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Motivation

Large interest in code-based cryptography in

new metrics, such as sum-rank metric, Lee metric,

new ambient spaces such as rings.

How do random codes behave over finite chain rings?

What parameters should we expect?

What minimum distance should we expect?
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Ring-Linear Coding Theory

Definition (Chain Ring)

A ring R is called a chain ring, if the ideals of R form a
chain: for all ideals I, J ⊆ R we either have I ⊆ J or J ⊆ I.

Let ⟨π⟩ be the unique maximal ideal of R.

s is the nilpotency index: the smallest positive integer
such that πs = 0.

q is the size of the residue field: q =| R/⟨π⟩ |.
Thus, | R |= qs.

Example

Z/psZ
GR(ps, r)
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Ring-Linear Coding Theory

Classical R-Linear

Ambient space
Finite field Fq

Finite chain ring
R

Code
C ⊆ Fn

q

C ⊆ Rn

linear subspace

R-submodule

Parameters
length n

length n

dimension k

?

Number of Codes
[
n
k

]
q

?
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Ring-Linear Coding Theory

Let C ⊆ Rn be a code, then

C ∼= ⟨1⟩ × · · · × ⟨1⟩︸ ︷︷ ︸
k1

×⟨π⟩ × · · · × ⟨π⟩︸ ︷︷ ︸
k2

× · · ·×⟨πs−1⟩ × · · · × ⟨πs−1⟩︸ ︷︷ ︸
ks

.

Then we say C has

subtype (k1, . . . , ks),

R-dimension k =
∑s

i=1
s−i+1

s ki = logqs (| C |) ,
rate R = k/n,

rank K =
∑s

i=1 ki,

rank-rate R′ = K/n.

0 ≤ k ≤ K ≤ n.

If k = K, i.e., subtype (k, 0, . . . , 0) we say that C is a free code.
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Ring-Linear Coding Theory

Classical R-Linear

Ambient space
Finite field Fq Finite chain ring

R

Code
C ⊆ Fn

q C ⊆ Rn

linear subspace R-submodule

Parameters
length n length n

dimension k R-dimension k
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Number of Codes
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q
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Density of Free Codes

How likely is it that a random code is free?

If P (n) is the probability of a random code of a fixed rate
R = k

n to be free, then we denote by

lim
n→∞

P (n)

the density of free codes.

P (n) =
number of free codes of R− dimension k

number of codes of R− dimension k
.
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Counting Codes

Proposition

The number of codes of Rn with subtype (k1, . . . , ks) is given by

Nn,q(k1, . . . , ks) := q
∑s

i=1(n−
∑i

j=1 kj)
∑i−1

j=1 kj
s∏

i=1

[
n−

∑i−1
j=1 kj

ki

]
q

.

Corollary

The number of free codes of R-dimension k is then given by

Nn,q(k, 0, . . . , 0) = q(n−k)k(s−1)

[
n

k

]
q

.

Thomas Honold and Ivan Landjev “Linear codes over finite chain rings”, The electronic

journal of combinatorics, 2000.
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Counting Codes

L(s, k): the set of all possible subtypes for R-dimension k

L(s, k) :=

{
(k1, . . . , ks) |

s∑
i=1

ki
s− i+ 1

s
= k

}
.

The number of codes in Rn of R-dimension k is

M(n, k, q, s) :=
∑

(k1,...,ks)∈L(s,k)

Nn,q(k1, . . . , ks).

The probability to have a free code of rate R = k/n is

P (n) =
q(n−k)k(s−1)

[
n
k

]
q

M(n, k, q, s)
.
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Counting Codes

The number of [n, k] linear codes over Fq is given by the
q-binomial coefficient[

n

k

]
q

=

k−1∏
i=0

qn − qi

qk − qi
.

Usual q-multinomial coefficient for n = k1 + · · ·+ ks:[
n

k1, . . . , ks

]
q

=

s∏
i=1

[∑i
j=1 kj

ki

]
q

.
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Counting Codes

The number of [n, k] linear codes over Fq is given by the
q-binomial coefficient[

n

k

]
q

=

k−1∏
i=0

qn − qi

qk − qi
.

Definition

The q- multinomial coefficient is defined as[
n

m

](r)
q

:=
∑

j1+···+jr=m

q
∑r−1

ℓ=1 (n−jℓ)jℓ+1

[
n

j1

]
q

[
j1
j2

]
q

· · ·
[
jr−1

jr

]
q

.

The number of codes in Rn of R-dimension k is

M(n, k, q, s) =

[
n

ks

](s)
q

.

Ole S. Warnaar “The Andrews-Gordon identities and q-multinomial coefficients”,

Communications in mathematical physics, 1997.
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Ring-Linear Coding Theory

Classical R-Linear

Ambient space
Finite field Fq Finite chain ring

R

Code
C ⊆ Fn

q C ⊆ Rn

linear subspace R-submodule

Parameters
length n length n

dimension k R-dimension k
rank K

Number of Codes
[
n
k

]
q

[
n
ks

](s)
q
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Combinatorial Tools

The q-Pochhammer symbol

(a; q)r :=

r−1∏
i=0

(1− aqi), (a; q)∞ :=
∏
i≥0

(1− aqi).

We denote by (q)r = (q; q)r.[
n

k

]
q

=

k−1∏
i=0

qn − qi

qk − qi
=

(q)n
(q)k(q)n−k

.

Generating function for partitions
∑

n≥0 p(n)q
n = 1

(q)∞

Series involving (a; q)r are called q-series

q-binomial theorem:∑
n≥0

(a; q)n
(q)n

zn =
(az; q)∞
(z; q)∞

.
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Density of Free Codes

Anne Schilling. “Multinomials and polynomial bosonic forms for the branching functions

of the ŝuM (2) × ŝuN (2)/ŝuM+N (2) conformal coset models”, Nuclear Physics B, 1996.

Theorem

The density as n → ∞ of free codes in Rn of R-dimension k is
given by

d(q, s) :=

 ∑
k2,...,ks≥0

s|K2+···+Ks

(1/q)K
2
2+···+K2

s−(K2+···+Ks)2/s

(1/q)k2 · · · (1/q)ks


−1

,

where Ki =
∑i

j=2 kj .

Eimear Byrne, Anna-Lena Horlemann, Karan Khathuria and Violetta Weger “Density of

Free Modules over Finite Chain Rings”, 2021.
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Andrews-Gordon Identity

Theorem (Andrews-Gordon Identity)

For | q |< 1 it holds that

AGI(q, s) :=
∑

n1,...,ns−1≥0

qN
2
1+···+N2

s−1

(q)n1 · · · (q)ns−1

=
(qs; q2s+1)∞(qs+1; q2s+1)∞(q2s+1; q2s+1)∞

(q)∞
,

where Ni = ni + · · ·+ ns−1.

For s = 2 this recovers the first Rogers-Ramanujan identity.

George E. Andrews. “An analytic generalization of the Rogers-Ramanujan identities for

odd moduli.”, Proceedings of the National Academy of Sciences, 1974.

Basil Gordon. “A combinatorial generalization of the Rogers-Ramanujan identities”,

American Journal of Mathematics, 1961.
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Density of Free Codes

Theorem

The density as n → ∞ of free codes in Rn of R-dimension k is
given by

d(q, s) :=

 ∑
k2,...,ks≥0

s|K2+···+Ks

(1/q)K
2
2+···+K2

s−(K2+···+Ks)2/s

(1/q)k2 · · · (1/q)ks


−1

,

where Ki =
∑i

j=2 kj .

AGI(1/q, s) =
∑

k2,...ks≥0

(1/q)K
2
2+···+K2

s

(1/q)k2 · · · (1/q)ks
.

Generalized identity:

Jehanne Dousse and Robert Osburn. “A q-multisum identity arising from finite chain

ring probabilities.”2021.
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Bounds

Theorem

The density as n → ∞ of free codes in Rn of R-dimension k
denoted by d(q, s) can be bounded as follows:

0 < (1/q)∞ ≤ AGI (1/q, s)−1 ≤ d(q, s) ≤ AGI(1/q′, s)−1 < 1,

for q′ := qs
2−s.
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Density for Fixed Rank

C(s,K) : set of weak compositions of K into s parts

C(s,K) :=

{
(k1, . . . , ks) |

s∑
i=1

ki = K

}
.

The number of codes in Rn of rank K is given by

W (n,K, q, s) :=
∑

(k1,...,ks)∈C(s,K)

Nn,q(k1, . . . , ks).

Theorem

Let K and n be positive integers with K = R′n. The density of
free codes in Rn of given rank K for n → ∞ is

0 if 1/2 < R′ < 1,

1 if R′ < 1/2,

≥ AGI(1/q, s)−1 if R′ = 1/2.
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Classical Gilbert-Varshamov Bound

Random Hamming-metric codes over Fq achieve the GV
bound

Alexander Barg, G. David Forney “Random codes: Minimum distances and error

exponents”, IEEE Transactions on Information Theory, 2002.

John Pierce “Limit distribution of the minimum distance of random linear codes”,

IEEE Transactions on Information Theory, 1967.

Random rank-metric codes over Fq and Fqm achieve the
GV bound

Pierre Loidreau “Asymptotic behaviour of codes in rank metric over finite fields”,

Designs, codes and cryptography, 2014.

Do ring-linear codes also attain the GV bound?
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Gilbert-Varshamov Bound

wt: additive weight function on Rn.

V (n,w) :=| {v ∈ Rn | wt(v) ≤ w} | .

N : the maximal weight an element of Rn can achieve.

g(δ) := lim
n→∞

1

n
logqs (V (n, δN)) .

AL(n, d): the maximal size of a code in Rn having
minimum distance d

R(δ) := lim sup
n→∞

1

n
logqs(AL(n, δN)).
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Gilbert-Varshamov Bound

The asymptotic Gilbert-Varshamov bound now states that

R(δ) ≥ 1− g(δ).

Theorem

For any additive weight we have that a random code over a
finite chain ring achieves the Gilbert-Varshamov bound with
high probability.

Examples for additive weights: Lee metric, Hamming metric,
homogeneous metric, ...
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Summary

What parameters should we expect?

Free codes of fixed rate as n → ∞ are neither sparse nor
dense independent of the rate, and have density at least
(1/q)∞.

Free codes of fixed rank-rate as n → ∞ are either dense or
sparse, depending on R′ = K/n.

The minimum distance of a random code is given by the
Gilbert-Varshamov bound with high probability as n → ∞.
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Open Problems

Open Problems

Establish a simplified condition on
(k1, . . . , ks), (k̄1, . . . , k̄s) ∈ L(s, k) such that we have

Nn,q(k1, . . . , ks) ≤ Nn,q(k̄1, . . . , k̄s).

For a fixed subtype (k1, . . . , ks) what is the density of codes
having this subtype?
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Thank you!
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