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o Crucial task in Coding Theory: understand limits in performance of error-correction
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= Derived using bounds on n-dimensional spheres in corresponding metrics

o Hamming metric: compact closed form for size of n-dimensional sphere of given Hamming radius.

o Other additive metrics: Similar expressions can get hard to manipulate — bounds needed!

Disclaimer
Method presented can be used for any additive metric.
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The Lee Metric
0

The Lee weight of an element a € Z/qZ defines the minimum
number of arcs separating a from the origin 0. Hence,

wtp (a) = wtL (g — a)

wtn(a) < wti(a) < [q/2]

Definition

For any integer a € Z/qZ and any vector =,y € (Z/qZ)™ we define their Lee weight as

wt(a) ;== min(a,| ¢ —a|) and wt_(z):= Zth(m)
i=1

The Lee distance between x and y is given by d (z,y) := wt,(z — y).
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Spheres in the Lee Metric

n-dimensional Lee sphere of radius ¢ St(z) ={x € (Z/qZ)"™ | wt (z) =t}
n-dimensional Lee ball of radius ¢ BEZ) ={x € (Z/qZ)" | wt (z) <t}

Example Lee weight t = 2 in Z/57Z
— vectors containing either 2 elements of Lee weight 1 or 1 element of Lee weight 2.
S8 =1{(1,1,0),...,(1,4,0),...,(4,4,0),...,(2,0,0),...,(3,0,0),...}

Theorem - [Roth, “06]

Whenever ¢ < ¢/2, we have 815,7:1)

=X 2()0):

Other ways to compute the sphere size:
o Generating functions o Typical sequences
o Convolutions o ...

o Counting integer partitions
Stay tuned for Hugo’s talk right after this! ;)
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Types and Spheres
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Types and Spheres

o Finite alphabet A with additive weight function wt

o Maximum weight over A: p = maxqc.4(wt(a))

Definition: type
The type of any tuple € A" is defined as the tuple 0(x) := (0o(z),...,0] 4|—1(z)), where

1 .

= Can recover weight from type: wt(z) =n 25:0 0, (z) wt (i)

— If wt(x) = ¢, the type induces an integer partition of ¢ of parts of size at most pu.

Sphere size via types

(n)
54

n! n
- Z (no)!-...- () 4-1)! = Z (né’)

(n) (n)
OEC-')t 96@1,




Bounds via Entropy
o Random variable X over finite alphabet A
o Px probability distribution of X: Px(a) =P(X =a), a € A.
o @ another probability distribution over A
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o @ another probability distribution over A

o Px probability distribution of X:

Definition: Entropy and Kullback-Leibler Divergence
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Bounds via Entropy
o Random variable X over finite alphabet A
o Px probability distribution of X: Px(a) =P(X =a), a € A.
o @ another probability distribution over A

Definition: Entropy and Kullback-Leibler Divergence

H(Px)= Y Px(a)logy(Px(a))

acA
Px (a)#0
Dy | @) ==Y Prlayios ()
acA

Theorem [Cover & Thomas]

nH(0) Lo nH(0)
a2 O < () <2

Sphere size: Bounded by sequence whose type maximizes the entropy.
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Lee-Boltzmann Distribution

Example
S§3§ = { (@ iy @)oo (g 4y D)oo ofly 4 Ohoacs (B Ty Qoo oo (B @ Do o }

Draw a € 8535) uniformly at random, then ...
o smaller Lee weights are more likely to occur in the vector a.

o some sequences are more likely — typical sequence.

o Define F := {P = (po,---,pg—1) | Z::ol piwt (i) = (5} — distributions of tuples in Sé?q.

Theorem - [B., Bartz, Liva, Rosenthal - 21°]
The distribution in F maximizing the entropy is given by Bs = (Bs(0),...,Bs(¢ — 1)), where

Bs(i) := exp (—BwtL (1)) -

b
Z(B)




Lee-Boltzmann Distribution - Example over Z/477Z

0.2 : :
—o—T=3
——T=38
512
015 1 o= 2l ey
_g ’ —— T =16
=
e
—
=
8
a 0.1
=
=
=
—
<
%.10-21

Elements of Z/47Z



Conditional Limit Theorem

Conditional Limit Theorem - [Cover & Thomas]

Let E be a closed convex set of probability distributions
over an alphabet X’ and let @ be a distribution over
X but not in E. Let Xi,...,X, be discrete random
variables drawn i.i.d. ~ @. Define X" = (X1,...,Xy)
and let P* = argminpcg D(P || Q). Then

]P’(Xl =a|PXn EE) —>P*(a)

in probability as n grows large for any a € X.




Conditional Limit Theorem

Conditional Limit Theorem - [Cover & Thomas]

Let E be a closed convex set of probability distributions
over an alphabet X’ and let @ be a distribution over
X but not in E. Let Xi,...,X, be discrete random
variables drawn i.i.d. ~ @. Define X" = (X1,...,Xy)
and let P* = argminpcg D(P || Q). Then

]P’(Xl =a|PXn EE) —>P*(a)

in probability as n grows large for any a € X.

In our case
°o Q~U(Z/qZ)
o FE set of distributions of tuples in Séz)

o P*=DBs,ford=t/n



Marginal Distribution in the Lee Sphere TUT

Lemma - Marginal Distribution in the Lee Sphere [BBLR, "21]
Consider a random vector A € Séz)q and let P(a) be the marginal distribution of an element of A. Then,
for every a € Z/qZ we have

P(a) — Bs(a) = exp (—Bwti(a)),

Z(ﬂ)

where 3 is the unique real solution to the Lee weight constraint § = 23:_01 wt (1)P(X = ¢) and Z(B)
denotes the normalization constant
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Distribution Maximizing Entropy

-

Definition (Boltzmann-like Distribution)

For any a € A and 0 < § < p, we define the probability distribution

Pg(a) =

A
Z(B)

where $ is the unique solution to the weight constraint E[wt(a)] = >

chosen s.t. ZaeA Pg(a) =1,ie. Z(B) = ZaeA

ALY
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Distribution Maximizing Entropy

Definition (Boltzmann-like Distribution)
For any a € A and 0 < § < p, we define the probability distribution

g Bwt(a)
Pg(a) i = ———
’ Z(p)
where 8 is the unique solution to the weight constraint E[wt(a)] = ZaeA Pg(a) wt(a) = § and Z() is
chosen s.t. ZaeA Pgla) =1, ie Z(B) = ZaeA g Pwe(a),

o one-to-one correspondence between (3 and §

o Denote Hs = H(Pg)

Theorem [Loliger, 1994]

B | < Hj.

ForanyO<6§Eandn€Nwehave%logq

10



Extending Bounds for any Radius TUT
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Theorem - [BBLR, 22’] and [SCJB, 24’ X
For any 0 < § < p we have 9| B
1 H, ifo<d<w
— log, B((;Z) < ’ ' =
n log, (|A]) ifw<d<p
Moreover, it holds 1
1 —— Surface spectrum
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Asymptotically Tight

Theorem (Continuation)

The bounds provided are asymptotically tight, i.e.,

1
lim —log,
n—oo N
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Ring-Linear Codes

Definition

A linear code C C (Z/qZ)™ is a Z/qZ-submodule of (Z/qZ)™.

Parameters
o Blocklength n
o Z/qZ-dimension k :=log,(|C|)
o Rate of the code R:=k/n rate of the code

13



Ring-Linear Codes

Definition

A linear code C C (Z/qZ)™ is a Z/qZ-submodule of (Z/qZ)™.

Parameters
o Blocklength n
o Z/qZ-dimension k :=log,(|C|)

o Rate of the code R:=k/n rate of the code

o Memoryless Lee Channel

Transmit x € C

Receive: y = x + e € (Z/qZ)™ where e; ~ B for some §

—> Channel matching to the Lee metric under ML decoding.



Sphere-Packing Bound — Another Point of View TUT

Theorem - [BBLR, ‘23]
The block error probability of any code C C (Z/qZ)™ of rate R over a memoryless Lee channel is lower
bounded as

™

Potock(C) > Z(;)nd;ﬁl‘sgg E (—8d) + Z(;)n (‘sgj?q —5) E (—pdo)
where dp and £ are chosen so that
do—1
> ‘s}i?q) +e=2nes2(@-R) and 0<é< \s;;;}q :
d=0

14



Sphere-Packing Bound - Comparison

100 £

Phiock

107° &

Sphere-packing bound
B ! = = = RCU upper bound on E(Pyee(C))

6 ! I 1 1 1 1
0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
Expected relative Lee weight §




Sphere-Packing Bound - Comparison TUT

10°

10-1

Phiock
=
i

Sphere-packing bound

- = = RCU upper bound on E(Pyeck(C))

6 ! I 1 1 1 1

0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
Expected relative Lee weight §

Thank you for your attention!
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