Proposition 6.3.2. Let d denote the minimum distance of the code C2(Π t Γ)⊥.
Then the following estimate holds⌊

2q + 4

3

⌋
+ 1 ≤ d.

Proof. To prove the lower bound for the minimum distance d we will use Lemma
6.3.1 and Theorem 2.3.11.
Let S = {l1, ..., lr, c1, ..., cs} be a set of r + s columns of the parity-check matrix
H, where l1, . . . lr are columns corresponding to lines and c1, . . . , cs are columns
corresponding to conics. From the above lemma we get that if S is a linearly
dependent set, then∣∣∣∣∣∣∣∣∣∣

(
r⋃
i=1

li

)
∪

(
s⋃
i=1

ci

)
︸ ︷︷ ︸

=:A

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣
⋃
i<j

li ∩ lj

 ∪
⋃
i<j

ci ∩ cj

 ∪
⋃
i,j

li ∩ cj


︸ ︷︷ ︸

=:B

∣∣∣∣∣∣∣∣∣∣∣
.

The idea is to find two bounds g and h depending on r and s such that

g(r, s) ≤ |A| = |B| ≤ h(r, s).

Then, by the above lemma, if

h(r, s)− g(r, s) < 0,

certainly any set of columns obtained selecting r columns from the lines and s
columns from the non-degenerate conics can not be linearly dependent.

So let us find a lower bound on |A| first.
We can rewrite A as the union of two sets A1 = (

⋃r
i=1 li) and A2 = (

⋃s
i=1 ci). Then

we have that

|A| = |A1|+ |A2| − |A1 ∩A2|.

We get the following estimates for the three parts.

|A1| ≥
r∑
i=1

|li| −
∑
i<j

|li ∩ lj | = r(q + 1)− r(r − 1)

2

|A2| ≥
s∑
i=1

|ci| −
∑
i<j

|ci ∩ cj | = s(q + 1)− s(s− 1)

2

|A1 ∩A2| =

∣∣∣∣∣∣
⋃
i,j

li ∩ cj

∣∣∣∣∣∣ ≤
∑
i,j

|li ∩ cj | ≤
∑
i,j

2 = 2rs.

63



6.3. Minimum Distance 6. CONSTRUCTION

Hence we obtain the following lower bound for the cardinality of the set A.

|A| ≥ (r + s)(2q + 3)− (r + s)2 − 2rs

2
=: g(r, s).

For the upper bound on |B| we first write B as the union B = B1 ∪B2 ∪B3, where
B1 = (

⋃
i<j li ∩ lj), B2 = (

⋃
i<j ci ∩ cj) and B3 = (

⋃
i,j li ∩ cj). To find an upper

bound, we can use, that

|B| ≤ |B1|+ |B2|+ |B3|

and find upper bounds for each of the three cardinalities. Indeed, by the same
computations as above, we obtain

|B1| ≤
r(r − 1)

2
,

|B2| ≤
s(s− 1)

2
,

|B3| ≤ 2rs.

Thus we get

|B| ≤ (r + s)2 − (r + s) + 2rs

2
=: h(r, s).

Now if S is a set of linearly dependent columns, then

g(r, s) ≤ h(r, s),

which is equivalent to saying that

f(r, s) := h(r, s)− g(r, s) = (r + s)2 − (r + s)(q + 2) + 2rs ≥ 0.

Therefore if f(r, s) < 0, any set of columns obtained selecting r columns from the
lines and s columns from the non-degenerate conics can not be linearly dependent.

We now want to find the maximal possible value of (r + s) such that f(r, s) < 0 is
satisfied for every r and s with fixed sum r + s.
If r + s = T is a fixed value then 2rs is maximal when r = s. This means that

f(r, s) ≤ (s+ s)2 − (s+ s)(q + 2) + 2s2,

and hence we want to find the maximal value of s such that

(s+ s)2 − (s+ s)(q + 2) + 2s2 < 0,

Indeed, this is the case when

2s(3s− (q + 2)) < 0.

This is satisfied when

either s < 0 and s >
q + 2

3
,

or s > 0 and s <
q + 2

3
.
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Since s > 0 is given, only the latter case is possible. Hence, s < q+2
3 and therefore

the maximal value T for r + s satisfying f(r, s) < 0 is

T <

⌊
2q + 4

3

⌋
.

Therefore any set of linearly dependent columns of H has cardinality at most b2q+4
3 c.

Hence by Theorem 2.3.11 we conclude that the minimum distance d is at least
b2q+4

3 c+ 1.

In Chapter 3 we have seen that there are two other possibilities to examine a lower
bound on the minimum distance of the code. Depending on the situation, one or the
other bound is more useful and accurate. We would like to apply the two Theorems
3.5.2 and 3.5.3 to our code C2(Π t Γ)⊥. In order to do so we need to compute the
eigenvalues of HH> over the reals, where H is the parity-check matrix of C2(ΠtΓ)⊥.

In the computation of the dimension of C2(Π t Γ)⊥ we saw that the matrix H ′H ′>

has the eigenvalues λ1 = (q+ 1)2 and λ2 = q over the real numbers. Indeed, it holds
that

HH> = (H ′|H ′′) · (H ′|H ′′)> =


2(q + 1) 2 . . . 2

2 2(q + 1) 2 . . . 2
...

. . .
. . .

...
2 . . . 2 2(q + 1)

 = 2 · (H ′H ′>).

(6.2)

This implies then that for any x ∈ Rq2+q+1

(HH>) · x = 2(H ′H ′>) · x = 2 · λ1x = (2λ1) · x,

and analogously for λ2, since these are the eigenvalues of H ′H ′>. Therefore the two
eigenvalues of HH> over the real numbers are

µ1 = 2(q + 1)2 and µ2 = 2q.

Remark 6.3.3. Since q is an odd prime power and every two points are lying on
exactly one common line, any pair of two distinct columns of a parity-check matrix
H are linearly independent. Hence, by Theorem 2.3.11, we can guarantee that the
minimum distance of such an MDPC-code C2 (Π t Γ)⊥ is at least 3.

Having the two eigenvalues of HH> we are able to use Theorem 3.5.2 and Theorem
3.5.3, respectively. Both theorems lead to exactly the same result for the minimum
distance d of C2 (Π t Γ)⊥, i.e.

d ≥ 2.

Hence, Tanner’s results are not really useful for a code C2(Π t Γ)⊥ that we have
constructed. Indeed, we have discussed in Chapter 3, that if µ2 ≥ 2m the bound
provided by Theorem 3.5.2 is vacuous. In our case we indeed have µ2 ≤ 2m, but very
close to 2m which possibly could be a reason for the loss of accuracy. Therefore, the
combinatorial approach presented in Proposition 6.3.2 is definitely the better choice.
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In order to find an upper bound for the minimum distance, one could use the mini-
mum distance of a code C2 (Π)⊥, which is not very tight. Instead, for binary linear
codes we have seen that the Griesmer bound, Theorem 2.3.13, provides an appro-
priate upper bound.

6.4 Error-Correction Capability

We have constructed [2(q2 + q+ 1), q2 + q+ 2]2−linear MDPC-codes C2 (Π t Γ)⊥ of
column weight v = (q+ 1) for some fixed odd prime power q. We are now interested
in the error-correction capability of these codes.

Using Proposition 2.2.3 and the lower bound on the minimum distance of an MDPC-
code C2 (Π t Γ)⊥ presented in Proposition 6.3.2,we can deduce that an MDPC-code
C2 (Π t Γ)⊥ has the following error-correction and error-detection properties:

1. If
⌈
2q+4
3

⌉
is odd, then C2 (Π t Γ)⊥ can correct up to

d 2q+4
3 e−1
2 errors.

2. C2 (Π t Γ)⊥ can detect up to
⌈
2q+4
3

⌉
− 1 errors.

3. C2 (Π t Γ)⊥ can correct up to
⌈
2q+4
3

⌉
− 1 erasures.

Recall that using an [n, k]-linear MDPC-code of column weight v and parity-check
matrix H and maximum column intersection s we can correct errors of weight at
most b v2sc by performing only one round of the bit-flipping algorithm (see Proposition
5.3.1).

Lemma 6.4.1. Let C2 (Π t Γ)⊥ be an MDPC-code with parity-check matrix H ∈
GF (2)(q

2+q+1)×2(q2+q+1) constructed as above. Then the maximum column intersec-
tion sH of H is at most 2.

Proof. From the construction of H we have that H consists of two matrices H ′

and H ′′ which are the incidence matrices of points and lines and points and non-
degenerate conics of a projective bundle in PG(2, q), respectively, since any two
points are incident to exactly one common line and one common non-degenerate
conic. Hence both matrices H ′ and H ′′ have a maximum column intersection equal
to 1. Since every line is intersecting a conic in at most 2 points, the maximum
column intersection of the matrix H is sH ≤ 2.

Using Lemma 6.4.1 and Proposition 5.3.1, we can directly derive the maximal num-
ber of errors that can be corrected within one round of the bit-flipping decoding
algorithm.

Corollary 6.4.2. Consider the MDPC-code C2 (Π t Γ)⊥, with parity-check matrix
as constructed before. After performing one round of bit-flipping on H we can correct
errors of weight up to b q+1

4 c, which is roughly
√

n
32 .

When compared to Tillich’s random construction of MDPC-codes, presented in [24],
we can guarantee an improvement on the number of errors that can be corrected

66



6.4. Error-Correction Capability 6. CONSTRUCTION

within one round of the bit-flipping decoding algorithm.

In addition to this result, we have implemented the bit-flipping algorithm in Python
using SageMath (see Listing 3 in Appendix A). Our goal was not only to verify
the bound found in Corollary 6.4.2 for the family of MDPC-codes constructed in
Section 6.1, but also to test if we could possibly correct more than this amount of
errors within one round of the bit-flipping algorithm. In order to do so, we use the
implementation of the three types of parity-check matrices which can be found in
Listing 2. From Display (6.2), a parity-check matrix of the family of MDPC-codes
C2(Πt Γ)⊥ forms a generator matrix of a subcode of C2(Πt Γ)⊥. Hence, the code-
words of this subcode are also codewords of C2(Π t Γ)⊥.
Since we want to check how many errors we can correct within one round of the
bit-flipping decoding algorithm, we need not only a parity-check matrix, but also a
received word, which is technically a codeword of C2(ΠtΓ)⊥ plus some error-vector
of a given weight. Since the algorithm does not depend on the codeword, we have
chosen an arbitrary row of H which represents a codeword of C2(Π t Γ)⊥. To this
randomly chosen codeword of C2(ΠtΓ)⊥ we have added an error-vector of different
weights presented below. The error-vector is constructed in the following way.
Initially, we have generated a zero-vector of length q2 + q + 1. Depending on the
weight wt(e), that the error-vector e should have, we have chosen wt(e) random
positions which will be turned into a one-entry. The construction of the error-vector
is therefore pseudo-random and hence useful for an experiment. The SageMath code
can be found in Listing 4.

For the test, we have chosen q to be every odd prime power between 5 and 25, i.e.

q ∈ {5, 7, 9, 11, 13, 17, 19, 23, 25}.

For each value of q and each error-weight, we ran the algorithm 1000 times in order
to provide an accurate result. Additionally, we have examined in all these test all
the three types of parity-check matrices according to the three types of projective
bundles found in Section 4.5. The SageMath code for the test loops can be found in
Appendix A, Listing 4.

Firstly, in order to approve the bound found in Corollary 6.4.2, we have added to
some arbitrarily chosen codeword a random error-vector whose weight is exactly this
bound. In fact, it turned out that in each of the 1000 tests all the received words
containing an error of weight b q+1

4 c have been decoded completely into a codeword
of C2(Π t Γ)⊥.

Secondly, we have increased the weight of the error by 1, i.e. the error-vector has
now a weight of b q+1

4 c + 1. After running the algorithm 1000 times for each of
the three types of parity-check matrices and for each value of q, we have computed
the percentage number of successfully decoded words which can be found in the
following table.
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q inscribed bundle circumscribed
bundle

self-polar bundle

5 53.5% 53.5% 53.5%

7 4.2 % 3.9% 3.9%

9 75.9% 75.4% 76.0%

11 43.8% 42.8% 42.1%

13 91.9% 91.3% 90.5%

17 96.0% 96.6% 96.0%

19 91.5% 91.6% 91.3%

23 97.4% 98.0% 97.8%

25 98.9% 98.9% 100%

Table 6.2: Probability to decode a received word of b q+1
4 c+ 1 errors correctly after

one round of the bit-flipping decoding algorithm.

From the table we realize that for the prime q = 7 the probability that the decoding
fails is very high. This might be due to the fact that we exceed the error-correcting
radius. Recall from the error-correction properties presented at the beginning of this
section, for q = 7 we can correct up to 2 errors. Since b q+1

4 c+ 1 for q = 7 is already
equal to 3, we exceed the number of errors that can be corrected. Furthermore,
when computing q+1

4 for q = 7, it is already an integer. When compared to q = 5,

for which q+1
4 is non-integer and will be rounded down, we observe a decrease in the

performance. The fact, that for q = 5 the fraction is non-integer might also have an
influence on the error-correction performance. The same can actually be observed
for q = 11 or q = 19, whose performance slightly suffers when compared to q = 9 or
q = 17 respectively.

Since especially the higher primes and prime powers showed a high rate of success,
we have decided to increase the error-weight again by one and to see how the perfor-
mances change. Since q = 7 already showed a bad performance, we have excluded
this case in the next few tests. Running again 1000 tests for an error-weight of
b q+1

4 c+ 2 we obain the following results on the percentage success of each type.

68



6.4. Error-Correction Capability 6. CONSTRUCTION

q inscribed bundle circumscribed
bundle

self-polar bundle

5 2.9% 2.9% 2.9%

9 6.1% 5.0% 5.9%

11 4.3% 4.8% 4.8%

13 16.9% 17.5% 17.0%

17 59.4% 58.6% 57.7%

19 45.1% 45.6% 46.6%

23 78.0% 80.1% 77.7%

25 95.8% 95.0% 94.5%

Table 6.3: Probability to decode a received word of b q+1
4 c+ 2 errors correctly after

one round of the bit-flipping decoding algorithm.

From the above table, we can clearly see that for q = 5, 9, 11, 13 the probability of
decoding a received word containing b q+1

4 c + 2 errors after one round of the bit-
flipping decoding algorithm is very low. This is due to the fact, that for these values
of q the weight of the error is higher than the theoretical number of errors that can
be corrected, i.e. since

⌊
q + 1

4

⌋
+ 2 ≥

⌈
2q+4
3

⌉
− 1

2
.

Still the performance for q = 19 is slightly smaller than the one for q = 17. Further-
more, for q = 25 the error-correction rate is still very high.

Lastly, we have decided to increase again the error-weight by one to see how the
performances change. Similarly to the case before, we will only focus on the cases
where q = 17 or higher. Again after 1000 test loops for each parameter we observe
the following results.

q inscribed bundle circumscribed
bundle

self-polar bundle

17 7.9% 6.4% 7.2%

19 10.4% 9.8% 11.3%

23 31.1% 30.4% 31.7%

25 75.8% 74.0% 71.1%

Table 6.4: Probability to decode a received word of b q+1
4 c+ 3 errors correctly after

one round of the bit-flipping decoding algorithm.

Interestingly, in this situation the performance for q = 19 is now better than the one
for q = 17, but this again might be due to the fact, that the general amount of errors
which can be corrected is exceeded when choosing q = 17. Also the performance for
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q = 23 has significantly suffered when compared to the performance in the previous
setting. Only for q = 25 the rate of success is still high.

Since we were curious on finding the limit of error-correction capacities for the
presented values for q, we ran the algorithm another 1000 times only for the value
q = 25 with an error-weight of b q+1

4 c+ 4. It turned out that the rate of success has
decreased rapidly, which can be seen in the last table below.

q inscribed bundle circumscribed
bundle

self-polar bundle

25 35.2% 32.6% 36.9%

Table 6.5: Probability to decode a received word of b q+1
4 c+ 4 errors correctly after

one round of the bit-flipping decoding algorithm.

Generally, we can conclude from the results above that all the three types of MPDC-
codes C2(Π t Γ)⊥ or rather the three types of parity-check matrices according to
the three different types of projective bundles in PG(2, q) show more or less the
same performance. There is no significant difference between the single types. Also
from these experiments we observe that for bigger odd prime powers q with a high
probability we are able to correct even more than b q+1

4 c errors within one round of
the bit-flipping decoding algorithm.
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Chapter 7

Conclusion

To conclude this thesis, we will summarize the main results here and discuss some
interesting topics for further studies.

In this Master thesis we present a new construction for MDPC-codes which have a
small maximum column intersection and hence a good error-correction performance
after one round of the bit-flipping decoding algorithm.

After introducing the general framework of coding theory and finite geometry, we
focus on a concrete object in finite geometry: the projective bundles in the Desargue-
sian plane PG(2, q). These projective bundles play a central role in the construction.
We see that there exist in total three distinct types of projective bundles in PG(2, q),
where two of them only exist when q is an odd prime power. We study the algebraic
structure of the bundles, where we made use of perfect difference sets.

With the help of this knowledge, we are able to construct a parity-check matrix,
which is the incidence matrix of points and lines or points and non-degenerate con-
ics of a projective bundle, respectively. We use the fact, that a line in PG(2, q)
intersects a non-degenerate conic in at most two points, to make sure that the
parity-check matrix presented has a small maximum column intersection.
We improve the error-correction performance within one round of the bit-flipping
decoding algorithm when compared to the random construction presented by Tillich
in [37]. In addition, the number of errors that can be corrected is deterministic and
not probabilistic. Furthermore, we analyse the performance more detailed by check-
ing whether we are able to correct even more errors. This is in fact possible for
larger odd prime powers q.

Concerning the bit-flipping decoding algorithm for MDPC-codes, future studies
could address following questions: Where does the decoding algorithm fail? Are
there any issues when using a parity-check matrix constructed from finite geometry?
Since for LDPC-codes the decoding algorithm faces some problems with four-cycles
it could possibly happen with MDPC-codes too. Since for MDPC-codes the main
analysis on decoding algorithms are based on the bit-flipping decoding algorithm
and since the bit-flipping decoding algorithm only works for a binary alphabet, one
could emphasize more on decoding algorithms, such as believe propagation.
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7. CONCLUSION

Even though in this thesis we do not focus on the cryptographic point of view,
another topic of great interest would be, to implement this construction for instance
in a McEliece cryptosystem variant for MDPC-codes. After that, one could analyse
the security level of such a cryptosystem.

72



Appendix A

Sage Functions

We will provide here the Sage functions used in Section 6.4.

from math import factorial

from sage.all import *

def perfect_difference_set(q):

# The function computes a reduced perfect difference set of q+1

integers.↪→

# :param q: odd prime power

# :return: list representing the perfect difference set

base_field = GF(q, 'a')

extension = base_field.extension(3)

gen = extension.gen()

powers = [0, 1]

for power in range(2, q ** 2 + q + 1):

for k_1 in base_field:

if k_1 != 0:

for k_2 in base_field:

if k_2 != 0:

if 1 + k_1 * gen + k_2 * (gen ** power) == 0:

powers.append(power)

differences = []

for i in range(0, len(powers)):

for j in range(i + 1, len(powers)):

if ((powers[i] - powers[j]) and (powers[j] - powers[i])) not in

differences:↪→

differences.append(abs(powers[i] - powers[j]))

else:

print(powers), print("\nis no perfect difference set")

if len(differences) == q * (q + 1) / 2:

print(powers), print("is a perfect difference set\n")

return powers

Listing 1: Implementation of perfect difference sets of q + 1 elements.
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from sage.all import *

def incidence_inscribed(q, diff_set):

# Computes the incidence matrix of points of PG(2,q) and lines / conics

of an inscribed proj. bundle↪→

# :param q: odd prime power

# :param diff_set: list, representing a perfect difference set.

# :return: Matrix of size (q^2+q+1)x(2(q^2+q+1))

n = q ** 2 + q + 1

lines = [0] * n

for i in range(0, n):

if i in diff_set:

lines[i] = 1

in_set = []

in_bundle = [0] * n

for i in range(0, q + 1):

in_set.append(2 * diff_set[i] % n)

for i in range(0, n):

if i in in_set:

in_bundle[i] = 1

H = block_matrix([[matrix.circulant(lines).transpose(),

matrix.circulant(in_bundle).transpose()]])↪→

return H

def incidence_circumscribed(q, diff_set):

# Computes the incidence matrix of points of PG(2,q) and lines / conics

of an circumscribed proj. bundle↪→

# :param q: odd prime power

# :param diff_set: list, representing a perfect difference set.

# :return: Matrix of size (q^2+q+1)x(2(q^2+q+1))

n = q ** 2 + q + 1

lines = [0] * n

for i in range(0, n):

if i in diff_set:

lines[i] = 1

circ_set = []

circ_bundle = [0] * n

for i in range(0, q + 1):

circ_set.append((-1) * diff_set[i] % n)

for i in range(0, n):

if i in circ_set:

circ_bundle[i] = 1

H = block_matrix([[matrix.circulant(lines).transpose(),

matrix.circulant(circ_bundle).transpose()]])↪→

return H

def incidence_selfpolar(q, diff_set):
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# Computes the incidence matrix of points of PG(2,q) and lines / conics

of an self-polar proj. bundle↪→

# :param q: odd prime power

# :param diff_set: list, representing a perfect difference set.

# :return: Matrix of size (q^2+q+1)x(2(q^2+q+1))

n = q ** 2 + q + 1

lines = [0] * n

for i in range(0, n):

if i in diff_set:

lines[i] = 1

self_set = []

self_bundle = [0] * n

inv_two = inverse_mod(2, n)

for i in range(0, q + 1):

self_set.append(inv_two * diff_set[i] % n)

for i in range(0, n):

if i in self_set:

self_bundle[i] = 1

H = block_matrix([[matrix.circulant(lines).transpose(),

matrix.circulant(self_bundle).transpose()]])↪→

return H

Listing 2: Computation of the three types of parity-check matrices for the MDPC-
codes constructed in Section 6.1.

import numpy as np

from sage.all import *

def bit_flipping(y, H):

# This function defines one round of the bit-flipping decoding

algorithm for MDPC-codes.↪→

# :param y: vector of length 2(q^2+q+1) -> received word containing

some errors↪→

# :param H: matrix of size (q^2+q+1)x(2(q^2+q+1)) -> parity-check

matrix↪→

# :return: "decoded" word after one round of the bit-flipping algorithm

r = H.nrows()

n = len(H[1])

# n_j[j] : number of non-zero entries in a column j

n_j = []

# u_j[j] : number of unsatisfied check equations in column j

u_j = []

summands = []
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for i in range(0, r):

summand_i = 0

for k in range(0, n):

summand_i = summand_i + H[i, k] * y[k]

summand_i = summand_i % 2

summands.append(summand_i)

for j in range(0, n):

counter_n = 0

for i in range(0, r):

if H[i, j] == 1:

counter_n += 1

n_j.append(counter_n) # number of non-zero entries in a column j.

for j in range(0, n):

counter_u = 0

for i in range(0, r):

if (H[i, j] == 1) and (summands[i] == 1):

counter_u += 1

u_j.append(counter_u) # number of unsatisfied p.c. equations in a

column j.↪→

for j in range(0, n):

if u_j[j] > n_j[j] / 2: # flipping condition.

y[j] = 1 - y[j]

return y

Listing 3: One round of bit-flipping decoding algorithm due to Algorithm 1.

from sage.all import *

import random

import incidence

import bit_flipping

def test_loop(q, error_increase, diff_set, loop_amount):

# This function tests if a word containing an error which exceeds the

theoretical weight of floor((q+1)/4), from↪→

# Tillich's Result, can still be corrected within one round of the

bit-flipping decoding algorithm.↪→

# param q: odd prime power

# param error_increase: integer, amount of error weight increase

# param diff_set: list, representing a perfect difference set.

# return: boolean; true if the decoded word is a codeword and false if

it is not.↪→

# The three different types of incidence matrices

H_in = incidence.incidence_inscribed(q, diff_set)

H_circ = incidence.incidence_circumscribed(q, diff_set)

H_self = incidence.incidence_selfpolar(q, diff_set)

# Creation of .csv file saving the values
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filename = "q_{}_errinc_{}_test.csv".format(q, error_increase)

# Theoretical number of errors that can be corrected within one round

of BF↪→

weight_errors = floor((q + 1) / 4)

count_in = 0

count_circ = 0

count_self = 0

for amount in range(0, loop_amount):

# generation of the errorvector

error = vector([0] * len(H_in[1]))

# for amount in range(0, loop_amount):

errorpositions = []

# Choose random positions of the error-vector to be 1.

for x in range(0, weight_errors + error_increase):

errorpositions.append(random.randint(0, len(H_in[1]) - 1))

# Add 1-entries to the error vector

for i in errorpositions:

error[i] = 1

# received word with some error of weight "weight_errors"

y_in = (H_in[random.randint(0, H_in.nrows() - 1)] + error) % 2

y_circ = (H_circ[random.randint(0, H_circ.nrows() - 1)] + error) %

2↪→

y_self = (H_self[random.randint(0, H_self.nrows() - 1)] + error) %

2↪→

# Run the bit-flipping decoding algorithm once for each of the

received words↪→

y_in = bit_flipping.bit_flipping(y_in, H_in)

y_circ = bit_flipping.bit_flipping(y_circ, H_circ)

y_self = bit_flipping.bit_flipping(y_self, H_self)

# Check if "decoded" word is a codeword

syndrome_in = []

syndrome_circ = []

syndrome_self = []

for i in range(0, H_in.nrows()):

sum_row_in = 0

sum_row_circ = 0

sum_row_self = 0

for j in range(0, len(H_in[1])):

sum_row_in = (sum_row_in + H_in[i, j] * y_in[j]) % 2

sum_row_circ = (sum_row_circ + H_circ[i, j] * y_circ[j]) %

2↪→

sum_row_self = (sum_row_self + H_self[i, j] * y_self[j]) %

2↪→
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syndrome_in.append(sum_row_in)

syndrome_circ.append(sum_row_circ)

syndrome_self.append(sum_row_self)

if syndrome_in == [0] * H_in.nrows():

codeword_in = True

count_in += 1

# print("The decoded word y_in is indeed a codeword.")

else:

codeword_in = False

# print("There are still errors in y_in ! Iterate again.")

if syndrome_circ == [0] * H_circ.nrows():

codeword_circ = True

count_circ += 1

# print("The decoded word y_circ is indeed a codeword.")

else:

codeword_circ = False

# print("There are still errors in y_circ ! Iterate again.")

if syndrome_self == [0] * H_self.nrows():

codeword_self = True

count_self += 1

# print("The decoded word y_self is indeed a codeword.")

else:

codeword_self = False

# print("There are still errors in y_self ! Iterate again.")

with open(filename, "a+") as file:

file.write("{},{},{}\n".format(codeword_in, codeword_circ,

codeword_self))↪→

with open(filename, "a+") as file:

file.write("{},{},{}\n".format(count_in/loop_amount * 100,

count_circ/loop_amount * 100, count_self/loop_amount * 100))↪→

Listing 4: Test loop which runs one round of the bit-flipping decoding algorithm on
each of the three parity-check matrices presented and an arbitrarily chosen word of
given error-weight.
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