Algorithmique de base

Master 1, Université de Rennes

10/10/2024 - TD 6

Exercise 1. Apply the Karatsuba algorithm to multiply the following two polynomials with coefficients in \mathbb{Q} :

 $f = x^4 + 3x^2 + 2x + 1$, and $g = 3x^3 + x + 2$.

Exercise 2. Let ω be a primitive or principal *n*-th root of unity in a ring R. Show that

- 1. ω is invertible and ω^{-1} is also a principal or primitive *n*-th root of unity.
- 2. Let p, q be two distinct prime numbers. If n = pq then ω^p is a q-th root of unity of the same nature as ω .
- 3. For $\ell \in \{1, \ldots, n-1\}$, if ω is principal, we have

$$\sum_{j=0}^{n-1} \omega^{\ell j} = 0.$$

Exercise 3. Let \mathbb{F}_q be the finite field with cardinality q. We want to show that $\mathbb{F}_q^* = (\mathbb{F}_q \setminus \{0\}, \cdot)$ is a cyclic group.

- 1. Show that the order d of an element of \mathbb{F}_q^* divides q-1.
- 2. Show that \mathbb{F}_q^* as at most d elements of order d.
- 3. Let $\alpha \in \mathbb{F}_q^*$ be an element of order d. Let H be the subgroup generated by α . Show that H is isomorphic to $\mathbb{Z}/d\mathbb{Z}$ and all the elements of order d are contained in H.
- 4. Show that \mathbb{F}_q^* is cyclic.
- **Exercise 4.** 1. Show that if *n* divides q 1 and α is a primitive element of \mathbb{F}_q (i.e. α generates the multiplicative group \mathbb{F}_q^*) then $\alpha^{(q-1)/n}$ is a primitive *n*-th root of unity.
 - 2. Let \mathbb{F}_q be the finite field with cardinality q and let n be an integer. Show that \mathbb{F}_q has primitive n-th root of unity if and only if n|q-1.

Exercise 5. Consider the field \mathbb{F}_{17} and consider the following two polynomials in $\mathbb{F}_{17}[x]$:

$$f(x) = 5x^3 + 3x^2 - 4x + 3,$$
 $g(x) = 2x^3 - 5x^2 + 7x - 2.$

We want to compute h = fg using the Fast Fourier transform algorithm. Since h will be of degree 6, we choose the nearest power of 2, that is $2^3 = 8$. So we fix n = 8 for the rest of the exercise.

- 1. Find a primitive 8-th root of unity ω in \mathbb{F}_{17} .
- 2. Calculate, using the DFT, the Discrete Fourier transform for ω , the evaluations of the polynomials f and g in $1, \omega, \omega^2, \omega^3, \omega^4, \omega^5, \omega^6, \omega^7$. Then compute the evaluations of fg in the powers of ω .
- 3. Compute ω^{-1} in \mathbb{F}_{17} .
- 4. Compute, using DFT, the constant coefficient and the coefficient of x^4 of h.
- 5. Compare the results with the product obtained by hand.