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Part 1: Turing

Part 1: Turing

1930: Before invention of computers: Turing machines
Goals:

What can Turing machines do and what not → Decidability
What can Turing machines do efficiently → Intractability
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Automata Theory

Ingredients

Σ the alphabet: finite set of symbols
{a, . . . , z}, {0, 1}
w a word: a finite sequence of symbols in Σ
hello, 01101
ε the empty word
Σ⋆ the Kleene star: set of all possible words with symbols
in Σ. More formally:

Σ0 = {ε}
Σ1 = Σ

Σi+1 = {ab | a ∈ Σi, b ∈ Σ}
Σ⋆ = ∪i≥0Σ

i

L ⊆ Σ⋆ a language: set of words
∅,Σ⋆, english
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Automata Theory

Definition (Deterministic Finite Automaton (DFA))
A deterministic finite automaton A is a tuple (Σ,Q, δ, q0,F),
where

Σ is an alphabet
Q is a finite set of states
δ : Q × Σ → Q is a transition function
q0 ∈ Q is the initial state
F ⊆ Q is the set of final states
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Automata Theory

Example

Σ = {0, 1}
Q = {q0, q1, q2}

transition table

δ 0 1
q0 q2 q0
q1 q1 q1
q2 q2 q1

F = {q1}
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Automata Theory

Example

transition diagram:
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Automata Theory

We can define the transition map for words, inductively as
follows

δ̂ : Q × Σ⋆ → Q
(q,wa) 7→ δ(δ̂(q,w), a).

Notions:
An execution of a word w ∈ Σ⋆ by A is δ̂(q0,w).
A word w ∈ Σ⋆ is accepted by A, if δ̂(q0,w) ∈ F.
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Automata Theory

1100 is not accepted by A
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Automata Theory

1100 is not accepted by A
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Automata Theory

1100 is not accepted by A
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Automata Theory
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Automata Theory

1100 is not accepted by A
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Automata Theory

1010 is accepted by A
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Automata Theory

1010 is accepted by A
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Automata Theory

1010 is accepted by A
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Automata Theory

1010 is accepted by A
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Automata Theory

1010 is accepted by A
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Automata Theory

Definition
The language accepted by A is

L(A) = {w | δ̂(q0,w) ∈ F}.

Definition
We call a language L regular, if there exists a deterministic
finite automaton A, such that L = L(A).

In our example the language accepted by the automaton is all
binary words containing 01.
Notation: L = (0 + 1)⋆01(0 + 1)⋆.
Homework Give a deterministic finite automaton accepting all
binary words ending in 00.
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Automata Theory

Definition (Nondeterministic finite automaton (NFA))
A nondeterministic finite automaton A is a tuple (Σ,Q, δ, q0,F),
where

Σ is an alphabet
Q is a finite set of states
δ : Q × Σ → P(Q) is a transition function
q0 ∈ Q is the initial state
F ⊂ Q are the final states
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Automata Theory

Definition (Nondeterministic finite automaton (NFA))
A nondeterministic finite automaton A is a tuple (Σ,Q, δ, q0,F),
where

Σ is an alphabet
Q is a finite set of states
δ : Q × Σ → P(Q) is a transition function
q0 ∈ Q is the initial state
F ⊂ Q are the final states

Violetta Weger Classical Information Theory



Automata Theory

DFA accepting words ending in 01

NFA accepting words ending in 01
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Automata Theory

Transition table for the NFA

δ 0 1
q0 {q0, q1} {q0}
q1 ∅ ∅
q2 ∅ {q1}

and the language accepted by an NFA is

L(A) = {w | δ̂(q0,w) ∩ F ̸= ∅}.
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Automata Theory

Example 1001 is accepted
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Automata Theory

Theorem (Cool Fact)
If AN is an NFA, then there exists an AD a DFA, such that

L(AN) = L(AD).

Homework Give a nondeterministic finite automaton
accepting all binary words containing 01 or ending in 00.
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Automata Theory

Theorem (Properties of Regular Languages)
Let L,M ⊆ Σ⋆ be regular languages, then

L⋆ is a regular language.
LM is a regular language.
L ∩M is a regular language.
L ∪M is a regular language.
LR is a regular language.
L is a regular language.
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Automata Theory

Proof of L is a regular language.

L = {w ∈ Σ⋆ | w ̸∈ L} = Σ⋆ \ L.

Let A = (Σ,Q, δ, q0,F) be a DFA accepting L. Define the DFA
B to be (Σ,Q, δ, q0,Q \ F). We claim that L(B) = L:

w ∈ L(B) ⇔ δ̂(q0,w) ∈ Q \ F ⇔ w ̸∈ L.

Homework: Prove that if L is a regular language, then

Lpre = {w | ∃a ∈ Σ with wa ∈ L}

is a regular language.
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Turing Machines

Definition (Deterministic Turing Machine (DTM))
A deterministic Turing machine M is a tuple
(Σ,Γ,B,Q, q0,F, δ), where

Σ is an alphabet, called input alphabet
Γ ⊃ Σ is an alphabet, called tape alphabet
B ∈ Γ \ Σ is the blank symbol
Q is a finite set of states
q0 ∈ Q is the initial state
F ⊆ Q is the set of final states
δ is a partial function

δ : Q × Γ → Q × {L,R,S} × Γ

(q, s) 7→ (q′,D, s′)

Different notation: −1 = L left, 1 = R right, 0 = S stay.
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Turing Machines

The tape is bounded on the left.
The tape is infinite on the right.
The tape is divided into cells.
Each cell carries a symbol from Γ.
The header can read and write.

Violetta Weger Classical Information Theory



Turing Machines

Definition (Configuration)
A configuration of a DTM M = (Σ,Γ,B,Q, q0,F, δ) is (q, i, v),
where

q ∈ Q is the state in which M is in
i ∈ N is the cell number to which the header is pointing
v ∈ Γ⋆ is the word written on the tape from the first to the
last non-blank symbol
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Turing Machines

Definition
A configuration c′ = (q′, i′, v′) is derived in one step from
c = (q, i, v) in the DTM M, if

δ(q, vi) = (q′,D, a),

i′ =


i + 1 if D = R
i if D = S
i − 1 if D = L

,

v′ = v, except that v′i = a.

Notation: c ⊢ c′
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Turing Machines

Definition
A configuration c′ is derived from c in the DTM M, if there
exists a sequence of configurations c1, . . . , ck, such that

c ⊢ c1 ⊢ · · · ⊢ ck ⊢ c′.

Notation: c ⊢⋆ c′.
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Turing Machines

Notions
The inital configuration of M on the input w is (q0, 1,w).
The execution of M on the input w is the sequence of
configurations (c0, . . .), where c0 is the initial configuration
and ci ⊢ ci+1∀i.
The final configuration is a configuration (q, i, v), such that
δ(q, vi) is not defined.
The DTM M stops on the input w, if the execution of M on
the input w reaches a final configuration.
If the DTM M stops on the input w, then the computation
M(w) of M on the input w is the word written on the tape,
when the final configuration is reached.
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Turing Machines

The DTM M accepts w, if the execution of M on the input
w reaches a final configuration (q, i, v), with q ∈ F.
The DTM M rejects w, if the execution of M on the input w
reaches a final configuration (q, i, v), with q ̸∈ F.
The language accepted by M is the set of words w, such that
M accepts w.
The function computed by M is the partial function, that
associated M(w) to w, for all w, such that M stops on w.
The language L is derived by M, if L is accepted by M and
M always stops.
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Turing Machines

Example

A DTM accepting L = {anbn | n ≥ 0} is given by
Σ = {a, b},
Γ = {a, b,Da,Db,B},
Q = {q0, qwb, qsa, qfa, qe, qf, qr},
F = {qf}

and
δ a b Da Db B
q0 (qwb,R,Da) (qr,S, b) (qf,S,B)
qwb (qwb,R, a) (qsa,L,Db) (qwb,R,Db) (qr,S,B)
qsa (qsa,L, a) (qfa,R,Da) (qsa,L,Db)
qfa (qwb,R,Da) (qe,S,Db)
qe (qe,R,Db) (qf,S,B)
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Turing Machines

Example aabb
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Turing Machines

Example aabb
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Turing Machines

Example aabb
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Turing Machines
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Turing Machines
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Turing Machines
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Turing Machines
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Turing Machines
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Turing Machines

Example aabb
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Turing Machines

Example aabb
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Turing Machines

Homework Describe formally a DTM that accepts the binary
encodings of even numbers.

Difference to Automaton
An Automaton is without memory, whereas a TM has a
memory in from of the tape.
The TM can change the word written on the tape.
An Automaton is a TM, that never changes the direction,
nor changes the symbols on the tape.
TMs accept more languages: recursively enumerable
languages
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Turing Machines

A nondeterministic TM (NTM) is a TM, where the partial
function δ has multiple outputs and the TM can choose one.

An NTM M accepts an input w, if there is any sequence of
configurations on w that reaches a final configuration.

Theorem
If MN is an NTM, then there exists MD a DTM, such that

L(Mn) = L(MD).

BUT the DTM may take exponentially more time than the
NTM.
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Turing Machines
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Turing Machines

What is the difference between a TM and a classical computer?
A computer can simulate a TM.
A TM can simulate a computer (if n is the number of steps
of a computer, then the TM needs at most a polnomial in n
number of steps)
They accept the same language

We solved the question of what computers can do. What is it
that computers cannot do?

Definition (Decidable)
A language L is decidable, if there exists a TM M, such that
L = L(M) and M always stops.

Equivalently, we can ask, are there undecidable
languages/problems?
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Turing Machines
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Turing Machines

Examples

Regular language: Binary words containing 01
Decidable, but not regular: L = {anbn | n ≥ 0}
Recursively enumerable but not decidable: the Halting
problem: H(M) = {w | M halts on input w},
L = {(M,w) | w ∈ H(M)}.
No recursively enumerable L = {M | L(M) = ∅}.

Violetta Weger Classical Information Theory



Complexity Classes
What can be solved efficiently?

Definition (Running Time)
A TM M is said to have running time/ time complexity T(n),
if, whenever M is given an input w of length n, M halts after at
most T(n) moves.

Definition (P)
A problem P is in P, if it can be solved by a DTM in
polynomial time.

Examples
Multiplication: Given a, b, k ∈ N encoded in binary, is the
kth bit of a · b equal to 1?
Paths: Given a graph G and s, t vertices, is there a path
from s to t?
Given n ∈ N, is n a prime?
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Complexity Classes

Definition (NP)
A problem P is in NP, if it can be solved by a NTM in
polynomial time.

or equivalently
Definition
A problem P is in NP, if a candidate for a solution can be
checked by a DTM in polynomial time.

Clearly P ⊆ NP but it remains one of the hardest problems to
prove or disprove if P = NP.
Examples

Knapsack: Given (p1, . . . , pk) ∈ Zk and t ∈ Z, is there a
subset S ⊂ {1, . . . , k}, such that

∑
i∈S pi = t?

Clique: Given a graph G and k ∈ N, does G contain a clique
of size k, i.e. a set S of k vertices, such that ∀u, v ∈ S : (u, v)
is an edge of G?
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Complexity Classes

Definition (Polynomial Time Reduction)
Given two problems P1 and P2, we can reduce P1 to P2 in
polynomial time, if

any instance of P1 can be transformed in polynomial time
to an instance of P2,
assuming a polynomial time oracle that solves P2, we get a
solution of this instance,
we can transform the solution of P2 is polynomial time to a
solution of P1.

P1 is at least as hard as P2.
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Complexity Classes

Definition (NP-hard)
A problem P is called NP-hard, if any problem in NP can be
reduced in polynomial time to P.

Consequences
Solving an NP-hard problem in polynomial time, means
any problem in NP can be solved in polynomial time.
To prove P = NP, it is enough to find a polynomial time
algorithm for one NP-hard problem.
To prove a new problem is NP-hard, it is enough to find a
polynomial time reduction of one NP-hard problem to this
new problem.
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Complexity Classes

Definition (NP-complete)
A problem P is called NP-complete, if P in NP-hard and in NP.
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Complexity Classes

Examples of NP-complete problems:
Knapsack problem
Clique problem

Examples of problems in NP, that are not NP-hard:
Integer factorization: Given n = p · q ∈ N, where p, q are
primes find p and q.
Discrete logarithm problem: Given n ∈ N and x, y ∈ Z/nZ,
find k ∈ N, such that y = xk mod n.

Examples of NP-hard problems, that are not in NP:
Halting Problem
Towers of Hanoi
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Complexity Classes

There are many more complexity classes:
google ”Complexity Zoo” to find a list of over 500 classes.

Important Examples
PSPACE: Problems that can be solved by a DTM using
polynomial space
EXP: Problems that can be solved by a DTM in
exponential time
CO − NP: the complement of all languages that are in NP.
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Part2: Shannon

Part 2: Shannon

1948: Father of Information Theory with the article ”A
mathematical theory of communication”
Goals:

What is ”information” → Entropy
How can we provide information efficiently and reliably? →
Channels, Codes
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Entropy

Before Shannon in 1928: Hartley

Information is the value of a
random variable
Also suggested a measure of
information

Hartley’s measure of the amount of information by observing a
discrete random variable X

I(X) = logb(L),

where L is the number of possible values of X.
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Entropy

But there is a problem

Since L = 2, in both examples I(X) = 1.
But in a) a white ball is worth less information
Hartley ignores the probabilities of the values
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Entropy

But there is a problem

Since L = 2, in both examples I(X) = 1.
But in a) a white ball is worth less information
Hartley ignores the probabilities of the values
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Entropy

What should Hartley have done instead?

In a) there is 1 chance out of 4 of choosing a black ball:

log2

(
4
1

)
= 2

and there are 3 chances out of 4 of choosing a white ball:

log2

(
4
3

)
= 0.415

Weight them by their probabilities of occurence:
1
4 · 2 +

3
4 · 0.415 = 0.811.

Or equivalently

−1
4 log2

(
1
4

)
− 3

4 log2

(
3
4

)
= 0.811.
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Entropy
In general, if the ith possible value of X has probability pi, then
the amount of information provided by X is

−
L∑

i=1
pi log(pi).

What if pi = 0?
Notation:

If f is a real valued function, then Supp(f) is the subset of
its domain, where f takes non-zero values.
PX is the probability distribution for the discrete r.v. X

Definition (Uncertainty/Entropy)
The uncertainty or entropy of a discrete random variable X is

H(X) = −
∑

x∈Supp(PX)

PX(x) logb(PX(x)).
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Entropy

Remark

H(X) = E[− log(PX(X))].

Also works for discrete random vectors:
Remark

H(X,Y) = E[− log(PX,Y(X,Y))].

Example:
X has two possible values x1 and x2 with PX(x1) = p and
PX(x2) = 1 − p, for some 0 < p < 1, then the uncertainty of X
in bits is the binary entropy function

H(X) = −p log2(p)− (1 − p) log2(1 − p) = h(p).

Violetta Weger Classical Information Theory



Entropy

Theorem (Information Theory inequality)
For a positive real number r

log(r) ≤ (r − 1) log(e).

With equality if and only if r = 1.

Theorem
If the discrete random variable X has L possible values, then

0 ≤ H(X) ≤ log(L),

with equality on the left side, if PX(x) = 1 for some x, and
equality on the right side, if PX(x) = 1

L for all x.
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Entropy

Definition (Conditional Uncertainty)
The conditional uncertainty/entropy of the discrete random
variable X given the event Y = y occurs is

H(X | Y = y) = −
∑

x∈Supp(PX|Y(.|y))
PX|Y log(PX|Y(x | y)).
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Entropy

Remark

H(X | Y = y) = E[− log(PX|Y(X | Y)) | Y = y].

Corollary
If the discrete random variable X has L possible values, then

0 ≤ H(X | Y = y) ≤ log(L),

with equality on the left side, if PX|Y(x | y) = 1 for some x, and
equality on the right side, if PX|Y(x | y) = 1

L for all x.
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Entropy

Definition (Conditional Uncertainty)
The conditional uncertainty of the discrete random variable X
given the discrete random variable Y is

H(X | Y) =
∑

y∈Supp(PY)

PY(y)H(X | Y = y).
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Entropy

Remark

H(X | Y) = E[− log(PX|Y(X | Y))].

Corollary
If the discrete random variable X has L possible values then

0 ≤ H(X | Y) ≤ log(L),

with equaltiy on the left side, if for all
y ∈ Supp(PY) : PX|Y(x | y) = 1 for some x, i.e. Y essentially
determines X, and equality on the right side, if for all
y ∈ Supp(PY) : PX|Y(x | y) = 1

L for all x.

Violetta Weger Classical Information Theory



Entropy

Definition (Information Divergence/ Relative Entropy)
If X and X̃ are discrete random variables with the same set of
possible values, then the information divergence between PX and
PX̃ is

D(PX || PX̃) =
∑

x∈Supp(PX)

PX(x) log
(

PX(x)
PX̃(x)

)
.

Note:
If there is a x ∈ Supp(PX) but not in Supp(PX̃), i.e.
PX(x) ̸= 0 and PX̃(x) = 0, then D(PX || PX̃) = ∞.
In general: D(PX || PX̃) ̸= D(PX̃ || PX).
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Entropy

Remark

D(PX || PX̃) = E
[
log

(
PX(x)
PX̃(x)

)]
.

Theorem (Divergence Inequality)

D(PX || PX̃) ≥ 0,

with equality if and only if PX = PX̃.
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Entropy

Knowing Y reduces our uncertainty about X

Theorem (2. Entropy Inequality)
For any two discrete random variables X,Y

H(X | Y) ≤ H(X),

with equality if and only if X and Y are independent.

Theorem (The Chain Rule for Uncertainty)

H(X1, . . . ,XN) = H(X1)+H(X2 | X1)+· · ·+H(XN | X1, . . . ,XN−1).
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Information

But wait, what is information now?

Shannon: ”Information is the difference between uncertainties.”
How much information does the random variable Y give about
the random variable X?
Shannon: ”The amount by which Y reduces the uncertainty
about X.”
Definition (Mutual Information)
The mutual information between the discrete random variable X
and Y is

I(X;Y) = H(X)− H(X | Y).
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Information
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Information

Why mutual?

H(X,Y) = H(X) + H(Y | X)

= H(Y) + H(X | Y)

Hence
H(X)− H(X | Y) = H(Y)− H(Y | X)

That is

I(X;Y) = I(Y;X).
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Information

Definition (Conditional Mutual Information)
The conditional mutual information between the discrete
random variable X and Y given the event Z = z occurs is

I(X;Y | Z = z) = H(X | Z = z)− H(X | Y,Z = z).

Definition (Conditional Mutual Information)
The conditional mutual information between the discrete random
variable X and Y given the discrete random variable Z is

I(X;Y | Z) = H(X | Z)− H(X | Y,Z).
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Information

Theorem
For any two discrete random variables X,Y

0 ≤ I(X;Y) ≤ min{H(X),H(Y)},

with equailty on the left side, if X and Y are independent, and
equality on the right side, if Y essentially determines X or X
essentially determines Y.
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Channels

Now we have solved the question of what is information.

How can we transmit information efficiently and reliably from
its source to the destination?

The source can choose the signal.
The channel specifies the conditional probabilites of the
signals that can be received.
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Channels
We will only consider time-discrete channels, such that the
channel input and output can be described as sequences of
random variables:

Input sequence: X1, . . .

Output sequence: Y1, . . .

Definition (Discrete Memoryless Channel (DMC))
A discrete memoryless channel (DMC) consists of

A the input alphabet: its symbols represent one of the
signals the sender chan choose
B the output alphabet: its symbols represent one of the
output signals
PY|X(. | x) the conditional probability distribution over B for
all x ∈ A, which governs the channel behaviour, such that

P(yn | x1, . . . , xn, y1, . . . , yn−1) = PY|X(yn | xn).
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Channels

Example: Binary Symmetric Channel (BSC)

Example: Binary Erasure Channel (BEC)
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Channels

Definition (DMC without Feedback)
We call a DMC to be without feedback, if

P(xn | x1, . . . , xn−1, y1, . . . , yn−1) = P(xn | x1, . . . , xn−1),

i.e., we are not using the past output digits to choose new inputs.

Theorem
When a DMC is used without feedback, then

P(y1, . . . , yn | x1, . . . , xn) =
n∏

i=1
PY|X(yi | xi).
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Channels

Recall: The DMC specifies the conditional probability
distribution, but the sender is free to choose the input
probability distribution.

Definition (Capacity)
The capacity of a channel is

C = max
PX

{I(X;Y)}.

Example:
BSC: C = 1 − h(p)
BEC: C = 1 − p

Violetta Weger Classical Information Theory



Channels

How to reliably transmit information through a DMC?

We use k information bits to encode a message into n channel
digits.
This has a rate of R = k

n bits per use.
The channel is noisy, i.e., it enters some errors in what we send:
We encode U1, . . . ,Uk and send this to a receiver, while the
receiver might decode Ũ1, . . . , Ũk.
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Channels

Definition (Bit Error Probability)
The fraction of the digits that are in error is the bit error
probability

Pb =
1
k

k∑
i=1

pei,

where
pei = P(Ũi ̸= Ui).

Definition (Block Error Probability)
The block error probability

PB = P((Ũ1, . . . , Ũk) ̸= (U1, . . . ,Uk)).

Clearly
Pb ≤ PB ≤ kPb.
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Channels

Theorem
If the information bits are sent at rate R via a DMC of capacity
C < R without feedback, then the bit error probability at the
destination satisfies

Pb ≥ h−1
(

1 − C
R

)
,

where h is the binary entropy function, and

h−1(x) = min{p | h(p) = x}.

Thus Pb cannot be very small when R > C.
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Channels

Theorem (Noisy Coding Theorem for DMC)
Consider a transmission of information bits at rate R = k

n via a
DMC of capacity C > R without feedback, then given any ε > 0
one can always achieve

PB < ε

by choosing n large enough.

This was the bombshell of Shannons 1948 paper:

If R < C one can get reliability.
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Summary

What computers can do:
Automata theory are memoryless Turing machines,
accepting regular languages
Turing machines are basically classical computers

How efficiently they can do it:
Complexity classes

What is information:
the difference of uncertainty

How to transmit information reliably:
through channels
using coding theory
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The End
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