Bounds and optimal codes in the Lee metric

Violetta Weger

Technical University of Munich

ТШ

PICS: Postgraduate International Coding theory Seminar January 27, 2022

joint work with Eimear Byrne

- From an information theoretic perspective: The Lee metric is best suited for channels, where the error +x, -x are equally likely and the magnitude matters.
- From an algebraic perspective: Some excellent but non-linear binary codes can be represented as linear codes over Z/4Z endowed with the Lee metric.
 - A. Roger Hammons, P. Vijay Kumar, A. Robert Calderbank, Neil J.A. Sloane and Patrick Solé "The Z₄-linearity of Kerdock, Preparata, Goethals, and related codes", IEEE Transactions on Information Theory, 1994.
- From a cryptographic perspective: The Lee metric promises lower key sizes/signature sizes, since one can insert more errors.

1 Preliminaries

- Ring-Linear Coding Theory
- Lee Metric
- 2 Singleton Bound in the Lee MetricMaximum Lee-Distance Codes
- Bound in the Lee MetricConstant Lee-Weight Codes

4 Open Problems

_

	Classical	$\mathbb{Z}/p^s\mathbb{Z}$ -Linear
Ambient space	Finite field \mathbb{F}_q	
Linear code	$\mathcal{C} \subseteq \mathbb{F}_q^n$ linear subspace	
Parameters	length n dimension k	

	Classical	$\mathbb{Z}/p^s\mathbb{Z}$ -Linear
Ambient space	Finite field \mathbb{F}_q	Integer residue ring $\mathbb{Z}/p^s\mathbb{Z}$
Linear code	$\mathcal{C} \subseteq \mathbb{F}_q^n$ linear subspace	$\mathcal{C} \subseteq \left(\mathbb{Z}/p^s\mathbb{Z}\right)^n$ $\mathbb{Z}/p^s\mathbb{Z} ext{-submodule}$
Parameters	length n dimension k	$\begin{array}{c} \text{length } n \\ ? \end{array}$

• $\mathcal{C} = \langle (1,2,3), (2,2,0) \rangle \subseteq \mathbb{F}_5^3$ has length 3, dimension 2 and thus $|\mathcal{C}| = 5^2$.

- $C = \langle (1,2,3), (2,2,0) \rangle \subseteq \mathbb{F}_5^3$ has length 3, dimension 2 and thus $|C| = 5^2$.
- $\mathcal{C} = \langle (1,2,3), (1,2,0) \rangle \subseteq \mathbb{Z}/4\mathbb{Z}^3$ has length 3 and $|\mathcal{C}| = 4^2$.

- $C = \langle (1,2,3), (2,2,0) \rangle \subseteq \mathbb{F}_5^3$ has length 3, dimension 2 and thus $|C| = 5^2$.
- $\mathcal{C} = \langle (1,2,3), (1,2,0) \rangle \subseteq \mathbb{Z}/4\mathbb{Z}^3$ has length 3 and $|\mathcal{C}| = 4^2$.
- $\mathcal{C} = \langle (1,2,3), (2,2,0) \rangle \subseteq \mathbb{Z}/4\mathbb{Z}^3$ has length 3 and $|\mathcal{C}| = 8$.

Let $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ be a code, then

$$\mathcal{C} \cong (\mathbb{Z}/p^s\mathbb{Z})^{k_1} \times (\mathbb{Z}/p^{s-1}\mathbb{Z})^{k_2} \times \cdots \times (\mathbb{Z}/p\mathbb{Z})^{k_s}.$$

Then we say \mathcal{C} has

- subtype (k_1, \ldots, k_s) ,
- type $k = \sum_{i=1}^{s} \frac{s-i+1}{s} k_i = \log_{p^s} \left(\mid \mathcal{C} \mid \right),$
- rate R = k/n,
- rank $K = \sum_{i=1}^{s} k_i$,
- free rank k_1 .

$$0 \le k_1 \le k \le K \le n.$$

If $k_1 = k = K$, we say that C is a **free code**.

- $C = \langle (1,2,3), (1,2,0) \rangle \subseteq \mathbb{Z}/4\mathbb{Z}^3$ has length 3 and subtype (2,0), thus k = K = 2 and $|C| = 4^2$.
- $\mathcal{C} = \langle (1,2,3), (2,2,0) \rangle \subseteq \mathbb{Z}/4\mathbb{Z}^3$ has length 3 and subtype (1,1), thus K = 2, k = 3/2 and $|\mathcal{C}| = 4^{3/2} = 8$.

Systematic Form

If C has subtype (k_1, \ldots, k_s) and rank K then

$$G = \begin{pmatrix} \mathrm{Id}_{k_1} & * & \cdots & * & * \\ 0 & p \mathrm{Id}_{k_2} & \cdots & p * & p * \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & p^{s-1} \mathrm{Id}_{k_s} & p^{s-1} * \end{pmatrix} \in (\mathbb{Z}/p^s \mathbb{Z})^{K \times n}$$

If \mathcal{C} is a free code, then

$$G = \begin{pmatrix} \mathrm{Id}_k & A \end{pmatrix} \in \left(\mathbb{Z}/p^s \mathbb{Z} \right)^{k \times n}.$$

.

Lee Metric

Definition (Lee Metric)

$$\begin{array}{lll} x \in \mathbb{Z}/p^s\mathbb{Z} & : & \operatorname{wt}_L(x) & = & \min\{x, \mid p^s - x \mid\}, \\ x \in (\mathbb{Z}/p^s\mathbb{Z})^n & : & \operatorname{wt}_L(x) & = & \sum_{i=1}^n \operatorname{wt}_L(x_i), \\ x, y \in (\mathbb{Z}/p^s\mathbb{Z})^n & : & d_L(x, y) & = & \operatorname{wt}_L(x - y). \end{array}$$

Example $(\mathbb{Z}/4\mathbb{Z})$

$$wt_L(0) = 0 \quad wt_L(2) = 2$$

 $wt_L(1) = 1 \quad wt_L(3) = 1$

Important parameter: Maximal Lee weight:

$$M = \left\lfloor \frac{p^s}{2} \right\rfloor$$

Connection to Hamming metric:

$$0 \le \operatorname{wt}_H(x) \le \operatorname{wt}_L(x) \le M \operatorname{wt}_H(x) \le M n.$$

For a linear code $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ its **minimum Lee distance** is given by

$$d_L(\mathcal{C}) = \min\{\operatorname{wt}_L(x) \mid x \in \mathcal{C}, x \neq 0\}.$$

Example

- $C = \langle (1,2,3), (1,2,0) \rangle \subseteq \mathbb{Z}/4\mathbb{Z}^3$ has minimum Lee distance $d_L = 1$.
- $C = \langle (1,2,3), (2,2,0) \rangle \subseteq \mathbb{Z}/4\mathbb{Z}^3$ has minimum Lee distance $d_L = 2$.

Techniques

Let $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ be a code of subtype (k_1, \ldots, k_s) and rank K.

- Define the subcodes $C_i = C \cap \langle p^{s-1-i} \rangle$ for $i \in \{0, \dots, s-1\}$.
- We have a sequence of subcodes $C_0 \subseteq C_1 \subseteq \cdots \subseteq C_{s-1} = C$.
- The socle $\mathcal{C}_0 = \mathcal{C} \cap \langle p^{s-1} \rangle$ can be seen as

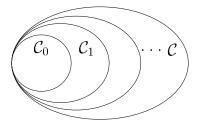
Techniques

Let $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ be a code of subtype (k_1, \ldots, k_s) and rank K.

- Define the subcodes $C_i = C \cap \langle p^{s-1-i} \rangle$ for $i \in \{0, \dots, s-1\}$.
- We have a sequence of subcodes $C_0 \subseteq C_1 \subseteq \cdots \subseteq C_{s-1} = C$.
- The socle $\mathcal{C}_0 = \mathcal{C} \cap \langle p^{s-1} \rangle$ can be seen as

 $\{xG \mid x \in p^{s-1} \left(\mathbb{Z}/p^s \mathbb{Z}\right)^{k_1} \times p^{s-2} \left(\mathbb{Z}/p^s \mathbb{Z}\right)^{k_2} \times \dots \times \left(\mathbb{Z}/p^s \mathbb{Z}\right)^{k_s}\}$

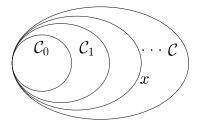
$$\begin{pmatrix} p^{s-1}\star\\p^{s-2}\star\\\vdots\\\star \end{pmatrix}^{\top} \begin{pmatrix} \mathrm{Id}_{k_{1}} & \star\\0 & p\mathrm{Id}_{k_{1}} & p\star\\\vdots&\ddots\\0 & \cdots & p^{s-1}\mathrm{Id}_{k_{s}} & p^{s-1}\star \end{pmatrix}$$
$$\mid \mathcal{C}_{0} \mid = p^{k_{1}+k_{2}+\cdots+k_{s}} = p^{K}.$$



- Use the socle:
 C₀ = C ∩ ⟨p^{s-1}⟩ can be identified with a [n, K] linear code over 𝔽_p.
- **2** Use the Hamming metric:

$$d_H(\mathcal{C}) \le d_L(\mathcal{C}) \le M d_H(\mathcal{C}).$$

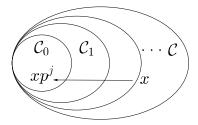
We always find minimal Hamming weight codewords in the socle.



- Use the socle:
 C₀ = C ∩ ⟨p^{s-1}⟩ can be identified with a [n, K] linear code over 𝔽_p.
- **2** Use the Hamming metric:

$$d_H(\mathcal{C}) \le d_L(\mathcal{C}) \le M d_H(\mathcal{C}).$$

We always find minimal Hamming weight codewords in the socle.



- Use the socle:
 C₀ = C ∩ ⟨p^{s-1}⟩ can be identified with a [n, K] linear code over F_p.
- **2** Use the Hamming metric:

$$d_H(\mathcal{C}) \leq d_L(\mathcal{C}) \leq M d_H(\mathcal{C}).$$

We always find minimal Hamming weight codewords in the socle.

Recall that for $x \in \mathbb{F}_q^n$ the Hamming weight is

$$\operatorname{wt}_H(x) = |\{i \in \{1, \dots, n\} \mid x_i \neq 0\}|.$$

Theorem (Singleton Bound)

A code $\mathcal{C} \subseteq \mathbb{F}_q^n$ of dimension k has minimum Hamming distance

$$d_H(\mathcal{C}) \le n - k + 1.$$

Proof Idea

- Puncture \mathcal{C} in $d_H(\mathcal{C}) 1$ positions to get \mathcal{C}' .
- Any two codewords of \mathcal{C}' are still distinct: $|\mathcal{C}'| = q^k$.
- Since $\mathcal{C}' \subseteq \mathbb{F}_q^{n-d_H(\mathcal{C})+1}$, we have $k \leq n d_H(\mathcal{C}) + 1$.

General Singleton Bound

More in general: for any finite ring R of size r and additive weight wt with maximum weight $M = \max\{\operatorname{wt}(x) \mid x \in R\}$.

Theorem (Singleton Bound)

A code $\mathcal{C} \subseteq \mathbb{R}^n$ of size r^k has minimum distance

$$\left\lfloor \frac{d(\mathcal{C}) - 1}{M} \right\rfloor \le n - k.$$

Proof Idea

- Puncture C in $\left\lfloor \frac{d(C)-1}{M} \right\rfloor$ positions to get C'.
- Any two codewords of \mathcal{C}' are still distinct: $|\mathcal{C}'| = r^k$.

• Since
$$\mathcal{C}' \subseteq R^{n - \left\lfloor \frac{d(\mathcal{C}) - 1}{M} \right\rfloor}$$
, we have $k \leq n - \left\lfloor \frac{d(\mathcal{C}) - 1}{M} \right\rfloor$.

Codes that achieve this bound are called *maximum distance* separable (MDS) codes.

- For $n \le q+1$ we have a construction of MDS codes: (extended) RS codes.
- For $q \to \infty$ MDS codes have density 1.
- For $n \to \infty$ MDS codes have density 0 (assuming the MDS conjecture).
- Dual of MDS codes are also MDS codes.
- Binary MDS codes are trivial, that is $k \in \{1, n, n-1\}$.

Singleton Bound

Clearly for $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ of type k

 $d_H(\mathcal{C}) \le n - k + 1.$

Singleton Bound

Clearly for $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ of type k

$$d_H(\mathcal{C}) \le n - k + 1.$$

Theorem (Dougherty, Shiromoto)

Let $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ be a linear code of rank K, then

$$d_H(\mathcal{C}) \le n - K + 1.$$

Steven T. Dougherty and Keisuke Shiromoto "MDR codes over \mathbb{Z}_k .", IEEE Transactions on Information Theory, 2000.

We can identify \mathcal{C}_0 with an [n, K] linear code over \mathbb{F}_p , for which we know

$$d_H(\mathcal{C}) \le d_H(\mathcal{C}_0) \le n - K + 1.$$

Singleton Bound in the Lee Metric

Theorem (Shiromoto)

For any code $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ of type k, we have that

$$\left\lfloor \frac{d_L(\mathcal{C}) - 1}{M} \right\rfloor \le n - k.$$

Keisuke Shiromoto "Singleton bounds over finite rings.", Journal of Algebraic Combinatorics, 2000.

Singleton Bound in the Lee Metric

Theorem (Shiromoto)

For any code $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ of type k, we have that

$$\left\lfloor \frac{d_L(\mathcal{C}) - 1}{M} \right\rfloor \le n - k.$$

Keisuke Shiromoto "Singleton bounds over finite rings.", Journal of Algebraic Combinatorics, 2000.

Example

Let us consider the code $C = \langle (1,2) \rangle$ over $\mathbb{Z}/5\mathbb{Z}$, which has M = 2, n = 2, k = 1 and $d_L = 3$. This code attains the bound of Shiromoto as

$$\left\lfloor \frac{3-1}{2} \right\rfloor = 2-1.$$

Theorem (Byrne, W.)

The only non-trivial linear codes that attain this Singleton bound are equivalent to $\mathcal{C} = \langle (1,2) \rangle \subseteq (\mathbb{Z}/5\mathbb{Z})^2$.

Theorem (Byrne, W.)

The only non-trivial linear codes that attain this Singleton bound are equivalent to $\mathcal{C} = \langle (1,2) \rangle \subseteq (\mathbb{Z}/5\mathbb{Z})^2$.

- MLD codes have density 0 for $p \to \infty$.
- MLD codes have density 0 for $n \to \infty$.

Is the dual of an MLD code also an MLD code?

Theorem (Byrne, W.)

The only non-trivial linear codes that attain this Singleton bound are equivalent to $\mathcal{C} = \langle (1,2) \rangle \subseteq (\mathbb{Z}/5\mathbb{Z})^2$.

- MLD codes have density 0 for $p \to \infty$.
- MLD codes have density 0 for $n \to \infty$.

Is the dual of an MLD code also an MLD code?

Yes

Since $\mathcal{C} = \langle (1,2) \rangle \subseteq (\mathbb{Z}/5\mathbb{Z})^2$ is self-dual.

Classical Plotkin Bound

Theorem

Let $\mathcal{C} \subseteq \mathbb{F}_q^n$ be linear code of dimension k, then

$$d_H(\mathcal{C}) \le \frac{q^{k-1}}{q^k - 1}(q-1)n.$$

Proof

•
$$d_H(\mathcal{C})(|\mathcal{C}|-1) \le \sum_{c \in \mathcal{C}} \operatorname{wt}_H(c).$$

• Define the average weight of a code

$$\overline{\operatorname{wt}}_H(\mathcal{C}) = \frac{1}{|\mathcal{C}|} \sum_{c \in \mathcal{C}} \operatorname{wt}_H(c).$$

• Note that

$$\overline{\operatorname{wt}}_H(\mathcal{C}) \le n\overline{\operatorname{wt}}_H(\mathbb{F}_q) = n\frac{q-1}{q}.$$

General Plotkin Bound

In general: for any finite ring R and additive weight wt.

Theorem

Let $\mathcal{C} \subseteq \mathbb{R}^n$ be linear code, then

$$d(\mathcal{C}) \leq \frac{|\mathcal{C}|}{|\mathcal{C}| - 1} n \overline{wt}(R).$$

Proof

- $d(\mathcal{C})(\mid \mathcal{C} \mid -1) \le \sum_{c \in \mathcal{C}} \operatorname{wt}(c).$
- Define the average weight of a code

$$\overline{\mathrm{wt}}(\mathcal{C}) = \frac{1}{\mid \mathcal{C} \mid} \sum_{c \in \mathcal{C}} \mathrm{wt}(c).$$

• Note that

$$\overline{\mathrm{wt}}(\mathcal{C}) \le n\overline{\mathrm{wt}}(R).$$

The average Lee weight over $\mathbb{Z}/p^s\mathbb{Z}$ is given by

$$\overline{D} = \begin{cases} \frac{p^{2s}-1}{4p^s} & \text{if } p \text{ is odd} \\ 2^{s-2} & \text{if } p = 2. \end{cases}$$

Theorem (Wyner and Graham)

For any code $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ of type k we have that

$$d_L(\mathcal{C}) \le \frac{n\overline{D}}{1 - 1/p^{sk}}.$$

Since

$$1 - 1/p^{sk} = \frac{\mid \mathcal{C} \mid}{\mid \mathcal{C} \mid -1}.$$

Aaron D. Wyner and Ronald L. Graham "An upper bound on minimum distance for a *k*-ary code.", Inf. Control., 1968.

Theorem (Chiang and Wolf (adapted))

For a linear code $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ of free rank k_1 we have that

$$d_L(\mathcal{C}) \le \frac{(n-k_1+1)\overline{D}}{1-1/p^s}$$

J. Chung-Yaw Chiang and Jack K. Wolf "On channels and codes for the Lee metric", Information and Control, 1971.

Theorem (Chiang and Wolf (adapted))

For a linear code $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ of free rank k_1 we have that

$$d_L(\mathcal{C}) \le \frac{(n-k_1+1)\overline{D}}{1-1/p^s}$$

J. Chung-Yaw Chiang and Jack K. Wolf "On channels and codes for the Lee metric", Information and Control, 1971.

Theorem (Wyner and Graham)

For any code $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ of type k we have that

$$d_L(\mathcal{C}) \le \frac{n\overline{D}}{1-1/p^{sk}}.$$

$$d_L(\mathcal{C}) \le \frac{(n-k_1+1)\overline{D}}{1-1/p^s}$$

Proof

For any subcode $\mathcal{C}' \subseteq \mathcal{C}$

$$d_L(\mathcal{C}) \le d_L(\mathcal{C}') \le \frac{|\mathcal{C}'|}{|\mathcal{C}'| - 1} \overline{\operatorname{wt}_L}(\mathcal{C}').$$

$$d_L(\mathcal{C}) \le \frac{(n-k_1+1)\overline{D}}{1-1/p^s}.$$

\mathbf{Proof}

For any $c \in \mathcal{C}$

$$d_L(\mathcal{C}) \le d_L(\langle c \rangle) \le \frac{|\langle c \rangle|}{|\langle c \rangle| - 1} \overline{\operatorname{wt}_L}(\langle c \rangle).$$

$$d_L(\mathcal{C}) \le \frac{(n-k_1+1)\overline{D}}{1-1/p^s}.$$

Proof

For any $c \in \mathcal{C}$ in the free part

$$d_L(\mathcal{C}) \le d_L(\langle c \rangle) \le \frac{1}{1 - 1/p^s} \operatorname{wt}_H(c)\overline{D}.$$

$$d_L(\mathcal{C}) \le \frac{(n-k_1+1)\overline{D}}{1-1/p^s}.$$

Proof

For any $c \in \mathcal{C}$ in the free part

$$d_L(\mathcal{C}) \le d_L(\langle c \rangle) \le \frac{1}{1 - 1/p^s} \operatorname{wt}_H(c)\overline{D}.$$

• Let G be a $K \times n$ generator matrix for the code C.

$$G = \begin{pmatrix} \mathrm{Id}_{k_1} & A \\ 0 & pB \end{pmatrix}$$

$$d_L(\mathcal{C}) \le \frac{(n-k_1+1)\overline{D}}{1-1/p^s}.$$

Proof

For any $c \in \mathcal{C}$ in the free part

$$d_L(\mathcal{C}) \le d_L(\langle c \rangle) \le \frac{1}{1 - 1/p^s} \operatorname{wt}_H(c)\overline{D}.$$

- Let G be a $K \times n$ generator matrix for the code C.
- Let G' be the $k_1 \times n$ generator matrix for the free part $\mathcal{C}' \subseteq \mathcal{C}$.

$$G' = \begin{pmatrix} \mathrm{Id}_{k_1} & A \end{pmatrix}.$$

$$d_L(\mathcal{C}) \le \frac{(n-k_1+1)\overline{D}}{1-1/p^s}.$$

Proof

For any $c \in \mathcal{C}$ in the free part

$$d_L(\mathcal{C}) \le d_L(\langle c \rangle) \le \frac{1}{1 - 1/p^s} \operatorname{wt}_H(c)\overline{D}.$$

- Let G be a $K \times n$ generator matrix for the code C.
- Let G' be the $k_1 \times n$ generator matrix for the free part $\mathcal{C}' \subseteq \mathcal{C}$.

•
$$c \in \mathcal{C}'$$
 with $\operatorname{wt}_H(c) \leq n - k_1 + 1$.
 $G' = (\operatorname{Id}_{k_1} A).$

$$d_L(\mathcal{C}) \leq \frac{|\langle c \rangle|}{|\langle c \rangle| - 1} \overline{\operatorname{wt}}_L(\langle c \rangle),$$

for a minimum Hamming weight codeword c.

- If we can take c in the free part: we get the Chiang and Wolf bound with k_1 .
- If $c \in \langle p^{s-\ell} \rangle$: how do we bound $\overline{\mathrm{wt}}_L(\langle c \rangle)$?

We introduce the support subtype

- For $j \in \{1, \ldots, n\}$ let π_j be the *j*-th coordinate map.
- Define

 $n_i(\mathcal{C}) := |\{j \in \{1, \dots, n\} \mid \langle \pi_j(\mathcal{C}) \rangle = \langle p^i \rangle \}|.$

• For a code $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$, we call (n_0, \ldots, n_s) its support subtype.

We introduce the support subtype

- For $j \in \{1, \ldots, n\}$ let π_j be the *j*-th coordinate map.
- Define

$$n_i(\mathcal{C}) := |\{j \in \{1, \dots, n\} \mid \langle \pi_j(\mathcal{C}) \rangle = \langle p^i \rangle \}|.$$

• For a code $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$, we call (n_0, \ldots, n_s) its support subtype.

Example

Let ${\mathcal C}$ be the code over ${\mathbb Z}/8{\mathbb Z}$ generated by

$$G = \begin{pmatrix} 1 & 3 & 5 & 0 & 2 \\ 0 & 2 & 4 & 2 & 6 \\ 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 4 & 4 \end{pmatrix}$$

then \mathcal{C} has subtype (1, 1, 2) and support subtype (3, 2, 0, 0).

We introduce the support subtype

- For $j \in \{1, \ldots, n\}$ let π_j be the *j*-th coordinate map.
- Define

$$n_i(\mathcal{C}) := |\{j \in \{1, \dots, n\} \mid \langle \pi_j(\mathcal{C}) \rangle = \langle p^i \rangle \}|.$$

• For a code $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$, we call (n_0, \ldots, n_s) its support subtype.

Example

Let ${\mathcal C}$ be the code over ${\mathbb Z}/8{\mathbb Z}$ generated by

$$G = \begin{pmatrix} 1 & 3 & 5 & 0 & 2 \\ 0 & 2 & 4 & 2 & 6 \\ 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 4 & 4 \end{pmatrix}$$

then \mathcal{C} has subtype (1, 1, 2) and support subtype (3, 2, 0, 0).

Lemma (Byrne, W.)

Let $C \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ be a linear code of support subtype (n_0, \ldots, n_s) . Then

$$\overline{wt}_{L}(\mathcal{C}) = \begin{cases} \frac{1}{4p^{s}} \left(p^{2s} |n - n_{s}| - \sum_{i=0}^{s-1} p^{2i} n_{i} \right) & \text{if } p \text{ is odd,} \\ \\ 2^{s-2} |n - n_{s}| & \text{if } p = 2. \end{cases}$$

Let $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ be linear code. Let $\ell \in \{1, \ldots, s\}$ be maximal such that there exists $y \in \mathcal{C}$ satisfying $wt_H(y) = d_H(y)$ and $y \in \langle p^{s-\ell} \rangle$. Then

$$d_L(\mathcal{C}) \leq \begin{cases} \frac{p^{s-\ell}(p^\ell+1)}{4} d_H(\mathcal{C}) & \text{if } p \text{ is odd,} \\\\ \frac{2^{s-2+\ell}}{2^\ell-1} d_H(\mathcal{C}) & \text{if } p = 2. \end{cases}$$

We can always choose $\ell = 1$ (there is always a minimal Hamming weight codeword in the socle)

Corollary (Byrne, W.)

Let $\mathcal{C} \subseteq (\mathbb{Z}/p^s\mathbb{Z})^n$ be a linear code of rank K. Then

$$\left\lfloor \frac{d_L(\mathcal{C}) - 1}{A} \right\rfloor \le n - K,$$

for

$$A := \begin{cases} \frac{p^{s-1}(p+1)}{4} & \text{if } p \text{ is odd,} \\ \\ 2^{s-1} & \text{if } p = 2. \end{cases}$$

Example

We consider the code $C = \langle (0, 1, 1), (2, 0, 0), (0, 0, 2) \rangle \subset (\mathbb{Z}/4\mathbb{Z})^3$. This code attains the new bound for $\ell = 1$ since

$$d_L = 2 = 2(n - K + 1).$$

It does not attain the bound of Chiang and Wolf with k_1 , as

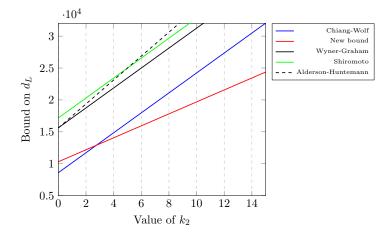
$$d_L \le \frac{4}{3}(3 - 1 + 1) = 4.$$

We also note that we cannot choose $\ell = 2$, since the only codewords that have minimal Hamming weight are divisible by 2. In fact:

$$d_L = 2 \leq \frac{4}{3} = \frac{4}{3}(3-3+1).$$

Comparison of Bounds

Comparison of bounds for codes over $\mathbb{Z}/5^5\mathbb{Z}$ of type $(10, k_2, 0, 0, 0)$ and length $2K, K = 10 + k_2$.



Density

Note that in order to meet the new bound with $\ell = 1$, we need:

- 1. The socle $C_0 = C \cap \langle p^{s-1} \rangle$ is an MDS code, we can identify it with a [n, K] linear code over \mathbb{F}_p .
- 2. There is an $x \in \mathcal{C}_0$ which generates a Lee-equidistant code.

Density

Note that in order to meet the new bound with $\ell = 1$, we need:

- 1. The socle $C_0 = C \cap \langle p^{s-1} \rangle$ is an MDS code, we can identify it with a [n, K] linear code over \mathbb{F}_p .
- 2. There is an $x \in C_0$ which generates a Lee-equidistant code.

₩

- 1. Due to the MDS conjecture: density is 0 if $n \to \infty$.
- 2. Due to the characterization of Lee-equidistant codes of Wood: x consists of repetitions of $(\pm 1, \ldots, \pm \frac{p-1}{2})$, hence the density is 0 if $p \to \infty$.

Jay Wood "The structure of linear codes of constant weight", Transactions of the American Mathematical Society, 2002.

Constant Hamming-Weight Codes

Codes that attain the Plotkin bound are such that all non-zero codewords have the same weight d_H , thus called constant Hamming-weight codes.

• Let $m \in \mathbb{N}$, define $n = \frac{q^m - 1}{q - 1}$. The simplex code of length n, dimension m and $d_H = q^{m-1}$ is defined through a generator matrix G, which has one representative of each 1-dimensional subspace $\langle x \rangle \subseteq \mathbb{F}_q^m$ as column.

Example

Let q = m = 3 and thus n = 13.

	0	0	1	1	1	1	1	0	0	1	1	1	1 -	
G =	0	1	0	1	2	0	0	1	1	1	1	2	2	
G =	1	0	0	0	0	1	2	1	2	1	2	1	2	

• Any constant Hamming-weight code is an *l*-fold duplicate of simplex codes.

Constant Lee-Weight Codes

- If s = 1: any cyclic module is a constant Hamming-weight code.
- If s > 1: any cyclic module with support subtype $(0, \ldots, 0, n_i, 0, \ldots, 0, n_s)$ is constant Hamming-weight over $\mathbb{Z}/p^s\mathbb{Z}$.

Constant Lee-Weight Codes

- If s = 1: any cyclic module is a constant Hamming-weight code.
- If s > 1: any cyclic module with support subtype $(0, \ldots, 0, n_i, 0, \ldots, 0, n_s)$ is constant Hamming-weight over $\mathbb{Z}/p^s\mathbb{Z}$.

Example

• $\mathcal{C} = \langle (1,4) \rangle \subseteq \mathbb{Z}/5\mathbb{Z}^2$ is a constant Hamming-weight code.

• $\mathcal{C} = \langle (1,0,3) \rangle \subseteq \mathbb{Z}/4\mathbb{Z}^3$ is a constant Hamming-weight code.

Constant Lee-Weight Codes

- If s = 1: any cyclic module is a constant Hamming-weight code.
- If s > 1: any cyclic module with support subtype $(0, \ldots, 0, n_i, 0, \ldots, 0, n_s)$ is constant Hamming-weight over $\mathbb{Z}/p^s\mathbb{Z}$.

Example

- C = ⟨(1,4)⟩ ⊆ Z/5Z² is a constant Hamming-weight code.
 C is not a constant Lee-weight code, since (2,3) ∈ C has Lee weight 4, while (1,4) has Lee weight 2.
- C = ⟨(1,0,3)⟩ ⊆ Z/4Z³ is a constant Hamming-weight code.
 C is not a constant Lee-weight code, since (2,0,2) ∈ C has Lee weight 4, while (1,0,3) has Lee weight 2.

Jay Wood "The structure of linear codes of constant weight", Transactions of the American Mathematical Society, 2002.

Theorem

Any constant Lee-weight code is equivalent to an ℓ -fold duplicate of shortest length constant Lee-weight codes.

Jay Wood "The structure of linear codes of constant weight", Transactions of the American Mathematical Society, 2002.

Theorem

Any constant Lee-weight code is equivalent to an ℓ -fold duplicate of shortest length constant Lee-weight codes.

Let U be the collection of orbits of $(\mathbb{Z}/p^s\mathbb{Z})^K$ under the action of $\{1, -1\}$.

1. If s = 1: a representative of each member of U appears as a column of a generator matrix with the same multiplicity.

Jay Wood "The structure of linear codes of constant weight", Transactions of the American Mathematical Society, 2002.

Theorem

Any constant Lee-weight code is equivalent to an ℓ -fold duplicate of shortest length constant Lee-weight codes.

Let U be the collection of orbits of $(\mathbb{Z}/p^s\mathbb{Z})^K$ under the action of $\{1, -1\}$.

1. If s = 1: a representative of each member of U appears as a column of a generator matrix with the same multiplicity.

Example

 $\mathcal{C} = \langle (1,2) \rangle \subseteq \mathbb{Z}/5\mathbb{Z}^2$ is a constant Lee-weight code.

- Jay Wood "The structure of linear codes of constant weight", Transactions of the American Mathematical Society, 2002.
- 2. If p = 2: every non-zero element of $(\mathbb{Z}/2^s\mathbb{Z})^K$ appears as a column of the generator matrix with the same multiplicity.

Jay Wood "The structure of linear codes of constant weight", Transactions of the American Mathematical Society, 2002.

2. If p = 2: every non-zero element of $(\mathbb{Z}/2^s\mathbb{Z})^K$ appears as a column of the generator matrix with the same multiplicity.

Example

 $\mathcal{C} = \langle (1,2,3) \rangle \subseteq \mathbb{Z}/4\mathbb{Z}^3$ is a constant Lee-weight code.

Jay Wood "The structure of linear codes of constant weight", Transactions of the American Mathematical Society, 2002.

2. If p = 2: every non-zero element of $(\mathbb{Z}/2^s\mathbb{Z})^K$ appears as a column of the generator matrix with the same multiplicity.

Example

 $\mathcal{C} = \langle (1,2,3) \rangle \subseteq \mathbb{Z}/4\mathbb{Z}^3$ is a constant Lee-weight code.

3. We have $K \leq 2$.

Let C be a shortest-length constant Lee-weight code over $\mathbb{Z}/p^s\mathbb{Z}$ of rank K = 1 and weight w. Let i be such that $k_i = 1$. Then Chas support subtype $(0, \ldots, 0, n_{i-1}, n_i, \ldots, n_{s-1}, 0)$ with

$$w = \frac{p+1}{4}p^{s-1}n_{i-1},$$

$$n_{i-1}(p-1) = p^{j-i+2}n_j \ \forall j \in \{1, \dots, s\}.$$

Proof idea:

Use the exact average weight, i.e.,

$$(\mid \mathcal{C} \mid -1)\overline{\mathrm{wt}_L}(\mathcal{C}) = \frac{\mid \mathcal{C} \mid}{4p^s} \sum_{i=0}^{s-1} n_i \left(p^{2s} - p^{2i}\right)$$

inductively on the subcodes $C_{j-i+1} = C \cap \langle p^{j-i+2} \rangle$ of size p^{j-i+2} and support subtype $(0, \ldots, 0, n_{i-1}, \ldots, n_j, z)$.

Let $g \in \langle p^{i-1} \rangle$ consist of

- p repetitions of all elements in $\langle p^{i-1} \rangle \setminus \langle p^i \rangle$ up to ± 1 and
- p-1 repetitions of all elements in $\langle p^j \rangle \setminus \langle p^{j+1} \rangle$ up to ± 1 for all $j \in \{i, \dots, s-1\}$,

then $\langle g \rangle$ is a shortest constant Lee-weight code over $\mathbb{Z}/p^s\mathbb{Z}$ with $k_i = 1$.

Example

Over $\mathbb{Z}/9\mathbb{Z}$ for $k_1 = 1$ we have

$$g = (1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 4).$$

A constant Lee-weight code over $\mathbb{Z}/p^s\mathbb{Z}$ of rank 2 with $k_{s-1} = 0$ cannot exist.

Example

Over
$$\mathbb{Z}/27\mathbb{Z}$$
 for $k_2 = k_3 = 1$ we have

$$G = \begin{bmatrix} 3 & 3 & 3 & 6 & 6 & 6 & 12 & 12 & 12 & 9 & 9 & 0 \\ 0 & 9 & 18 & 0 & 9 & 18 & 0 & 9 & 18 & 9 & 18 & 9 \end{bmatrix}.$$

Summary

- The density of MLD codes is 0 for $n \to \infty$.
- The density of MLD codes is 0 for $p \to \infty$.
- Plotkin-optimal linear codes in the Lee metric are sparse.

Summary

- The density of MLD codes is 0 for $n \to \infty$.
- The density of MLD codes is 0 for $p \to \infty$.
- Plotkin-optimal linear codes in the Lee metric are sparse.

Open Questions

- Establish a 'better' Singleton bound for the Lee metric.
- How close do codes get to this bound, i.e., are there almost-MLD codes?
- What about other ambient spaces, other metrics, other bounds?

Eimear Byrne and Violetta Weger "Bounds in the Lee metric and optimal codes", 2021.

Thank you!

Violetta Weger Bounds and optimal codes in the Lee metric