
Recent Advances in Code-based Signatures

Violetta Weger
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Motivation

• Quantum computers: break all currently used asymmetric cryptosystems
→ Need quantum-secure alternatives
• Candidates for post-quantum cryptography: Systems based NP-hard problems

2016 NIST standardization call for post-quantum PKE/KEM and signatures

• PKE/KEM: 1 lattice-based, round 4: 3 code-based
• Signature schemes: 1 hash-based and 2 based on ideal lattices

2022 NIST reopened standardization call for signature schemes
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Coding Theory
Set Up

• Code C ⊆ Fn
q linear k-dimensional subspace

• c ∈ C codeword
• G ∈ Fk×n

q generator matrix
C = {xG | x ∈ Fk

q}

• H ∈ F(n−k)×n
q parity-check matrix

C = {c ∈ Fn
q | cH⊤ = 0}

• s = eH⊤ syndrome

• Decode: find closest codeword
• Hamming metric: For x, y ∈ Fn

q

dH(x, y) =| {i | xi ̸= yi} |
• minimum distance of a code:

d(C) = min{dH(x, y) | x ̸= y ∈ C}
• error-correction capacity: t = (d(C)− 1)/2
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Hard Problems from Coding Theory

Algebraic structure
(Reed-Solomon, Goppa,.. )

→ efficient decoders

scrambling
φ−−→

random code

→ how hard to decode?

• Decoding random linear code
is NP-hard

E. Berlekamp, R. McEliece, H. Van Tilborg. “On the
inherent intractability of certain coding problems ”,
IEEE Trans. Inf. Theory, 1978.

• First code-based cryptosystem
based on this problem

R. J. McEliece. “A public-key cryptosystem based on
algebraic coding theory”, DSNP Report, 1978

• Fastest solvers: ISD,
exponential time

A. Becker, A. Joux, A. May, A. Meurer “Decoding

random binary linear codes in 2n/20: How 1+ 1= 0
improves information set decoding”, Eurocrypt, 2012.
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Previous Work
Lee Metric

For x, y ∈ Z/psZn

• Lee weight: wtL(x) =
∑n

i=1 wtL(xi) =
∑n

i=1 min{xi, | ps − xi |}

• Lee distance: dL(x, y) = wtL(x− y).

→ dL(C) much larger than dH(C)

• Decoding random linear code
in Lee-metric is NP-hard

V.W., K. Khathuria, A.-L. Horlemann, M. Battaglioni,
P. Santini, E. Persichetti. “On the hardness of the Lee
syndrome decoding problem”, Advances in
Mathematics of Communications, 2021.

• Fastest solvers: Lee-metric
ISD, exponential time

J. Bariffi, K. Khathuria, V.W. “Information Set
Decoding for Lee-Metric Codes using Restricted Balls”,
CBCrypto, 2022.

• Behaviour of random
ring-linear codes

E. Byrne, A.-L. Horlemann, K. Khathuria, V.W.
“Density of free modules over finite chain rings”, Linear
Algebra and its Applications, 2022.
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Idea of Signature Schemes

Signer Verifier

Key Generation

Secret key S, public key P
P−−→

Signing

Message m, signature σ
m,σ−−→

Verification

Verify σ

Two approaches to get a code-based signature scheme:

• Hash-and-sign

→ large public key sizes
→ our solution: FuLeeca

• Through ZK protocol

→ large signature sizes
→ our solution: restricted errors
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Hash-and-Sign
N. Courtois, M. Finiasz, N. Sendrier. “How to achieve a McEliece-based digital signature scheme”, Asiacrypt, 2001.

• Following idea of McEliece:
→ start with structured code
→ publish scrambled code

→ large public key sizes

• Hash(m) = eH⊤, wtH(e) ≤ t

• Signature is scrambled e
→ slow signing

• Reduce key sizes:
→ use quasi-cyclic codes
→ use low density generators

→ statistical attacks

How to reduce public key sizes/ thwart statistical attacks?
How to speed-up signing?
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FuLeeca
S. Ritterhoff, G. Maringer, S. Bitzer, V.W., P. Karl, T. Schamberger, J. Schupp, A. Wachter-Zeh, G. Sigl. “FuLeeca:
A Lee-based Signature Scheme”, Preprint, 2023.

Secret key Quasi-cyclic, low Lee weight generators

Public key Systematic form, scrambled generator matrix

Signature Codeword σ with low Lee weight and full Hamming weight,
σ and Hash(m) have many signs matching

public key size signature size total size
Falcon 897 B 666 B 1563 B

Dilithium 1312 B 2420 B 3732 B
Sphincs+ 32 B 7856 B 7888 B
FuLeeca 389 B 276 B 665 B

→ Can beat all standardized signature schemes in total size
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Code-based ZK Protocols

⟳

ZK protocol Fiat-Shamir−−−−−−−−→ Signature scheme

Syndrome Decoding Problem

Given parity-check matrix H, syndrome s, weight t, find e s.t. 1. s = eH⊤ 2. wtH(e) ≤ t

P.-L. Cayrel, P. Véron, S. El Yousfi Alaoui. “A zero-knowledge identification scheme based on the q-ary syndrome
decoding problem”, Selected Areas in Cryptography, 2011.

• Random H, e of weight t, compute s = eH⊤ → small public key sizes
• Verifier challenges either 1. or 2. by asking for transformation φ or transformed secret φ(e)

• Large cheating probability → many rounds, large signature size, CVE: 40 KB
• Recent improvements through in the head computations → smaller signature sizes, 10 KB

T. Feneuil, A. Joux, M. Rivain “Shared permutation for syndrome decoding: New zero-knowledge protocol and
code-based signature”, Designs, Codes and Cryptography, 2022.

T. Feneuil, A. Joux, M. Rivain “Syndrome decoding in the head: shorter signatures from zero-knowledge proofs”,
Crypto, 2022.

Violetta Weger — Recent Advances in Code-based Signatures 9/14



Code-based ZK Protocols
⟳ ZK protocol Fiat-Shamir−−−−−−−−→ Signature scheme

Syndrome Decoding Problem

Given parity-check matrix H, syndrome s, weight t, find e s.t. 1. s = eH⊤ 2. wtH(e) ≤ t

P.-L. Cayrel, P. Véron, S. El Yousfi Alaoui. “A zero-knowledge identification scheme based on the q-ary syndrome
decoding problem”, Selected Areas in Cryptography, 2011.

• Random H, e of weight t, compute s = eH⊤ → small public key sizes
• Verifier challenges either 1. or 2. by asking for transformation φ or transformed secret φ(e)
• Large cheating probability → many rounds, large signature size, CVE: 40 KB
• Recent improvements through in the head computations → smaller signature sizes, 10 KB

T. Feneuil, A. Joux, M. Rivain “Shared permutation for syndrome decoding: New zero-knowledge protocol and
code-based signature”, Designs, Codes and Cryptography, 2022.

T. Feneuil, A. Joux, M. Rivain “Syndrome decoding in the head: shorter signatures from zero-knowledge proofs”,
Crypto, 2022.

Violetta Weger — Recent Advances in Code-based Signatures 9/14



Restricted Errors
Syndrome Decoding Problem

Given H ∈ F(n−k)×n
q , s ∈ Fn−k

q , weight t, find e ∈ Fn
q such that s = eH⊤ and wt(e) ≤ t.

Can we avoid permutations - but keep the hardness of the problem?

↓
Restricted Syndrome Decoding Problem

Given H ∈ F(n−k)×n
q , syndrome s ∈ Fn−k

q , E ⊆ F⋆
q , find e ∈ En such that s = eH⊤.
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Restricted Errors
M. Baldi, S. Bitzer, A. Pavoni, P. Santini, A. Wachter-Zeh, V.W. “Zero Knowledge Protocols and Signatures from
the Restricted Syndrome Decoding Problem ”, Preprint, 2023

Restricted SDP: Given H ∈ F(n−k)×n
q , s ∈ Fn−k

q , E ⊆ F⋆
q , find e ∈ En such that s = eH⊤.

Idea

• g ∈ F⋆
q of order z, E = {gi | i ∈ {1, . . . , z}}

• transf. φ : En → En, e 7→ e ⋆ e′ for e′ ∈ En

• size of φ is n log2(z) (instead of n log2((q − 1)n))

Can replace SDP with Restricted SDP in any code-based ZK protocol: 10 KB → 7.2 KB

Open Question

Can we exploit the commutativity of the restricted transformations?
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Future Research: Rank-metric Decoding

• For x ∈ Fn
qm : Rank metric:

wtR(x) = dim(⟨x1, . . . , xn⟩Fq )
• Rank Syndrome Decoding Problem: no NP-hard reduction
• Hamming-metric decoders have cost in O (qnc) for some constant c

• Rank-metric decoders have cost in O
(

qn2c′
)

for some constant c′

→ Small key sizes
→ Goal: Improve decoders
• Error support E = ⟨e1, . . . , en⟩Fq

• candidate supersupports F , F ′

TUM Antonia Wachter-Zeh
International Alberto Ravagnani (TU/e)
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Future Research: Quantum Codes

• Quantum error-corrections:
(1) depolarizing channel,
(2) dephasing channel

• Introduced errors:
(1) Z and X-errors,
(2) only Z-errors

• X-errors are in Fq2 \ Fq

Z-errors are in Fq \ {0}
→ Errors in base field more likely
→ New metric:

wtλ(x) = λ if x ∈ Fq2 \ Fq

wtλ(x) = 1 if x ∈ Fq \ {0}
→ Goal: New bounds and constructions

TUM Robert König
International Markus Grassl (ICTQT)
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Further Research Directions

• Quantum-Private Information Retrieval
• Retrieve file from database managed by untrusted server
• without revealing to the server which file was requested
• single server: only number-theoretic solutions: not quantum-secure
→ Goal: code-based quantum-private information retrieval

TUM Antonia Wachter-Zeh
International Camilla Hollanti (Aalto University)

• Locally Recoverable Codes
→ Goal: New constructions

TUM Gregor Kemper

• Isogeny-based Cryptography
→ Goal: New systems

TUM Christian Liedtke
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Questions?

Thank you!
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Hash-and-Sign: CFS

PROVER VERIFIER
KEY GENERATION
S = H parity-check matrix

P = (t, HP ) permuted H

SIGNING
Choose message m

s = Hash(m)
Find e: s = eH⊤ = eP (HP )⊤,

and wt(e) ≤ t
m,eP−−−−→

VERIFICATION
Check if wt(eP ) ≤ t

and eP (HP )⊤ = Hash(m)

Violetta Weger — Recent Advances in Code-based Signatures 14/14



Hash-and-Sign: CFS
PROVER VERIFIER
KEY GENERATION
S = H parity-check matrix

P = (t, HP ) permuted H

SIGNING
Choose message m

s = Hash(m)
Find e: s = eH⊤ = eP (HP )⊤,

and wt(e) ≤ t
m,eP−−−−→

VERIFICATION
Check if wt(eP ) ≤ t

and eP (HP )⊤ = Hash(m)

Problem: Distinguishability
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Hash-and-Sign: CFS
PROVER VERIFIER
KEY GENERATION
S = H parity-check matrix

P = (t, HP ) permuted H

SIGNING
Choose message m

s = Hash(m)
Find e: s = eH⊤ = eP (HP )⊤,

and wt(e) ≤ t
m,eP−−−−→

VERIFICATION
Check if wt(eP ) ≤ t

and eP (HP )⊤ = Hash(m)

Not any s is syndrome of low weight e
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PROVER VERIFIER
VERIFICATION

commitments c0, c1
c0,c1−−−→
b←−− b ∈ {0, 1}

response rb
rb−−→

Verify cb using rb,P

SIGNING
Choose message m

Construct signature s from S, m
m,s−−→

VERIFICATION
Verify signature s using P, m

ZKID

Signature Scheme

Fiat-Shamir
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Fiat-Shamir

PROVER VERIFIER
KEY GENERATION
Given P, S of some ZKID and
message m
SIGNING
Choose commitment c

b = Hash(m, c)
Compute response rb

Signature s = (b, rb)
m,s−−→

VERIFICATION
Using rb,P construct c

check if b = Hash(m, c)
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CVE
PROVER VERIFIER
KEY GENERATION
Choose e with wt(e) ≤ t

H parity-check matrix
Compute s = eH⊤ P=(H,s,t)−−−−−−−→

VERIFICATION
Choose u ∈ Fn

q , σ ∈ Sn

Set c1 = Hash(σ, uH⊤)
Set c2 = Hash(σ(u), σ(e)) c1,c2−−−→

z←−− Choose z ∈ F×
q

Set y = σ(u + ze) y−−→
r1 = σ

b←−− Choose b ∈ {1, 2}
r2 = σ(e) rb−−→ b = 1: c1 = Hash(σ, σ−1(y)H⊤ − zs)

b = 2: wt(σ(e)) = t

and c2 = Hash(y − zσ(e), σ(e))
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CVE
PROVER VERIFIER
KEY GENERATION
Choose e with wt(e) ≤ t

H parity-check matrix
Compute s = eH⊤ P=(H,s,t)−−−−−−−→

VERIFICATION
Choose u ∈ Fn

q , σ ∈ Sn

Set c1 = Hash(σ, uH⊤)
Set c2 = Hash(σ(u), σ(e)) c1,c2−−−→

z←−− Choose z ∈ F×
q

Set y = σ(u + ze) y−−→
r1 = σ

b←−− Choose b ∈ {1, 2}
r2 = σ(e) rb−−→ b = 1: c1 = Hash(σ, σ−1(y)H⊤ − zs)

b = 2: wt(σ(e)) = t

and c2 = Hash(y − zσ(e), σ(e))

Recall SDP: (1) s = eH⊤ (2) wt(e) ≤ t
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CVE
PROVER VERIFIER
KEY GENERATION
Choose e with wt(e) ≤ t

H parity-check matrix
Compute s = eH⊤ P=(H,s,t)−−−−−−−→

VERIFICATION
Choose u ∈ Fn

q , σ ∈ Sn

Set c1 = Hash(σ, uH⊤)
Set c2 = Hash(σ(u), σ(e)) c1,c2−−−→

z←−− Choose z ∈ F×
q

Set y = σ(u + ze) y−−→
r1 = σ

b←−− Choose b ∈ {1, 2}
r2 = σ(e) rb−−→ b = 1: c1 = Hash(σ, σ−1(y)H⊤ − zs)

b = 2: wt(σ(e)) = t

and c2 = Hash(y − zσ(e), σ(e))

Problem: big signature sizes

Violetta Weger — Recent Advances in Code-based Signatures 14/14



Cheating Probability

• Cheating probability = Probability of impersonator getting accepted
• For security level 2λ want cheating probability 2−λ

• If cheating probability δ, with N rounds → cheating probability δN

• might need many rounds: large communication cost

Violetta Weger — Recent Advances in Code-based Signatures 14/14



Cheating Probability

• Cheating probability = Probability of impersonator getting accepted
• For security level 2λ want cheating probability 2−λ

• If cheating probability δ, with N rounds → cheating probability δN

• might need many rounds: large communication cost

Violetta Weger — Recent Advances in Code-based Signatures 14/14



Cheating Probability

• Cheating probability = Probability of impersonator getting accepted
• For security level 2λ want cheating probability 2−λ

• If cheating probability δ, with N rounds → cheating probability δN

• might need many rounds: large communication cost
• solution: compression technique
• do not send ci

0, ci
1 in each round i

• before 1. round send c = Hash(c1
0, c1

1, . . . , cN
0 , cN

1 )
• ith round: receiving challenge b prover sends ri

b, ci
1−b

• end: verifier checks c = Hash(c1
0, c1

1, . . . , cN
0 , cN

1 )

C. Aguilar, P. Gaborit, J. Schrek. “A new zero-knowledge code based identification scheme with reduced
communication”, IEEE Information Theory Workshop, 2011.
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Cheating Probability

• Cheating probability = Probability of impersonator getting accepted
• For security level 2λ want cheating probability 2−λ

• If cheating probability δ, with N rounds → cheating probability δN

• might need many rounds: large communication cost
• other solution: MPC in the head
• third party: trusted helper sends commitments → δ = 0
• instead prover sends seeds of commitment: not ZK → cut and choose
• x < N times send response, N − x times send the seed of commitment
• to compress: use Merkle root or seed tree

T. Feneuil, A. Joux, M. Rivain. “ Syndrome decoding in the head: Shorter signatures from zero-knowledge proofs”,
2022.
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Comparison

ZKID Hash-and-Sign
reduction to NP-hard

low public key size

low signature size

fast verification
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Comparison

ZKID Hash-and-Sign
reduction to NP-hard ✓ ×

low public key size ✓ ×

low signature size ∼ ✓

fast verification ∼ ✓

CVE: 70 B WAVE: 3 MB NIST: 3 KB

CVE: 43 KB WAVE: 1 KB NIST: 2 KB
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FuLeeca
Set up

• For x ∈ Fp: wtL(x) = min{x, | p− x |}.
For x ∈ Fn

p : wtL(x) =
∑n

i=1 wtL(xi).

• Representing Fp = {− p−1
2 , . . . , 0, . . . , p−1

2 },
wtL(x) =| x | .

• Number of matches between x, y ∈ Fn
p

mt(x, y) =| {i | sgn(xi) = sgn(yi)} | .
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Statistical Attacks
Set up

• Low Hamming weight generators will produce
low Hamming weight signatures

• Observing many signatures reveals the support
of the secret low Hamming weight generators

• Low Lee weight generators:
suppL(x) = (wtL(x1). . . . , wtL(xn))

• Signatures have low Lee weight
• Recovering Lee support of secret generators:

much harder
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FuLeeca
PROVER VERIFIER
KEY GENERATION
Secret key: G = [A B], quasi-cyclic
matrix, with low Lee weight

Public key: G′ = [Id A−1B]
(G′,t,µ)

−−−−−−→

SIGNING
Choose message m

c = Hash(m) ∈ {±1}n

Iteratively use G to construct code-
word σ with
wtL(σ) ≤ t,

mt(σ, c) ≥ µ
m,σ−−−→

VERIFICATION
Verify that: (1)σH⊤ = 0,

(2)wtL(σ) ≤ t,

(3)mt(c, σ) ≥ µ
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