Algorithmique de base

Master 1, Université de Rennes

17/10/2024 - TD 7

Exercise 1. Consider the following two polynomials

$$f = 5x^5 + 4x^4 + 3x^3 + 22 + x, \qquad g = x^2 + 2x + 3 \in \mathbb{Q}[x]$$

Apply the Euclidean division of f by g.

Exercise 2. We consider the following recursive algorithm for computing the gcd of two integers.

 Algorithm 1 Binary Euclidean Algorithm

 Require: $a, b \in \mathbb{N}_{>0}$

 Ensure: $gcd(a, b) \in \mathbb{N}$

 1: if a = 1 or b = 1 then: return 1

 2: if a = b then: return a

 3: if a and b are both even then: return $2 \cdot gcd(a/2, b/2)$

 4: if exactly one of a or b, say a, is even then: return gcd(a/2, b)

 5: if a and b are both odd and a > b then: return $gcd(\frac{a-b}{2}, b)$

- 1. Run the algorithm on the pairs (34, 21) and (136, 51).
- 2. Prove that the algorithm works correctly.
- 3. Find a "good" upper bound on the cost of the algorithm, and show that it takes $O(n^2)$ arithmetic operations on inputs $a, b < 2^n$.
- 4. Modify the algorithm so that it additionally computes $s, t \in \mathbb{N}$ such that $sa + tb = \gcd(a, b)$.

Exercise 3. Let

$$a = 30x^7 + 31x^6 + 32x^5 + 33x^4 + 34x^3 + 35x^2 + 36x + 37x^4 + 34x^3 + 35x^2 + 36x + 37x^4 + 34x^3 + 35x^2 + 36x^2 + 36x^2 + 37x^4 + 34x^3 + 35x^2 + 36x^2 + 37x^4 + 34x^3 + 35x^2 + 36x^2 + 37x^4 + 37x^$$

and

$$b = 17x^3 + 18x^2 + 19x + 20$$

in $\mathbb{F}_{101}[x]$, and let $f \in \mathbb{F}_{101}[x]$ be the reversal of b.

- (i) Compute $f^{-1} \mod x^4$.
- (ii) Use (i) to find $q, r \in \mathbb{F}_{101}[x]$ with a = qb + r and $\deg(r) < 3$.

Exercise 4. We consider the following property of a Euclidean function on an integral domain R:

$$\delta(ab) \ge \delta(b) \quad \text{for all } a, b \in R \setminus \{0\}. \tag{(*)}$$

Our two familiar examples, the degree on $\mathbb{F}[x]$ for a field \mathbb{F} and the absolute value on \mathbb{Z} , both fulfill this property. This exercise shows that every Euclidean domain has such a Euclidean function.

(i) Suppose that R is a Euclidean domain and $D = \{\delta : \delta \text{ is a Euclidean function on } R\}$. Then D is nonempty, and we may define a function $d : R \to \mathbb{N} \cup \{-\infty\}$ by

$$d(a) = \min\{\delta(a) : \delta \in D\}.$$

Show that d is a Euclidean function on R (called the minimal Euclidean function).

- (ii) Let δ be a Euclidean function on R such that $\delta(ab) < \delta(b)$ for some $a, b \in R \setminus \{0\}$. Find another Euclidean function δ^* that is smaller than δ . Conclude that the minimal Euclidean function δ satisfies (*).
- (iii) Show that for all $a, b \in R \setminus \{0\}$ and a Euclidean function δ satisfying (*), we have $\delta(0) < \delta(a)$, and $\delta(ab) = \delta(b)$ if and only if a is a unit.
- (iv) Let d be the minimal Euclidean function as in (i). Conclude that $d(0) = -\infty$ and the group of units of R is

$$R^{\times} = \{ a \in R \setminus \{0\} : d(a) = 0 \}.$$

(v) Prove that $d(a) = \deg(a)$ is the minimal Euclidean function on $\mathbb{F}[x]$ for a field \mathbb{F} with $d(0) = -\infty$ cases.