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Motivation

From an information theoretic perspective:
The Lee metric is best suited for channels, where the error
+x,−x are equally likely and the magnitude matters.

C. Lee “Some properties of nonbinary error-correcting codes”, IIRE Transactions

on Information Theory, 1958.

From an algebraic perspective:
Some excellent but non-linear binary codes can be
represented as linear codes over Z/4Z endowed with the
Lee metric.

A. Roger Hammons, P. Vijay Kumar, A. Robert Calderbank, Neil J.A. Sloane and

Patrick Solé “The Z4-linearity of Kerdock, Preparata, Goethals, and related
codes”, IEEE Transactions on Information Theory, 1994.

From a cryptographic perspective:
The Lee metric promises lower key sizes/signature sizes,
since one can insert more errors.
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Ring-Linear Coding Theory

Classical Z/psZ-Linear

Ambient space
Finite field Fq

Integer residue ring
Z/psZ

Linear code
C ⊆ Fn

q

C ⊆ (Z/psZ)n

linear subspace

Z/psZ-submodule

Parameters
length n

length n

dimension k

?
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Ring-Linear Coding Theory

Let C ⊆ (Z/psZ)n be a code, then

C ∼= (Z/psZ)k1 ×
(
Z/ps−1Z

)k2 × · · · × (Z/pZ)ks .

Then we say C has

subtype (k1, . . . , ks),

type k =
∑s

i=1
s−i+1

s ki = logps (| C |) ,
rate R = k/n,

rank K =
∑s

i=1 ki,

free rank k1.

0 ≤ k1 ≤ k ≤ K ≤ n.

If k1 = k = K, we say that C is a free code.
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Ring-Linear Coding Theory

Systematic Form

If C has subtype (k1, . . . , ks) and rank K then

G =


Idk1 ∗ · · · ∗ ∗
0 pIdk2 · · · p∗ p∗
...

...
...

...
0 0 · · · ps−1Idks ps−1∗

 ∈ (Z/psZ)K×n .

If C is a free code, then

G =
(
Idk A

)
∈ (Z/psZ)k×n .
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Lee Metric

Definition (Lee Metric)

x ∈ Z/psZ : wtL(x) = min{x, | ps − x |},
x ∈ (Z/psZ)n : wtL(x) =

∑n
i=1wtL(xi),

x, y ∈ (Z/psZ)n : dL(x, y) = wtL(x− y).

Maximal Lee weight: M =
⌊
ps

2

⌋
.

Connection to Hamming metric:

0 ≤ wtH(x) ≤wtL(x) ≤ MwtH(x) ≤ Mn.

For a linear code C ⊆ (Z/psZ)n its minimum Lee distance is
given by

dL(C) = min{wtL(x) | x ∈ C, x ̸= 0}.
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Techniques

Let C ⊆ (Z/psZ)n be a code of subtype (k1, . . . , ks) and rank K.

Define the subcodes Ci = C ∩ ⟨ps−1−i⟩ for i ∈ {0, . . . , s− 1}.
We have a sequence of subcodes C0 ⊆ C1 ⊆ · · · ⊆ Cs−1 = C.
The socle C0 = C ∩ ⟨ps−1⟩ can be seen as

{xG | x ∈ ps−1 (Z/psZ)k1 × ps−2 (Z/psZ)k2 × · · · × (Z/psZ)ks}


ps−1⋆
ps−2⋆

...
⋆


⊤

Idk1 ⋆
0 pIdk2 p⋆
...

. . .

0 · · · ps−1Idks ps−1⋆


| C0 |= pk1+k2+···+ks = pK .
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Techniques

1 Use the socle:
C0 = C ∩ ⟨ps−1⟩ can be identified with a [n,K] linear code
over Fp.

2 Use the Hamming metric:

dH(C) ≤ dL(C) ≤ MdH(C).

We always find minimum Hamming weight codewords in
the socle.
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Techniques

1 Use the socle:
C0 = C ∩ ⟨ps−1⟩ can be identified with a [n,K] linear code
over Fp.

2 Use the Hamming metric:

dH(C) ≤ dL(C) ≤ MdH(C).

Where do the minimum Lee weight codewords live?

Example

⟨(1, 4, 5), (0, 3, 6)⟩ ⊂ Z/9Z3

has all minimum Lee weight
codewords outside the socle.

Example

⟨(1, 2, 3), (0, 3, 0)⟩ ⊂ Z/9Z3

has all minimum Lee weight
codewords in the socle.
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General Singleton Bound

For any finite ring R of size r and additive weight wt with
maximum weight M = max{wt(x) | x ∈ R}.

Theorem (Singleton Bound)

A code C ⊆ Rn of size rk has minimum distance⌊
d(C)− 1

M

⌋
≤ n− k.

Proof Idea

Puncture C in
⌊
d(C)−1

M

⌋
positions

to get C′.

Any two codewords of C′ are still
distinct: | C′ |= rk.

Since C′ ⊆ R
n−

⌊
d(C)−1

M

⌋
, we have

k ≤ n−
⌊
d(C)−1

M

⌋
.
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MDS Codes

For (Fq, dH): set M = 1, we get the classical Singleton bound

dH(C) ≤ n− k + 1.

Codes that achieve the Singleton bound are called

maximum distance separable (MDS) codes.

For n ≤ q + 1 we have a construction of MDS codes:
(extended) RS codes.

For q → ∞ MDS codes have density 1.

For n → ∞ MDS codes have density 0
(assuming the MDS conjecture).

Dual of MDS codes are also MDS codes.

Binary MDS codes are trivial, that is k ∈ {1, n, n− 1}.
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Singleton Bound in the Lee Metric

For (Z/psZ, dL): set M = ⌊ps/2⌋, we get:

Theorem (Shiromoto)

For any code C ⊆ (Z/psZ)n of type k, we have that⌊
dL(C)− 1

M

⌋
≤ n− k.

Keisuke Shiromoto “Singleton bounds over finite rings.”, Journal of Algebraic

Combinatorics, 2000.

Codes attaining this bound are called

maximum Lee distance (MLD) codes.

Example

C = ⟨(1, 2)⟩ ⊂ Z/5Z2 with dL = 3 is MLD:⌊
3− 1

2

⌋
= 2− 1.
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Singleton Bound in the Lee Metric

Theorem (Byrne, W.)

The only non-trivial linear codes that attain the Lee-metric
Singleton bound are equivalent to C = ⟨(1, 2)⟩ ⊆ (Z/5Z)2 .

MLD codes have density 0 for p → ∞.

MLD codes have density 0 for n → ∞.

Is the dual of an MLD code also an MLD code?

Yes

Since C = ⟨(1, 2)⟩ ⊆ (Z/5Z)2 is self-dual.
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Singleton Bound in the Lee Metric

Theorem (Alderson-Huntemann)

Let C ⊆ (Z/psZ)n be a linear code of type 1 < k < n a positive
integer, then

dL(C) ≤ M(n− k).

Tim L. Alderson and Svenja Huntemann “On maximum Lee distance codes.”, Journal of

Discrete Mathematics, 2013.

Characterization

for p = 2 : only for s = 2, or s = 3 and k ∈ {n− 2, n− 1}.
for p odd: only for ps ∈ {5, 7, 9} and k + 1 ≤ n ≤ k + 3.

Density

For p → ∞ MLD codes have density 0.

For n → ∞ MLD codes have density 0.
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General Plotkin Bound

For any finite ring R and additive weight wt.

Theorem

Let C ⊆ Rn, then

d(C) ≤ | C |
| C | −1

nwt(R).

Proof

d(C)(| C | −1) ≤
∑
c∈C

wt(c).

Define the average weight of a code

wt(C) = 1

| C |
∑
c∈C

wt(c).

Note that
wt(C) ≤ nwt(R).
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Classical Plotkin Bound

For (Fq, dH): set wtH(Fq) =
q−1
q ⇒ classical Plotkin bound

dH(C) ≤ | C |
| C | −1

q − 1

q
n =

qk−1

qk − 1
(q − 1)n.

Linear codes that achieve the Plotkin bound are called

constant Hamming-weight codes.

The simplex code of length n = qm−1
q−1 , dimension m is

defined through a generator matrix G, which has one
representative of each 1-dimensional subspace ⟨x⟩ ⊆ Fm

q as
column.

Example

Let q = 3,m = 2 and thus n = 4. G =

(
1 0 1 1
0 1 1 2

)
.

Any constant Hamming-weight code is an ℓ-fold duplicate
of simplex codes.
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Plotkin Bound in the Lee Metric

For (Z/psZ, dL): set

wtL(Z/psZ) =

{
p2s−1
4ps if p is odd,

2s−2 if p = 2.

Theorem (Wyner and Graham)

For any code C ⊆ (Z/psZ)n of type k we have that

dL(C) ≤
nwtL(Z/psZ)
1− 1/psk

.

Since
1

1− 1/psk
=

| C |
| C | −1

.

Aaron D. Wyner and Ronald L. Graham “An upper bound on minimum distance for a

k-ary code.”, Inf. Control., 1968.
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Plotkin Bound in the Lee Metric

Theorem (Chiang and Wolf (adapted))

For a linear code C ⊆ (Z/psZ)n of free rank k1 > 0 we have that

dL(C) ≤
(n− k1 + 1)wtL(Z/psZ)

1− 1/ps
.

J. Chung-Yaw Chiang and Jack K. Wolf “On channels and codes for the Lee metric”,

Information and Control, 1971.

Theorem (Wyner and Graham)

For any code C ⊆ (Z/psZ)n of type k we have that

dL(C) ≤
nwtL(Z/psZ)
1− 1/psk

.
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Plotkin Bound in the Lee Metric

dL(C) ≤
(n− k1 + 1)wtL(Z/psZ)

1− 1/ps
.

Proof
For any subcode C′ ⊆ C

dL(C) ≤ dL(C′) ≤ | C′ |
| C′ | −1

wtL(C′).

For any c ∈ C in the free part

dL(C) ≤ dL(⟨c⟩) ≤
1

1− 1/ps
wtH(c)wtL(Z/psZ).

Let G be a K × n generator matrix for the code C.
Let G′ be the k1 × n generator matrix for the free part
C′ ⊆ C.
c ∈ C′ with wtH(c) ≤ n− k1 + 1.

G′ =
(
Idk1 A

)
.
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Plotkin Bound in the Lee Metric
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Plotkin Bound in the Lee Metric
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Plotkin Bound in the Lee Metric

dL(C) ≤
|⟨c⟩|

|⟨c⟩| − 1
wtL(⟨c⟩),

for a minimum Hamming weight codeword c.

If we can take c in the free part: we get the Chiang and
Wolf bound with k1.

If c ∈ ⟨ps−ℓ⟩: how do we bound wtL(⟨c⟩)?
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Support Subtype

We introduce the support subtype

For j ∈ {1, . . . , n} let πj be the j-th coordinate map.

Define

ni(C) := |{j ∈ {1, . . . , n} | ⟨πj(C)⟩ = ⟨pi⟩}|.

Linear code C ⊆ (Z/psZ)n has support subtype
(n0, . . . , ns).

Example

Let C be the code over Z/8Z generated by

G =


1 3 5 0 2
0 2 4 2 6
0 0 4 0 0
0 0 0 4 4


then C has subtype (1, 1, 2) and support subtype (3, 2, 0, 0).
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Plotkin Bound in the Lee Metric

Lemma (Byrne, W.)

Let C ⊆ (Z/psZ)n be a linear code of support subtype
(n0, . . . , ns). Then

wtL(C) =


1

4ps

(
p2s|n− ns| −

s−1∑
i=0

p2ini

)
if p is odd,

2s−2|n− ns| if p = 2.
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Plotkin Bound in the Lee Metric

Theorem (Byrne, W.)

Let C ⊆ (Z/psZ)n be linear code. Let ℓ ∈ {1, . . . , s} be maximal
such that there exists y ∈ C satisfying wtH(y) = dH(C) and
y ∈ ⟨ps−ℓ⟩. Then

dL(C) ≤


ps−ℓ(pℓ + 1)

4
dH(C) if p is odd,

2s−2+ℓ

2ℓ − 1
dH(C) if p = 2.
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Plotkin Bound in the Lee Metric

We can always choose ℓ = 1 (there is always a minimal
Hamming weight codeword in the socle)

Corollary (Byrne, W.)

Let C ⊆ (Z/psZ)n be a linear code of rank K. Then⌊
dL(C)− 1

A

⌋
≤ n−K,

for

A :=


ps−1(p+ 1)

4
if p is odd,

2s−1 if p = 2.
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Plotkin Bound in the Lee Metric

Example

We consider the code C = ⟨(0, 1, 1), (2, 0, 0), (0, 0, 2)⟩ ⊂ (Z/4Z)3.
This code attains the new bound for ℓ = 1 since

dL = 2 = 2(n−K + 1).

It does not attain the bound of Chiang and Wolf with k1, as

dL ≤ 4

3
(3− 1 + 1) = 4.

We also note that we cannot choose ℓ = 2, since the only
codewords that have minimal Hamming weight are divisible by
2. In fact:

dL = 2 ̸≤ 4

3
=

4

3
(3− 3 + 1).
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Comparison of Bound

Comparison of bounds for codes over Z/55Z of type
(10, k2, 0, 0, 0) and length 2K,K = 10 + k2.
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Density

Note that in order to meet the new bound with ℓ = 1, we need:

1. The socle C0 = C ∩ ⟨ps−1⟩ is an MDS code, we can identify
it with a [n,K] linear code over Fp.

2. There is an x ∈ C0 which generates a constant Lee-weight
code.

⇓

1. Due to the MDS conjecture: density is 0 if n → ∞.

2. Due to the characterization of constant Lee-weight codes of
Wood: x consists of repetitions of (±1, . . . ,±p−1

2 ),
hence the density is 0 if p → ∞.

Jay Wood “The structure of linear codes of constant weight”, Transactions of the

American Mathematical Society, 2002.
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Constant Lee-Weight Codes

Assume K = 1.

Which cyclic modules are constant Hamming-weight over
Z/psZ?

If s = 1: any cyclic module is constant Hamming-weight.

If s > 1 : any cyclic module with support subtype
(0, . . . , 0, ni, 0, . . . , 0, ns) is constant Hamming-weight.

Example

⟨(1, 4)⟩ ⊆ Z/5Z2 is a constant Hamming-weight code.

Not constant Lee-weight wtL(2, 3) = 4,wtL(1, 4) = 2.

⟨(1, 0, 3)⟩ ⊆ Z/4Z3 is a constant Hamming-weight code.

Not constant Lee-weight wtL(2, 0, 2) = 4,wtL(1, 0, 3) = 2.
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Constant Lee-Weight Codes

Jay Wood “The structure of linear codes of constant weight”, Transactions of the

American Mathematical Society, 2002.

Theorem

Any constant Lee-weight code is equivalent to an ℓ-fold duplicate
of shortest length constant Lee-weight codes.

Let U be the collection of orbits of (Z/psZ)K under the action
of {1,−1}.
1. If s = 1: a representative of each member of U appears as a

column of a generator matrix with the same multiplicity.

Example

C = ⟨(1, 2)⟩ ⊆ Z/5Z2 is a constant Lee-weight code.
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Constant Lee-Weight Codes

Jay Wood “The structure of linear codes of constant weight”, Transactions of the

American Mathematical Society, 2002.

2. If p = 2: every non-zero element of (Z/2sZ)K appears as a
column of the generator matrix with the same multiplicity.

Example

C = ⟨(1, 2, 3)⟩ ⊆ Z/4Z3 is a constant Lee-weight code.

3. We have K ≤ 2.
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Constant Lee-Weight Codes

Theorem (Byrne, W.)

Let C be a shortest-length constant Lee-weight code over Z/psZ
of rank K = 1 and weight w. Let i be such that ki = 1. Then C
has support subtype (0, . . . , 0, ni−1, ni, . . . , ns−1, 0) with

w =
p+ 1

4
ps−1ni−1,

ni−1(p− 1) = pj−i+2nj ∀j ∈ {1, . . . , s}.

Proof idea:
Use the exact average weight, i.e.,

(| C | −1)wtL(C) =
| C |
4ps

s−1∑
i=0

ni

(
p2s − p2i

)
inductively on the subcodes Cj−i+1 = C ∩ ⟨pj−i+2⟩ of size pj−i+2

and support subtype (0, . . . , 0, ni−1, . . . , nj , z).
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Constant Lee-Weight Codes

Theorem (Byrne, W.)

Let g ∈ ⟨pi−1⟩ consist of
p repetitions of all elements in ⟨pi−1⟩ \ ⟨pi⟩ up to ±1 and

p− 1 repetitions of all elements in ⟨pj⟩ \ ⟨pj+1⟩ up to ±1
for all j ∈ {i, . . . , s− 1},

then ⟨g⟩ is a shortest constant Lee-weight code over Z/psZ with
ki = 1.

Example

Over Z/9Z for k1 = 1 we have

g = (1, 2, 4, 1, 2, 4, 1, 2, 4, 3, 3).
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Constant Lee-Weight Codes

Theorem (Byrne, W.)

A constant Lee-weight code over Z/psZ of rank 2 with ks = 0
cannot exist.

Example

Over Z/27Z for k2 = k3 = 1 we have

G =

[
3 3 3 6 6 6 12 12 12 9 9 0
0 9 18 0 9 18 0 9 18 9 18 9

]
.
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Summary

Summary

The density of MLD codes is 0 for n → ∞.

The density of MLD codes is 0 for p → ∞.

Plotkin-optimal linear codes in the Lee metric are sparse.

Open Questions

Is there a ’better’ Lee-metric Singleton bound?

How close do codes get to the Lee-metric Singleton bound,
i.e., are there almost-MLD codes?

What about other ambient spaces, other metrics, other
bounds?

Eimear Byrne and Violetta Weger “Bounds in the Lee metric and optimal codes”, 2021.
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New Singleton Bound

Define for i, j ∈ {1, . . . , s− 1}
Mi =

ps−i−1
2 pi, Aj =

∑j
i=1 ns−iMs−i, Bj =

∑j
i=1 ns−i.

Theorem

Let C ⊂ (Z/psZ)n be a linear code of support subtype
(n0, . . . , ns−1, 0) and rank K. Let j ∈ {1, . . . , s− 1} be the
largest integer such that Aj < dL(C), then

K ≤ n−Bj .

The maximal Lee weight of a position belonging to ni

(living in ⟨pi⟩) is given by Mi.

We puncture in positions of lowest possible Lee weights,
i.e., ns−1, then ns−2, and so on. We possibly killed
positions of Lee weight up to Aj .

In order to still have rank K, we need Aj < dL(C). The
length of the punctured code is then n−Bj .
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Thank you!
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