On the Density of Free Codes over Finite Chain Rings

Violetta Weger

Technical University of Munich

Combinatorics 2022 June 3, 2022

joint work with Eimear Byrne, Anna-Lena Horlemann and Karan Khathuria

Motivation

Large interest in code-based cryptography in

- new metrics, such as sum-rank metric, Lee metric,
- new ambient spaces such as rings.

Motivation

Large interest in code-based cryptography in

- new metrics, such as sum-rank metric, Lee metric,
- new ambient spaces such as rings.

How do random codes behave over finite chain rings?

Motivation

Large interest in code-based cryptography in

- new metrics, such as sum-rank metric, Lee metric,
- new ambient spaces such as rings.

How do random codes behave over finite chain rings?

- What parameters should we expect?
- What minimum distance should we expect?

Outline

- Ring-Linear Coding Theory
- 2 Parameters: Density of Free Codes
- 3 Minimum Distance: Gilbert-Varshamov Bound

4 Open Problems

Definition (Chain Ring)

A ring \mathcal{R} is called a **chain ring**, if the ideals of \mathcal{R} form a chain: for all ideals $I, J \subseteq \mathcal{R}$ we either have $I \subseteq J$ or $J \subseteq I$.

Let $\langle \pi \rangle$ be the unique maximal ideal of \mathcal{R} .

- s is the **nilpotency index**: the smallest positive integer such that $\pi^s = 0$.
- q is the size of the residue field: $q = |\mathcal{R}/\langle \pi \rangle|$.

Thus, $|\mathcal{R}| = q^s$.

Example

- $\bullet \ \mathbb{Z}/p^s\mathbb{Z}$
- \bullet $GR(p^s,r)$

	Classical	$\mathcal{R} ext{-Linear}$
Ambient space	Finite field \mathbb{F}_q	
Code	$\mathcal{C} \subseteq \mathbb{F}_q^n$ linear subspace	
Parameters	length n dimension k	
Number of Codes	$egin{bmatrix} n \ k \end{bmatrix}_q$	

	Classical	$\mathcal{R} ext{-Linear}$
Ambient space	Finite field \mathbb{F}_q	Finite chain ring ${\cal R}$
Code	$\mathcal{C} \subseteq \mathbb{F}_q^n$ linear subspace	$\mathcal{C} \subseteq \mathcal{R}^n$ $\mathcal{R} ext{-submodule}$
Parameters	length n dimension k	$\begin{array}{c} \text{length } n \\ ? \end{array}$
Number of Codes	$\begin{bmatrix} n \\ k \end{bmatrix}_q$?

Let $\mathcal{C} \subseteq \mathcal{R}^n$ be a code, then

$$\mathcal{C} \cong \underbrace{\langle 1 \rangle \times \cdots \times \langle 1 \rangle}_{k_1} \times \underbrace{\langle \pi \rangle \times \cdots \times \langle \pi \rangle}_{k_2} \times \cdots \times \underbrace{\langle \pi^{s-1} \rangle \times \cdots \times \langle \pi^{s-1} \rangle}_{k_s}.$$

Then we say \mathcal{C} has

- subtype (k_1, \ldots, k_s) ,
- \mathcal{R} -dimension $k = \sum_{i=1}^{s} \frac{s-i+1}{s} k_i = \log_{q^s} (|\mathcal{C}|)$,
- rate R = k/n,
- rank $K = \sum_{i=1}^{s} k_i$,
- rank-rate R' = K/n.

$$0 \le k \le K \le n$$
.

If k = K, i.e., subtype (k, 0, ..., 0) we say that C is a **free code**.

	Classical	$\mathcal{R} ext{-Linear}$
Ambient space	Finite field \mathbb{F}_q	Finite chain ring ${\cal R}$
Code	$\mathcal{C} \subseteq \mathbb{F}_q^n$ linear subspace	$\mathcal{C} \subseteq \mathcal{R}^n$ $\mathcal{R} ext{-submodule}$
Parameters	length n dimension k	length n \mathcal{R} -dimension k rank K
Number of Codes	$\begin{bmatrix} n \\ k \end{bmatrix}_q$?

How likely is it that a random code is free?

How likely is it that a random code is free?

If P(n) is the probability of a random code of a fixed rate $R = \frac{k}{n}$ to be free, then we denote by

$$\lim_{n\to\infty}P(n)$$

the **density** of free codes.

How likely is it that a random code is free?

If P(n) is the probability of a random code of a fixed rate $R = \frac{k}{n}$ to be free, then we denote by

$$\lim_{n\to\infty}P(n)$$

the **density** of free codes.

$$P(n) = \frac{\text{number of free codes of } \mathcal{R} - \text{dimension } k}{\text{number of codes of } \mathcal{R} - \text{dimension } k}$$

Proposition

The number of codes of \mathbb{R}^n with subtype (k_1, \ldots, k_s) is given by

$$N_{n,q}(k_1,\ldots,k_s) := q^{\sum_{i=1}^s (n-\sum_{j=1}^i k_j) \sum_{j=1}^{i-1} k_j} \prod_{i=1}^s \begin{bmatrix} n - \sum_{j=1}^{i-1} k_j \\ k_i \end{bmatrix}_q.$$

Corollary

The number of free codes of R-dimension k is then given by

$$N_{n,q}(k,0,\ldots,0) = q^{(n-k)k(s-1)} {n \brack k}_q.$$

Thomas Honold and Ivan Landjev "Linear codes over finite chain rings", The electronic journal of combinatorics, 2000.

L(s,k): the set of all possible subtypes for \mathcal{R} -dimension k

$$L(s,k) := \left\{ (k_1, \dots, k_s) \mid \sum_{i=1}^s k_i \frac{s-i+1}{s} = k \right\}.$$

The number of codes in \mathbb{R}^n of \mathbb{R} -dimension k is

$$M(n, k, q, s) := \sum_{(k_1, \dots, k_s) \in L(s, k)} N_{n,q}(k_1, \dots, k_s).$$

L(s,k): the set of all possible subtypes for \mathcal{R} -dimension k

$$L(s,k) := \left\{ (k_1, \dots, k_s) \mid \sum_{i=1}^s k_i \frac{s-i+1}{s} = k \right\}.$$

The number of codes in \mathbb{R}^n of \mathbb{R} -dimension k is

$$M(n, k, q, s) := \sum_{(k_1, \dots, k_s) \in L(s, k)} N_{n,q}(k_1, \dots, k_s).$$

The probability to have a free code of rate R = k/n is

$$P(n) = \frac{q^{(n-k)k(s-1)} {n \brack k}_q}{M(n, k, q, s)}.$$

The number of [n, k] linear codes over \mathbb{F}_q is given by the q-binomial coefficient

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \prod_{i=0}^{k-1} \frac{q^n - q^i}{q^k - q^i}.$$

Usual q-multinomial coefficient for $n = k_1 + \cdots + k_s$:

$$\begin{bmatrix} n \\ k_1, \dots, k_s \end{bmatrix}_q = \prod_{i=1}^s \begin{bmatrix} \sum_{j=1}^i k_j \\ k_i \end{bmatrix}_q.$$

The number of [n, k] linear codes over \mathbb{F}_q is given by the q-binomial coefficient

$${n \brack k}_q = \prod_{i=0}^{k-1} \frac{q^n - q^i}{q^k - q^i}.$$

Definition

The q- multinomial coefficient is defined as

$$\begin{bmatrix} n \\ m \end{bmatrix}_q^{(r)} := \sum_{j_1 + \dots + j_r = m} q^{\sum_{\ell=1}^{r-1} (n - j_\ell) j_{\ell+1}} \begin{bmatrix} n \\ j_1 \end{bmatrix}_q \begin{bmatrix} j_1 \\ j_2 \end{bmatrix}_q \dots \begin{bmatrix} j_{r-1} \\ j_r \end{bmatrix}_q .$$

The number of codes in \mathbb{R}^n of \mathbb{R} -dimension k is

$$M(n, k, q, s) = \begin{bmatrix} n \\ ks \end{bmatrix}_q^{(s)}$$
.

Ole S. Warnaar "The Andrews-Gordon identities and q-multinomial coefficients", Communications in mathematical physics, 1997.

	Classical	$\mathcal{R} ext{-Linear}$
Ambient space	Finite field \mathbb{F}_q	Finite chain ring ${\cal R}$
Code	$\mathcal{C} \subseteq \mathbb{F}_q^n$ linear subspace	$\mathcal{C} \subseteq \mathcal{R}^n$ $\mathcal{R} ext{-submodule}$
Parameters	length n dimension k	length n \mathcal{R} -dimension k rank K
Number of Codes	${n \brack k}_q$	${n \brack ks} {s \brack q}$

Combinatorial Tools

The q-Pochhammer symbol

$$(a;q)_r := \prod_{i=0}^{r-1} (1 - aq^i), \ (a;q)_{\infty} := \prod_{i>0} (1 - aq^i).$$

We denote by $(q)_r = (q;q)_r$.

- Generating function for partitions $\sum_{n\geq 0} p(n)q^n = \frac{1}{(q)_{\infty}}$
- Series involving $(a;q)_r$ are called q-series
- q-binomial theorem:

$$\sum_{n>0} \frac{(a;q)_n}{(q)_n} z^n = \frac{(az;q)_\infty}{(z;q)_\infty}.$$

Anne Schilling. "Multinomials and polynomial bosonic forms for the branching functions of the $\widehat{su}_M(2) \times \widehat{su}_M(2)/\widehat{su}_{M+N}(2)$ conformal coset models", Nuclear Physics B, 1996.

Theorem

The density as $n \to \infty$ of free codes in \mathbb{R}^n of \mathbb{R} -dimension k is given by

$$d(q,s) := \left(\sum_{\substack{k_2, \dots, k_s \ge 0 \\ s \mid K_2 + \dots + K_s}} \frac{(1/q)^{K_2^2 + \dots + K_s^2 - (K_2 + \dots + K_s)^2 / s}}{(1/q)_{k_2} \cdots (1/q)_{k_s}} \right)^{-1},$$

where $K_i = \sum_{j=2}^i k_j$.

Eimear Byrne, Anna-Lena Horlemann, Karan Khathuria and Violetta Weger "Density of Free Modules over Finite Chain Rings", 2021.

Andrews-Gordon Identity

Theorem (Andrews-Gordon Identity)

For |q| < 1 it holds that

$$AGI(q,s) := \sum_{\substack{n_1,\dots,n_{s-1} \ge 0}} \frac{q^{N_1^2 + \dots + N_{s-1}^2}}{(q)_{n_1} \cdots (q)_{n_{s-1}}}$$

$$= \frac{(q^s; q^{2s+1})_{\infty} (q^{s+1}; q^{2s+1})_{\infty} (q^{2s+1}; q^{2s+1})_{\infty}}{(q)_{\infty}}$$

where $N_i = n_i + \cdots + n_{s-1}$.

For s = 2 this recovers the first Rogers-Ramanujan identity.

George E. Andrews. "An analytic generalization of the Rogers-Ramanujan identities for odd moduli.", Proceedings of the National Academy of Sciences, 1974.

Basil Gordon. "A combinatorial generalization of the Rogers-Ramanujan identities", American Journal of Mathematics, 1961.

Theorem

The density as $n \to \infty$ of free codes in \mathbb{R}^n of \mathbb{R} -dimension k is given by

$$d(q,s) := \left(\sum_{\substack{k_2,\dots,k_s \ge 0\\ s \mid K_2 + \dots + K_s}} \frac{(1/q)^{K_2^2 + \dots + K_s^2 - (K_2 + \dots + K_s)^2/s}}{(1/q)_{k_2} \cdots (1/q)_{k_s}} \right)^{-1},$$

where $K_i = \sum_{j=2}^{i} k_j$.

$$AGI(1/q,s) = \sum_{k_2,\dots,k_s>0} \frac{(1/q)^{K_2^2+\dots+K_s^2}}{(1/q)_{k_2}\cdots(1/q)_{k_s}}.$$

Theorem

The density as $n \to \infty$ of free codes in \mathbb{R}^n of \mathbb{R} -dimension k is given by

$$d(q,s) := \left(\sum_{\substack{k_2,\dots,k_s \ge 0\\ s \mid K_2 + \dots + K_s}} \frac{(1/q)^{K_2^2 + \dots + K_s^2 - (K_2 + \dots + K_s)^2/s}}{(1/q)_{k_2} \dots (1/q)_{k_s}}\right)^{-1},$$

where $K_i = \sum_{j=2}^{i} k_j$.

$$AGI(1/q, s) = \sum_{k_2, \dots k_s \ge 0} \frac{(1/q)^{K_2^2 + \dots + K_s^2}}{(1/q)_{k_2} \cdots (1/q)_{k_s}}.$$

Generalized identity:

Jehanne Dousse and Robert Osburn. "A q-multisum identity arising from finite chain ring probabilities." 2021.

Bounds

Theorem

The density as $n \to \infty$ of free codes in \mathbb{R}^n of \mathbb{R} -dimension k denoted by d(q,s) can be bounded as follows:

$$0 < (1/q)_{\infty} \le AGI(1/q, s)^{-1} \le d(q, s) \le AGI(1/q', s)^{-1} < 1,$$

for
$$q' := q^{s^2 - s}$$
.

Density for Fixed Rank

C(s,K): set of weak compositions of K into s parts

$$C(s,K) := \left\{ (k_1, \dots, k_s) \mid \sum_{i=1}^s k_i = K \right\}.$$

The number of codes in \mathbb{R}^n of rank K is given by

$$W(n, K, q, s) := \sum_{(k_1, \dots, k_s) \in C(s, K)} N_{n,q}(k_1, \dots, k_s).$$

Density for Fixed Rank

C(s,K): set of weak compositions of K into s parts

$$C(s,K) := \left\{ (k_1, \dots, k_s) \mid \sum_{i=1}^s k_i = K \right\}.$$

The number of codes in \mathbb{R}^n of rank K is given by

$$W(n, K, q, s) := \sum_{(k_1, \dots, k_s) \in C(s, K)} N_{n,q}(k_1, \dots, k_s).$$

<u>Theorem</u>

Let K and n be positive integers with K = R'n. The density of free codes in \mathbb{R}^n of given rank K for $n \to \infty$ is

$$\begin{cases} 0 & \text{if } 1/2 < R' < 1, \\ 1 & \text{if } R' < 1/2, \\ \ge AGI(1/q, s)^{-1} & \text{if } R' = 1/2. \end{cases}$$

Classical Gilbert-Varshamov Bound

• Random Hamming-metric codes over \mathbb{F}_q achieve the GV bound

Alexander Barg, G. David Forney "Random codes: Minimum distances and error exponents", IEEE Transactions on Information Theory, 2002.

John Pierce "Limit distribution of the minimum distance of random linear codes", IEEE Transactions on Information Theory, 1967.

• Random rank-metric codes over \mathbb{F}_q and \mathbb{F}_{q^m} achieve the GV bound

Pierre Loidreau "Asymptotic behaviour of codes in rank metric over finite fields", Designs, codes and cryptography, 2014.

Do ring-linear codes also attain the GV bound?

Gilbert-Varshamov Bound

• wt: additive weight function on \mathbb{R}^n .

$$V(n, w) := |\{v \in \mathcal{R}^n \mid \operatorname{wt}(v) \le w\}|.$$

• N: the maximal weight an element of \mathbb{R}^n can achieve.

$$g(\delta) := \lim_{n \to \infty} \frac{1}{n} \log_{q^s} (V(n, \delta N)).$$

• AL(n, d): the maximal size of a code in \mathbb{R}^n having minimum distance d

$$\overline{R}(\delta) := \limsup_{n \to \infty} \frac{1}{n} \log_{q^s} (AL(n, \delta N)).$$

Gilbert-Varshamov Bound

The asymptotic Gilbert-Varshamov bound now states that

$$\overline{R}(\delta) \ge 1 - g(\delta).$$

Gilbert-Varshamov Bound

The asymptotic Gilbert-Varshamov bound now states that

$$\overline{R}(\delta) \ge 1 - g(\delta).$$

Theorem

For any additive weight we have that a random code over a finite chain ring achieves the Gilbert-Varshamov bound with high probability.

Examples for additive weights: Lee metric, Hamming metric, homogeneous metric, ...

Summary

What parameters should we expect?

- Free codes of fixed rate as $n \to \infty$ are neither sparse nor dense independent of the rate, and have density at least $(1/q)_{\infty}$.
- Free codes of fixed rank-rate as $n \to \infty$ are either dense or sparse, depending on R' = K/n.
- The minimum distance of a random code is given by the Gilbert-Varshamov bound with high probability as $n \to \infty$.

Open Problems

Open Problems

• Establish a simplified condition on $(k_1, \ldots, k_s), (\bar{k}_1, \ldots, \bar{k}_s) \in L(s, k)$ such that we have

$$N_{n,q}(k_1,\ldots,k_s) \le N_{n,q}(\bar{k}_1,\ldots,\bar{k}_s).$$

• For a fixed subtype (k_1, \ldots, k_s) what is the density of codes having this subtype?

Thank you!