Bounds and optimal codes in the Lee metric

Violetta Weger

Technical University of Munich

ТШ

Arbeitsgemeinschaft in Codierungstheorie und Kryptographie May 11, 2022

joint work with Eimear Byrne

Motivation

- From an information theoretic perspective: The Lee metric is best suited for channels, where the error +x, -x are equally likely and the magnitude matters.
 - C. Lee "Some properties of nonbinary error-correcting codes", IIRE Transactions on Information Theory, 1958.
- From an algebraic perspective: Some excellent but non-linear binary codes can be represented as linear codes over Z/4Z endowed with the Lee metric.
 - A. Roger Hammons, P. Vijay Kumar, A. Robert Calderbank, Neil J.A. Sloane and Patrick Solé "The Z₄-linearity of Kerdock, Preparata, Goethals, and related codes", IEEE Transactions on Information Theory, 1994.
- From a cryptographic perspective: The Lee metric promises lower key sizes/signature sizes, since one can insert more errors.

1 Preliminaries

- Ring-Linear Coding Theory
- Lee Metric
- 2 Singleton Bound in the Lee MetricMaximum Lee-Distance Codes
- Bound in the Lee MetricConstant Lee-Weight Codes

4 Open Problems

_

	Classical	$\mathbb{Z}/p^s\mathbb{Z}$ -Linear
Ambient space	Finite field \mathbb{F}_q	
Linear code	$\mathcal{C} \subseteq \mathbb{F}_q^n$ linear subspace	
Parameters	length n dimension k	

	Classical	$\mathbb{Z}/p^s\mathbb{Z}$ -Linear
Ambient space	Finite field \mathbb{F}_q	Integer residue ring $\mathbb{Z}/p^s\mathbb{Z}$
Linear code	$\mathcal{C} \subseteq \mathbb{F}_q^n$ linear subspace	$\mathcal{C} \subseteq \left(\mathbb{Z}/p^s\mathbb{Z}\right)^n$ $\mathbb{Z}/p^s\mathbb{Z} ext{-submodule}$
Parameters	length n dimension k	$\begin{array}{c} \text{length } n \\ ? \end{array}$

Let $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ be a code, then

$$\mathcal{C} \cong (\mathbb{Z}/p^s\mathbb{Z})^{k_1} \times (\mathbb{Z}/p^{s-1}\mathbb{Z})^{k_2} \times \cdots \times (\mathbb{Z}/p\mathbb{Z})^{k_s}.$$

Then we say \mathcal{C} has

- subtype (k_1, \ldots, k_s) ,
- type $k = \sum_{i=1}^{s} \frac{s-i+1}{s} k_i = \log_{p^s} \left(\mid \mathcal{C} \mid \right),$
- rate R = k/n,
- rank $K = \sum_{i=1}^{s} k_i$,
- free rank k_1 .

$$0 \le k_1 \le k \le K \le n.$$

If $k_1 = k = K$, we say that C is a **free code**.

Systematic Form

If C has subtype (k_1, \ldots, k_s) and rank K then

$$G = \begin{pmatrix} \mathrm{Id}_{k_1} & * & \cdots & * & * \\ 0 & p \mathrm{Id}_{k_2} & \cdots & p * & p * \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & p^{s-1} \mathrm{Id}_{k_s} & p^{s-1} * \end{pmatrix} \in (\mathbb{Z}/p^s \mathbb{Z})^{K \times n}$$

If \mathcal{C} is a free code, then

$$G = \begin{pmatrix} \mathrm{Id}_k & A \end{pmatrix} \in \left(\mathbb{Z}/p^s \mathbb{Z} \right)^{k \times n}.$$

.

Definition (Lee Metric)

$$\begin{array}{lll} x \in \mathbb{Z}/p^s \mathbb{Z} & : & \operatorname{wt}_L(x) & = & \min\{x, \mid p^s - x \mid\}, \\ x \in (\mathbb{Z}/p^s \mathbb{Z})^n & : & \operatorname{wt}_L(x) & = & \sum_{i=1}^n \operatorname{wt}_L(x_i), \\ x, y \in (\mathbb{Z}/p^s \mathbb{Z})^n & : & d_L(x, y) & = & \operatorname{wt}_L(x - y). \end{array}$$

Maximal Lee weight: $M = \left\lfloor \frac{p^s}{2} \right\rfloor$. Connection to Hamming metric:

$$0 \le \operatorname{wt}_H(x) \le \operatorname{wt}_L(x) \le M \operatorname{wt}_H(x) \le M n.$$

For a linear code $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ its **minimum Lee distance** is given by

$$d_L(\mathcal{C}) = \min\{\operatorname{wt}_L(x) \mid x \in \mathcal{C}, x \neq 0\}.$$

Let $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ be a code of subtype (k_1, \ldots, k_s) and rank K.

- Define the subcodes $C_i = C \cap \langle p^{s-1-i} \rangle$ for $i \in \{0, \dots, s-1\}$.
- We have a sequence of subcodes $C_0 \subseteq C_1 \subseteq \cdots \subseteq C_{s-1} = C$.
- The socle $\mathcal{C}_0 = \mathcal{C} \cap \langle p^{s-1} \rangle$ can be seen as

Let $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ be a code of subtype (k_1, \ldots, k_s) and rank K.

- Define the subcodes $C_i = C \cap \langle p^{s-1-i} \rangle$ for $i \in \{0, \dots, s-1\}$.
- We have a sequence of subcodes $C_0 \subseteq C_1 \subseteq \cdots \subseteq C_{s-1} = C$.
- The socle $\mathcal{C}_0 = \mathcal{C} \cap \langle p^{s-1} \rangle$ can be seen as

 $\{xG \mid x \in p^{s-1} \left(\mathbb{Z}/p^s \mathbb{Z}\right)^{k_1} \times p^{s-2} \left(\mathbb{Z}/p^s \mathbb{Z}\right)^{k_2} \times \dots \times \left(\mathbb{Z}/p^s \mathbb{Z}\right)^{k_s}\}$

$$\begin{pmatrix} p^{s-1}\star\\p^{s-2}\star\\\vdots\\\star \end{pmatrix}^{\top} \begin{pmatrix} \mathrm{Id}_{k_{1}} & \star\\0 & p\mathrm{Id}_{k_{2}} & p\star\\\vdots&\ddots\\0 & \cdots & p^{s-1}\mathrm{Id}_{k_{s}} & p^{s-1}\star \end{pmatrix}$$
$$\mid \mathcal{C}_{0} \mid = p^{k_{1}+k_{2}+\cdots+k_{s}} = p^{K}.$$

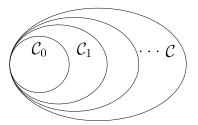
• Use the socle:

 $C_0 = C \cap \langle p^{s-1} \rangle$ can be identified with a [n, K] linear code over \mathbb{F}_p .

2 Use the Hamming metric:

$$d_H(\mathcal{C}) \le d_L(\mathcal{C}) \le M d_H(\mathcal{C}).$$

We always find minimum Hamming weight codewords in the socle.



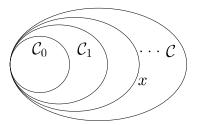
• Use the socle:

 $C_0 = C \cap \langle p^{s-1} \rangle$ can be identified with a [n, K] linear code over \mathbb{F}_p .

2 Use the Hamming metric:

$$d_H(\mathcal{C}) \le d_L(\mathcal{C}) \le M d_H(\mathcal{C}).$$

We always find minimum Hamming weight codewords in the socle.



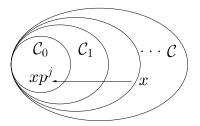
• Use the socle:

 $C_0 = C \cap \langle p^{s-1} \rangle$ can be identified with a [n, K] linear code over \mathbb{F}_p .

2 Use the Hamming metric:

$$d_H(\mathcal{C}) \le d_L(\mathcal{C}) \le M d_H(\mathcal{C}).$$

We always find minimum Hamming weight codewords in the socle.



- Use the socle:
 C₀ = C ∩ ⟨p^{s-1}⟩ can be identified with a [n, K] linear code over F_p.
- **2** Use the Hamming metric:

$$d_H(\mathcal{C}) \le d_L(\mathcal{C}) \le M d_H(\mathcal{C}).$$

Where do the minimum Lee weight codewords live?

Example

 $\langle (1,4,5), (0,3,6) \rangle \subset \mathbb{Z}/9\mathbb{Z}^3$ has all minimum Lee weight codewords outside the socle.

Example

 $\langle (1,2,3), (0,3,0) \rangle \subset \mathbb{Z}/9\mathbb{Z}^3$ has all minimum Lee weight codewords in the socle.

General Singleton Bound

For any finite ring R of size r and additive weight wt with maximum weight $M = \max{\{\operatorname{wt}(x) \mid x \in R\}}$.

Theorem (Singleton Bound)

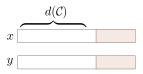
A code $\mathcal{C} \subseteq \mathbb{R}^n$ of size r^k has minimum distance

$$\left|\frac{d(\mathcal{C})-1}{M}\right| \le n-k.$$

Proof Idea

- Puncture C in $\left\lfloor \frac{d(C)-1}{M} \right\rfloor$ positions to get C'.
- Any two codewords of C' are still distinct: | C' |= r^k.

• Since
$$\mathcal{C}' \subseteq R^{n - \left\lfloor \frac{d(\mathcal{C}) - 1}{M} \right\rfloor}$$
, we have $k \leq n - \left\lfloor \frac{d(\mathcal{C}) - 1}{M} \right\rfloor$.



General Singleton Bound

For any finite ring R of size r and additive weight wt with maximum weight $M = \max{\{\operatorname{wt}(x) \mid x \in R\}}$.

Theorem (Singleton Bound)

A code $\mathcal{C} \subseteq \mathbb{R}^n$ of size r^k has minimum distance

$$\left\lfloor \frac{d(\mathcal{C}) - 1}{M} \right\rfloor \le n - k.$$

Proof Idea

- Puncture C in $\left\lfloor \frac{d(C)-1}{M} \right\rfloor$ positions to get C'.
- Any two codewords of C' are still distinct: | C' |= r^k.

• Since
$$\mathcal{C}' \subseteq R^{n - \left\lfloor \frac{d(\mathcal{C}) - 1}{M} \right\rfloor}$$
, we have $k \leq n - \left\lfloor \frac{d(\mathcal{C}) - 1}{M} \right\rfloor$.



For (\mathbb{F}_q, d_H) : set M = 1, we get the classical Singleton bound

$$d_H(\mathcal{C}) \le n - k + 1.$$

Codes that achieve the Singleton bound are called

maximum distance separable (MDS) codes.

- For $n \le q+1$ we have a construction of MDS codes: (extended) RS codes.
- For $q \to \infty$ MDS codes have density 1.
- For $n \to \infty$ MDS codes have density 0 (assuming the MDS conjecture).
- Dual of MDS codes are also MDS codes.
- Binary MDS codes are trivial, that is $k \in \{1, n, n-1\}$.

For $(\mathbb{Z}/p^s\mathbb{Z}, d_L)$: set $M = \lfloor p^s/2 \rfloor$, we get:

Theorem (Shiromoto)

For any code $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ of type k, we have that

$$\left\lfloor \frac{d_L(\mathcal{C}) - 1}{M} \right\rfloor \le n - k.$$

Keisuke Shiromoto "Singleton bounds over finite rings.", Journal of Algebraic Combinatorics, 2000.

Codes attaining this bound are called

maximum Lee distance (MLD) codes.

For $(\mathbb{Z}/p^s\mathbb{Z}, d_L)$: set $M = \lfloor p^s/2 \rfloor$, we get:

Theorem (Shiromoto)

For any code $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ of type k, we have that

$$\left\lfloor \frac{d_L(\mathcal{C}) - 1}{M} \right\rfloor \le n - k.$$

Keisuke Shiromoto "Singleton bounds over finite rings.", Journal of Algebraic Combinatorics, 2000.

Codes attaining this bound are called

maximum Lee distance (MLD) codes.

Example

$$\mathcal{C} = \langle (1,2) \rangle \subset \mathbb{Z}/5\mathbb{Z}^2$$
 with $d_L = 3$ is MLD:

$$\left\lfloor \frac{3-1}{2} \right\rfloor = 2 - 1.$$

Violetta Weger Bounds and optimal codes in the Lee metric

Theorem (Byrne, W.)

The only non-trivial linear codes that attain the Lee-metric Singleton bound are equivalent to $C = \langle (1,2) \rangle \subseteq (\mathbb{Z}/5\mathbb{Z})^2$.

Theorem (Byrne, W.)

The only non-trivial linear codes that attain the Lee-metric Singleton bound are equivalent to $\mathcal{C} = \langle (1,2) \rangle \subseteq (\mathbb{Z}/5\mathbb{Z})^2$.

- MLD codes have density 0 for $p \to \infty$.
- MLD codes have density 0 for $n \to \infty$.

Is the dual of an MLD code also an MLD code?

Theorem (Byrne, W.)

The only non-trivial linear codes that attain the Lee-metric Singleton bound are equivalent to $C = \langle (1,2) \rangle \subseteq (\mathbb{Z}/5\mathbb{Z})^2$.

- MLD codes have density 0 for $p \to \infty$.
- MLD codes have density 0 for $n \to \infty$.

Is the dual of an MLD code also an MLD code?

Yes

Since $\mathcal{C} = \langle (1,2) \rangle \subseteq (\mathbb{Z}/5\mathbb{Z})^2$ is self-dual.

Theorem (Alderson-Huntemann)

Let $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ be a linear code of type 1 < k < n a positive integer, then

 $d_L(\mathcal{C}) \le M(n-k).$

Tim L. Alderson and Svenja Huntemann "On maximum Lee distance codes.", Journal of Discrete Mathematics, 2013.

Theorem (Alderson-Huntemann)

Let $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ be a linear code of type 1 < k < n a positive integer, then

$$d_L(\mathcal{C}) \le M(n-k).$$

Tim L. Alderson and Svenja Huntemann "On maximum Lee distance codes.", Journal of Discrete Mathematics, 2013.

Characterization

- for p = 2: only for s = 2, or s = 3 and $k \in \{n 2, n 1\}$.
- for p odd: only for $p^s \in \{5, 7, 9\}$ and $k+1 \le n \le k+3$.

Theorem (Alderson-Huntemann)

Let $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ be a linear code of type 1 < k < n a positive integer, then

$$d_L(\mathcal{C}) \le M(n-k).$$

Tim L. Alderson and Svenja Huntemann "On maximum Lee distance codes.", Journal of Discrete Mathematics, 2013.

Characterization

- for p = 2: only for s = 2, or s = 3 and $k \in \{n 2, n 1\}$.
- for p odd: only for $p^s \in \{5, 7, 9\}$ and $k+1 \le n \le k+3$.

Density

- For $p \to \infty$ MLD codes have density 0.
- For $n \to \infty$ MLD codes have density 0.

General Plotkin Bound

For any finite ring R and additive weight wt.

Theorem

Let $\mathcal{C} \subseteq \mathbb{R}^n$, then

$$d(\mathcal{C}) \leq \frac{|\mathcal{C}|}{|\mathcal{C}| - 1} n \overline{wt}(R).$$

Proof

- $d(\mathcal{C})(\mid \mathcal{C} \mid -1) \leq \sum_{c \in \mathcal{C}} \operatorname{wt}(c).$
- Define the average weight of a code

$$\overline{\mathrm{wt}}(\mathcal{C}) = \frac{1}{\mid \mathcal{C} \mid} \sum_{c \in \mathcal{C}} \mathrm{wt}(c).$$

• Note that

$$\overline{\mathrm{wt}}(\mathcal{C}) \le n\overline{\mathrm{wt}}(R).$$

Classical Plotkin Bound

For (\mathbb{F}_q, d_H) : set $\overline{\mathrm{wt}}_H(\mathbb{F}_q) = \frac{q-1}{q} \Rightarrow$ classical Plotkin bound

$$d_H(\mathcal{C}) \le \frac{|\mathcal{C}|}{|\mathcal{C}| - 1} \frac{q-1}{q} n = \frac{q^{k-1}}{q^k - 1} (q-1)n.$$

Linear codes that achieve the Plotkin bound are called

constant Hamming-weight codes.

• The simplex code of length $n = \frac{q^m - 1}{q - 1}$, dimension m is defined through a generator matrix G, which has one representative of each 1-dimensional subspace $\langle x \rangle \subseteq \mathbb{F}_q^m$ as column.

Example

Let
$$q = 3, m = 2$$
 and thus $n = 4$. $G = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \end{pmatrix}$.

• Any constant Hamming-weight code is an *l*-fold duplicate of simplex codes.

For $(\mathbb{Z}/p^s\mathbb{Z}, d_L)$: set

$$\overline{\mathrm{wt}}_L(\mathbb{Z}/p^s\mathbb{Z}) = \begin{cases} \frac{p^{2s}-1}{4p^s} & \text{if } p \text{ is odd,} \\ 2^{s-2} & \text{if } p = 2. \end{cases}$$

Theorem (Wyner and Graham)

For any code $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ of type k we have that

$$d_L(\mathcal{C}) \le \frac{n \overline{w} t_L(\mathbb{Z}/p^s \mathbb{Z})}{1 - 1/p^{sk}}$$

Since

$$\frac{1}{1-1/p^{sk}} = \frac{\mid \mathcal{C} \mid}{\mid \mathcal{C} \mid -1}.$$

Aaron D. Wyner and Ronald L. Graham "An upper bound on minimum distance for a k-ary code.", Inf. Control., 1968.

Theorem (Chiang and Wolf (adapted))

For a linear code $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ of free rank $k_1 > 0$ we have that

$$d_L(\mathcal{C}) \le \frac{(n-k_1+1)\overline{wt}_L(\mathbb{Z}/p^s\mathbb{Z})}{1-1/p^s}.$$

J. Chung-Yaw Chiang and Jack K. Wolf "On channels and codes for the Lee metric", Information and Control, 1971.

Theorem (Chiang and Wolf (adapted))

For a linear code $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ of free rank $k_1 > 0$ we have that

$$d_L(\mathcal{C}) \le \frac{(n-k_1+1)\overline{wt}_L(\mathbb{Z}/p^s\mathbb{Z})}{1-1/p^s}$$

J. Chung-Yaw Chiang and Jack K. Wolf "On channels and codes for the Lee metric", Information and Control, 1971.

Theorem (Wyner and Graham)

For any code $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ of type k we have that

$$d_L(\mathcal{C}) \leq \frac{n \overline{wt}_L(\mathbb{Z}/p^s \mathbb{Z})}{1 - 1/p^{sk}}.$$

$$d_L(\mathcal{C}) \le \frac{(n-k_1+1)\overline{\mathrm{wt}}_L(\mathbb{Z}/p^s\mathbb{Z})}{1-1/p^s}.$$

Proof

For any subcode $\mathcal{C}' \subseteq \mathcal{C}$

$$d_L(\mathcal{C}) \le d_L(\mathcal{C}') \le \frac{|\mathcal{C}'|}{|\mathcal{C}'| - 1} \overline{\mathrm{wt}}_L(\mathcal{C}').$$

$$d_L(\mathcal{C}) \le \frac{(n-k_1+1)\overline{\mathrm{wt}}_L(\mathbb{Z}/p^s\mathbb{Z})}{1-1/p^s}.$$

\mathbf{Proof}

For any $c \in \mathcal{C}$

$$d_L(\mathcal{C}) \le d_L(\langle c \rangle) \le \frac{|\langle c \rangle|}{|\langle c \rangle| - 1} \overline{\operatorname{wt}}_L(\langle c \rangle).$$

$$d_L(\mathcal{C}) \le \frac{(n-k_1+1)\overline{\mathrm{wt}}_L(\mathbb{Z}/p^s\mathbb{Z})}{1-1/p^s}.$$

Proof

For any $c \in \mathcal{C}$ in the free part

$$d_L(\mathcal{C}) \le d_L(\langle c \rangle) \le \frac{1}{1 - 1/p^s} \operatorname{wt}_H(c) \operatorname{\overline{wt}}_L(\mathbb{Z}/p^s \mathbb{Z}).$$

$$d_L(\mathcal{C}) \le \frac{(n-k_1+1)\overline{\mathrm{wt}}_L(\mathbb{Z}/p^s\mathbb{Z})}{1-1/p^s}.$$

Proof

For any $c \in \mathcal{C}$ in the free part

$$d_L(\mathcal{C}) \le d_L(\langle c \rangle) \le \frac{1}{1 - 1/p^s} \operatorname{wt}_H(c) \operatorname{\overline{wt}}_L(\mathbb{Z}/p^s \mathbb{Z}).$$

• Let G be a $K \times n$ generator matrix for the code C.

$$G = \begin{pmatrix} \mathrm{Id}_{k_1} & A \\ 0 & pB \end{pmatrix}$$

$$d_L(\mathcal{C}) \le \frac{(n-k_1+1)\overline{\mathrm{wt}}_L(\mathbb{Z}/p^s\mathbb{Z})}{1-1/p^s}$$

Proof

For any $c \in \mathcal{C}$ in the free part

$$d_L(\mathcal{C}) \le d_L(\langle c \rangle) \le \frac{1}{1 - 1/p^s} \operatorname{wt}_H(c) \operatorname{\overline{wt}}_L(\mathbb{Z}/p^s \mathbb{Z}).$$

- Let G be a $K \times n$ generator matrix for the code C.
- Let G' be the $k_1 \times n$ generator matrix for the free part $\mathcal{C}' \subseteq \mathcal{C}$.

$$G' = \begin{pmatrix} \mathrm{Id}_{k_1} & A \end{pmatrix}.$$

$$d_L(\mathcal{C}) \le \frac{(n-k_1+1)\overline{\mathrm{wt}}_L(\mathbb{Z}/p^s\mathbb{Z})}{1-1/p^s}$$

Proof

For any $c \in \mathcal{C}$ in the free part

$$d_L(\mathcal{C}) \le d_L(\langle c \rangle) \le \frac{1}{1 - 1/p^s} \operatorname{wt}_H(c) \operatorname{\overline{wt}}_L(\mathbb{Z}/p^s \mathbb{Z}).$$

- Let G be a $K \times n$ generator matrix for the code C.
- Let G' be the $k_1 \times n$ generator matrix for the free part $\mathcal{C}' \subseteq \mathcal{C}$.

•
$$c \in \mathcal{C}'$$
 with $\operatorname{wt}_H(c) \le n - k_1 + 1$.
 $G' = (\operatorname{Id}_{k_1} A).$

$$d_L(\mathcal{C}) \leq \frac{|\langle c \rangle|}{|\langle c \rangle| - 1} \overline{\operatorname{wt}}_L(\langle c \rangle),$$

for a minimum Hamming weight codeword c.

- If we can take c in the free part: we get the Chiang and Wolf bound with k_1 .
- If $c \in \langle p^{s-\ell} \rangle$: how do we bound $\overline{\mathrm{wt}}_L(\langle c \rangle)$?

Support Subtype

We introduce the support subtype

- For $j \in \{1, ..., n\}$ let π_j be the *j*-th coordinate map.
- Define

 $n_i(\mathcal{C}) := |\{j \in \{1, \dots, n\} \mid \langle \pi_j(\mathcal{C}) \rangle = \langle p^i \rangle \}|.$

• Linear code $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ has support subtype (n_0, \ldots, n_s) .

Support Subtype

We introduce the support subtype

- For $j \in \{1, \ldots, n\}$ let π_j be the *j*-th coordinate map.
- Define

 $n_i(\mathcal{C}) := |\{j \in \{1, \dots, n\} \mid \langle \pi_j(\mathcal{C}) \rangle = \langle p^i \rangle \}|.$

• Linear code $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ has support subtype (n_0, \ldots, n_s) .

Example

Let ${\mathcal C}$ be the code over ${\mathbb Z}/8{\mathbb Z}$ generated by

$$G = \begin{pmatrix} 1 & 3 & 5 & 0 & 2 \\ 0 & 2 & 4 & 2 & 6 \\ 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 4 & 4 \end{pmatrix}$$

then \mathcal{C} has subtype (1, 1, 2) and support subtype (3, 2, 0, 0).

Support Subtype

We introduce the support subtype

- For $j \in \{1, \ldots, n\}$ let π_j be the *j*-th coordinate map.
- Define

 $n_i(\mathcal{C}) := |\{j \in \{1, \dots, n\} \mid \langle \pi_j(\mathcal{C}) \rangle = \langle p^i \rangle \}|.$

• Linear code $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ has support subtype (n_0, \ldots, n_s) .

Example

Let ${\mathcal C}$ be the code over ${\mathbb Z}/8{\mathbb Z}$ generated by

$$G = \begin{pmatrix} 1 & 3 & 5 & 0 & 2 \\ 0 & 2 & 4 & 2 & 6 \\ 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 4 & 4 \end{pmatrix}$$

then \mathcal{C} has subtype (1, 1, 2) and support subtype (3, 2, 0, 0).

Lemma (Byrne, W.)

Let $C \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ be a linear code of support subtype (n_0, \ldots, n_s) . Then

$$\overline{wt}_{L}(\mathcal{C}) = \begin{cases} \frac{1}{4p^{s}} \left(p^{2s} |n - n_{s}| - \sum_{i=0}^{s-1} p^{2i} n_{i} \right) & \text{if } p \text{ is odd,} \\ \\ 2^{s-2} |n - n_{s}| & \text{if } p = 2. \end{cases}$$

Let $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ be linear code. Let $\ell \in \{1, \ldots, s\}$ be maximal such that there exists $y \in \mathcal{C}$ satisfying $wt_H(y) = d_H(\mathcal{C})$ and $y \in \langle p^{s-\ell} \rangle$. Then

$$d_L(\mathcal{C}) \leq \begin{cases} \frac{p^{s-\ell}(p^\ell+1)}{4} d_H(\mathcal{C}) & \text{if } p \text{ is odd,} \\\\ \frac{2^{s-2+\ell}}{2^\ell-1} d_H(\mathcal{C}) & \text{if } p = 2. \end{cases}$$

Plotkin Bound in the Lee Metric

We can always choose $\ell = 1$ (there is always a minimal Hamming weight codeword in the socle)

Corollary (Byrne, W.)

Let $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ be a linear code of rank K. Then

$$\left\lfloor \frac{d_L(\mathcal{C}) - 1}{A} \right\rfloor \le n - K,$$

for

$$A := \begin{cases} \frac{p^{s-1}(p+1)}{4} & \text{if } p \text{ is odd,} \\ \\ 2^{s-1} & \text{if } p = 2. \end{cases}$$

Example

We consider the code $C = \langle (0, 1, 1), (2, 0, 0), (0, 0, 2) \rangle \subset (\mathbb{Z}/4\mathbb{Z})^3$. This code attains the new bound for $\ell = 1$ since

$$d_L = 2 = 2(n - K + 1).$$

It does not attain the bound of Chiang and Wolf with k_1 , as

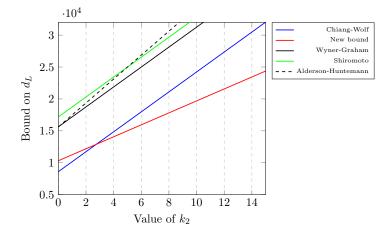
$$d_L \le \frac{4}{3}(3 - 1 + 1) = 4.$$

We also note that we cannot choose $\ell = 2$, since the only codewords that have minimal Hamming weight are divisible by 2. In fact:

$$d_L = 2 \leq \frac{4}{3} = \frac{4}{3}(3-3+1).$$

Comparison of Bound

Comparison of bounds for codes over $\mathbb{Z}/5^5\mathbb{Z}$ of type $(10, k_2, 0, 0, 0)$ and length $2K, K = 10 + k_2$.



Density

Note that in order to meet the new bound with $\ell = 1$, we need:

- 1. The socle $C_0 = C \cap \langle p^{s-1} \rangle$ is an MDS code, we can identify it with a [n, K] linear code over \mathbb{F}_p .
- 2. There is an $x \in C_0$ which generates a constant Lee-weight code.

Density

Note that in order to meet the new bound with $\ell = 1$, we need:

- 1. The socle $C_0 = C \cap \langle p^{s-1} \rangle$ is an MDS code, we can identify it with a [n, K] linear code over \mathbb{F}_p .
- 2. There is an $x \in C_0$ which generates a constant Lee-weight code.

₩

- 1. Due to the MDS conjecture: density is 0 if $n \to \infty$.
- 2. Due to the characterization of constant Lee-weight codes of Wood: x consists of repetitions of $(\pm 1, \ldots, \pm \frac{p-1}{2})$, hence the density is 0 if $p \to \infty$.

Jay Wood "The structure of linear codes of constant weight", Transactions of the American Mathematical Society, 2002.

Assume K = 1.

Which cyclic modules are constant Hamming-weight over $\mathbb{Z}/p^s\mathbb{Z}$?

- If s = 1: any cyclic module is constant Hamming-weight.
- If s > 1: any cyclic module with support subtype $(0, \ldots, 0, n_i, 0, \ldots, 0, n_s)$ is constant Hamming-weight.

Assume K = 1.

Which cyclic modules are constant Hamming-weight over $\mathbb{Z}/p^s\mathbb{Z}$?

- If s = 1: any cyclic module is constant Hamming-weight.
- If s > 1: any cyclic module with support subtype $(0, \ldots, 0, n_i, 0, \ldots, 0, n_s)$ is constant Hamming-weight.

Example

• $\langle (1,4) \rangle \subseteq \mathbb{Z}/5\mathbb{Z}^2$ is a constant Hamming-weight code.

• $\langle (1,0,3) \rangle \subseteq \mathbb{Z}/4\mathbb{Z}^3$ is a constant Hamming-weight code.

Assume K = 1.

Which cyclic modules are constant Hamming-weight over $\mathbb{Z}/p^s\mathbb{Z}$?

- If s = 1: any cyclic module is constant Hamming-weight.
- If s > 1: any cyclic module with support subtype $(0, \ldots, 0, n_i, 0, \ldots, 0, n_s)$ is constant Hamming-weight.

Example

- ⟨(1,4)⟩ ⊆ Z/5Z² is a constant Hamming-weight code. Not constant Lee-weight wt_L(2,3) = 4, wt_L(1,4) = 2.
- ⟨(1,0,3)⟩ ⊆ Z/4Z³ is a constant Hamming-weight code.
 Not constant Lee-weight wt_L(2,0,2) = 4, wt_L(1,0,3) = 2.

Jay Wood "The structure of linear codes of constant weight", Transactions of the American Mathematical Society, 2002.

Theorem

Any constant Lee-weight code is equivalent to an ℓ -fold duplicate of shortest length constant Lee-weight codes.

Jay Wood "The structure of linear codes of constant weight", Transactions of the American Mathematical Society, 2002.

Theorem

Any constant Lee-weight code is equivalent to an ℓ -fold duplicate of shortest length constant Lee-weight codes.

Let U be the collection of orbits of $(\mathbb{Z}/p^s\mathbb{Z})^K$ under the action of $\{1, -1\}$.

1. If s = 1: a representative of each member of U appears as a column of a generator matrix with the same multiplicity.

Jay Wood "The structure of linear codes of constant weight", Transactions of the American Mathematical Society, 2002.

Theorem

Any constant Lee-weight code is equivalent to an ℓ -fold duplicate of shortest length constant Lee-weight codes.

Let U be the collection of orbits of $(\mathbb{Z}/p^s\mathbb{Z})^K$ under the action of $\{1, -1\}$.

1. If s = 1: a representative of each member of U appears as a column of a generator matrix with the same multiplicity.

Example

 $\mathcal{C} = \langle (1,2) \rangle \subseteq \mathbb{Z}/5\mathbb{Z}^2$ is a constant Lee-weight code.

- Jay Wood "The structure of linear codes of constant weight", Transactions of the American Mathematical Society, 2002.
- 2. If p = 2: every non-zero element of $(\mathbb{Z}/2^s\mathbb{Z})^K$ appears as a column of the generator matrix with the same multiplicity.

Jay Wood "The structure of linear codes of constant weight", Transactions of the American Mathematical Society, 2002.

2. If p = 2: every non-zero element of $(\mathbb{Z}/2^s\mathbb{Z})^K$ appears as a column of the generator matrix with the same multiplicity.

Example

 $\mathcal{C} = \langle (1,2,3) \rangle \subseteq \mathbb{Z}/4\mathbb{Z}^3$ is a constant Lee-weight code.

Jay Wood "The structure of linear codes of constant weight", Transactions of the American Mathematical Society, 2002.

2. If p = 2: every non-zero element of $(\mathbb{Z}/2^s\mathbb{Z})^K$ appears as a column of the generator matrix with the same multiplicity.

Example

 $\mathcal{C} = \langle (1,2,3) \rangle \subseteq \mathbb{Z}/4\mathbb{Z}^3$ is a constant Lee-weight code.

3. We have $K \leq 2$.

Let C be a shortest-length constant Lee-weight code over $\mathbb{Z}/p^s\mathbb{Z}$ of rank K = 1 and weight w. Let i be such that $k_i = 1$. Then Chas support subtype $(0, \ldots, 0, n_{i-1}, n_i, \ldots, n_{s-1}, 0)$ with

$$w = \frac{p+1}{4}p^{s-1}n_{i-1},$$

$$n_{i-1}(p-1) = p^{j-i+2}n_j \ \forall j \in \{1, \dots, s\}.$$

Proof idea:

Use the exact average weight, i.e.,

$$(\mid \mathcal{C} \mid -1)\overline{\mathrm{wt}}_{L}(\mathcal{C}) = \frac{\mid \mathcal{C} \mid}{4p^{s}} \sum_{i=0}^{s-1} n_{i} \left(p^{2s} - p^{2i} \right)$$

inductively on the subcodes $C_{j-i+1} = C \cap \langle p^{j-i+2} \rangle$ of size p^{j-i+2} and support subtype $(0, \ldots, 0, n_{i-1}, \ldots, n_j, z)$.

Let $g \in \langle p^{i-1} \rangle$ consist of

- p repetitions of all elements in $\langle p^{i-1} \rangle \setminus \langle p^i \rangle$ up to ± 1 and
- p-1 repetitions of all elements in $\langle p^j \rangle \setminus \langle p^{j+1} \rangle$ up to ± 1 for all $j \in \{i, \dots, s-1\}$,

then $\langle g \rangle$ is a shortest constant Lee-weight code over $\mathbb{Z}/p^s\mathbb{Z}$ with $k_i = 1$.

Example

Over $\mathbb{Z}/9\mathbb{Z}$ for $k_1 = 1$ we have

$$g = (1, 2, 4, 1, 2, 4, 1, 2, 4, 3, 3).$$

A constant Lee-weight code over $\mathbb{Z}/p^s\mathbb{Z}$ of rank 2 with $k_s = 0$ cannot exist.

Example

Over
$$\mathbb{Z}/27\mathbb{Z}$$
 for $k_2 = k_3 = 1$ we have

$$G = \begin{bmatrix} 3 & 3 & 3 & 6 & 6 & 6 & 12 & 12 & 12 & 9 & 9 & 0 \\ 0 & 9 & 18 & 0 & 9 & 18 & 0 & 9 & 18 & 9 & 18 & 9 \end{bmatrix}.$$

Summary

- The density of MLD codes is 0 for $n \to \infty$.
- The density of MLD codes is 0 for $p \to \infty$.
- Plotkin-optimal linear codes in the Lee metric are sparse.

Summary

- The density of MLD codes is 0 for $n \to \infty$.
- The density of MLD codes is 0 for $p \to \infty$.
- Plotkin-optimal linear codes in the Lee metric are sparse.

Open Questions

- Is there a 'better' Lee-metric Singleton bound?
- How close do codes get to the Lee-metric Singleton bound, i.e., are there almost-MLD codes?
- What about other ambient spaces, other metrics, other bounds?

Eimear Byrne and Violetta Weger "Bounds in the Lee metric and optimal codes", 2021.

New Singleton Bound

Define for
$$i, j \in \{1, \dots, s-1\}$$

 $M_i = \frac{p^{s-i}-1}{2}p^i, \quad A_j = \sum_{i=1}^j n_{s-i}M_{s-i}, \quad B_j = \sum_{i=1}^j n_{s-i}.$

Theorem

Let $C \subset (\mathbb{Z}/p^s\mathbb{Z})^n$ be a linear code of support subtype $(n_0, \ldots, n_{s-1}, 0)$ and rank K. Let $j \in \{1, \ldots, s-1\}$ be the largest integer such that $A_j < d_L(C)$, then

$$K \le n - B_j.$$

- The maximal Lee weight of a position belonging to n_i (living in (pⁱ)) is given by M_i.
- We puncture in positions of lowest possible Lee weights, i.e., n_{s-1} , then n_{s-2} , and so on. We possibly killed positions of Lee weight up to A_j .
- In order to still have rank K, we need $A_j < d_L(\mathcal{C})$. The length of the punctured code is then $n B_j$.

Thank you!

Violetta Weger Bounds and optimal codes in the Lee metric