Algorithmique de base

Master 1, Université de Rennes

$29/11/2024 - TD \ 10$

Exercise 1. Let $\mathbb{F} = \mathbb{F}_9$.

- (i) Find a 4-th root of unity ω of \mathbb{F} .
- (ii) Let $f = x^3 + 2x + 1 \in \mathbb{F}[x]$. Compute $\hat{f} = \text{DFT}_{\omega}(f)$.
- (iii) Let $g = x^3 + x^2 + x + 1 \in \mathbb{F}[x]$. Compute $\hat{g} = \text{DFT}_{\omega}(g)$, $\hat{h} = \hat{f} \cdot \hat{g}$ with coordinate-wise product, and $h = \text{DFT}_{\omega^{-1}}(\hat{h})$.
- (iv) Compute $f \cdot g$ in $\mathbb{F}[x]$ and $f \cdot g \mod x^8 1$. Compare with your result from (iii).

Exercise 2. Let M be a multiplication function for polynomials. Assume that $M(n)/n \ge M(m)/m$ if $n \ge m$. Show for all $n, m \in \mathbb{N}_+$

- 1. $M(mn) \ge mM(n)$.
- 2. $M(n) \ge n$.
- 3. $M(n) \le M(n-1) + O(n)$.

Exercise 3. Let $a = x^4 + 2x^3 + 3x^2 + 4x + 5$ and $b = x^2 + 2x + 3$ in $\mathbb{F}_5[x]$, and let $f \in \mathbb{F}_5[x]$ be the reversal of b.

- (i) Compute $f^{-1} \mod x^3$.
- (ii) Use (i) to find $q, r \in \mathbb{F}_5[x]$ such that a = qb + r and deg r < 2.
- **Exercise 4.** 1. Let f and g be two nonzero polynomials in $\mathbb{C}[x]$. Show that $\operatorname{res}(f,g) = 0$ if and only if f and g have a common factor.
 - 2. Let $a \in \mathbb{C}$. Determine a necessary and sufficient condition on a for the two polynomials

$$x^3 - ax + 1$$
 and $x^2 + a$

to have a common root.

- 3. Let $A(T) = \frac{T}{1+T^2}$ and $B(T) = \frac{1-T^2}{1+T^2}$. Find the polynomial defining the curve with A(T), B(T) as parametrization.
- 4. Let α and β be two algebraic elements over a field K, represented by their minimal polynomials f(x) and $g(x) \in K[x]$. The minimal polynomial of $\alpha + \beta$ over K is one of the irreducible factors of the polynomial $f \star g \in K[x]$ defined by

$$f \star g = \prod_{a,b} \left(x - (a+b) \right)$$

where a describes the set of roots of f and b the set of roots of g in K.

The polynomial $f \star g$ can also be expressed as

$$f \star g = \operatorname{Res}_y \left(f(x - y), g(y) \right) \in K[x]$$

and its computation can therefore be performed using operations over K.

Calculate the minimal polynomials over \mathbb{Q} of:

$$\sqrt{2} + \sqrt{3}$$
 and $\sqrt{3} + i$.

Exercise 5. 1. Write 74 in binary.

2. Compute $2^{74} \mod 503$ using the "square-and-multiply" algorithm, detailing the steps.

Exercise 6. Let $x_1, \ldots, x_n \in K$. We define $P_k = x_1^k + \cdots + x_n^k$, for $1 \le k \le n$, as the k-th Newton sum.

- (1) Write a pseudo-code algorithm that takes as input an element $x \in K$ and an integer n, and returns the list of x^k for k a power of 2 less than or equal to n in $O(\log n)$ arithmetic operations in K.
- (2) Deduce an algorithm that takes as input the list x_1, \ldots, x_n and returns the list of P_k for k a power of 2 less than or equal to n in $O(n \log n)$ arithmetic operations in K.
- (3) Prove the following equality in formal power series:

$$\frac{X}{1-X} = X + X^2 + X^3 + \cdots$$

(4) Deduce that:

$$\sum_{i=1}^{n} \frac{x_i X}{1 - x_i X} = \sum_{k \ge 1} P_k X^k.$$

(5) Deduce that all P_k for $k \leq n$ can be computed in $O(M(n) \log n)$ operations in K using the fast algorithm for summing fractions.

Exercise 7. Let $f(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$ over $\mathbb{F}_2[x]$, the finite field of two elements. Explain the idea of Berlekamp's Algorithm and use it to factorize f(x) into irreducible polynomials.

Exercise 8. An element $a \neq 0$ in the finite field \mathbb{F}_q is a square if the equation $x^2 = a$ has a solution in \mathbb{F}_q .

- 1. Show that when $\operatorname{char}(\mathbb{F}_q) \neq 2$ then exactly half the elements of \mathbb{F}_q^* squares.
- 2. Find all Fermat liars for n = 15.
- 3. Euler showed that if p is an odd prime, then $a \in \mathbb{F}_p^*$ is a square if and only if $a^{\frac{p-1}{2}} = 1 \mod p$. Show that if p and 2p - 1 are both prime and n = p(2p - 1), then 50% of the elements in \mathbb{Z}_n^* are Fermat liars, namely all those which are squares modulo 2p - 1.
- 4. Compute $2^{1000005} \mod 55$.
- **Exercise 9.** 1. How can the extended Euclidean algorithm be used to compute the inverse of an element in the finite field \mathbb{F}_p ?
 - 2. The basic building block of the classical algorithm is the fact that the gcd of a and b is equal to the gcd of $a \mod b$ and b. This allows the size of the operands to decrease through successive applications of this property. On which property is the binary version of this algorithm based?
 - 3. What does the binary version bring compared to the classical version (justify your answers)?