

Information-theoretic Bounds on the Size of Spheres in the Lee Metric

Jessica Bariffi

SIAM Conference on Applied Algebraic Geometry (AG25)

July 9th, 2025

- o Crucial task in Coding Theory: understand limits in performance of error-correction
 - ⇒ Sphere-packing bounds, Gilbert-Varshamov bound, ...
 - \Longrightarrow Derived using bounds on n-dimensional spheres in corresponding metrics

- o Crucial task in Coding Theory: understand limits in performance of error-correction
 - ⇒ Sphere-packing bounds, Gilbert-Varshamov bound, ...
 - \Longrightarrow Derived using bounds on n-dimensional spheres in corresponding metrics
- \circ Hamming metric: compact closed form for size of n-dimensional sphere of given Hamming radius.

1

- o Crucial task in Coding Theory: understand limits in performance of error-correction
 - ⇒ Sphere-packing bounds, Gilbert-Varshamov bound, ...
 - \Longrightarrow Derived using bounds on n-dimensional spheres in corresponding metrics
- Hamming metric: compact closed form for size of n-dimensional sphere of given Hamming radius.
- \circ Other additive metrics: Similar expressions can get hard to manipulate \longrightarrow bounds needed!

1

- o Crucial task in Coding Theory: understand limits in performance of error-correction
 - ⇒ Sphere-packing bounds, Gilbert-Varshamov bound, ...
 - \implies Derived using bounds on *n*-dimensional spheres in corresponding metrics
- Hamming metric: compact closed form for size of n-dimensional sphere of given Hamming radius.
- $\ \, \text{Other additive metrics: Similar expressions can get hard to manipulate} \longrightarrow \text{bounds needed!}$

Disclaimer

Method presented can be used for any additive metric.

Outline

1. Lee Metric and Spheres

2. Information-Theoretic Tools

3. Bounds in the Lee Metric

Outline

1. Lee Metric and Spheres

2. Information-Theoretic Tools

3. Bounds in the Lee Metric

The Lee weight of an element $a \in \mathbb{Z}/q\mathbb{Z}$ defines the minimum number of arcs separating a from the origin 0.

The Lee weight of an element $a \in \mathbb{Z}/q\mathbb{Z}$ defines the minimum number of arcs separating a from the origin 0.

The Lee weight of an element $a \in \mathbb{Z}/q\mathbb{Z}$ defines the minimum number of arcs separating a from the origin 0. Hence,

$$\operatorname{wt}_{\mathsf{L}}(a) = \operatorname{wt}_{\mathsf{L}}(q-a)$$

$$\operatorname{wt}_{\mathsf{H}}(a) \le \operatorname{wt}_{\mathsf{L}}(a) \le \lfloor q/2 \rfloor$$

The Lee weight of an element $a \in \mathbb{Z}/q\mathbb{Z}$ defines the minimum number of arcs separating a from the origin 0. Hence,

$$\operatorname{wt}_{\mathsf{L}}(a) = \operatorname{wt}_{\mathsf{L}}(q-a)$$

$$\operatorname{wt}_{\mathsf{H}}(a) \le \operatorname{wt}_{\mathsf{L}}(a) \le \lfloor q/2 \rfloor$$

The Lee weight of an element $a \in \mathbb{Z}/q\mathbb{Z}$ defines the minimum number of arcs separating a from the origin 0. Hence,

$$\operatorname{wt}_{\mathsf{L}}(a) = \operatorname{wt}_{\mathsf{L}}(q-a)$$

$$\operatorname{wt}_{\mathsf{H}}(a) \le \operatorname{wt}_{\mathsf{L}}(a) \le \lfloor q/2 \rfloor$$

Definition

For any integer $a \in \mathbb{Z}/q\mathbb{Z}$ and any vector $x, y \in (\mathbb{Z}/q\mathbb{Z})^n$ we define their Lee weight as

$$\operatorname{wt}_{\mathsf{L}}(a) := \min(a, |q - a|)$$
 and $\operatorname{wt}_{\mathsf{L}}(x) := \sum_{i=1}^{n} \operatorname{wt}_{\mathsf{L}}(x_i)$

The Lee distance between x and y is given by $d_L(x, y) := wt_L(x - y)$.

n-dimensional Lee sphere of radius t $\mathcal{S}_{t,q}^{(n)} := \{x \in (\mathbb{Z}/q\mathbb{Z})^n \mid \operatorname{wt}_{\mathsf{L}}(x) = t\}$ n-dimensional Lee ball of radius t $\mathcal{B}_{t,q}^{(n)} := \{x \in (\mathbb{Z}/q\mathbb{Z})^n \mid \operatorname{wt}_{\mathsf{L}}(x) \leq t\}$

 $\begin{array}{ll} \textit{n-} \text{-dimensional Lee sphere of radius } t & \mathcal{S}_{t,q}^{(n)} := \{x \in (\mathbb{Z}/q\mathbb{Z})^n \mid \operatorname{wt_L}(x) = t\} \\ \textit{n-} \text{-dimensional Lee ball of radius } t & \mathcal{B}_{t,q}^{(n)} := \{x \in (\mathbb{Z}/q\mathbb{Z})^n \mid \operatorname{wt_L}(x) \leq t\} \end{array}$

Example Lee weight t = 2 in $\mathbb{Z}/5\mathbb{Z}$

 \longrightarrow vectors containing either 2 elements of Lee weight 1 or 1 element of Lee weight 2.


```
\begin{array}{ll} \textit{n-} \text{-dimensional Lee sphere of radius } t & \mathcal{S}_{t,q}^{(n)} := \{x \in (\mathbb{Z}/q\mathbb{Z})^n \mid \operatorname{wt_L}(x) = t\} \\ \textit{n-} \text{-dimensional Lee ball of radius } t & \mathcal{B}_{t,q}^{(n)} := \{x \in (\mathbb{Z}/q\mathbb{Z})^n \mid \operatorname{wt_L}(x) \leq t\} \end{array}
```

Example Lee weight t = 2 in $\mathbb{Z}/5\mathbb{Z}$

 \longrightarrow vectors containing either 2 elements of Lee weight 1 or 1 element of Lee weight 2. $\mathcal{S}_{2,5}^{(3)} = \{(1,1,0),\ldots,(1,4,0),\ldots,(4,4,0),\ldots,(2,0,0),\ldots,(3,0,0),\ldots\}$.

 $\begin{array}{ll} \text{$n$-dimensional Lee sphere of radius t} & \mathcal{S}_{t,q}^{(n)} := \{x \in (\mathbb{Z}/q\mathbb{Z})^n \mid \operatorname{wt_L}(x) = t\} \\ \\ n\text{-dimensional Lee ball of radius t} & \mathcal{B}_{t,q}^{(n)} := \{x \in (\mathbb{Z}/q\mathbb{Z})^n \mid \operatorname{wt_L}(x) \leq t\} \\ \end{array}$

Example Lee weight t = 2 in $\mathbb{Z}/5\mathbb{Z}$

 \longrightarrow vectors containing either 2 elements of Lee weight 1 or 1 element of Lee weight 2. $\mathcal{S}^{(3)}_{2,5} = \{(1,1,0),\ldots,(1,4,0),\ldots,(4,4,0),\ldots,(2,0,0),\ldots,(3,0,0),\ldots\}$.

Theorem - [Roth, '06] Whenever $t \leq q/2$, we have $\left| \mathcal{S}_{t,q}^{(n)} \right| = \sum_{i=0}^{n} 2^{i} \binom{n}{i} \binom{t}{i}$.

$$\begin{array}{ll} \textit{n-} \text{-dimensional Lee sphere of radius } t & \mathcal{S}^{(n)}_{t,q} := \{x \in (\mathbb{Z}/q\mathbb{Z})^n \mid \operatorname{wt_L}(x) = t\} \\ \textit{n-} \text{-dimensional Lee ball of radius } t & \mathcal{B}^{(n)}_{t,q} := \{x \in (\mathbb{Z}/q\mathbb{Z})^n \mid \operatorname{wt_L}(x) \leq t\} \end{array}$$

Example Lee weight t = 2 in $\mathbb{Z}/5\mathbb{Z}$

$$\longrightarrow$$
 vectors containing either 2 elements of Lee weight 1 or 1 element of Lee weight 2. $\mathcal{S}^{(3)}_{2.5} = \{(1,1,0),\ldots,(1,4,0),\ldots,(4,4,0),\ldots,(2,0,0),\ldots,(3,0,0),\ldots\}$.

Theorem - [Roth, '06]

Whenever
$$t \leq q/2$$
, we have $\left| \mathcal{S}_{t,q}^{(n)} \right| = \sum_{i=0}^{n} 2^{i} \binom{n}{i} \binom{t}{i}$.

Other ways to compute the sphere size:

- Generating functions
- o Convolutions
- Counting integer partitions

- Typical sequences
- o ...

$$\begin{array}{ll} \text{n-dimensional Lee sphere of radius t} & \mathcal{S}_{t,q}^{(n)} := \{x \in (\mathbb{Z}/q\mathbb{Z})^n \mid \operatorname{wt_L}(x) = t\} \\ \text{n-dimensional Lee ball of radius t} & \mathcal{B}_{t,q}^{(n)} := \{x \in (\mathbb{Z}/q\mathbb{Z})^n \mid \operatorname{wt_L}(x) \leq t\} \end{array}$$

Example Lee weight t = 2 in $\mathbb{Z}/5\mathbb{Z}$

$$\longrightarrow$$
 vectors containing either 2 elements of Lee weight 1 or 1 element of Lee weight 2. $\mathcal{S}^{(3)}_{2,5} = \{(1,1,0),\ldots,(1,4,0),\ldots,(4,4,0),\ldots,(2,0,0),\ldots,(3,0,0),\ldots\}$.

Theorem - [Roth, '06]

Whenever
$$t \leq q/2$$
, we have $\left| \mathcal{S}_{t,q}^{(n)} \right| = \sum_{i=0}^{n} 2^{i} \binom{n}{i} \binom{t}{i}$.

Other ways to compute the sphere size:

- Generating functions
- o Convolutions
- Counting integer partitions

- Typical sequences
- o ...

Stay tuned for Hugo's talk right after this! ;)

Outline

1. Lee Metric and Spheres

2. Information-Theoretic Tools

3. Bounds in the Lee Metric

Types and Spheres

- \circ Finite alphabet \mathcal{A} with additive weight function wt
- Maximum weight over A: $\mu = \max_{a \in A} (\operatorname{wt}(a))$

Definition: type

The type of any tuple $x \in \mathcal{A}^n$ is defined as the tuple $\theta(x) := (\theta_0(x), \dots, \theta_{|\mathcal{A}|-1}(x))$, where

$$\theta_i(x) = \frac{1}{n} | \{k = 1, \dots, n \mid x_k = i\} |.$$

Types and Spheres

- \circ Finite alphabet A with additive weight function wt
- Maximum weight over A: $\mu = \max_{a \in A} (\operatorname{wt}(a))$

Definition: type

The type of any tuple $x \in \mathcal{A}^n$ is defined as the tuple $\theta(x) := (\theta_0(x), \dots, \theta_{|\mathcal{A}|-1}(x))$, where

$$\theta_i(x) = \frac{1}{n} | \{k = 1, \dots, n \mid x_k = i\} |.$$

- \implies Can recover weight from type: $\operatorname{wt}(x) = n \sum_{i=0}^{\mu} \theta_i(x) \operatorname{wt}(i)$
- \implies If wt(x) = t, the type induces an integer partition of t of parts of size at most μ .

Types and Spheres

- \circ Finite alphabet A with additive weight function wt
- Maximum weight over A: $\mu = \max_{a \in A} (\operatorname{wt}(a))$

Definition: type

The type of any tuple $x \in \mathcal{A}^n$ is defined as the tuple $\theta(x) := (\theta_0(x), \dots, \theta_{|\mathcal{A}|-1}(x))$, where

$$\theta_i(x) = \frac{1}{n} | \{k = 1, \dots, n \mid x_k = i\} |.$$

- \implies Can recover weight from type: $\operatorname{wt}(x) = n \sum_{i=0}^{\mu} \theta_i(x) \operatorname{wt}(i)$
- \implies If wt(x) = t, the type induces an integer partition of t of parts of size at most μ .

Sphere size via types

$$\left| \mathcal{S}_{t,\mathcal{A}}^{(n)} \right| = \sum_{\theta \in \Theta_t^{(n)}} \frac{n!}{(n\theta_0)! \cdot \ldots \cdot (n\theta_{|\mathcal{A}|-1})!} =: \sum_{\theta \in \Theta_t^{(n)}} {n \choose n\theta}$$

Bounds via Entropy

- Random variable X over finite alphabet \mathcal{A}
- P_X probability distribution of X: $P_X(a) = \mathbb{P}(X = a), a \in \mathcal{A}$.
- \circ Q another probability distribution over A

Definition: Entropy and Kullback-Leibler Divergence

$$H(P_X) = \sum_{\substack{a \in \mathcal{A} \\ P_X(a) \neq 0}} P_X(a) \log_2(P_X(a))$$

$$D(P_X \mid\mid Q) = -\sum_{a \in \mathcal{A}} P_X(a) \log \left(\frac{P_X(a)}{Q(a)}\right)$$

Bounds via Entropy

- Random variable X over finite alphabet \mathcal{A}
- P_X probability distribution of X: $P_X(a) = \mathbb{P}(X = a), a \in \mathcal{A}$.
- \circ Q another probability distribution over A

Definition: Entropy and Kullback-Leibler Divergence

$$H(P_X) = \sum_{\substack{a \in \mathcal{A} \\ P_X(a) \neq 0}} P_X(a) \log_2(P_X(a))$$

$$\mathsf{D}(P_X \mid\mid Q) = -\sum_{a \in \mathcal{A}} P_X(a) \log \left(\frac{P_X(a)}{Q(a)}\right)$$

Theorem [Cover & Thomas]

$$\frac{1}{(n+1)^{|\mathcal{A}|-1}} 2^{nH(\theta)} \le \binom{n}{n\theta} \le 2^{nH(\theta)}$$

Bounds via Entropy

- Random variable X over finite alphabet \mathcal{A}
- P_X probability distribution of X: $P_X(a) = \mathbb{P}(X = a), a \in \mathcal{A}$.
- \circ Q another probability distribution over \mathcal{A}

Definition: Entropy and Kullback-Leibler Divergence

$$H(P_X) = \sum_{\substack{a \in \mathcal{A} \\ P_X(a) \neq 0}} P_X(a) \log_2(P_X(a))$$

$$\mathsf{D}(P_X \mid\mid Q) = -\sum_{a \in \mathcal{A}} P_X(a) \log \left(\frac{P_X(a)}{Q(a)}\right)$$

Theorem [Cover & Thomas]

$$\frac{1}{(n+1)^{|\mathcal{A}|-1}} 2^{nH(\theta)} \le \binom{n}{n\theta} \le 2^{nH(\theta)}$$

Sphere size: Bounded by sequence whose type maximizes the entropy.

Lee-Boltzmann Distribution

Example

$$S_{2,5}^{(3)} = \left\{ (1, 1, 0), \dots, (1, 4, 0), \dots, (4, 4, 0), \dots, (2, 0, 0), \dots, (3, 0, 0), \dots \right\}$$

Draw $a \in \mathcal{S}_{2.5}^{(3)}$ uniformly at random, then ...

- smaller Lee weights are more likely to occur in the vector a.
- $\circ~$ some sequences are more likely \longrightarrow typical sequence.

Lee-Boltzmann Distribution

Example

$$S_{2,5}^{(3)} = \left\{ (1, 1, 0), \dots, (1, 4, 0), \dots, (4, 4, 0), \dots, (2, 0, 0), \dots, (3, 0, 0), \dots \right\}$$

Draw $a \in \mathcal{S}_{2.5}^{(3)}$ uniformly at random, then ...

- \circ smaller Lee weights are more likely to occur in the vector a.
- \circ some sequences are more likely \longrightarrow typical sequence.
- Define $E := \left\{ P = (p_0, \dots, p_{q-1}) \mid \sum_{i=0}^{q-1} p_i \operatorname{wt}_{\mathsf{L}}(i) = \delta \right\} \longrightarrow \text{distributions of tuples in } \mathcal{S}_{\delta n, q}^{(n)}$.

Theorem - [B., Bartz, Liva, Rosenthal - 21']

The distribution in E maximizing the entropy is given by $B_{\delta} = (B_{\delta}(0), \dots, B_{\delta}(q-1))$, where

$$B_{\delta}(i) := \frac{1}{Z(\beta)} \exp(-\beta \operatorname{wt}_{\mathsf{L}}(i)).$$

Lee-Boltzmann Distribution - Example over $\mathbb{Z}/47\mathbb{Z}$

Conditional Limit Theorem

Conditional Limit Theorem - [Cover & Thomas]

Let E be a closed convex set of probability distributions over an alphabet \mathcal{X} and let Q be a distribution over \mathcal{X} but not in E. Let X_1, \ldots, X_n be discrete random variables drawn i.i.d. $\sim Q$. Define $X^n = (X_1, \ldots, X_n)$ and let $P^* = \arg\min_{P \in E} D(P || Q)$. Then

$$\mathbb{P}\left(X_1 = a \,|\, P_{X^n} \in E\right) \longrightarrow P^{\star}(a)$$

in probability as n grows large for any $a \in \mathcal{X}$.

Conditional Limit Theorem

Conditional Limit Theorem - [Cover & Thomas]

Let E be a closed convex set of probability distributions over an alphabet \mathcal{X} and let Q be a distribution over \mathcal{X} but not in E. Let X_1, \ldots, X_n be discrete random variables drawn i.i.d. $\sim Q$. Define $X^n = (X_1, \ldots, X_n)$ and let $P^* = \arg\min_{P \in E} D(P || Q)$. Then

$$\mathbb{P}\left(X_1 = a \,|\, P_{X^n} \in E\right) \longrightarrow P^{\star}(a)$$

in probability as n grows large for any $a \in \mathcal{X}$.

In our case

- $\circ \ Q \sim \mathcal{U}(\mathbb{Z}/q\mathbb{Z})$
- E set of distributions of tuples in $S_{t,q}^{(n)}$
- $P^* = B_{\delta}$, for $\delta = t/n$

Marginal Distribution in the Lee Sphere

Lemma - Marginal Distribution in the Lee Sphere [BBLR, '21]

Consider a random vector $A \in \mathcal{S}_{\delta n,q}^{(n)}$ and let P(a) be the marginal distribution of an element of A. Then, for every $a \in \mathbb{Z}/q\mathbb{Z}$ we have

$$P(a) \longrightarrow B_{\delta}(a) := \frac{1}{Z(\beta)} \exp(-\beta \operatorname{wt}_{\mathsf{L}}(a)),$$

where β is the unique real solution to the Lee weight constraint $\delta = \sum_{i=0}^{q-1} \operatorname{wt}_{\mathsf{L}}(i) \mathbb{P}(X=i)$ and $Z(\beta)$ denotes the normalization constant

Outline

1. Lee Metric and Spheres

2. Information-Theoretic Tools

3. Bounds in the Lee Metric

Distribution Maximizing Entropy

Definition (Boltzmann-like Distribution)

For any $a \in \mathcal{A}$ and $0 < \delta < \mu$, we define the probability distribution

$$P_{\beta}(a) := \frac{q^{-\beta \operatorname{wt}(a)}}{Z(\beta)}$$

where β is the unique solution to the weight constraint $\mathbb{E}[\operatorname{wt}(a)] = \sum_{a \in \mathcal{A}} P_{\beta}(a) \operatorname{wt}(a) = \delta$ and $Z(\beta)$ is chosen s.t. $\sum_{a \in \mathcal{A}} P_{\beta}(a) = 1$, i.e. $Z(\beta) = \sum_{a \in \mathcal{A}} q^{-\beta \operatorname{wt}(a)}$.

Distribution Maximizing Entropy

Definition (Boltzmann-like Distribution)

For any $a \in \mathcal{A}$ and $0 < \delta < \mu$, we define the probability distribution

$$P_{\beta}(a) := \frac{q^{-\beta \operatorname{wt}(a)}}{Z(\beta)}$$

where β is the unique solution to the weight constraint $\mathbb{E}[\operatorname{wt}(a)] = \sum_{a \in \mathcal{A}} P_{\beta}(a) \operatorname{wt}(a) = \delta$ and $Z(\beta)$ is chosen s.t. $\sum_{a \in \mathcal{A}} P_{\beta}(a) = 1$, i.e. $Z(\beta) = \sum_{a \in \mathcal{A}} q^{-\beta \operatorname{wt}(a)}$.

- o one-to-one correspondence between β and δ
- Denote $H_{\delta} = H(P_{\beta})$

Distribution Maximizing Entropy

Definition (Boltzmann-like Distribution)

For any $a \in \mathcal{A}$ and $0 < \delta < \mu$, we define the probability distribution

$$P_{\beta}(a) := \frac{q^{-\beta \operatorname{wt}(a)}}{Z(\beta)}$$

where β is the unique solution to the weight constraint $\mathbb{E}[\operatorname{wt}(a)] = \sum_{a \in \mathcal{A}} P_{\beta}(a) \operatorname{wt}(a) = \delta$ and $Z(\beta)$ is chosen s.t. $\sum_{a \in \mathcal{A}} P_{\beta}(a) = 1$, i.e. $Z(\beta) = \sum_{a \in \mathcal{A}} q^{-\beta \operatorname{wt}(a)}$.

- o one-to-one correspondence between β and δ
- Denote $H_{\delta} = H(P_{\beta})$

Theorem [Löliger, 1994]

For any $0 < \delta \leq \overline{w}$ and $n \in \mathbb{N}$ we have $\frac{1}{n} \log_q \left| \mathcal{B}_{\delta n}^{(n)} \right| \leq H_{\delta}$.

Extending Bounds for any Radius

Theorem - [BBLR, 22'] and [SCJB, 24'] For any $0 < \delta \le \mu$ we have

$$\frac{1}{n}\log_q \left| \mathcal{B}_{\delta n}^{(n)} \right| \le \begin{cases} H_{\delta} & \text{if } 0 < \delta \le \overline{w} \\ \log_q(|\mathcal{A}|) & \text{if } \overline{w} < \delta \le \mu \end{cases}.$$

Moreover, it holds

$$\frac{1}{n}\log_q \left| \mathcal{S}_{\delta n}^{(n)} \right| \le H_{\delta}$$

Asymptotically Tight

Theorem (Continuation)

The bounds provided are asymptotically tight, i.e.,

$$\lim_{n \to \infty} \frac{1}{n} \log_q \left| \mathcal{S}_{\delta n}^{(n)} \right| = H_{\delta} \quad \text{and} \quad \lim_{n \to \infty} \frac{1}{n} \log_q \left| \mathcal{B}_{\delta n}^{(n)} \right| = \begin{cases} H_{\delta} & \text{if } 0 < \delta \leq \overline{w} \\ \log_q(|\mathsf{A}|) & \text{if } \overline{w} < \delta \leq \mu \end{cases}.$$

Ring-Linear Codes

Definition

A linear code $\mathcal{C} \subset (\mathbb{Z}/q\mathbb{Z})^n$ is a $\mathbb{Z}/q\mathbb{Z}$ -submodule of $(\mathbb{Z}/q\mathbb{Z})^n$.

Parameters

- Blocklength
- $\circ \ \mathbb{Z}/q\mathbb{Z}$ -dimension $k := \log_q(|\mathcal{C}|)$
- Rate of the code R := k/n rate of the code

Ring-Linear Codes

Definition

A linear code $\mathcal{C} \subset (\mathbb{Z}/q\mathbb{Z})^n$ is a $\mathbb{Z}/q\mathbb{Z}$ -submodule of $(\mathbb{Z}/q\mathbb{Z})^n$.

Parameters

- Blocklength
- $\circ \ \mathbb{Z}/q\mathbb{Z}$ -dimension $k := \log_q(|\mathcal{C}|)$
- Rate of the code R := k/n rate of the code

o Memoryless Lee Channel

Transmit $x \in \mathcal{C}$

Receive: $y = x + e \in (\mathbb{Z}/q\mathbb{Z})^n$ where $e_i \sim B_\delta$ for some δ

⇒ Channel matching to the Lee metric under ML decoding.

Sphere-Packing Bound – Another Point of View

Theorem - [BBLR, '23]

The block error probability of any code $\mathcal{C} \subseteq (\mathbb{Z}/q\mathbb{Z})^n$ of rate R over a memoryless Lee channel is lower bounded as

$$P_{\text{block}}(\mathcal{C}) > \frac{1}{Z(\beta)^n} \sum_{d=d_0+1}^{rn} \left| \mathcal{S}_{d,q}^{(n)} \right| \mathbb{E}\left(-\beta d\right) + \frac{1}{Z(\beta)^n} \left(\left| \mathcal{S}_{d_0,q}^{(n)} \right| - \xi \right) \mathbb{E}\left(-\beta d_0\right)$$

where d_0 and ξ are chosen so that

$$\sum_{d=0}^{d_0-1} \left| \mathcal{S}_{d,q}^{(n)} \right| + \xi = 2^{n(\log_2(q) - R)} \quad \text{and} \quad 0 < \xi \le \left| \mathcal{S}_{d_0,q}^{(n)} \right|.$$

Sphere-Packing Bound - Comparison

Sphere-Packing Bound - Comparison

Thank you for your attention!