$\star \star$ * Excellence in Science and Technology

Пा TU/e

Recent Advances in Code-based Signatures

Violetta Weger

Rudolf Mößbauer Tenure Track Professorship: Symposium "Selected Topics in Science and Technology"

March 22, 2023

Outline

1. Code-based Cryptography

- Introduction to Coding Theory
- Hard Problems from Coding Theory
- Previous Work

2. Code-based Signature Schemes

- Idea and Previous Work
- FuLeeca
- Restricted Errors

3. Future Research

- Rank-metric Decoding
- Quantum Codes
- Further Research Directions

Outline

1. Code-based Cryptography

- Introduction to Coding Theory
- Hard Problems from Coding Theory
- Previous Work

2. Code-based Signature Schemes

- Idea and Previous Work
- FuLeeca
- Restricted Errors

3. Future Research

- Rank-metric Decoding
- Quantum Codes
- Further Research Directions

Motivation

- Quantum computers: break all currently used asymmetric cryptosystems
\rightarrow Need quantum-secure alternatives
- Candidates for post-quantum cryptography: Systems based NP-hard problems

Motivation

- Quantum computers: break all currently used asymmetric cryptosystems
\rightarrow Need quantum-secure alternatives
- Candidates for post-quantum cryptography: Systems based NP-hard problems

2016 NIST standardization call for post-quantum PKE/KEM and signatures

Motivation

- Quantum computers: break all currently used asymmetric cryptosystems
\rightarrow Need quantum-secure alternatives
- Candidates for post-quantum cryptography: Systems based NP-hard problems

2016 NIST standardization call for post-quantum PKE/KEM and signatures

- PKE/KEM: 1 lattice-based, round 4: 3 code-based
- Signature schemes: 1 hash-based and 2 based on ideal lattices

Motivation

- Quantum computers: break all currently used asymmetric cryptosystems
\rightarrow Need quantum-secure alternatives
- Candidates for post-quantum cryptography: Systems based NP-hard problems

2016 NIST standardization call for post-quantum PKE/KEM and signatures

- PKE/KEM: 1 lattice-based, round 4: 3 code-based
- Signature schemes: 1 hash-based and 2 based on ideal lattices

2022 NIST reopened standardization call for signature schemes

Coding Theory

Set Up

- Code $\mathcal{C} \subseteq \mathbb{F}_{q}^{n}$ linear k-dimensional subspace
- $c \in \mathcal{C}$ codeword
- $G \in \mathbb{F}_{q}^{k \times n}$ generator matrix $\mathcal{C}=\left\{x G \mid x \in \mathbb{F}_{q}^{k}\right\}$
- $H \in \mathbb{F}_{q}^{(n-k) \times n}$ parity-check matrix $\mathcal{C}=\left\{c \in \mathbb{F}_{q}^{n} \mid c H^{\top}=0\right\}$
- $s=e H^{\top}$ syndrome

Coding Theory

Set Up

- Code $\mathcal{C} \subseteq \mathbb{F}_{q}^{n}$ linear k-dimensional subspace
- $c \in \mathcal{C}$ codeword
- $G \in \mathbb{F}_{q}^{k \times n}$ generator matrix $\mathcal{C}=\left\{x G \mid x \in \mathbb{F}_{q}^{k}\right\}$
- $H \in \mathbb{F}_{q}^{(n-k) \times n}$ parity-check matrix $\mathcal{C}=\left\{c \in \mathbb{F}_{q}^{n} \mid c H^{\top}=0\right\}$
- $s=e H^{\top}$ syndrome
- Decode: find closest codeword

Coding Theory

Set Up

- Code $\mathcal{C} \subseteq \mathbb{F}_{q}^{n}$ linear k-dimensional subspace
- $c \in \mathcal{C}$ codeword
- $G \in \mathbb{F}_{q}^{k \times n}$ generator matrix $\mathcal{C}=\left\{x G \mid x \in \mathbb{F}_{q}^{k}\right\}$
- $H \in \mathbb{F}_{q}^{(n-k) \times n}$ parity-check matrix $\mathcal{C}=\left\{c \in \mathbb{F}_{q}^{n} \mid c H^{\top}=0\right\}$
- $s=e H^{\top}$ syndrome
- Decode: find closest codeword
- Hamming metric: For $x, y \in \mathbb{F}_{q}^{n}$ $d_{H}(x, y)=\left|\left\{i \mid x_{i} \neq y_{i}\right\}\right|$

Coding Theory

Set Up

- Code $\mathcal{C} \subseteq \mathbb{F}_{q}^{n}$ linear k-dimensional subspace
- $c \in \mathcal{C}$ codeword
- $G \in \mathbb{F}_{q}^{k \times n}$ generator matrix $\mathcal{C}=\left\{x G \mid x \in \mathbb{F}_{q}^{k}\right\}$
- $H \in \mathbb{F}_{q}^{(n-k) \times n}$ parity-check matrix $\mathcal{C}=\left\{c \in \mathbb{F}_{q}^{n} \mid c H^{\top}=0\right\}$
- $s=e H^{\top}$ syndrome
- Decode: find closest codeword
- Hamming metric: For $x, y \in \mathbb{F}_{q}^{n}$ $d_{H}(x, y)=\left|\left\{i \mid x_{i} \neq y_{i}\right\}\right|$
- minimum distance of a code: $d(\mathcal{C})=\min \left\{d_{H}(x, y) \mid x \neq y \in \mathcal{C}\right\}$

Coding Theory

Set Up

- Code $\mathcal{C} \subseteq \mathbb{F}_{q}^{n}$ linear k-dimensional subspace
- $c \in \mathcal{C}$ codeword
- $G \in \mathbb{F}_{q}^{k \times n}$ generator matrix $\mathcal{C}=\left\{x G \mid x \in \mathbb{F}_{q}^{k}\right\}$
- $H \in \mathbb{F}_{q}^{(n-k) \times n}$ parity-check matrix $\mathcal{C}=\left\{c \in \mathbb{F}_{q}^{n} \mid c H^{\top}=0\right\}$
- $s=e H^{\top}$ syndrome
- Decode: find closest codeword
- Hamming metric: For $x, y \in \mathbb{F}_{q}^{n}$ $d_{H}(x, y)=\left|\left\{i \mid x_{i} \neq y_{i}\right\}\right|$
- minimum distance of a code: $d(\mathcal{C})=\min \left\{d_{H}(x, y) \mid x \neq y \in \mathcal{C}\right\}$
- error-correction capacity: $t=(d(\mathcal{C})-1) / 2$

Hard Problems from Coding Theory

Algebraic structure	•	
(Reed-Solomon, Goppa,..)	$\langle G\rangle$	-
\rightarrow efficient decoders		-
	•	-

Hard Problems from Coding Theory

Algebraic structure	•	
(Reed-Solomon, Goppa,..)	$\langle G\rangle$	-
\rightarrow efficient decoders		

- Decoding random linear code is NP-hard

[^0]
Hard Problems from Coding Theory

Algebraic structure
(Reed-Solomon, Goppa,..)
\rightarrow efficient decoders

- Decoding random linear code is NP-hard
- First code-based cryptosystem based on this problem

Hard Problems from Coding Theory

Algebraic structure
(Reed-Solomon, Goppa,..)
\rightarrow efficient decoders

- Decoding random linear code is NP-hard
- First code-based cryptosystem based on this problem
- Fastest solvers: ISD, exponential time
E. Berlekamp, R. McEliece, H. Van Tilborg. "On the inherent intractability of certain coding problems ", IEEE Trans. Inf. Theory, 1978.
R. J. McEliece. "A public-key cryptosystem based on algebraic coding theory", DSNP Report, 1978A. Becker, A. Joux, A. May, A. Meurer "Decoding random binary linear codes in $2^{n / 20}$: How $1+1=0$ improves information set decoding", Eurocrypt, 2012.

Previous Work

Lee Metric

For $x, y \in \mathbb{Z} / p^{s} \mathbb{Z}^{n}$

- Lee weight:

$$
\operatorname{wt}_{L}(x)=\sum_{i=1}^{n} \operatorname{wt}_{L}\left(x_{i}\right)=\sum_{i=1}^{n} \min \left\{x_{i},\left|p^{s}-x_{i}\right|\right\}
$$

- Lee distance:

$$
d_{L}(x, y)=\mathrm{wt}_{L}(x-y)
$$

$\rightarrow d_{L}(\mathcal{C})$ much larger than $d_{H}(\mathcal{C})$

Previous Work

Lee Metric

For $x, y \in \mathbb{Z} / p^{s} \mathbb{Z}^{n}$

- Lee weight:

$$
\begin{aligned}
& \mathrm{wt}_{L}(x)=\sum_{i=1}^{n} \mathrm{wt}_{L}\left(x_{i}\right)=\sum_{i=1}^{n} \min \left\{x_{i},\left|p^{s}-x_{i}\right|\right\} \\
& d_{L}(x, y)=\mathrm{wt}_{L}(x-y)
\end{aligned}
$$

- Lee distance:
$\rightarrow d_{L}(\mathcal{C})$ much larger than $d_{H}(\mathcal{C})$
- Decoding random linear code in Lee-metric is NP-hard
- Fastest solvers: Lee-metric ISD, exponential time
- Behaviour of random ring-linear codes
V.W., K. Khathuria, A.-L. Horlemann, M. Battaglioni, P. Santini, E. Persichetti. "On the hardness of the Lee syndrome decoding problem", Advances in Mathematics of Communications, 2021.J. Bariffi, K. Khathuria, V.W. "Information Set Decoding for Lee-Metric Codes using Restricted Balls", CBCrypto, 2022.
E. Byrne, A.-L. Horlemann, K. Khathuria, V.W.
"Density of free modules over finite chain rings", Linear Algebra and its Applications, 2022.

Outline

1. Code-based Cryptography

- Introduction to Coding Theory
- Hard Problems from Coding Theory
- Previous Work

2. Code-based Signature Schemes

- Idea and Previous Work
- FuLeeca
- Restricted Errors

3. Future Research

- Rank-metric Decoding
- Quantum Codes
- Further Research Directions

Idea of Signature Schemes

Signer

$$
\xrightarrow{\mathcal{P}}
$$

\square
Signing
Message m, signature σ

Verifier

\square

Idea of Signature Schemes

Verifier

Two approaches to get a code-based signature scheme:

- Hash-and-sign
- Through ZK protocol

Idea of Signature Schemes

Verifier

$$
\xrightarrow{\mathcal{P}}
$$

Secret key \mathcal{S}, public key \mathcal{P}

Signing
Message m, signature σ

Verification

Verify σ

Two approaches to get a code-based signature scheme:

- Hash-and-sign
\rightarrow large public key sizes
\rightarrow our solution: FuLeeca
- Through ZK protocol
\rightarrow large signature sizes
\rightarrow our solution: restricted errors

Idea of Signature Schemes

Signer

Key Generation
Secret key \mathcal{S}, public key \mathcal{P}

Signing

Message m, signature σ

Verifier
$\xrightarrow{\mathcal{P}}$
$\xrightarrow{m, \sigma}$

Verification
Verify σ

Two approaches to get a code-based signature scheme:

- Hash-and-sign
\rightarrow large public key sizes
\rightarrow our solution: FuLeeca
- Through ZK protocol
\rightarrow large signature sizes
\rightarrow our solution: restricted errors

Hash-and-Sign

\square N. Courtois, M. Finiasz, N. Sendrier. "How to achieve a McEliece-based digital signature scheme", Asiacrypt, 2001.

- Following idea of McEliece:
\rightarrow start with structured code
\rightarrow publish scrambled code
- $\operatorname{Hash}(m)=e H^{\top}, \mathrm{wt}_{H}(e) \leq t$
- Signature is scrambled e
\rightarrow large public key sizes
\rightarrow slow signing

Hash-and-Sign

N. Courtois, M. Finiasz, N. Sendrier. "How to achieve a McEliece-based digital signature scheme", Asiacrypt, 2001.

- Following idea of McEliece:
\rightarrow start with structured code
\rightarrow publish scrambled code
- $\operatorname{Hash}(m)=e H^{\top}, \mathrm{wt}_{H}(e) \leq t$
- Signature is scrambled e
- Reduce key sizes:
\rightarrow use quasi-cyclic codes
\rightarrow use low density generators
\rightarrow large public key sizes
\rightarrow slow signing
\rightarrow statistical attacks

Hash-and-Sign

N. Courtois, M. Finiasz, N. Sendrier. "How to achieve a McEliece-based digital signature scheme", Asiacrypt, 2001.

- Following idea of McEliece:
\rightarrow start with structured code
\rightarrow large public key sizes
\rightarrow publish scrambled code
- $\operatorname{Hash}(m)=e H^{\top}, \mathrm{wt}_{H}(e) \leq t$
- Signature is scrambled e
\rightarrow slow signing
- Reduce key sizes:
\rightarrow use quasi-cyclic codes
\rightarrow statistical attacks
\rightarrow use low density generators

How to reduce public key sizes/ thwart statistical attacks?
How to speed-up signing?

FuLeeca

S. Ritterhoff, G. Maringer, S. Bitzer, V.W., P. Karl, T. Schamberger, J. Schupp, A. Wachter-Zeh, G. Sigl. "FuLeeca: A Lee-based Signature Scheme", Preprint, 2023.

Secret key	Quasi-cyclic, low Lee weight generators
Public key	Systematic form, scrambled generator matrix
Signature	Codeword σ with low Lee weight and full Hamming weight, σ and $\operatorname{Hash}(m)$ have many signs matching

FuLeeca

國 S. Ritterhoff, G. Maringer, S. Bitzer, V.W., P. Karl, T. Schamberger, J. Schupp, A. Wachter-Zeh, G. Sigl. "FuLeeca: A Lee-based Signature Scheme", Preprint, 2023.

Secret key

Public key

Signature

Quasi-cyclic, low Lee weight generators

Systematic form, scrambled generator matrix
Codeword σ with low Lee weight and full Hamming weight, σ and $\operatorname{Hash}(m)$ have many signs matching

	public key size	signature size	total size
Falcon	897 B	666 B	1563 B
Dilithium	1312 B	2420 B	3732 B
Sphincs+	32 B	7856 B	7888 B
FuLeeca	389 B	276 B	665 B

\rightarrow Can beat all standardized signature schemes in total size

Code-based ZK Protocols

ZK protocol
Fiat-Shamir

Syndrome Decoding Problem

Given parity-check matrix H, syndrome s, weight t, find e s.t. 1. $s=e H^{\top} \quad$ 2. $\mathrm{wt}_{H}(e) \leq t$
P.-L. Cayrel, P. Véron, S. El Yousfi Alaoui. "A zero-knowledge identification scheme based on the q-ary syndrome decoding problem", Selected Areas in Cryptography, 2011.

- Random H, e of weight t, compute $s=e H^{\top} \rightarrow$ small public key sizes
- Verifier challenges either 1. or 2 . by asking for transformation φ or transformed secret $\varphi(e)$

Code-based ZK Protocols

ZK protocolFiat-Shamir

Syndrome Decoding Problem

Given parity-check matrix H, syndrome s, weight t, find e s.t. 1. $s=e H^{\top} \quad 2 . \mathrm{wt}_{H}(e) \leq t$
P.-L. Cayrel, P. Véron, S. El Yousfi Alaoui. "A zero-knowledge identification scheme based on the q-ary syndrome decoding problem", Selected Areas in Cryptography, 2011.

- Random H, e of weight t, compute $s=e H^{\top} \rightarrow$ small public key sizes
- Verifier challenges either 1. or 2. by asking for transformation φ or transformed secret $\varphi(e)$
- Large cheating probability \rightarrow many rounds, large signature size, CVE: 40 KB
- Recent improvements through in the head computations \rightarrow smaller signature sizes, 10 KBT. Feneuil, A. Joux, M. Rivain "Shared permutation for syndrome decoding: New zero-knowledge protocol and code-based signature", Designs, Codes and Cryptography, 2022.
夆
T. Feneuil, A. Joux, M. Rivain "Syndrome decoding in the head: shorter signatures from zero-knowledge proofs", Crypto, 2022.

Restricted Errors

Syndrome Decoding Problem

Given $H \in \mathbb{F}_{q}^{(n-k) \times n}, s \in \mathbb{F}_{q}^{n-k}$, weight t, find $e \in \mathbb{F}_{q}^{n}$ such that $s=e H^{\top}$ and $\operatorname{wt}(e) \leq t$.

$$
e \begin{array}{|l|l|l|l|l|l|}
\hline & 0 & 0 & & & 0 \\
\hline
\end{array}
$$

Can we avoid permutations - but keep the hardness of the problem?

Restricted Errors

Syndrome Decoding Problem

Given $H \in \mathbb{F}_{q}^{(n-k) \times n}, s \in \mathbb{F}_{q}^{n-k}$, weight t, find $e \in \mathbb{F}_{q}^{n}$ such that $s=e H^{\top}$ and $\mathrm{wt}(e) \leq t$.

$$
e \begin{array}{|l|l|l|l|l|l|}
\hline & 0 & 0 & & & 0 \\
\hline
\end{array}
$$

Can we avoid permutations - but keep the hardness of the problem?

Restricted Syndrome Decoding Problem

Given $H \in \mathbb{F}_{q}^{(n-k) \times n}$, syndrome $s \in \mathbb{F}_{q}^{n-k}, E \subseteq \mathbb{F}_{q}^{\star}$, find $e \in E^{n}$ such that $s=e H^{\top}$.
e \square

Restricted Errors

这
M. Baldi, S. Bitzer, A. Pavoni, P. Santini, A. Wachter-Zeh, V.W. "Zero Knowledge Protocols and Signatures from the Restricted Syndrome Decoding Problem ", Preprint, 2023

Restricted SDP: Given $H \in \mathbb{F}_{q}^{(n-k) \times n}, s \in \mathbb{F}_{q}^{n-k}, E \subseteq \mathbb{F}_{q}^{\star}$, find $e \in E^{n}$ such that $s=e H^{\top}$.

Restricted Errors

M. Baldi, S. Bitzer, A. Pavoni, P. Santini, A. Wachter-Zeh, V.W. "Zero Knowledge Protocols and Signatures from the Restricted Syndrome Decoding Problem ", Preprint, 2023

Restricted SDP: Given $H \in \mathbb{F}_{q}^{(n-k) \times n}, s \in \mathbb{F}_{q}^{n-k}, E \subseteq \mathbb{F}_{q}^{\star}$, find $e \in E^{n}$ such that $s=e H^{\top}$.

Idea

- $g \in \mathbb{F}_{q}^{\star}$ of order $z, E=\left\{g^{i} \mid i \in\{1, \ldots, z\}\right\}$

Restricted Errors

M. Baldi, S. Bitzer, A. Pavoni, P. Santini, A. Wachter-Zeh, V.W. "Zero Knowledge Protocols and Signatures from the Restricted Syndrome Decoding Problem ", Preprint, 2023

Restricted SDP: Given $H \in \mathbb{F}_{q}^{(n-k) \times n}, s \in \mathbb{F}_{q}^{n-k}, E \subseteq \mathbb{F}_{q}^{\star}$, find $e \in E^{n}$ such that $s=e H^{\top}$.
e

Idea

- $g \in \mathbb{F}_{q}^{\star}$ of order $z, E=\left\{g^{i} \mid i \in\{1, \ldots, z\}\right\}$
- transf. $\varphi: E^{n} \rightarrow E^{n}, e \mapsto e \star e^{\prime}$ for $e^{\prime} \in E^{n}$
- size of φ is $n \log _{2}(z) \quad\left(\right.$ instead of $\left.n \log _{2}((q-1) n)\right)$

Restricted Errors

宫
M. Baldi, S. Bitzer, A. Pavoni, P. Santini, A. Wachter-Zeh, V.W. "Zero Knowledge Protocols and Signatures from the Restricted Syndrome Decoding Problem ", Preprint, 2023

Restricted SDP: Given $H \in \mathbb{F}_{q}^{(n-k) \times n}, s \in \mathbb{F}_{q}^{n-k}, E \subseteq \mathbb{F}_{q}^{\star}$, find $e \in E^{n}$ such that $s=e H^{\top}$.
e \square

\square

Idea

- $g \in \mathbb{F}_{q}^{\star}$ of order $z, E=\left\{g^{i} \mid i \in\{1, \ldots, z\}\right\}$
- transf. $\varphi: E^{n} \rightarrow E^{n}, e \mapsto e \star e^{\prime}$ for $e^{\prime} \in E^{n}$
- size of φ is $n \log _{2}(z) \quad\left(\right.$ instead of $\left.n \log _{2}((q-1) n)\right)$

Can replace SDP with Restricted SDP in any code-based ZK protocol: $10 \mathrm{~KB} \rightarrow 7.2 \mathrm{~KB}$

Restricted Errors

国
M. Baldi, S. Bitzer, A. Pavoni, P. Santini, A. Wachter-Zeh, V.W. "Zero Knowledge Protocols and Signatures from the Restricted Syndrome Decoding Problem ", Preprint, 2023

Restricted SDP: Given $H \in \mathbb{F}_{q}^{(n-k) \times n}, s \in \mathbb{F}_{q}^{n-k}, E \subseteq \mathbb{F}_{q}^{\star}$, find $e \in E^{n}$ such that $s=e H^{\top}$.

Idea

- $g \in \mathbb{F}_{q}^{\star}$ of order $z, E=\left\{g^{i} \mid i \in\{1, \ldots, z\}\right\}$
- transf. $\varphi: E^{n} \rightarrow E^{n}, e \mapsto e \star e^{\prime}$ for $e^{\prime} \in E^{n}$
- size of φ is $n \log _{2}(z) \quad\left(\right.$ instead of $\left.n \log _{2}((q-1) n)\right)$

Can replace SDP with Restricted SDP in any code-based ZK protocol: $10 \mathrm{~KB} \rightarrow 7.2 \mathrm{~KB}$

Open Question

Can we exploit the commutativity of the restricted transformations?

Outline

1. Code-based Cryptography

- Introduction to Coding Theory
- Hard Problems from Coding Theory
- Previous Work

2. Code-based Signature Schemes

- Idea and Previous Work
- FuLeeca
- Restricted Errors

3. Future Research

- Rank-metric Decoding
- Quantum Codes
- Further Research Directions

Future Research: Rank-metric Decoding

- For $x \in \mathbb{F}_{q^{m}}^{n}:$ Rank metric:

$$
w t_{R}(x)=\operatorname{dim}\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle_{\mathbb{F}_{q}}\right)
$$

- Rank Syndrome Decoding Problem: no NP-hard reduction
- Hamming-metric decoders have cost in $\mathcal{O}\left(q^{n c}\right)$ for some constant c
- Rank-metric decoders have cost in $\mathcal{O}\left(q^{n^{2} c^{\prime}}\right)$ for some constant c^{\prime} \rightarrow Small key sizes
\rightarrow Goal: Improve decoders
- Error support $E=\left\langle e_{1}, \ldots, e_{n}\right\rangle_{\mathbb{F}_{q}}$
- candidate supersupports F, F^{\prime}

$$
\begin{array}{ll}
\text { TUM } & \text { Antonia Wachter-Zeh } \\
\text { International } & \text { Alberto Ravagnani }(\mathrm{TU} / \mathrm{e})
\end{array}
$$

Future Research: Quantum Codes

- Quantum error-corrections:
(1) depolarizing channel,
(2) dephasing channel
- Introduced errors:
(1) Z and X-errors, (2) only Z-errors
- X-errors are in $\mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ Z-errors are in $\mathbb{F}_{q} \backslash\{0\}$
\rightarrow Errors in base field more likely
\rightarrow New metric:
$w t_{\lambda}(x)=\lambda$ if $x \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$

$$
w t_{\lambda}(x)=1 \text { if } x \in \mathbb{F}_{q} \backslash\{0\}
$$

\rightarrow Goal: New bounds and constructions

TUM	Robert König
International	Markus Grassl (ICTQT)

Further Research Directions

- Quantum-Private Information Retrieval
- Retrieve file from database managed by untrusted server
- without revealing to the server which file was requested
- single server: only number-theoretic solutions: not quantum-secure
\rightarrow Goal: code-based quantum-private information retrieval
TUM Antonia Wachter-Zeh
International Camilla Hollanti (Aalto University)
- Locally Recoverable Codes
\rightarrow Goal: New constructions
TUM Gregor Kemper
- Isogeny-based Cryptography
\rightarrow Goal: New systems
TUM Christian Liedtke

Questions?

Thank you!

Hash-and-Sign: CFS

Hash-and-Sign: CFS

[^1]
Hash-and-Sign: CFS

[^2]
ZKID

PROVER

VERIFIER
 VERIFICATION
 $$
b \in\{0,1\}
$$

commitments c_{0}, c_{1}
response r_{b} $\xrightarrow[\stackrel{b}{\stackrel{r_{b}}{\longrightarrow}}]{\stackrel{c_{0}, c_{1}}{\longleftrightarrow}}$

Verify c_{b} using r_{b}, \mathcal{P}

SIGNING

Choose message m
Construct signature s from \mathcal{S}, m

$$
\xrightarrow{m, s}
$$

VERIFICATION
Verify signature s using \mathcal{P}, m
Signature Scheme

Signature Scheme

Fiat-Shamir

PROVER	VERIFIER
KEY GENERATION	
Given \mathcal{P}, \mathcal{S} of some ZKID and message m	
SIGNING	
Choose commitment c $b=\operatorname{Hash}(m, c)$	
Compute response r_{b}	
Signature $s=\left(b, r_{b}\right) \quad \xrightarrow{m, s}$	
	VERIFICATION
	Using r_{b}, \mathcal{P} construct c check if $b=\operatorname{Hash}(m, c)$

PROVER	VERIFIER	
KEY GENERATION		
Choose e with $\mathrm{wt}(e) \leq t$		
Compute $s=e H^{\top}$	$\underline{\mathcal{P}=(H,}$	
		VERIFICATION
Set $c_{1}=\operatorname{Hash}\left(\sigma, u H^{\top}\right)$		
Set $c_{2}=\operatorname{Hash}(\sigma(u), \sigma(e))$	$\stackrel{c_{1}, c_{2}}{\stackrel{\tau}{4}}$	Choose $z \in \mathbb{F}_{q}^{\times}$
Set $y=\sigma(u+z e)$	\xrightarrow{y}	
$r_{1}=\sigma$	$\stackrel{b}{\leftarrow}$	Choose $b \in\{1,2\}$
$r_{2}=\sigma(e)$	$\xrightarrow{r_{b}}$	$\begin{aligned} & b=1: c_{1}=\operatorname{Hash}\left(\sigma, \sigma^{-1}(y) H^{\top}-z s\right) \\ & b=2: \operatorname{wt}(\sigma(e))=t \\ & \text { and } c_{2}=\operatorname{Hash}(y-z \sigma(e), \sigma(e)) \end{aligned}$

CVE

PROVER		VERIFIER
KEY GENERATION		Recall SDP: (1) $s=e H^{\top}$ (2) $\mathrm{wt}(e) \leq t$
Choose e with $\operatorname{wt}(e) \leq t$ H parity-check matrix		
Compute $s=e H^{\top}$	$\xrightarrow{\mathcal{P}=(H, s, t)}$	
	VERIFICATION	
Choose $u \in \mathbb{F}_{q}^{n}, \sigma \in \mathcal{S}_{n}$ Set $c_{1}=\operatorname{Hash}\left(\sigma, u H^{\top}\right)$		
Set $c_{2}=\operatorname{Hash}(\sigma(u), \sigma(e))$		Choose $z \in \mathbb{F}_{q}^{\times}$
Set $y=\sigma(u+z e)$	\xrightarrow{y}	
$r_{1}=\sigma$	$\stackrel{b}{\leftarrow}$	Choose $b \in\{1,2\}$
$r_{2}=\sigma(e)$	$\xrightarrow{r_{b}}$	$\begin{aligned} & b=1: c_{1}=\operatorname{Hash}\left(\sigma, \sigma^{-1}(y) H^{\top}-z s\right) \\ & b=2: \operatorname{wt}(\sigma(e))=t \\ & \text { and } c_{2}=\operatorname{Hash}(y-z \sigma(e), \sigma(e)) \end{aligned}$

Cheating Probability

- Cheating probability $=$ Probability of impersonator getting accepted
- For security level 2^{λ} want cheating probability $2^{-\lambda}$
- If cheating probability δ, with N rounds \rightarrow cheating probability δ^{N}

Cheating Probability

- Cheating probability $=$ Probability of impersonator getting accepted
- For security level 2^{λ} want cheating probability $2^{-\lambda}$
- If cheating probability δ, with N rounds \rightarrow cheating probability δ^{N}
- might need many rounds: large communication cost

Cheating Probability

- Cheating probability $=$ Probability of impersonator getting accepted
- For security level 2^{λ} want cheating probability $2^{-\lambda}$
- If cheating probability δ, with N rounds \rightarrow cheating probability δ^{N}
- might need many rounds: large communication cost
- solution: compression technique
- do not send c_{0}^{i}, c_{1}^{i} in each round i
- before 1. round send $c=\operatorname{Hash}\left(c_{0}^{1}, c_{1}^{1}, \ldots, c_{0}^{N}, c_{1}^{N}\right)$
- i th round: receiving challenge b prover sends r_{b}^{i}, c_{1-b}^{i}
- end: verifier checks $c=\operatorname{Hash}\left(c_{0}^{1}, c_{1}^{1}, \ldots, c_{0}^{N}, c_{1}^{N}\right)$
C. Aguilar, P. Gaborit, J. Schrek. "A new zero-knowledge code based identification scheme with reduced communication", IEEE Information Theory Workshop, 2011.

Cheating Probability

- Cheating probability $=$ Probability of impersonator getting accepted
- For security level 2^{λ} want cheating probability $2^{-\lambda}$
- If cheating probability δ, with N rounds \rightarrow cheating probability δ^{N}
- might need many rounds: large communication cost
- other solution: MPC in the head
- third party: trusted helper sends commitments $\rightarrow \delta=0$
- instead prover sends seeds of commitment: not ZK \rightarrow cut and choose
- $x<N$ times send response, $N-x$ times send the seed of commitment
- to compress: use Merkle root or seed tree
T. Feneuil, A. Joux, M. Rivain. "Syndrome decoding in the head: Shorter signatures from zero-knowledge proofs", 2022.

Comparison

	ZKID	Hash-and-Sign
reduction to NP-hard		
low public key size		
low signature size		
fast verification		

Comparison

	ZKID	Hash-and-Sign
reduction to NP-hard	\checkmark	\times
low public key size		
low signature size		
fast verification		

Comparison

	ZKID	Hash-and-Sign
reduction to NP-hard	\checkmark	\times
low public key size	\checkmark	\times
low signature size		
fast verification		

Comparison

	ZKID	Hash-and-Sign	
reduction to NP-hard	\checkmark	\times	
low public key size	CVE: 70 B	WAVE: 3 MB	NIST: 3 KB
low signature size			
fast verification			

Comparison

	ZKID	Hash-and-Sign	
reduction to NP-hard	\checkmark	\times	
low public key size	CVE: 70 B	WAVE: 3 MB	NIST: 3 KB low signature size
	\sim	\checkmark	
fast verification			

Comparison

	ZKID	Hash-and-Sign	
reduction to NP-hard	\checkmark	\times	
low public key size	CVE: 70 B	WAVE: 3 MB	NIST: 3 KB
low signature size			CVE: 43 KB
	WAVE: 1 KB	NIST: 2 KB	
fast verification			

Comparison

	ZKID	Hash-and-Sign	
reduction to NP-hard	\checkmark	\times	
low public key size	CVE: 70 B	WAVE: 3 MB	\begin{tabular}{\|l
\hline			
\end{tabular}			
			NIST: 3 KB
low signature size	CVE: 43 KB	WAVE: 1 KB	NIST: 2 KB fast verification
	\sim	\checkmark	

FuLeeca

FuLeeca

Statistical Attacks

Set up

- Low Hamming weight generators will produce low Hamming weight signatures
- Observing many signatures reveals the support of the secret low Hamming weight generators

Statistical Attacks

- Low Hamming weight generators will produce low Hamming weight signatures
- Observing many signatures reveals the support of the secret low Hamming weight generators
- Low Lee weight generators: $\operatorname{supp}_{L}(x)=\left(\mathrm{wt}_{L}\left(x_{1}\right) \ldots, \mathrm{wt}_{L}\left(x_{n}\right)\right)$
- Signatures have low Lee weight
- Recovering Lee support of secret generators: much harder

FuLeeca

PROVER		VERIFIER
KEY GENERATION		
Secret key: $G=\left[\begin{array}{ll}A & B\end{array}\right]$, quasi-cyclic matrix, with low Lee weight Public key: $G^{\prime}=\left[\operatorname{Id} A^{-1} B\right]$	$\xrightarrow{\left(G^{\prime}, t, \mu\right)}$	
SIGNING		
Choose message m $c=\operatorname{Hash}(m) \in\{ \pm 1\}^{n}$ Iteratively use G to construct codeword σ with $\begin{aligned} & \mathrm{wt}_{L}(\sigma) \leq t \\ & \operatorname{mt}(\sigma, c) \geq \mu \end{aligned}$	$\xrightarrow{m, \sigma}$	
		VERIFICATION
		$\begin{aligned} \text { Verify that: }(1) \sigma H^{\top} & =0, \\ (2) \mathrm{wt}_{L}(\sigma) & \leq t, \\ (3) \operatorname{mt}(c, \sigma) & \geq \mu \end{aligned}$

[^0]: E. Berlekamp, R. McEliece, H. Van Tilborg. "On the inherent intractability of certain coding problems ", IEEE Trans. Inf. Theory, 1978.

[^1]: Problem: Distinguishability

[^2]: Not any s is syndrome of low weight e

