

Recent Advances in Code-based Signatures

Violetta Weger

Rudolf Mößbauer Tenure Track Professorship: Symposium "Selected Topics in Science and Technology"

March 22, 2023

Outline

- 1. Code-based Cryptography
 - Introduction to Coding Theory
 - Hard Problems from Coding Theory
 - Previous Work
- 2. Code-based Signature Schemes
 - Idea and Previous Work
 - FuLeeca
 - Restricted Errors
- 3. Future Research
 - Rank-metric Decoding
 - Quantum Codes
 - Further Research Directions

Outline

- 1. Code-based Cryptography
 - Introduction to Coding Theory
 - Hard Problems from Coding Theory
 - Previous Work
- 2. Code-based Signature Schemes
 - Idea and Previous Work
 - FuLeeca
 - Restricted Errors
- 3. Future Research
 - Rank-metric Decoding
 - Quantum Codes
 - Further Research Directions

- Quantum computers: break all currently used asymmetric cryptosystems
- $\rightarrow~$ Need quantum-secure alternatives
- Candidates for post-quantum cryptography: Systems based NP-hard problems

- Quantum computers: break all currently used asymmetric cryptosystems
- \rightarrow Need quantum-secure alternatives
- Candidates for post-quantum cryptography: Systems based NP-hard problems

 $2016\,$ NIST standardization call for post-quantum PKE/KEM and signatures

- Quantum computers: break all currently used asymmetric cryptosystems
- \rightarrow Need quantum-secure alternatives
- Candidates for post-quantum cryptography: Systems based NP-hard problems

 $2016\,$ NIST standardization call for post-quantum PKE/KEM and signatures

- PKE/KEM: 1 lattice-based, round 4: 3 code-based
- Signature schemes: 1 hash-based and 2 based on ideal lattices

- Quantum computers: break all currently used asymmetric cryptosystems
- \rightarrow Need quantum-secure alternatives
- Candidates for post-quantum cryptography: Systems based NP-hard problems

 $2016\,$ NIST standardization call for post-quantum PKE/KEM and signatures

- PKE/KEM: 1 lattice-based, round 4: 3 code-based
- Signature schemes: 1 hash-based and 2 based on ideal lattices

2022 NIST reopened standardization call for signature schemes

- Code $\mathcal{C} \subseteq \mathbb{F}_q^n$ linear k-dimensional subspace
- $c \in \mathcal{C}$ codeword
- $G \in \mathbb{F}_q^{k \times n}$ generator matrix $\mathcal{C} = \{xG \mid x \in \mathbb{F}_q^k\}$
- $H \in \mathbb{F}_q^{(n-k) \times n}$ parity-check matrix $\mathcal{C} = \{c \in \mathbb{F}_q^n \mid cH^\top = 0\}$

•
$$s = eH^{\top}$$
 syndrome

- Code $\mathcal{C} \subseteq \mathbb{F}_q^n$ linear k-dimensional subspace
- $c \in \mathcal{C}$ codeword
- $G \in \mathbb{F}_q^{k \times n}$ generator matrix $\mathcal{C} = \{xG \mid x \in \mathbb{F}_q^k\}$
- $H \in \mathbb{F}_q^{(n-k) \times n}$ parity-check matrix $\mathcal{C} = \{c \in \mathbb{F}_q^n \mid cH^\top = 0\}$
- $s = eH^{\top}$ syndrome
- *Decode*: find closest codeword

- Code $\mathcal{C} \subseteq \mathbb{F}_q^n$ linear k-dimensional subspace
- $c \in \mathcal{C}$ codeword
- $G \in \mathbb{F}_q^{k \times n}$ generator matrix $\mathcal{C} = \{xG \mid x \in \mathbb{F}_q^k\}$
- $H \in \mathbb{F}_q^{(n-k) \times n}$ parity-check matrix $\mathcal{C} = \{c \in \mathbb{F}_q^n \mid cH^\top = 0\}$
- $s = eH^{\top}$ syndrome
- *Decode*: find closest codeword
- Hamming metric: For $x, y \in \mathbb{F}_q^n$ $d_H(x, y) = |\{i \mid x_i \neq y_i\}|$

- Code $\mathcal{C} \subseteq \mathbb{F}_q^n$ linear k-dimensional subspace
- $c \in \mathcal{C}$ codeword
- $G \in \mathbb{F}_q^{k \times n}$ generator matrix $\mathcal{C} = \{xG \mid x \in \mathbb{F}_q^k\}$
- $H \in \mathbb{F}_q^{(n-k) \times n}$ parity-check matrix $\mathcal{C} = \{c \in \mathbb{F}_q^n \mid cH^\top = 0\}$
- $s = eH^{\top}$ syndrome
- *Decode*: find closest codeword
- Hamming metric: For $x, y \in \mathbb{F}_q^n$ $d_H(x, y) = |\{i \mid x_i \neq y_i\}|$
- minimum distance of a code: $d(\mathcal{C}) = \min\{d_H(x, y) \mid x \neq y \in \mathcal{C}\}$

- Code $\mathcal{C} \subseteq \mathbb{F}_q^n$ linear k-dimensional subspace
- $c \in \mathcal{C}$ codeword
- $G \in \mathbb{F}_q^{k \times n}$ generator matrix $\mathcal{C} = \{xG \mid x \in \mathbb{F}_q^k\}$
- $H \in \mathbb{F}_q^{(n-k) \times n}$ parity-check matrix $\mathcal{C} = \{c \in \mathbb{F}_q^n \mid cH^\top = 0\}$
- $s = eH^{\top}$ syndrome
- *Decode*: find closest codeword
- Hamming metric: For $x, y \in \mathbb{F}_q^n$ $d_H(x, y) = |\{i \mid x_i \neq y_i\}|$
- minimum distance of a code: $d(\mathcal{C}) = \min\{d_H(x, y) \mid x \neq y \in \mathcal{C}\}$
- error-correction capacity: $t = (d(\mathcal{C}) 1)/2$

Algebraic structure (Reed-Solomon, Goppa,...) \rightarrow efficient decoders

Algebraic structure (Reed-Solomon, Goppa,...) \rightarrow efficient decoders

• Decoding random linear code is NP-hard

E. Berlekamp, R. McEliece, H. Van Tilborg. "On the inherent intractability of certain coding problems ", IEEE Trans. Inf. Theory, 1978.

Algebraic structure (Reed-Solomon, Goppa,...) \rightarrow efficient decoders

Seemingly random code $\langle \widetilde{G} \rangle \longrightarrow$ how hard to decode?

- Decoding random linear code is NP-hard
- First code-based cryptosystem based on this problem

E. Berlekamp, R. McEliece, H. Van Tilborg. "On the inherent intractability of certain coding problems ", IEEE Trans. Inf. Theory, 1978.

R. J. McEliece. "A public-key cryptosystem based on algebraic coding theory", DSNP Report, 1978

Algebraic structure (Reed-Solomon, Goppa,...) \rightarrow efficient decoders

• • • scrambling • • • $\xrightarrow{\varphi}$ Seemingly random code $\langle \widetilde{G} \rangle \longrightarrow$ how hard to decode?

- Decoding random linear code is NP-hard
- First code-based cryptosystem based on this problem
- Fastest solvers: ISD, exponential time

E. Berlekamp, R. McEliece, H. Van Tilborg. "On the inherent intractability of certain coding problems ", IEEE Trans. Inf. Theory, 1978.

- R. J. McEliece. "A public-key cryptosystem based on algebraic coding theory", DSNP Report, 1978
- A. Becker, A. Joux, A. May, A. Meurer "Decoding random binary linear codes in $2^{n/20}$: How 1+1=0improves information set decoding", Eurocrypt, 2012.

Previous Work

Lee Metric

For $x, y \in \mathbb{Z}/p^s \mathbb{Z}^n$

- Lee weight: $\operatorname{wt}_{L}(x) = \sum_{i=1}^{n} \operatorname{wt}_{L}(x_{i}) = \sum_{i=1}^{n} \min\{x_{i}, |p^{s} x_{i}|\}$
- Lee distance: $d_L(x,y) = \operatorname{wt}_L(x-y).$
- $\rightarrow d_L(\mathcal{C})$ much larger than $d_H(\mathcal{C})$

Previous Work

Lee Metric

For $x, y \in \mathbb{Z}/p^s \mathbb{Z}^n$

- Lee weight:
- Lee distance:

$$wt_L(x) = \sum_{i=1}^{n} wt_L(x_i) = \sum_{i=1}^{n} \min\{x_i, | p^s - x_i | d_L(x, y) = wt_L(x - y).$$

 $\rightarrow d_L(\mathcal{C})$ much larger than $d_H(\mathcal{C})$

- Decoding random linear code in Lee-metric is NP-hard
- Fastest solvers: Lee-metric ISD, exponential time
- Behaviour of random ring-linear codes

V.W., K. Khathuria, A.-L. Horlemann, M. Battaglioni, P. Santini, E. Persichetti. "On the hardness of the Lee syndrome decoding problem", Advances in Mathematics of Communications, 2021.

J. Bariffi, K. Khathuria, V.W. "Information Set Decoding for Lee-Metric Codes using Restricted Balls", CBCrypto, 2022.

Outline

- 1. Code-based Cryptography
 - Introduction to Coding Theory
 - Hard Problems from Coding Theory
 - Previous Work
- 2. Code-based Signature Schemes
 - Idea and Previous Work
 - FuLeeca
 - Restricted Errors
- 3. Future Research
 - Rank-metric Decoding
 - Quantum Codes
 - Further Research Directions

Two approaches to get a code-based signature scheme:

• Hash-and-sign

• Through ZK protocol

Two approaches to get a code-based signature scheme:

- Hash-and-sign
- $\rightarrow\,$ large public key sizes
- $\rightarrow\,$ our solution: FuLeeca

- Through ZK protocol
- $\rightarrow~{\rm large~signature~sizes}$
- $\rightarrow\,$ our solution: restricted errors

- Hash-and-sign
- $\rightarrow\,$ large public key sizes
- $\rightarrow\,$ our solution: FuLeeca

- Through ZK protocol
- $\rightarrow~{\rm large~signature~sizes}$
- $\rightarrow\,$ our solution: restricted errors

Hash-and-Sign

N. Courtois, M. Finiasz, N. Sendrier. "How to achieve a McEliece-based digital signature scheme", Asiacrypt, 2001.

- Following idea of McEliece:
- $\rightarrow~{\rm start}$ with structured code
- $\rightarrow~$ publish scrambled code
- $\operatorname{Hash}(m) = eH^{\top}, \operatorname{wt}_H(e) \le t$
- Signature is scrambled e

 \rightarrow large public key sizes

 \rightarrow slow signing

Hash-and-Sign

N. Courtois, M. Finiasz, N. Sendrier. "How to achieve a McEliece-based digital signature scheme", Asiacrypt, 2001.

- Following idea of McEliece:
- $\rightarrow~{\rm start}$ with structured code
- $\rightarrow~$ publish scrambled code
- $\operatorname{Hash}(m) = eH^{\top}, \operatorname{wt}_H(e) \le t$
- Signature is scrambled e
- Reduce key sizes:
- $\rightarrow~$ use quasi-cyclic codes
- $\rightarrow~$ use low density generators

 \rightarrow large public key sizes

 \rightarrow slow signing

 \rightarrow statistical attacks

Hash-and-Sign

N. Courtois, M. Finiasz, N. Sendrier. "How to achieve a McEliece-based digital signature scheme", Asiacrypt, 2001.

- Following idea of McEliece:
- \rightarrow start with structured code
- $\rightarrow~$ publish scrambled code
- $\operatorname{Hash}(m) = eH^{\top}, \operatorname{wt}_H(e) \le t$
- Signature is scrambled e
- Reduce key sizes:
- \rightarrow use quasi-cyclic codes
- $\rightarrow~$ use low density generators

 \rightarrow large public key sizes

 \rightarrow slow signing

 \rightarrow statistical attacks

How to reduce public key sizes/ thwart statistical attacks? How to speed-up signing?

FuLeeca

S. Ritterhoff, G. Maringer, S. Bitzer, **V.W.**, P. Karl, T. Schamberger, J. Schupp, A. Wachter-Zeh, G. Sigl. "FuLeeca: A Lee-based Signature Scheme", Preprint, 2023.

Secret key	Quasi-cyclic, low Lee weight generators
Public key	Systematic form, scrambled generator matrix
Signature	Codeword σ with low Lee weight and full Hamming weight, σ and ${\rm Hash}(m)$ have many signs matching

FuLeeca

S. Ritterhoff, G. Maringer, S. Bitzer, **V.W.**, P. Karl, T. Schamberger, J. Schupp, A. Wachter-Zeh, G. Sigl. "FuLeeca: A Lee-based Signature Scheme", Preprint, 2023.

Secret key	Quasi-cyclic, low Lee weight generators
Public key	Systematic form, scrambled generator matrix
Signature	Codeword σ with low Lee weight and full Hamming weight, σ and ${\rm Hash}(m)$ have many signs matching

	public key size	signature size	total size
Falcon	$897 \mathrm{B}$	666 B	$1563 \mathrm{~B}$
Dilithium	$1312 \mathrm{~B}$	$2420~\mathrm{B}$	$3732 \mathrm{~B}$
Sphincs+	32 B	$7856~\mathrm{B}$	$7888 \mathrm{\ B}$
FuLeeca	389 B	$276~\mathrm{B}$	$665 \mathrm{~B}$

 \rightarrow Can be at all standardized signature schemes in total size

Code-based ZK Protocols

- Random H, e of weight t, compute $s = eH^{\top} \rightarrow$ small public key sizes
- Verifier challenges either 1. or 2. by asking for transformation φ or transformed secret $\varphi(e)$

Code-based ZK Protocols

🕐 ZK protocol

Fiat-Shamir

Signature scheme

Syndrome Decoding Problem

Given parity-check matrix H, syndrome s, weight t, find e s.t. 1. $s = eH^{\top}$ 2. $wt_H(e) \leq t$

P.-L. Cayrel, P. Véron, S. El Yousfi Alaoui. "A zero-knowledge identification scheme based on the q-ary syndrome decoding problem", Selected Areas in Cryptography, 2011.

- Random H, e of weight t, compute $s = eH^{\top} \rightarrow$ small public key sizes
- Verifier challenges either 1. or 2. by asking for transformation φ or transformed secret $\varphi(e)$
- Large cheating probability \rightarrow many rounds, large signature size, CVE: 40 KB
- Recent improvements through in the head computations \rightarrow smaller signature sizes, 10 KB
- T. Feneuil, A. Joux, M. Rivain "Shared permutation for syndrome decoding: New zero-knowledge protocol and code-based signature", Designs, Codes and Cryptography, 2022.

T. Feneuil, A. Joux, M. Rivain "Syndrome decoding in the head: shorter signatures from zero-knowledge proofs", Crypto, 2022.

Syndrome Decoding Problem

Given
$$H \in \mathbb{F}_q^{(n-k) \times n}$$
, $s \in \mathbb{F}_q^{n-k}$, weight t , find $e \in \mathbb{F}_q^n$ such that $s = eH^\top$ and $\operatorname{wt}(e) \leq t$.

$$e \quad 0 \quad 0 \quad 0 \quad -\varphi \quad 0 \quad 0 \quad 0 \quad e'$$

Can we avoid permutations - but keep the hardness of the problem?

Syndrome Decoding Problem

Given
$$H \in \mathbb{F}_q^{(n-k) \times n}$$
, $s \in \mathbb{F}_q^{n-k}$, weight t , find $e \in \mathbb{F}_q^n$ such that $s = eH^\top$ and $\operatorname{wt}(e) \leq t$.

Can we avoid permutations - but keep the hardness of the problem?

Restricted Syndrome Decoding Problem

Given $H \in \mathbb{F}_q^{(n-k) \times n}$, syndrome $s \in \mathbb{F}_q^{n-k}$, $E \subseteq \mathbb{F}_q^{\star}$, find $e \in E^n$ such that $s = eH^{\top}$.

M. Baldi, S. Bitzer, A. Pavoni, P. Santini, A. Wachter-Zeh, V.W. "Zero Knowledge Protocols and Signatures from the Restricted Syndrome Decoding Problem ", Preprint, 2023

Restricted SDP: Given $H \in \mathbb{F}_q^{(n-k) \times n}$, $s \in \mathbb{F}_q^{n-k}$, $E \subseteq \mathbb{F}_q^{\star}$, find $e \in E^n$ such that $s = eH^{\top}$.

M. Baldi, S. Bitzer, A. Pavoni, P. Santini, A. Wachter-Zeh, V.W. "Zero Knowledge Protocols and Signatures from the Restricted Syndrome Decoding Problem ", Preprint, 2023

Restricted SDP: Given $H \in \mathbb{F}_q^{(n-k) \times n}$, $s \in \mathbb{F}_q^{n-k}$, $E \subseteq \mathbb{F}_q^{\star}$, find $e \in E^n$ such that $s = eH^{\top}$.

Idea	
• $g \in \mathbb{F}_q^*$ of order $z, E = \{g^i \mid i \in \{1, \dots, z\}\}$	

M. Baldi, S. Bitzer, A. Pavoni, P. Santini, A. Wachter-Zeh, V.W. "Zero Knowledge Protocols and Signatures from the Restricted Syndrome Decoding Problem ", Preprint, 2023

Restricted SDP: Given $H \in \mathbb{F}_q^{(n-k) \times n}$, $s \in \mathbb{F}_q^{n-k}$, $E \subseteq \mathbb{F}_q^{\star}$, find $e \in E^n$ such that $s = eH^{\top}$.

Idea

- $g \in \mathbb{F}_q^*$ of order $z, E = \{g^i \mid i \in \{1, \dots, z\}\}$
- transf. $\varphi: E^n \to E^n, e \mapsto e \star e'$ for $e' \in E^n$
- size of φ is $n \log_2(z)$ (instead of $n \log_2((q-1)n)$)

M. Baldi, S. Bitzer, A. Pavoni, P. Santini, A. Wachter-Zeh, V.W. "Zero Knowledge Protocols and Signatures from the Restricted Syndrome Decoding Problem ", Preprint, 2023

Restricted SDP: Given $H \in \mathbb{F}_q^{(n-k) \times n}$, $s \in \mathbb{F}_q^{n-k}$, $E \subseteq \mathbb{F}_q^{\star}$, find $e \in E^n$ such that $s = eH^{\top}$.

Can replace SDP with Restricted SDP in any code-based ZK protocol: 10 KB \rightarrow 7.2 KB

M. Baldi, S. Bitzer, A. Pavoni, P. Santini, A. Wachter-Zeh, V.W. "Zero Knowledge Protocols and Signatures from the Restricted Syndrome Decoding Problem ", Preprint, 2023

Restricted SDP: Given $H \in \mathbb{F}_q^{(n-k) \times n}$, $s \in \mathbb{F}_q^{n-k}$, $E \subseteq \mathbb{F}_q^{\star}$, find $e \in E^n$ such that $s = eH^{\top}$.

Can replace SDP with Restricted SDP in any code-based ZK protocol: 10 KB \rightarrow 7.2 KB

Outline

- 1. Code-based Cryptography
 - Introduction to Coding Theory
 - Hard Problems from Coding Theory
 - Previous Work
- 2. Code-based Signature Schemes
 - Idea and Previous Work
 - FuLeeca
 - Restricted Errors
- 3. Future Research
 - Rank-metric Decoding
 - Quantum Codes
 - Further Research Directions

Future Research: Rank-metric Decoding

- For $x \in \mathbb{F}_{q^m}^n$: Rank metric: $wt_R(x) = \dim(\langle x_1, \dots, x_n \rangle_{\mathbb{F}_q})$
- Rank Syndrome Decoding Problem: no NP-hard reduction
- Hamming-metric decoders have cost in $\mathcal{O}\left(q^{nc}\right)$ for some constant c
- Rank-metric decoders have cost in $\mathcal{O}\left(q^{n^2c'}\right)$ for some constant c'
 - $\rightarrow~{\rm Small}$ key sizes
- \rightarrow Goal: Improve decoders
- Error support $E = \langle e_1, \ldots, e_n \rangle_{\mathbb{F}_q}$
- candidate supersupports F, F'

TUMAntonia Wachter-ZehInternationalAlberto Ravagnani (TU/e)

Future Research: Quantum Codes

- Quantum error-corrections: (1) depolarizing channel, (2) dephasing channel
- Introduced errors:
 - (1) Z and X-errors,
 - (2) only Z-errors
- X-errors are in $\mathbb{F}_{q^2} \setminus \mathbb{F}_q$ Z-errors are in $\mathbb{F}_q \setminus \{0\}$
- $\rightarrow~{\rm Errors}$ in base field more likely
- $\begin{array}{l} \to \mbox{ New metric:} \\ wt_{\lambda}(x) = \lambda \mbox{ if } x \in \mathbb{F}_{q^2} \setminus \mathbb{F}_{q} \\ wt_{\lambda}(x) = 1 \mbox{ if } x \in \mathbb{F}_{q} \setminus \{0\} \end{array}$
- $\rightarrow\,$ Goal: New bounds and constructions

TUMRobert KönigInternationalMarkus Grassl (ICTQT)

Further Research Directions

Quantum-Private Information Retrieval

- Retrieve file from database managed by untrusted server
- without revealing to the server which file was requested
- single server: only number-theoretic solutions: not quantum-secure
- $\rightarrow~$ Goal: code-based quantum-private information retrieval

TUMAntonia Wachter-ZehInternationalCamilla Hollanti (Aalto University)

- Locally Recoverable Codes
 - \rightarrow Goal: New constructions

TUM Gregor Kemper

- Isogeny-based Cryptography
 - \rightarrow Goal: New systems
 - TUM Christian Liedtke

Questions?

Thank you!

Hash-and-Sign: CFS

PROVER		VERIFIER
KEY GENERATION		
$\mathcal{S} = H$ parity-check matrix		
$\mathcal{P} = (t, HP)$ permuted H		
SIGNING		
Choose message m		
$s = \operatorname{Hash}(m)$		
Find $e: s = eH^{\top} = eP(HP)^{\top}$,		
and $\operatorname{wt}(e) \leq t$		
	$\xrightarrow{m,eP}$	
		VERIFICATION
		Check if $wt(eP) \le t$
		and $eP(HP)^{\top} = \operatorname{Hash}(m)$

Hash-and-Sign: CFS

PROVER		VERIFIER
KEY GENERATION		
$\mathcal{S} = H$ parity-check matrix		
$\mathcal{P} = (t, HP)$ permuted H		
SIGNING		
Choose message m		
$s = \operatorname{Hash}(m)$		
Find $e: s = eH^{\top} = eP(HP)^{\top}$,		
and $\operatorname{wt}(e) \leq t$		
	$\xrightarrow{m,eP}$	
		VERIFICATION
		Check if $wt(eP) \le t$
		and $eP(HP)^{\top} = \text{Hash}(m)$

Problem: Distinguishability

Hash-and-Sign: CFS

PROVER		VERIFIER
KEY GENERATION		
$\mathcal{S} = H$ parity-check matrix		
$\mathcal{P} = (t, HP)$ permuted H		
SIGNING		
Choose message m		
$s = \operatorname{Hash}(m)$		
Find $e: s = eH^{\top} = eP(HP)^{\top}$,		
and $\operatorname{wt}(e) \leq t$		
	$\xrightarrow{m,eP}$	
		VERIFICATION
		Check if $wt(eP) \le t$
		and $eP(HP)^{\top} = \text{Hash}(m)$

Not any s is syndrome of low weight e

ZKID

SIGNING	
Choose message m	
Construct signature s from \mathcal{S}, m	
$\xrightarrow{m,s}$	
	VERIFICATION
	Verify signature s using \mathcal{P}, m

Signature Scheme

ZKID

Signature Scheme

Fiat-Shamir

PROVER		VERIFIER
KEY GENERATION		
Given \mathcal{P}, \mathcal{S} of some ZKID and		
message m		
SIGNING		
Choose commitment c		
$b = \operatorname{Hash}(m, c)$		
Compute response r_b		
Signature $s = (b, r_b)$		
	$\xrightarrow{m,s}$	
		VERIFICATION
		Using r_b, \mathcal{P} construct c
		check if $b = \operatorname{Hash}(m, c)$

CVE

PROVER		VERIFIER
KEY GENERATION		
Choose e with $wt(e) \le t$		
H parity-check matrix		
Compute $s = eH^{\top}$	$\mathcal{P}=(H,s,$	$\xrightarrow{t)}$
		VERIFICATION
Choose $u \in \mathbb{F}_q^n, \sigma \in \mathcal{S}_n$		
Set $c_1 = \operatorname{Hash}(\sigma, uH^{\top})$		
Set $c_2 = \operatorname{Hash}(\sigma(u), \sigma(e))$	$\xrightarrow{c_1,c_2}$	
	$\stackrel{z}{\leftarrow}$	Choose $z \in \mathbb{F}_q^{\times}$
Set $y = \sigma(u + ze)$	\xrightarrow{y}	
$r_1 = \sigma$	$\stackrel{b}{\longleftarrow}$	Choose $b \in \{1, 2\}$
$r_2 = \sigma(e)$	$\xrightarrow{r_b}$	$b = 1$: $c_1 = \operatorname{Hash}(\sigma, \sigma^{-1}(y)H^{\top} - zs)$
		$b = 2$: wt($\sigma(e)$) = t
		and $c_2 = \text{Hash}(y - z\sigma(e), \sigma(e))$

CVE

PROVER		VERIFIER
KEY GENERATION		
Choose e with $wt(e) \le t$		Recall SDP: (1) $s = eH^{\top}$ (2) wt(e) $\leq t$
H parity-check matrix		
Compute $s = eH^{\top}$	$\mathcal{P}=(H,s)$	$\xrightarrow{s,t)}$
		VERIFICATION
Choose $u \in \mathbb{F}_q^n, \sigma \in \mathcal{S}_n$		
Set $c_1 = \operatorname{Hash}(\sigma, uH^{\top})$		
Set $c_2 = \operatorname{Hash}(\sigma(u), \sigma(e))$	$\xrightarrow{c_1,c_2}$	
	$\stackrel{z}{\leftarrow}$	Choose $z \in \mathbb{F}_q^{\times}$
Set $y = \sigma(u + ze)$	\xrightarrow{y}	-
$r_1 = \sigma$	$\stackrel{b}{\longleftarrow}$	Choose $b \in \{1, 2\}$
$r_2 = \sigma(e)$	$\xrightarrow{r_b}$	$b = 1$: $c_1 = \operatorname{Hash}(\sigma, \sigma^{-1}(y)H^{\top} - zs)$
		$b = 2$: wt($\sigma(e)$) = t
		and $c_2 = \operatorname{Hash}(y - z\sigma(e), \sigma(e))$

CVE

PROVER		VERIFIER
KEY GENERATION		
Choose e with $wt(e) \le t$		
${\cal H}$ parity-check matrix		
Compute $s = eH^{\top}$	$\mathcal{P}=(H,s,$	$\xrightarrow{t)}$
		VERIFICATION
Choose $u \in \mathbb{F}_q^n, \sigma \in \mathcal{S}_n$ Set $c_1 = \text{Hash}(\sigma, uH^\top)$	C1,C2	Problem: big signature sizes
Set $c_2 = \operatorname{Hash}(\sigma(u), \sigma(e))$	$\xrightarrow{z}{}$	Choose $z \in \mathbb{F}_q^{\times}$
Set $y = \sigma(u + ze)$	\xrightarrow{g}	
$r_1 = \sigma$	$\stackrel{b}{\longleftarrow}$	Choose $b \in \{1, 2\}$
$r_2 = \sigma(e)$	$\xrightarrow{r_b}$	$b = 1$: $c_1 = \operatorname{Hash}(\sigma, \sigma^{-1}(y)H^{\top} - zs)$
		$b = 2$: wt($\sigma(e)$) = t
		and $c_2 = \operatorname{Hash}(y - z\sigma(e), \sigma(e))$

- Cheating probability = Probability of impersonator getting accepted
- For security level 2^{λ} want cheating probability $2^{-\lambda}$
- If cheating probability δ , with N rounds \rightarrow cheating probability δ^N

- Cheating probability = Probability of impersonator getting accepted
- For security level 2^{λ} want cheating probability $2^{-\lambda}$
- If cheating probability δ , with N rounds \rightarrow cheating probability δ^N
- might need many rounds: large communication cost

- Cheating probability = Probability of impersonator getting accepted
- For security level 2^{λ} want cheating probability $2^{-\lambda}$
- If cheating probability δ , with N rounds \rightarrow cheating probability δ^N
- might need many rounds: large communication cost
- solution: compression technique
- do not send c_0^i, c_1^i in each round i
- before 1. round send $c = \operatorname{Hash}(c_0^1, c_1^1, \dots, c_0^N, c_1^N)$
- *i*th round: receiving challenge *b* prover sends r_b^i, c_{1-b}^i
- end: verifier checks $c = \text{Hash}(c_0^1, c_1^1, \dots, c_0^N, c_1^N)$

C. Aguilar, P. Gaborit, J. Schrek. "A new zero-knowledge code based identification scheme with reduced communication", IEEE Information Theory Workshop, 2011.

- Cheating probability = Probability of impersonator getting accepted
- For security level 2^{λ} want cheating probability $2^{-\lambda}$
- If cheating probability δ , with N rounds \rightarrow cheating probability δ^N
- might need many rounds: large communication cost
- other solution: MPC in the head
- third party: trusted helper sends commitments $\rightarrow \delta = 0$
- instead prover sends seeds of commitment: not $\rm ZK \rightarrow cut$ and choose
- x < N times send response, N x times send the seed of commitment
- to compress: use Merkle root or seed tree

T. Feneuil, A. Joux, M. Rivain. "Syndrome decoding in the head: Shorter signatures from zero-knowledge proofs", 2022.

	ZKID	Hash-and-Sign
reduction to NP-hard		
low public key size		
low signature size		
fast verification		

	ZKID	Hash-and-Sign
reduction to NP-hard	\checkmark	×
low public key size		
low signature size		
fast verification		

	ZKID	Hash-and-Sign
reduction to NP-hard	\checkmark	X
low public key size	\checkmark	×
low signature size		
fast verification		

	ZKID	$\operatorname{Hash-and-Sign}$	
reduction to NP-hard	\checkmark	×	-
low public key size	CVE: 70 B	WAVE: 3 MB	NIST: 3 KB
low signature size			
fast verification			

	ZKID	Hash-and-Sign	
reduction to NP-hard	\checkmark	×	•
low public key size	CVE: 70 B	WAVE: 3 MB	NIST: 3 KB
low signature size	\sim	\checkmark	
fast verification			

	ZKID	Hash-and-Sign	
reduction to NP-hard	\checkmark	×	
low public key size	CVE: 70 B	WAVE: 3 MB	NIST: 3 KB
F	0.12.10.2		
low signature size	CVE: 43 KB	WAVE: 1 KB	NIST: 2 KB
fast verification			

	ZKID	Hash-and-Sign	
reduction to NP-hard	\checkmark	×	-
low public key size	CVE: 70 B	WAVE: 3 MB	NIST: 3 KB
low signature size	CVE: 43 KB	WAVE: 1 KB	NIST: 2 KB
fast verification	\sim	\checkmark	

FuLeeca

Set up

- For $x \in \mathbb{F}_p$: wt_L $(x) = \min\{x, | p x |\}$. For $x \in \mathbb{F}_p^n$: wt_L $(x) = \sum_{i=1}^n \operatorname{wt}_L(x_i)$.
- Representing $\mathbb{F}_p = \{-\frac{p-1}{2}, \dots, 0, \dots, \frac{p-1}{2}\},$ wt_L(x) = |x|.

FuLeeca

Set up

- For $x \in \mathbb{F}_p$: wt_L $(x) = \min\{x, | p x |\}$. For $x \in \mathbb{F}_p^n$: wt_L $(x) = \sum_{i=1}^n \operatorname{wt}_L(x_i)$.
- Representing $\mathbb{F}_p = \{-\frac{p-1}{2}, \dots, 0, \dots, \frac{p-1}{2}\},$ wt_L(x) = |x|.

• Number of matches between $x, y \in \mathbb{F}_p^n$ $\operatorname{mt}(x, y) = |\{i \mid \operatorname{sgn}(x_i) = \operatorname{sgn}(y_i)\}|.$

Statistical Attacks

Set up

- Low Hamming weight generators will produce low Hamming weight signatures
- Observing many signatures reveals the support of the secret low Hamming weight generators

Statistical Attacks

Set up

- Low Hamming weight generators will produce low Hamming weight signatures
- Observing many signatures reveals the support of the secret low Hamming weight generators

- Low Lee weight generators: $\operatorname{supp}_L(x) = (\operatorname{wt}_L(x_1), \dots, \operatorname{wt}_L(x_n))$
- Signatures have low Lee weight
- Recovering Lee support of secret generators: much harder

FuLeeca

PROVER

VERIFIER

KEY GENERATION

Secret key: $G = [A \ B]$, quasi-cyclic matrix, with low Lee weight

Public key: $G' = [\text{Id } A^{-1}B] \xrightarrow{(G',t,\mu)}$

SIGNING

 $\begin{array}{l} \text{Choose message } m\\ c = \text{Hash}(m) \in \{\pm 1\}^n\\ \text{Iteratively use } G \text{ to construct code-}\\ \text{word } \sigma \text{ with}\\ \text{wt}_L(\sigma) \leq t,\\ \text{mt}(\sigma,c) \geq \mu & \xrightarrow{m,\sigma}\\ \hline\\ & \text{VERIFICATION}\\ \hline\\ & \text{Verify that: } (1)\sigma H^\top = 0,\\ (2)\text{wt}_L(\sigma) \leq t,\\ (3)\text{mt}(c,\sigma) \geq \mu \end{array}$