Algorithmique de base

Master 1, Université de Rennes

$17/10/2024$ – TD 7

Exercise 1. Consider the following two polynomials

$$
f = 5x^5 + 4x^4 + 3x^3 + 22 + x, \qquad g = x^2 + 2x + 3 \in \mathbb{Q}[x]
$$

Apply the Euclidean division of f by g .

Exercise 2. We consider the following recursive algorithm for computing the gcd of two integers.

Algorithm 1 Binary Euclidean Algorithm Require: $a, b \in \mathbb{N}_{>0}$ Ensure: $gcd(a, b) \in \mathbb{N}$ 1: if $a = 1$ or $b = 1$ then: return 1 2: if $a = b$ then: return a 3: if a and b are both even then: return $2 \cdot \gcd(a/2, b/2)$ 4: if exactly one of a or b, say a, is even then: return $gcd(a/2, b)$ 5: if a and b are both odd and $a > b$ then: return gcd $\left(\frac{a-b}{2}\right)$ $\frac{-b}{2},b)$

- 1. Run the algorithm on the pairs (34, 21) and (136, 51).
- 2. Prove that the algorithm works correctly.
- 3. Find a "good" upper bound on the cost of the algorithm, and show that it takes $O(n^2)$ arithmetic operations on inputs $a, b < 2^n$.
- 4. Modify the algorithm so that it additionally computes $s, t \in \mathbb{N}$ such that $sa + tb = \gcd(a, b)$.

Exercise 3. Let

$$
a = 30x^{7} + 31x^{6} + 32x^{5} + 33x^{4} + 34x^{3} + 35x^{2} + 36x + 37
$$

and

$$
b = 17x^3 + 18x^2 + 19x + 20
$$

in $\mathbb{F}_{101}[x]$, and let $f \in \mathbb{F}_{101}[x]$ be the reversal of b.

- (i) Compute f^{-1} mod x^4 .
- (ii) Use (i) to find $q, r \in \mathbb{F}_{101}[x]$ with $a = qb + r$ and $\deg(r) < 3$.

Exercise 4. We consider the following property of a Euclidean function on an integral domain R :

$$
\delta(ab) \ge \delta(b) \quad \text{for all } a, b \in R \setminus \{0\}. \tag{*}
$$

Our two familiar examples, the degree on $\mathbb{F}[x]$ for a field $\mathbb F$ and the absolute value on $\mathbb Z$, both fulfill this property. This exercise shows that every Euclidean domain has such a Euclidean function.

(i) Suppose that R is a Euclidean domain and $D = \{\delta : \delta \text{ is a Euclidean function on } R\}.$ Then D is nonempty, and we may define a function $d : R \to \mathbb{N} \cup \{-\infty\}$ by

$$
d(a) = \min\{\delta(a) : \delta \in D\}.
$$

Show that d is a Euclidean function on R (called the minimal Euclidean function).

- (ii) Let δ be a Euclidean function on R such that $\delta(ab) < \delta(b)$ for some $a, b \in R \setminus \{0\}$. Find another Euclidean function δ^* that is smaller than δ . Conclude that the minimal Euclidean function δ satisfies $(*)$.
- (iii) Show that for all $a, b \in R \setminus \{0\}$ and a Euclidean function δ satisfying $(*)$, we have $\delta(0) < \delta(a)$, and $\delta(ab) = \delta(b)$ if and only if a is a unit.
- (iv) Let d be the minimal Euclidean function as in (i). Conclude that $d(0) = -\infty$ and the group of units of R is

$$
R^{\times} = \{a \in R \setminus \{0\} : d(a) = 0\}.
$$

(v) Prove that $d(a) = \deg(a)$ is the minimal Euclidean function on $\mathbb{F}[x]$ for a field \mathbb{F} with $d(0) =$ $-\infty$ cases.