Recent Advances and Challenges in Code-based Signatures

Violetta Weger

Technical University of Munich

CrossFyre 2022 October 7, 2022

Motivation

NIST announcement of re-opened standardization call

- Deadline March 1, 2023
- Want signatures not based on structured lattices
- Want short signature sizes and fast verification

Motivation

NIST announcement of re-opened standardization call

- Deadline March 1, 2023
- Want signatures not based on structured lattices
- Want short signature sizes and fast verification

- 1. What is a signature scheme?
- 2. What is coding theory?
- 3. How to construct code-based signatures?
 - Hash-and-sign

Through ZKID

4. How do they compare?

Signature scheme

Goal

- No interest in security of message
- Want to verify identity of sender

Parties

- Prover: signs message, prove identity
- Verifier: receives message, verify identity
- Impersonator: wants to forge a signature

Performance

- Signature size
- Public and secret key size
- Verification time

Signature scheme

PROVER		VERIFIER
KEY GENERATION		
Construct secret key \mathcal{S}		
Construct public key \mathcal{P}		
	$\stackrel{\mathcal{P}}{\longrightarrow}$	
SIGNING		
Choose message m		
Construct signature s from S , m		
	$\xrightarrow{m,s}$	
		VERIFICATION
		Verify signature s using \mathcal{P} , m

Set Up

- \mathbb{F}_q : finite field with q elements
- \mathcal{C} an [n,k] linear code: $\mathcal{C} \subseteq \mathbb{F}_q^n$ linear subspace of dimension k
- $c \in \mathcal{C}$: codewords
- $G \in \mathbb{F}_q^{k \times n}$ generator matrix: $\mathcal{C} = \{xG \mid x \in \mathbb{F}_q^k\}$
- $H \in \mathbb{F}_q^{(n-k) \times n}$ parity-check matrix: $\mathcal{C} = \{c \in \mathbb{F}_q^n \mid cH^\top = 0\}$
- Syndrome: $s = eH^{\top} \in \mathbb{F}_q^{n-k}$
- Hamming metric: $x, y \in \mathbb{F}_q^n$

$$wt(x) = |\{i \in \{1, ..., n\} \mid x_i \neq 0\}|,$$

$$d(x, y) = wt(x - y) = |\{i \in \{1, ..., n\} \mid x_i \neq y_i\}|.$$

ullet Minimum Hamming distance of ${\cal C}$

$$d(\mathcal{C}) = \min\{ \operatorname{wt}(x) \mid 0 \neq x \in \mathcal{C} \}.$$

$$t = \lfloor \tfrac{d-1}{2} \rfloor$$

• Can decode efficiently if algebraically structured

- Can decode efficiently if algebraically structured
- If random code: NP-complete problem!

Syndrome Decoding Problem

Given $H \in \mathbb{F}_q^{(n-k)\times n}$, syndrome $s \in \mathbb{F}_q^{n-k}$, target weight $t \in \mathbb{N}$, find $e \in \mathbb{F}_q^n$, such that

- 1. $\operatorname{wt}(e) \leq t$ 2. $s = eH^{\top}$

E. Berlekamp, R. McEliece, H. Van Tilborg. "On the inherent intractability of certain coding problems", IEEE Transactions on Information Theory, 1978.

Hash-and-Sign

N. Courtois, M. Finiasz, N. Sendrier. "How to achieve a McEliece-based digital signature scheme", ASIACRYPT, 2001.

PROVER VERIFIER

KEY GENERATION

S = H parity-check matrix

 $\mathcal{P} = (t, HP)$ permuted H

SIGNING

Choose message m

$$s = \operatorname{Hash}(m)$$

Find $e: s = eH^{\top} = eP(HP)^{\top}$, and $\operatorname{wt}(e) \le t$

$$\xrightarrow{m,eP}$$

VERIFICATION

Check if $\operatorname{wt}(eP) \leq t$ and $eP(HP)^{\top} = \operatorname{Hash}(m)$

Hash-and-Sign

N. Courtois, M. Finiasz, N. Sendrier. "How to achieve a McEliece-based digital signature scheme", ASIACRYPT, 2001.

PROVER

VERIFIER

KEY GENERATION

S = H parity-check matrix

$\mathcal{P} = (t, HP)$ permuted H

SIGNING

Choose message m

$$s = \text{Hash}(m)$$

Find $e: s = eH^{\top} = eP(HP)^{\top}$, and $\text{wt}(e) \leq t$

VERIFICATION

Check if $\operatorname{wt}(eP) \leq t$ and $eP(HP)^{\top} = \operatorname{Hash}(m)$

Problem: Distinguishability

Hash-and-Sign

N. Courtois, M. Finiasz, N. Sendrier. "How to achieve a McEliece-based digital signature scheme", ASIACRYPT, 2001.

PROVER

VERIFIER

KEY GENERATION

S = H parity-check matrix

 $\mathcal{P} = (t, HP)$ permuted H

SIGNING

Choose message m

$s = \operatorname{Hash}(m)$

Find
$$e$$
: $s = eH^{\top} = eP(HP)^{\top}$, and $\operatorname{wt}(e) \leq t$

VERIFICATION

Check if $\operatorname{wt}(eP) \leq t$ and $eP(HP)^{\top} = \operatorname{Hash}(m)$

Not any s is syndrome of low weight e

The story of Hash-and-Sign

- 1997 Random codes large region of weak parameters
- 2001 High rate Goppa codes distinguisher
- 2013 LDGM codes statistical attacks
- 2018 (u, u + v)-construction, large weights large key sizes

G. Kabatianskii, E. Krouk, B. Smeets. "A digital signature scheme based on random error-correcting codes", IMA International Conference on Cryptography and Coding, 1997.

N. Courtois, M. Finiasz, N. Sendrier. "How to achieve a McEliece-based digital signature scheme", ASIACRYPT, 2001.

M. Baldi, M. Bianchi, F. Chiaraluce, J. Rosenthal, D. Schipani "Using LDGM codes and sparse syndromes to achieve digital signatures", International Workshop on Post-Quantum Cryptography, 2013.

T. Debris-Alazard, N. Sendrier, J.-P. Tillich. "Wave: A new family of trapdoor one-way preimage sampleable functions based on codes", ASIACRYPT, 2019.

- 2 Parties: Prover, Verifier
- ullet 2 Stages: Key generation, Verification
- Prover wants to prove her knowledge of a secret to verifier, without revealing the secret

- 2 Parties: Prover, Verifier
- 2 Stages: Key generation, Verification
- Prover wants to prove her knowledge of a secret to verifier, without revealing the secret

PROVER		VERIFIER
KEY GENERATION		
Construct secret key \mathcal{S}		
Construct public key \mathcal{P}	$\stackrel{\mathcal{P}}{\longrightarrow}$	
		VERIFICATION
Construct commitments c_0, c_1		
	$\xrightarrow{c_0,c_1}$	
		Choose $b \in \{0, 1\}$
	\leftarrow	
Construct response r_b		
-	$\xrightarrow{r_b}$	
		Verify c_b using r_b, \mathcal{P}

ZKID

PROVER		VERIFIER
		VERIFICATION
commitments c_0, c_1	$\xrightarrow{c_0,c_1}$	
	$\leftarrow b$	$b \in \{0, 1\}$
response r_b	$\xrightarrow{r_b}$	
		Verify c_b using r_b, \mathcal{P}

SIGNING

Choose message m

Construct signature s from S, m

m,s

VERIFICATION

Verify signature s using \mathcal{P} , m

Signature Scheme

ZKID

Signature Scheme

PROVER VERIFIER

KEY GENERATION

Given \mathcal{P}, \mathcal{S} of some ZKID and

message m

SIGNING

Choose commitment c

 $b = \operatorname{Hash}(m, c)$

Compute response r_b

Signature $s = (b, r_b)$

m,s

VERIFICATION

Using r_b , \mathcal{P} construct c check if $b = \operatorname{Hash}(m, c)$

The story of code-based ZKID

- 1994 first code-based ZKID over \mathbb{F}_2
- 1997 better cheating probability
- 2011 generalization to \mathbb{F}_q

2011 quasi-cyclic structure over \mathbb{F}_2

J. Stern. "A new identification scheme based on syndrome decoding", Annual International Cryptology Conference, 1993.

P. Véron. "Improved identification schemes based on error-correcting codes", Applicable Algebra in Engineering, Communication and Computing, 1997.

P.-L. Cayrel, P. Véron, S. El Yousfi Alaoui. "A zero-knowledge identification scheme based on the q-ary syndrome decoding problem", International Workshop on Selected Areas in Cryptography, 2011.

C. Aguilar, P. Gaborit, J. Schrek. "A new zero-knowledge code based identification scheme with reduced communication", IEEE Information Theory Workshop, 2011.

CVE

PROVER VERIFIER

KEY GENERATION

Choose e with $wt(e) \leq t$

 ${\cal H}$ parity-check matrix

Compute $s = eH^{\top}$

$$\mathcal{P}=(H,s,t)$$

VERIFICATION

Choose
$$u \in \mathbb{F}_q^n$$
, $\sigma \in \mathcal{S}_n$
Set $c_0 = \operatorname{Hash}(\sigma, uH^\top)$
Set $c_1 = \operatorname{Hash}(\sigma(u), \sigma(e))$

$$\xrightarrow{c_0, c_1} \longrightarrow \qquad Choose \ z \in \mathbb{F}_q^\times$$
Set $y = \sigma(u + ze)$

$$r_0 = \sigma \qquad \qquad \leftarrow \qquad Choose \ b \in \{0, 1\}$$

$$r_1 = \sigma(e)$$

$$\xrightarrow{r_b} \qquad b = 0: \ c_0 = \operatorname{Hash}(\sigma, \sigma^{-1}(y)H^\top - zs)$$

$$b = 1: \ \operatorname{wt}(\sigma(e)) = t$$
and $c_1 = \operatorname{Hash}(y - z\sigma(e), \sigma(e))$

PROVER VERIFIER

KEY GENERATION

Choose e with $wt(e) \le t$

H parity-check matrix

Compute $s = eH^{\top}$

Recall SDP: (1) $s = eH^{\top}$ (2) $wt(e) \le t$

 $\mathcal{P} = (H, s, t)$

VERIFICATION

- Cheating probability = Probability of impersonator getting accepted
- For security level 2^{λ} want cheating probability $2^{-\lambda}$
- If cheating probability δ , with N rounds \rightarrow cheating probability δ^N

- Cheating probability = Probability of impersonator getting accepted
- For security level 2^{λ} want cheating probability $2^{-\lambda}$
- If cheating probability δ , with N rounds \rightarrow cheating probability δ^N
- might need many rounds: large communication cost

- Cheating probability = Probability of impersonator getting accepted
- For security level 2^{λ} want cheating probability $2^{-\lambda}$
- If cheating probability δ , with N rounds \rightarrow cheating probability δ^N
- might need many rounds: large communication cost
- solution: compression technique
- do not send c_0^i, c_1^i in each round i
- before 1. round send $c = \operatorname{Hash}(c_0^1, c_1^1, \dots, c_0^N, c_1^N)$
- \bullet $i {\rm th}$ round: receiving challenge b prover sends r_b^i, c_{1-b}^i
- end: verifier checks $c = \operatorname{Hash}(c_0^1, c_1^1, \dots, c_0^N, c_1^N)$

C. Aguilar, P. Gaborit, J. Schrek. "A new zero-knowledge code based identification scheme with reduced communication", IEEE Information Theory Workshop, 2011.

- Cheating probability = Probability of impersonator getting accepted
- For security level 2^{λ} want cheating probability $2^{-\lambda}$
- If cheating probability δ , with N rounds \rightarrow cheating probability δ^N
- might need many rounds: large communication cost
- other solution: MPC in the head
- third party: trusted helper sends commitments $\rightarrow \delta = 0$
- ullet instead prover sends seeds of commitment: not ZK \to cut and choose
- \bullet x < N times send response, N x times send the seed of commitment
- to compress: use Merkle root or seed tree

T. Feneuil, A. Joux, M. Rivain. "Syndrome decoding in the head: Shorter signatures from zero-knowledge proofs", 2022.

	ZKID	Hash-and-Sign
reduction to NP-hard		
low public key size		
low signature size		
fast verification		

	ZKID	Hash-and-Sign
reduction to NP-hard	\checkmark	×
low public key size		
low signature size		
fast verification		

	ZKID	Hash-and-Sign
reduction to NP-hard	✓	×
low public key size	√	×
low signature size		
fast verification		

	ZKID	Hash-and-Sign	
reduction to NP-hard	✓	×	
low public key size	CVE: 70 B	WAVE: 3 MB NIST: 3 KB]
low signature size			
fast verification			

	ZKID	Hash-and-Sign
reduction to NP-hard	✓	X
low public key size	CVE: 70 B	WAVE: 3 MB NIST: 3 KB
low signature size	\sim	\checkmark
fast verification		

	ZKID	Hash-and-Sign
reduction to NP-hard	√	X
low public key size	CVE: 70 B	WAVE: 3 MB NIST: 3 KB
low signature size	CVE: 43 KB	WAVE: 1 KB NIST: 2 KB
fast verification		

	ZKID	Hash-and-Sign
reduction to NP-hard	√	X
low public key size	CVE: 70 B	WAVE: 3 MB NIST: 3 KB
low signature size	CVE: 43 KB	WAVE: 1 KB NIST: 2 KB
fast verification	\sim	\checkmark

Questions?

Thank you!