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Motivation

◦ Crucial task in Coding Theory: understand limits in performance of error-correction
=⇒ Sphere-packing bounds, Gilbert-Varshamov bound, ...
=⇒ Derived using bounds on n-dimensional spheres in corresponding metrics

◦ Hamming metric: compact closed form for size of n-dimensional sphere of given Hamming radius.

◦ Other additive metrics: Similar expressions can get hard to manipulate −→ bounds needed!

Disclaimer
Method presented can be used for any additive metric.
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The Lee Metric
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⌊9/2⌋

The Lee weight of an element a ∈ Z/qZ defines the minimum
number of arcs separating a from the origin 0.

Hence,

wtL(a) = wtL(q − a)

wtH(a) ≤ wtL(a) ≤ ⌊q/2⌋

Definition
For any integer a ∈ Z/qZ and any vector x, y ∈ (Z/qZ)n we define their Lee weight as

wtL(a) := min(a, | q − a |) and wtL(x) :=
n∑

i=1

wtL(xi)

The Lee distance between x and y is given by dL(x, y) := wtL(x − y).
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Spheres in the Lee Metric

n-dimensional Lee sphere of radius t S(n)
t,q := {x ∈ (Z/qZ)n | wtL(x) = t}

n-dimensional Lee ball of radius t B(n)
t,q := {x ∈ (Z/qZ)n | wtL(x) ≤ t}

Example Lee weight t = 2 in Z/5Z
−→ vectors containing either 2 elements of Lee weight 1 or 1 element of Lee weight 2.

S(3)
2,5 = {(1, 1, 0), . . . , (1, 4, 0), . . . , (4, 4, 0), . . . , (2, 0, 0), . . . , (3, 0, 0), . . .} .

Theorem - [Roth, ´06]
Whenever t ≤ q/2, we have

∣∣∣ S(n)
t,q

∣∣∣ =
∑n

i=0 2i
(

n
i

)(
t
i

)
.

Other ways to compute the sphere size:
◦ Generating functions
◦ Convolutions
◦ Counting integer partitions

◦ Typical sequences
◦ . . .

Stay tuned for Hugo’s talk right after this! ;)
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Types and Spheres
◦ Finite alphabet A with additive weight function wt
◦ Maximum weight over A: µ = maxa∈A(wt(a))

Definition: type
The type of any tuple x ∈ An is defined as the tuple θ(x) := (θ0(x), . . . , θ| A |−1(x)), where

θi(x) = 1
n

| {k = 1, . . . , n | xk = i} | .

=⇒ Can recover weight from type: wt(x) = n
∑µ

i=0 θi(x) wt(i)
=⇒ If wt(x) = t, the type induces an integer partition of t of parts of size at most µ.

Sphere size via types ∣∣∣ S(n)
t,A

∣∣∣ =
∑

θ∈Θ(n)
t

n!
(nθ0)! · . . . · (nθ| A |−1)!

=:
∑

θ∈Θ(n)
t

( n

nθ

)
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Bounds via Entropy
◦ Random variable X over finite alphabet A
◦ PX probability distribution of X: PX(a) = P(X = a), a ∈ A.
◦ Q another probability distribution over A

Definition: Entropy and Kullback-Leibler Divergence
H(PX) =

∑
a∈A

PX (a)̸=0

PX(a) log2(PX(a))

D(PX || Q) = −
∑
a∈A

PX(a) log
(

PX(a)
Q(a)

)

Theorem [Cover & Thomas]

1
(n + 1)| A |−1 2nH(θ) ≤

( n

nθ

)
≤ 2nH(θ)

Sphere size: Bounded by sequence whose type maximizes the entropy.
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Lee-Boltzmann Distribution

Example

S(3)
2,5 =

{
(1, 1, 0),. . . , (1, 4, 0),. . . ,(4, 4, 0),. . . , (2, 0, 0),. . . , (3, 0, 0),. . .

}
Draw a ∈ S(3)

2,5 uniformly at random, then . . .

◦ smaller Lee weights are more likely to occur in the vector a.
◦ some sequences are more likely −→ typical sequence.

◦ Define E :=
{

P = (p0, . . . , pq−1) |
∑q−1

i=0 pi wtL(i) = δ
}

−→ distributions of tuples in S(n)
δn,q

.

Theorem - [B., Bartz, Liva, Rosenthal - 21‘]
The distribution in E maximizing the entropy is given by Bδ = (Bδ(0), . . . , Bδ(q − 1)), where

Bδ(i) := 1
Z(β)

exp (−β wtL(i)) .

6
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Lee-Boltzmann Distribution - Example over Z/47Z
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Conditional Limit Theorem

Conditional Limit Theorem - [Cover & Thomas]
Let E be a closed convex set of probability distributions
over an alphabet X and let Q be a distribution over
X but not in E. Let X1, . . . , Xn be discrete random
variables drawn i.i.d. ∼ Q. Define Xn = (X1, . . . , Xn)
and let P ⋆ = arg minP ∈E D(P || Q). Then

P (X1 = a | PXn ∈ E) −→ P ⋆(a)

in probability as n grows large for any a ∈ X .

In our case
◦ Q ∼ U(Z/qZ)
◦ E set of distributions of tuples in S(n)

t,q

◦ P ⋆ = Bδ, for δ = t/n
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Marginal Distribution in the Lee Sphere

Lemma - Marginal Distribution in the Lee Sphere [BBLR, ´21]
Consider a random vector A ∈ S(n)

δn,q
and let P (a) be the marginal distribution of an element of A. Then,

for every a ∈ Z/qZ we have

P (a) −→ Bδ(a) := 1
Z(β)

exp (−β wtL(a)) ,

where β is the unique real solution to the Lee weight constraint δ =
∑q−1

i=0 wtL(i)P(X = i) and Z(β)
denotes the normalization constant

9
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Distribution Maximizing Entropy

Definition (Boltzmann-like Distribution)
For any a ∈ A and 0 < δ < µ, we define the probability distribution

Pβ(a) := q−β wt(a)

Z(β)

where β is the unique solution to the weight constraint E[wt(a)] =
∑

a∈A Pβ(a) wt(a) = δ and Z(β) is
chosen s.t.

∑
a∈A Pβ(a) = 1, i.e. Z(β) =

∑
a∈A q−β wt(a).

◦ one-to-one correspondence between β and δ

◦ Denote Hδ = H(Pβ)

Theorem [Löliger, 1994]
For any 0 < δ ≤ w and n ∈ N we have 1

n
logq

∣∣∣ B(n)
δn

∣∣∣ ≤ Hδ.

10
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Extending Bounds for any Radius

Theorem - [BBLR, 22’] and [SCJB, 24’]
For any 0 < δ ≤ µ we have

1
n

logq

∣∣∣ B(n)
δn

∣∣∣ ≤
{

Hδ if 0 < δ ≤ w

logq(| A |) if w < δ ≤ µ
.

Moreover, it holds

1
n

logq

∣∣∣ S(n)
δn

∣∣∣ ≤ Hδ

0 50 100 150 200 250 3000

1

2

3

Lee weight δn

Surface spectrum
Upper bound
Volume spectrum
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Asymptotically Tight

Theorem (Continuation)
The bounds provided are asymptotically tight, i.e.,

lim
n−→∞

1
n

logq

∣∣∣ S(n)
δn

∣∣∣ = Hδ and lim
n−→∞

1
n

logq

∣∣∣ B(n)
δn

∣∣∣ =
{

Hδ if 0 < δ ≤ w

logq(| A |) if w < δ ≤ µ
.

0 200 400 600 800 1,0000.6

0.7

0.8

0.9

1

Lee weight δℓ

Su
rf
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Surface spectrum
Hδ
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Ring-Linear Codes

Definition
A linear code C ⊂ (Z/qZ)n is a Z/qZ-submodule of (Z/qZ)n.

Parameters
◦ Blocklength n

◦ Z/qZ-dimension k := logq(| C |)
◦ Rate of the code R := k/n rate of the code

◦ Memoryless Lee Channel
Transmit x ∈ C

Receive: y = x + e ∈ (Z/qZ)n where ei ∼ Bδ for some δ

=⇒ Channel matching to the Lee metric under ML decoding.

13
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Sphere-Packing Bound – Another Point of View

Theorem - [BBLR, ‘23]
The block error probability of any code C ⊆ (Z/qZ)n of rate R over a memoryless Lee channel is lower
bounded as

Pblock(C) >
1

Z(β)n

rn∑
d=d0+1

∣∣∣ S(n)
d,q

∣∣∣E (−βd) + 1
Z(β)n

(∣∣∣ S(n)
d0,q

∣∣∣ − ξ

)
E (−βd0)

where d0 and ξ are chosen so that

d0−1∑
d=0

∣∣∣ S(n)
d,q

∣∣∣ + ξ = 2n(log2(q)−R) and 0 < ξ ≤
∣∣∣ S(n)

d0,q

∣∣∣ .
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Sphere-Packing Bound - Comparison
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Thank you for your attention!

15



Sphere-Packing Bound - Comparison

0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.410−6

10−5

10−4

10−3

10−2

10−1

100

Expected relative Lee weight δ

P
bl

oc
k

Sphere-packing bound
RCU upper bound on E(Pblock(C))

Thank you for your attention!
15


	Lee Metric and Spheres
	Information-Theoretic Tools
	Bounds in the Lee Metric

