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Motivation

2016 NIST standardization call for post-quantum PKE/KEM and signatures

• PKE/KEM: 1 lattice-based, round 4: 3 code-based
• Signature schemes: 1 hash-based and 2 based on ideal lattices

2022 NIST reopened standardization call for signature schemes
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Idea of Signature Schemes

Signer Verifier

Key Generation

Secret key S, public key P
P−−→

Signing

Message m, signature σ
m,σ−−→

Verification

Verify σ

Two approaches to get a code-based signature scheme:

• Hash-and-sign

→ large public key sizes
→ Stefan’s talk: FuLeeca

• Through ZK protocol

→ large signature sizes
→ this talk: restricted errors
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Idea of ZK Protocol

Prover Verifier

N

⟳

S: secret, P: related public key
c: commitments to secret
rb: response to challenge b

P,c−−→
b←−−

rb−−→

b: challenge
Recover c from rb and P

• complete: a honest prover gets accepted
• zero-knowledge: verifier does not gain information on S
• sound: small probability of an impersonator getting accepted

• α cheating probability, λ bit security level
• Rounds: have to repeat ZK protocol N times: 2λ < (1/α)N

Violetta Weger — Signature Scheme from Restricted Errors 2/11



Idea of ZK Protocol

Prover Verifier

N

⟳

S: secret, P: related public key
c: commitments to secret
rb: response to challenge b

P,c−−→
b←−−

rb−−→

b: challenge
Recover c from rb and P

• complete: a honest prover gets accepted
• zero-knowledge: verifier does not gain information on S
• sound: small probability of an impersonator getting accepted

• α cheating probability, λ bit security level
• Rounds: have to repeat ZK protocol N times: 2λ < (1/α)N

Violetta Weger — Signature Scheme from Restricted Errors 2/11



Idea of ZK Protocol

Prover Verifier

N

⟳

S: secret, P: related public key
c: commitments to secret
rb: response to challenge b

P,c−−→
b←−−

rb−−→

b: challenge
Recover c from rb and P

• complete: a honest prover gets accepted
• zero-knowledge: verifier does not gain information on S
• sound: small probability of an impersonator getting accepted

• α cheating probability, λ bit security level
• Rounds: have to repeat ZK protocol N times: 2λ < (1/α)N

Interaction

Violetta Weger — Signature Scheme from Restricted Errors 2/11



Idea of ZK Protocol

Prover Verifier

N

⟳

S: secret, P: related public key
c: commitments to secret
b: Hash of message, c
rb: response to challenge b

P,(b,rb)−−−−−→

b: challenge

Recover c from rb and P
Verify b = Hash(m, c)

• complete: a honest prover gets accepted
• zero-knowledge: verifier does not gain information on S
• sound: small probability of an impersonator getting accepted

• α cheating probability, λ bit security level
• Rounds: have to repeat ZK protocol N times: 2λ < (1/α)N

Fiat-Shamir
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Code-based ZK Protocols
⟳ ZK protocol Fiat-Shamir−−−−−−−−→ Signature scheme

P.-L. Cayrel, P. Véron, S. El Yousfi Alaoui. “A zero-knowledge identification scheme based on the q-ary syndrome
decoding problem”, Selected Areas in Cryptography, 2011.

Syndrome Decoding Problem

Given parity-check matrix H, syndrome s, weight t, find e s.t. 1. s = eH⊤ 2. wtH(e) ≤ t

Prover Verifier
S: e of weight t,
P: random H, s = eH⊤, t
c1: commitment to syndrome equation 1.
c2: commitment to weight 2.
response: r1 = φ, r2 = φ(e)

P−−→
b←−−

rb−−→

b ∈ {1, 2}

recover cb from rb and P

Violetta Weger — Signature Scheme from Restricted Errors 3/11



Code-based ZK Protocols
⟳ ZK protocol Fiat-Shamir−−−−−−−−→ Signature scheme

P.-L. Cayrel, P. Véron, S. El Yousfi Alaoui. “A zero-knowledge identification scheme based on the q-ary syndrome
decoding problem”, Selected Areas in Cryptography, 2011.

Syndrome Decoding Problem

Given parity-check matrix H, syndrome s, weight t, find e s.t. 1. s = eH⊤ 2. wtH(e) ≤ t

Prover Verifier
S: e of weight t,
P: random H, s = eH⊤, t
c1: commitment to syndrome equation 1.
c2: commitment to weight 2.
response: r1 = φ, r2 = φ(e)

P−−→
b←−−

rb−−→

b ∈ {1, 2}

recover cb from rb and P

Problem: large cheating probability → big signature sizes
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Performance of Classical Approach

Example

• λ = 128 bit security level → N = 135
• q = 31, n = 256, k = 204

→ public key size: 832 b
→ signature size: 43 kB

for a long time not been considered practical

Recent improvements through in-the-head computations
→ smaller signature sizes ∼ 10 kB

T. Feneuil, A. Joux, M. Rivain “Shared permutation for syndrome decoding: New zero-knowledge protocol and
code-based signature”, Designs, Codes and Cryptography, 2022.

T. Feneuil, A. Joux, M. Rivain “Syndrome decoding in the head: shorter signatures from zero-knowledge proofs”,
Crypto, 2022.
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based on knowing we need many rounds
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Problem of Classical Approach
Classical CVE (1 round)

• public key size: seed of H, s; log2(q)(n− k) < 0.1 kB
• signature size: Hash(m, c) and response: transformation φ or φ(e)

Which φ are allowed?

Syndrome Decoding Problem

Given H ∈ F(n−k)×n
q , s ∈ Fn−k

q , weight t, find e ∈ Fn
q such that s = eH⊤ and wtH(e) ≤ t.

→ φ : linear isometries of Hamming metric:
permutation + scalar multiplication
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Problem of Classical Approach
Classical CVE (1 round)

• public key size: seed of H, s; log2(q)(n− k) < 0.1 kB
• signature size: φ(e) : t log2(q − 1) + t log2(n) or φ : n log2(q − 1) + n log2(n)
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Restricted Errors
Syndrome Decoding Problem

Given H ∈ F(n−k)×n
q , s ∈ Fn−k

q , weight t, find e ∈ Fn
q such that s = eH⊤ and wt(e) ≤ t.

Can we avoid permutations - but keep the hardness of the problem?

↓
Restricted Syndrome Decoding Problem

Given H ∈ F(n−k)×n
q , syndrome s ∈ Fn−k

q , E ⊆ F⋆
q , find e ∈ En such that s = eH⊤.
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Restricted Errors

M. Baldi, S. Bitzer, A. Pavoni, P. Santini, A. Wachter-Zeh, V.W. “Zero Knowledge Protocols and Signatures from
the Restricted Syndrome Decoding Problem ”, Preprint, 2023

Restricted Syndrome Decoding Problem

Given H ∈ F(n−k)×n
q , s ∈ Fn−k

q , E ⊆ F⋆
q , find e ∈ En such that s = eH⊤.

Idea

• g ∈ F⋆
q of order z,

E = {gi | i ∈ {1, . . . , z}}
• transf. φ : En → En,

e 7→ e ⋆ e′ for e′ ∈ En

• size of φ is n log2(z)
(instead of n log2((q − 1)n))
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Benefits of Restricted Errors
• Larger cost of solvers than for classical SDP
→ Recall talk of Sebastian
• Size of φ and φ(e) is smaller
• Computations are easier (in Fz instead of Fq)

→ can choose smaller parameters

→ smaller signature sizes
→ smaller running times

We can replace SDP with Restricted SDP in any code-based ZK protocol

Example GPS for λ = 128

q = 128, n = 220, k = 101, t = 90

→ signature size: 24.6 kB

Example Rest. GPS for λ = 128

q = 67, n = 147, k = 63, z = 11

→ signature size: 14.8 kB

S. Gueron, E. Persichetti, P. Santini. “Designing a practical code-based signature scheme from zero-knowledge proofs
with trusted setup”

But we can do even better: Restricted SDP in a subgroup G
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Restricted-G SDP

(En, ⋆) is an abelian group isomorphic to (Fn
z , +)

→ Subgroup (G, ⋆) ≤ (En, ⋆)

G = ⟨x1, . . . , xm⟩ =

{
m∏

i=1

xui
i | ui ∈ {1, . . . , z}

}

Restricted Syndrome Decoding Problem

Given H ∈ F(n−k)×n
q , s ∈ Fn−k

q , E ⊆ F⋆
q , find e ∈ En s.t. s = eH⊤.

Classical
n log2((q − 1)n) →

Rest.
n log2(z) →

Rest.-G
m log2(z)
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Example

• q = 13, n = 4, g = 3, → multiplicative order z = 3;

E = {g0 = 1, g1 = 3, g2 = 9}

• E.g. e = (1, 9, 3, 3) ∈ En

• m = 3, generators

x1 = (g2, g0, g2, g0), x2 = (g2, g2, g0, g2, g2), x3 = (g0, g2, g2, g1).

• G = ⟨x1, x2, x3⟩
• E.g. x2

1 ⋆ x1
2 ⋆ x0

3 = (g0, g2, g1, g2) = (1, 9, 3, 9) ∈ G, but e = (1, 9, 3, 3) ̸∈ G

• | G |= zm = 9, easy check:

MG =

(2 0 2 0
2 2 0 2
0 2 2 1

)
∈ Fm×n

z
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Performance of Restricted SDP in G Signatures
Example GPS for λ = 128

• Classical GPS: q = 128, n = 220, k = 101, t = 90
• Restricted GPS: q = 67, n = 147, k = 63, z = 11
• Restricted-G GPS: q = 53, n = 82, k = 47, z = 13, m = 54

→ signature size: 24.6 kB
→ signature size: 14.8 kB
→ signature size: 12.7 kB

L. Bidoux, P. Gaborit. “Shorter Signatures from Proofs of Knowledge for the SD, MQ, PKP and RSD Problems ”

Conclusion/Open Questions

• Can replace classical SDP with Restricted SDP/ Restricted-G SDP in any
code-based ZK protocol.

• Achieve smaller signature sizes, smaller running times
• Can we exploit the commutativity of the restricted transformations?
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Performance of Restricted SDP in G Signatures
Example BG for λ = 128
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Questions?

CROSS
Codes & Restricted Objects Signature Scheme

http://cross-crypto.com/

Thank you!
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Running times

Running time given in kCycles, CROSS has only PoC, no optimization,
parallelization

Scheme Key gen. Signature gen. Verification

SPHINCS 1794 5802 6506
Dilitihium 49 140 61

CROSS 19 187 184
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Solving Restricted SDP in subgroup G

• Recall Sebastian’s talk: we want q, z such that E has no additive structure
• Publicly known: x1, . . . , xm generators of multiplicative group G

• xℓ = (gi1,ℓ, . . . , gin,ℓ)
• define MG ∈ Fm×n

z having rows (i1,ℓ, . . . , in,ℓ)

m′ ≥ min
{
| J |, λ

log2(z)

}
→ no improvement over enumerating all possible errors in these positions
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Comparison
Scheme Public Key size Signature size Total size Variant

SPHINCS+ <0.1 16.7 16.7 Fast
<0.1 7.7 7.7 Short

Falcon 0.9 0.6 1.5 -
Dilitihium 1.3 2.4 3.7 -

CROSS 0.1 7.7 7.8 Fast
0.1 7.2 7.3 Short

GPS 0.1 24.0 24.1 Fast
0.1 19.8 19.9 Short

FJR 0.1 22.6 22.7 Fast
0.1 16.0 16.1 Short

SDItH 0.1 11.5 11.6 Fast
0.1 8.3 8.4 Short

Ret. of SDitH 0.1 12.1 12.1 Fast, V3
0.1 5.7 5.8 Shortest, V3
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Comparison

Scheme Public Key size Signature size Total size Variant

WAVE 3200 2.1 3202 -
Durandal 15.2 4.1 19.3 -

Ideal Rank BG 0.5 8.4 8.9 Fast
0.5 6.1 6.6 Short

MinRank Fen 18.2 9.3 27.5 Fast
18.2 7.1 25.3 Short

Rank SDP Fen 0.9 7.4 8.3 Fast
0.9 5.9 6.8 Short

Beu 0.1 18.4 18.5 Fast
0.1 12.1 12.2 Short

PKP BG 0.1 9.8 9.9 Fast
0.1 8.8 8.9 Short

FuLeeca 0.4 0.3 0.7 -
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Hash-and-Sign: CFS

PROVER VERIFIER
KEY GENERATION
S = H parity-check matrix

P = (t, HP ) permuted H

SIGNING
Choose message m

s = Hash(m)
Find e: s = eH⊤ = eP (HP )⊤,

and wt(e) ≤ t
m,eP−−−−→

VERIFICATION
Check if wt(eP ) ≤ t

and eP (HP )⊤ = Hash(m)
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Hash-and-Sign: CFS
PROVER VERIFIER
KEY GENERATION
S = H parity-check matrix

P = (t, HP ) permuted H

SIGNING
Choose message m

s = Hash(m)
Find e: s = eH⊤ = eP (HP )⊤,

and wt(e) ≤ t
m,eP−−−−→

VERIFICATION
Check if wt(eP ) ≤ t

and eP (HP )⊤ = Hash(m)

Problem: Distinguishability
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Hash-and-Sign: CFS
PROVER VERIFIER
KEY GENERATION
S = H parity-check matrix

P = (t, HP ) permuted H

SIGNING
Choose message m

s = Hash(m)
Find e: s = eH⊤ = eP (HP )⊤,

and wt(e) ≤ t
m,eP−−−−→

VERIFICATION
Check if wt(eP ) ≤ t

and eP (HP )⊤ = Hash(m)

Not any s is syndrome of low weight e
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PROVER VERIFIER
VERIFICATION

commitments c0, c1
c0,c1−−−→
b←−− b ∈ {0, 1}

response rb
rb−−→

Verify cb using rb,P

SIGNING
Choose message m

Construct signature s from S, m
m,s−−→

VERIFICATION
Verify signature s using P, m

ZKID

Signature Scheme

Fiat-Shamir
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PROVER VERIFIER
VERIFICATION

commitments c0, c1
c0,c1−−−→
b←−− b ∈ {0, 1}

response rb
rb−−→

Verify cb using rb,P

SIGNING
Choose message m

Construct signature s from S, m
m,s−−→

VERIFICATION
Verify signature s using P, m

ZKID

Signature Scheme

Fiat-Shamir
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Fiat-Shamir

PROVER VERIFIER
KEY GENERATION
Given P, S of some ZKID and
message m
SIGNING
Choose commitment c

b = Hash(m, c)
Compute response rb

Signature s = (b, rb)
m,s−−→

VERIFICATION
Using rb,P construct c

check if b = Hash(m, c)
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CVE
PROVER VERIFIER
KEY GENERATION
Choose e with wt(e) ≤ t

H parity-check matrix
Compute s = eH⊤ P=(H,s,t)−−−−−−−→

VERIFICATION
Choose u ∈ Fn

q , σ ∈ Sn

Set c1 = Hash(σ, uH⊤)
Set c2 = Hash(σ(u), σ(e)) c1,c2−−−→

z←−− Choose z ∈ F×
q

Set y = σ(u + ze) y−−→
r1 = σ

b←−− Choose b ∈ {1, 2}
r2 = σ(e) rb−−→ b = 1: c1 = Hash(σ, σ−1(y)H⊤ − zs)

b = 2: wt(σ(e)) = t

and c2 = Hash(y − zσ(e), σ(e))
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CVE
PROVER VERIFIER
KEY GENERATION
Choose e with wt(e) ≤ t

H parity-check matrix
Compute s = eH⊤ P=(H,s,t)−−−−−−−→

VERIFICATION
Choose u ∈ Fn

q , σ ∈ Sn

Set c1 = Hash(σ, uH⊤)
Set c2 = Hash(σ(u), σ(e)) c1,c2−−−→

z←−− Choose z ∈ F×
q

Set y = σ(u + ze) y−−→
r1 = σ

b←−− Choose b ∈ {1, 2}
r2 = σ(e) rb−−→ b = 1: c1 = Hash(σ, σ−1(y)H⊤ − zs)

b = 2: wt(σ(e)) = t

and c2 = Hash(y − zσ(e), σ(e))

Recall SDP: (1) s = eH⊤ (2) wt(e) ≤ t
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CVE
PROVER VERIFIER
KEY GENERATION
Choose e with wt(e) ≤ t

H parity-check matrix
Compute s = eH⊤ P=(H,s,t)−−−−−−−→

VERIFICATION
Choose u ∈ Fn

q , σ ∈ Sn

Set c1 = Hash(σ, uH⊤)
Set c2 = Hash(σ(u), σ(e)) c1,c2−−−→

z←−− Choose z ∈ F×
q

Set y = σ(u + ze) y−−→
r1 = σ

b←−− Choose b ∈ {1, 2}
r2 = σ(e) rb−−→ b = 1: c1 = Hash(σ, σ−1(y)H⊤ − zs)

b = 2: wt(σ(e)) = t

and c2 = Hash(y − zσ(e), σ(e))

Problem: big signature sizes
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Cheating Probability

• Cheating probability = Probability of impersonator getting accepted
• For security level 2λ want cheating probability 2−λ

• If cheating probability δ, with N rounds → cheating probability δN

• might need many rounds: large communication cost
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Cheating Probability

• Cheating probability = Probability of impersonator getting accepted
• For security level 2λ want cheating probability 2−λ

• If cheating probability δ, with N rounds → cheating probability δN

• might need many rounds: large communication cost
• solution: compression technique
• do not send ci

0, ci
1 in each round i

• before 1. round send c = Hash(c1
0, c1

1, . . . , cN
0 , cN

1 )
• ith round: receiving challenge b prover sends ri

b, ci
1−b

• end: verifier checks c = Hash(c1
0, c1

1, . . . , cN
0 , cN

1 )

C. Aguilar, P. Gaborit, J. Schrek. “A new zero-knowledge code based identification scheme with reduced
communication”, IEEE Information Theory Workshop, 2011.
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Cheating Probability

• Cheating probability = Probability of impersonator getting accepted
• For security level 2λ want cheating probability 2−λ

• If cheating probability δ, with N rounds → cheating probability δN

• might need many rounds: large communication cost
• other solution: MPC in the head
• third party: trusted helper sends commitments → δ = 0
• instead prover sends seeds of commitment: not ZK → cut and choose
• x < N times send response, N − x times send the seed of commitment
• to compress: use Merkle root or seed tree

T. Feneuil, A. Joux, M. Rivain. “ Syndrome decoding in the head: Shorter signatures from zero-knowledge proofs”,
2022.
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Comparison

ZKID Hash-and-Sign
reduction to NP-hard

low public key size

low signature size

fast verification
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