
Algorithmique de base
Master 1, Université de Rennes

12/09/2024 – TD 1
13/09/2024 – TD 2

Exercise 1. Recall that to find a number x in a sorted array, the dichotomy principle consists of
dividing the array in two parts, looking for x in one part and if it is not in this part, to search in
the other part and so on.

1. Compute the computational cost of the binary search algorithm.

2. Write the pseudocode for a linear search, which scans through the array, looking for x. Using
a loop invariant, prove that your algorithm is correct. Make sure that your loop invariant
fulfills the three necessary properties.

Exercise 2. 1. Sort the array L = [5, 2, 4, 6, 1, 3] using the insertion sort algorithm. How many
comparisons and assignments have you made?

2. Propose a variation of insertion sort using binary search and apply it to array L.

(You can make use of the function BinarySearch seen in class).

3. Compute the complexity of the new binary insertion sort algorithm.

4. Rewrite the insertion sort algorithm to sort into nonincreasing instead of nondecreasing order.

Exercise 3. Consider the problem of implementing a k-bit binary counter that counts upward from
0. We use an array A[0, ..., k − 1] of bits, where #A = k, as the counter. A binary number x that
is stored in the counter has its lowest-order bit in A[0] and its highest-order bit in A[k− 1], so that
x =

∑k−1
i=0 A[i] · 2i. Initially, x = 0, and thus A[i] = 0 for all i = 1, . . . , k − 1.

1. Write an example of an 8-bit binary counter as its value goes from 0 to 16 by a sequence of
16 increment operations.

2. Write a procedure Increment(A) that add 1 (modulo 2k) to the value in the counter.

Hint: Write a loop such that at the start of each iteration we wish to add a 1 into position i.
If A[i] = 1, then adding 1 flips the bit to 0 in position i and yields a carry of 1, to be added
into position i+ 1 on the next iteration of the loop.

3. Compute the complexity of the algorithm. Make an analysis of the worst and average case
scenario.

1



Exercise 4. Show that:

1.
∑n

i=1 i
k = O(nk+1).

2. log(n!) = O(n log n).

3.
∑n

i=1
1
i = O(log n).

Exercise 5. Consider the Fibonacci sequence:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2.

Let ϕ = 1+
√
5

2 be the golden ratio and ϕ̂ = 1−
√
5

2 its conjugate.

1. Show that ϕ and ϕ̂ satisfy x2 − x− 1 = 0.

2. Show that Fi =
ϕi−ϕ̂i
√
5

. In particular, observe that Fn+1 > ϕn−1 for n ≥ 2.

Consider the Euclidean division algorithm for calculating the gcd of two positive integers.

3. Show that Fn+1 and Fn+2 are relatively prime and the Euclidean algorithm takes exactly n
divisions to verify that gcd(Fn+1, Fn+2) = 1.

4. Consider gcd(a, b), for two integers a, b, with a > b > 0. If there are n division in the Euclidean
division algorithm, then b ≥ Fn+1.

Exercise 6. Use the master theorem to give tight asymptotic bounds for the following recurrences.

1. C(n) = 2C(n/4) + 1.

2. C(n) = 2C(n/4) +
√
n.

3. C(n) = 2C(n/4) + n.

4. C(n) = 2C(n/4) + n2.

5. C(n) = 4C(n/2) + n2 log n.

Exercise 7. Let u, v be integers such that 0 ≤ u, v < 22n. We want to compute the product of u
and v.

1. Show that u, v can be written in binary notation using 2n bit.

Let u = 2nU1 + U0, v = 2nV1 + V0, with V0, U0, V1, U1 < 2n.

2. Show that
uv = (22n + 2n)U1V1 + 2n(U1 − U0)(V0 − V1) + (2n + 1)U0V0.

2



This is the basic principle of Karatsuba’s algorithm which allows to compute the product of two
large numbers u, v using 3 multiplications of smaller numbers, each with about half as many digits
as u, v, plus some additions. (This basic step is, in fact, a generalization of a similar complex
multiplication algorithm, where the imaginary unit i is replaced by a power of the base.) It is clear
that these latter operations require a linear time in n. Let C(n) be the time required to multiply
two n-bit numbers by this method.

3. Then show that C(2n) = 3C(n) + T (n), with t(1) = 1 and deduce an estimate complexity.

Exercise 8. 1. Write the pseudocode for Strassen’s algorithm.

2. Use Strassen’s algorithm to compute the matrix product(
1 3
7 5

)
·
(
6 8
4 2

)
.

3. Modify Strassen’s algorithm to multiply n × n matrices when n is not an exact power of 2.
Show that the resulting algorithm runs in time O(nlog2 7).

4. Assume that we want to develop a matrix-multiplication algorithm that is asymptotically
faster than Strassen’s algorithm. This new algorithm will use the divide and conquer method,
dividing each matrix into pieces of size n/4× n/4, and the divide and combine steps together
will take Θ(n2). If the algorithm creates m subproblems, then the recurrence for the running
time C(n) = mC(n/4) + Θ(n2). What is the largest integer value of m for which the new
algorithm would be asymptotically faster than Strassen’s algorithm?

Exercise 9. Bubblesort is a sorting algorithm that works by repeatedly swapping adjacent elements
that are out of order.

Algorithm 1 Bubble sort

1: function BubbleSort(x1, ..., xn):
2: for i ∈ {1, ..., n− 1} do:
3: for j ∈ {n, ..., i+ 1} do:
4: if xj < xj−1 then:
5: xj ↔ xj−1

1. Let A′ denote the output of Bubblesort. To prove that Bubblesort is correct, we need to prove
that it terminates and that

A′[1] ≤ A′[2] ≤ · · · ≤ A′[n], (1)

where n is the length of A′. In order to show that Bubblesort actually sorts, what else do we
need to prove?

2. State precisely a loop invariant for the for loop in lines 3–5, and prove that this loop invariant
holds.

3. State a loop invariant for the for loop in lines 2–5 that will allow you to prove inequality (1).

4. What is the worst-case running time of Bubblesort? How does it compare to the running time
of insertion sort?

5. Describe the algorithm to sort the list [4, 5, 3, 1, 2].

3



Exercise 10. Consider the ring R = Q[x]/(x2 − 1) and the ring homomorphism

ϕ : R→ Q[x]/(x− 1)×Q[x]/(x+ 1), f + (x2 − 1) 7→ (f + (x− 1), f + (x+ 1)).

1. Show that ϕ is bijective and write its inverse.

2. Let u = ax+ b, v = cx+ d ∈ R. By using ϕ, show that we can multiply u and v in R using 2
multiplications in Q.

Exercise 11. Consider the QuickSort algorithm.

Algorithm 2 Quick sort

1: function QuickSort((x1, ..., xn), lo, hi): // Sorts the list between the indexes lo and hi
included.

2: ipivot = Partition
(
(x1, ..., xn), lo, hi

)
// Guarantees that all elements from

(xlo, ..., xipivot) are less or equal than (xipivot+1, ..., xhi).
3: QuickSort

(
(x1, ..., xn), lo, ipivot

)
4: QuickSort

(
(x1, ..., xn), ipivot + 1, hi

)
5:

6: function Partition((x1, ..., xn), lo, hi):
7: i← lo− 1
8: j ← hi+ 1
9: pivot← x⌊ lo+hi

2
⌋ // Pivot is the middle element of the list to be sorted.

10: while True do // Endless loop.
11: repeat
12: i← i+ 1
13: until xi ≥ pivot
14: repeat
15: j ← j − 1
16: until xj ≤ pivot
17: if i ≥ j then
18: return j // Returns the pivot index.

19: xi ↔ xj

1. Describe the execution on the array [4, 5, 3, 1, 2], with indexes lo = 1 and hi = 5.

2. Show that the quick sort algorithm above has complexity O(n2) in the worst case, and com-
plexity O(n log n) in the best case.

4


