

Signature Scheme from Restricted Errors

Violetta Weger

CBCrypto 2023 International Workshop on Code-Based Cryptography

April 23, 2023

Marco Baldi, Sebastian Bitzer Alessio Pavoni, Paolo Santini Antonia Wachter-Zeh

Motivation

 $2016\,$ NIST standardization call for post-quantum PKE/KEM and signatures

Motivation

 $2016~\operatorname{NIST}$ standardization call for post-quantum PKE/KEM and signatures

- PKE/KEM: 1 lattice-based, round 4: 3 code-based
- Signature schemes: 1 hash-based and 2 based on ideal lattices

Motivation

 $2016~\operatorname{NIST}$ standardization call for post-quantum PKE/KEM and signatures

- PKE/KEM: 1 lattice-based, round 4: 3 code-based
- Signature schemes: 1 hash-based and 2 based on ideal lattices

 $2022\,$ NIST reopened standardization call for signature schemes

Two approaches to get a code-based signature scheme:

• Hash-and-sign

• Through ZK protocol

Two approaches to get a code-based signature scheme:

- Hash-and-sign
- \rightarrow large public key sizes

- Through ZK protocol
- $\rightarrow~{\rm large~signature~sizes}$

Two approaches to get a code-based signature scheme:

- Hash-and-sign
- $\rightarrow\,$ large public key sizes
- $\rightarrow\,$ Stefan's talk: FuLeeca

- Through ZK protocol
- $\rightarrow~{\rm large~signature~sizes}$
- $\rightarrow\,$ this talk: restricted errors

Two approaches to get a code-based signature scheme:

- Hash-and-sign
- $\rightarrow\,$ large public key sizes
- $\rightarrow\,$ Stefan's talk: FuLeeca

- Through ZK protocol
- $\rightarrow~{\rm large~signature~sizes}$
- $\rightarrow\,$ this talk: restricted errors

Prover

Verifier

S: secret, \mathcal{P} : related public key c: commitments to secret r_b : response to challenge b $\xrightarrow{\mathcal{P},c} \xrightarrow{b} \xrightarrow{r_b}$

b: challenge Recover *c* from r_b and \mathcal{P}

Prover

Verifier

 $\xrightarrow{\mathcal{P},c} \longleftrightarrow$ \xrightarrow{b} $\xrightarrow{r_b}$

b: challenge Recover c from r_b and \mathcal{P}

- *complete*: a honest prover gets accepted
- zero-knowledge: verifier does not gain information on ${\mathcal S}$
- sound: small probability of an impersonator getting accepted

- *complete*: a honest prover gets accepted
- *zero-knowledge*: verifier does not gain information on \mathcal{S}
- sound: small probability of an impersonator getting accepted

- *complete*: a honest prover gets accepted
- *zero-knowledge*: verifier does not gain information on \mathcal{S}
- sound: small probability of an impersonator getting accepted

N

Prover

Verifier

S: secret, \mathcal{P} : related public key c: commitments to secret b: Hash of message, c r_b : response to challenge b

$$\xrightarrow{\mathcal{P},(b,r_b)}$$

Recover c from r_b and \mathcal{P} Verify b = Hash(m, c)

- *complete*: a honest prover gets accepted
- *zero-knowledge*: verifier does not gain information on \mathcal{S}
- *sound:* small probability of an impersonator getting accepted
- α cheating probability, λ bit security level
- **Rounds**: have to repeat ZK protocol N times: $2^{\lambda} < (1/\alpha)^{N}$

Code-based ZK Protocols

Given parity-check matrix H, syndrome s, weight t, find e s.t. 1. $s = eH^{\top}$ 2. wt_H(e) < t

Verifier Prover \mathcal{S} : e of weight t. $\xrightarrow{\mathcal{P}}$ \mathcal{P} : random $H, s = eH^{\top}, t$ $b \in \{1, 2\}$ c_1 : commitment to syndrome equation 1. \leftarrow c_2 : commitment to weight 2. response: $r_1 = \varphi, r_2 = \varphi(e)$ r_b recover c_b from r_b and \mathcal{P}

Code-based ZK Protocols

Prover

Verifier

for a long time not been considered practical

for a long time not been considered practical

Recent improvements through in-the-head computations \rightarrow smaller signature sizes $\sim 10 \text{ kB}$

- T. Feneuil, A. Joux, M. Rivain "Shared permutation for syndrome decoding: New zero-knowledge protocol and code-based signature", Designs, Codes and Cryptography, 2022.
- T. Feneuil, A. Joux, M. Rivain "Syndrome decoding in the head: shorter signatures from zero-knowledge proofs", Crypto, 2022.

for a long time not been considered practical

Recent improvements through in-the-head computations \rightarrow smaller signature sizes $\sim 10 \text{ kB}$

T. Feneuil, A. Joux, M. Rivain "Syndrome decoding in the head: shorter signatures from zero-knowledge proofs", Crypto, 2022.

Classical CVE (1 round)

- public key size: seed of $H,\,s;\,\log_2(q)(n-k)<0.1~{\rm kB}$
- signature size: $\operatorname{Hash}(m,c)$ and response: transformation φ or $\varphi(e)$

Classical $\overline{\text{CVE}}$ (1 round)

- public key size: seed of H, s; $\log_2(q)(n-k) < 0.1$ kB
- signature size: $\operatorname{Hash}(m,c)$ and response: transformation φ or $\varphi(e)$

Which φ are allowed?

Classical CVE (1 round)

- public key size: seed of H, s; $\log_2(q)(n-k) < 0.1$ kB
- signature size: $\operatorname{Hash}(m,c)$ and response: transformation φ or $\varphi(e)$

Which φ are allowed?

Syndrome Decoding Problem

Given
$$H \in \mathbb{F}_q^{(n-k) \times n}$$
, $s \in \mathbb{F}_q^{n-k}$, weight t, find $e \in \mathbb{F}_q^n$ such that $s = eH^\top$ and $\operatorname{wt}_H(e) \leq t$.

$$e \quad 0 \quad 0 \quad 0 \quad \xrightarrow{\varphi} \quad 0 \quad 0 \quad 0 \quad e$$

Classical CVE (1 round)

- public key size: seed of H, s; $\log_2(q)(n-k) < 0.1$ kB
- signature size: $\operatorname{Hash}(m,c)$ and response: transformation φ or $\varphi(e)$

Which φ are allowed?

Syndrome Decoding Problem

Given
$$H \in \mathbb{F}_q^{(n-k) \times n}$$
, $s \in \mathbb{F}_q^{n-k}$, weight t , find $e \in \mathbb{F}_q^n$ such that $s = eH^\top$ and $\operatorname{wt}_H(e) \leq t$.

$$e \quad 0 \quad 0 \quad 0 \quad -\varphi \quad 0 \quad 0 \quad 0 \quad e'$$

 $\rightarrow \varphi$: linear isometries of Hamming metric: permutation + scalar multiplication

Classical CVE (1 round)

- public key size: seed of $H,\,s;\,\log_2(q)(n-k)<0.1~{\rm kB}$
- signature size: $\varphi(e): t \log_2(q-1) + t \log_2(n)$ or $\varphi: n \log_2(q-1) + n \log_2(n)$

Which φ are allowed?

Syndrome Decoding Problem

Given
$$H \in \mathbb{F}_q^{(n-k) \times n}$$
, $s \in \mathbb{F}_q^{n-k}$, weight t , find $e \in \mathbb{F}_q^n$ such that $s = eH^\top$ and $\operatorname{wt}_H(e) \leq t$.

$$e \quad 0 \quad 0 \quad 0 \quad -\varphi \quad 0 \quad 0 \quad 0 \quad e'$$

 $\rightarrow \varphi$: linear isometries of Hamming metric: permutation + scalar multiplication

Syndrome Decoding Problem

Given
$$H \in \mathbb{F}_q^{(n-k) \times n}$$
, $s \in \mathbb{F}_q^{n-k}$, weight t , find $e \in \mathbb{F}_q^n$ such that $s = eH^\top$ and $\operatorname{wt}(e) \leq t$.

$$e \quad 0 \quad 0 \quad 0 \quad -\varphi \quad 0 \quad 0 \quad 0 \quad e'$$

Can we avoid permutations - but keep the hardness of the problem?

Syndrome Decoding Problem

Given
$$H \in \mathbb{F}_q^{(n-k) \times n}$$
, $s \in \mathbb{F}_q^{n-k}$, weight t , find $e \in \mathbb{F}_q^n$ such that $s = eH^\top$ and $\operatorname{wt}(e) \leq t$.

Can we avoid permutations - but keep the hardness of the problem?

Restricted Syndrome Decoding Problem

Given $H \in \mathbb{F}_q^{(n-k) \times n}$, syndrome $s \in \mathbb{F}_q^{n-k}$, $\mathbb{E} \subseteq \mathbb{F}_q^{\star}$, find $e \in \mathbb{E}^n$ such that $s = eH^{\top}$.

M. Baldi, S. Bitzer, A. Pavoni, P. Santini, A. Wachter-Zeh, **V.W.** "Zero Knowledge Protocols and Signatures from the Restricted Syndrome Decoding Problem ", Preprint, 2023

Restricted Syndrome Decoding Problem

Given $H \in \mathbb{F}_q^{(n-k) \times n}$, $s \in \mathbb{F}_q^{n-k}$, $\mathbb{E} \subseteq \mathbb{F}_q^{\star}$, find $e \in \mathbb{E}^n$ such that $s = eH^{\top}$.

M. Baldi, S. Bitzer, A. Pavoni, P. Santini, A. Wachter-Zeh, V.W. "Zero Knowledge Protocols and Signatures from the Restricted Syndrome Decoding Problem ", Preprint, 2023

Restricted Syndrome Decoding Problem

Given
$$H \in \mathbb{F}_q^{(n-k) \times n}$$
, $s \in \mathbb{F}_q^{n-k}$, $\mathbb{E} \subseteq \mathbb{F}_q^{\star}$, find $e \in \mathbb{E}^n$ such that $s = eH^{\top}$.

M. Baldi, S. Bitzer, A. Pavoni, P. Santini, A. Wachter-Zeh, **V.W.** "Zero Knowledge Protocols and Signatures from the Restricted Syndrome Decoding Problem ", Preprint, 2023

Restricted Syndrome Decoding Problem

Given
$$H \in \mathbb{F}_q^{(n-k) \times n}$$
, $s \in \mathbb{F}_q^{n-k}$, $\mathbb{E} \subseteq \mathbb{F}_q^{\star}$, find $e \in \mathbb{E}^n$ such that $s = eH^{\top}$.

Benefits of Restricted Errors

- Larger cost of solvers than for classical SDP
- \rightarrow Recall talk of Sebastian
- Size of φ and $\varphi(e)$ is smaller
- Computations are easier (in \mathbb{F}_z instead of \mathbb{F}_q)

- \rightarrow can choose smaller parameters
- \rightarrow smaller signature sizes
- \rightarrow smaller running times

Benefits of Restricted Errors

- Larger cost of solvers than for classical SDP
- \rightarrow Recall talk of Sebastian
- Size of φ and $\varphi(e)$ is smaller
- Computations are easier (in \mathbb{F}_z instead of \mathbb{F}_q)

- \rightarrow can choose smaller parameters
- \rightarrow smaller signature sizes
- \rightarrow smaller running times

We can replace SDP with Restricted SDP in any code-based ZK protocol

Example GPS for $\lambda = 128$

```
q = 128, n = 220, k = 101, t = 90
```

```
\rightarrow signature size: 24.6 kB
```

Example Rest. GPS for $\lambda = 128$ q = 67, n = 147, k = 63, z = 11 \rightarrow signature size: 14.8 kB

S. Gueron, E. Persichetti, P. Santini. "Designing a practical code-based signature scheme from zero-knowledge proofs with trusted setup"

Benefits of Restricted Errors

- Larger cost of solvers than for classical SDP
- \rightarrow Recall talk of Sebastian
- Size of φ and $\varphi(e)$ is smaller
- Computations are easier (in \mathbb{F}_z instead of \mathbb{F}_q)

- \rightarrow can choose smaller parameters
- \rightarrow smaller signature sizes
- \rightarrow smaller running times

We can replace SDP with Restricted SDP in any code-based ZK protocol

Example GPS for $\lambda = 128$

```
q = 128, n = 220, k = 101, t = 90
```

 \rightarrow signature size: 24.6 kB

Example Rest. GPS for $\lambda = 128$ q = 67, n = 147, k = 63, z = 11

 \rightarrow signature size: 14.8 kB

S. Gueron, E. Persichetti, P. Santini. "Designing a practical code-based signature scheme from zero-knowledge proofs with trusted setup"

But we can do even better: Restricted SDP in a subgroup G

 (\mathbb{E}^n, \star) is an abelian group isomorphic to $(\mathbb{F}^n_z, +)$

Restricted Syndrome Decoding Problem

Given
$$H \in \mathbb{F}_q^{(n-k) \times n}$$
, $s \in \mathbb{F}_q^{n-k}$, $\mathbb{E} \subseteq \mathbb{F}_q^{\star}$, find $e \in \mathbb{E}^n$ s.t. $s = eH^{\top}$.

 (\mathbb{E}^n, \star) is an abelian group isomorphic to $(\mathbb{F}^n_z, +) \to \text{Subgroup } (G, \star) \leq (\mathbb{E}^n, \star)$

$$G = \langle x_1, \dots, x_m \rangle = \left\{ \prod_{i=1}^m x_i^{u_i} \mid u_i \in \{1, \dots, z\} \right\}$$

Restricted Syndrome Decoding Problem

Given
$$H \in \mathbb{F}_q^{(n-k) \times n}$$
, $s \in \mathbb{F}_q^{n-k}$, $\mathbb{E} \subseteq \mathbb{F}_q^{\star}$, find $e \in \mathbb{E}^n$ s.t. $s = eH^{\top}$.

 (\mathbb{E}^n, \star) is an abelian group isomorphic to $(\mathbb{F}^n_z, +) \to \text{Subgroup } (G, \star) \leq (\mathbb{E}^n, \star)$

$$G = \langle x_1, \dots, x_m \rangle = \left\{ \prod_{i=1}^m x_i^{u_i} \mid u_i \in \{1, \dots, z\} \right\}$$

Restricted-G Syndrome Decoding Problem

Given
$$H \in \mathbb{F}_q^{(n-k) \times n}$$
, $s \in \mathbb{F}_q^{n-k}$, $\mathbb{E} \subseteq \mathbb{F}_q^{\star}$, $G = \langle x_1, \dots, x_m \rangle \leq \mathbb{E}^n$ find $e \in G$ s.t. $s = eH^{\top}$.

 (\mathbb{E}^n, \star) is an abelian group isomorphic to $(\mathbb{F}^n_z, +) \to \text{Subgroup } (G, \star) \leq (\mathbb{E}^n, \star)$

$$G = \langle x_1, \dots, x_m \rangle = \left\{ \prod_{i=1}^m x_i^{u_i} \mid u_i \in \{1, \dots, z\} \right\}$$

Restricted-G Syndrome Decoding Problem

Given
$$H \in \mathbb{F}_q^{(n-k) \times n}$$
, $s \in \mathbb{F}_q^{n-k}$, $\mathbb{E} \subseteq \mathbb{F}_q^{\star}$, $G = \langle x_1, \dots, x_m \rangle \leq \mathbb{E}^n$ find $e \in G$ s.t. $s = eH^{\top}$.

Classical		Rest.		RestG
$n\log_2((q-1)n)$	\rightarrow	$n\log_2(z)$	\rightarrow	$m\log_2(z)$

Example

• $q = 13, n = 4, g = 3, \rightarrow$ multiplicative order z = 3;

$$\mathbb{E} = \{g^0 = 1, g^1 = 3, g^2 = 9\}$$

• E.g. $e = (1, 9, 3, 3) \in \mathbb{E}^n$

• m = 3, generators

$$x_1 = (g^2, g^0, g^2, g^0), \ x_2 = (g^2, g^2, g^0, g^2, g^2), \ x_3 = (g^0, g^2, g^2, g^1).$$

•
$$G = \langle x_1, x_2, x_3 \rangle$$

• E.g.
$$x_1^2 \star x_2^1 \star x_3^0 = (g^0, g^2, g^1, g^2) = (1, 9, 3, 9) \in G$$
, but $e = (1, 9, 3, 3) \notin G$

•
$$|G| = z^m = 9$$
, easy check:

$$M_G = \begin{pmatrix} 2 & 0 & 2 & 0 \\ 2 & 2 & 0 & 2 \\ 0 & 2 & 2 & 1 \end{pmatrix} \in \mathbb{F}_z^{m \times n}$$

Performance of Restricted SDP in G Signatures

Example GPS for $\lambda = 128$

- Classical GPS: q = 128, n = 220, k = 101, t = 90
- Restricted GPS: q = 67, n = 147, k = 63, z = 11
- Restricted-G GPS: q = 53, n = 82, k = 47, z = 13, m = 54

- \rightarrow signature size: 24.6 kB
- $\rightarrow\,$ signature size: 14.8 kB
- \rightarrow signature size: 12.7 kB

Performance of Restricted SDP in G Signatures

Example BG for $\lambda = 128$

- Classical BG: q = 997, n = 61, k = 33, t = 31
- Restricted BG: q = 991, n = 77, k = 38, z = 33
- Restricted-G BG: q = 1019, n = 40, k = 16, z = 509, m = 18
- \rightarrow signature size: 8.9 kB
- \rightarrow signature size: 9.5 kB
- $\rightarrow~{\rm signature~size:}~7.2~{\rm kB}$

L. Bidoux, P. Gaborit. "Shorter Signatures from Proofs of Knowledge for the SD, MQ, PKP and RSD Problems "

Performance of Restricted SDP in G Signatures

Example BG for $\lambda = 128$

- Classical BG: q = 997, n = 61, k = 33, t = 31
- Restricted BG: q = 991, n = 77, k = 38, z = 33
- Restricted-G BG: q = 1019, n = 40, k = 16, z = 509, m = 18

- \rightarrow signature size: 8.9 kB
- $\rightarrow~{\rm signature~size:}~9.5~{\rm kB}$
- $\rightarrow~{\rm signature~size:}~7.2~{\rm kB}$

L. Bidoux, P. Gaborit. "Shorter Signatures from Proofs of Knowledge for the SD, MQ, PKP and RSD Problems "

Conclusion/Open Questions

- Can replace classical SDP with Restricted SDP/ Restricted-G SDP in any code-based ZK protocol.
- Achieve smaller signature sizes, smaller running times
- Can we exploit the commutativity of the restricted transformations?

Questions?

CROSS

Codes & Restricted Objects Signature Scheme http://cross-crypto.com/

Thank you!

Running times

Running time given in kCycles, CROSS has only PoC, no optimization, parallelization

Scheme	Key gen.	Signature gen.	Verification
SPHINCS	1794	5802	6506
Dilitihium	49	140	61
CROSS	19	187	184

Solving Restricted SDP in subgroup G

- Recall Sebastian's talk: we want q, z such that \mathbb{E} has no additive structure
- Publicly known: x_1, \ldots, x_m generators of multiplicative group G
- $x_{\ell} = (g^{i_1,\ell}, \dots, g^{i_n,\ell})$
- define $M_G \in \mathbb{F}_z^{m \times n}$ having rows $(i_{1,\ell}, \ldots, i_{n,\ell})$

 $m' \ge \min\left\{ \mid J \mid, \frac{\lambda}{\log_2(z)} \right\} \to$ no improvement over enumerating all possible errors in these positions

Scheme	Public Key size	Signature size	Total size	Variant
	< 0.1	16.7	16.7	Fast
SPHINCS ⁺	<0.1	7.7	7.7	Short
Falcon	0.9	0.6	1.5	-
Dilitihium	1.3	2.4	3.7	-
CDOSS	0.1	7.7	7.8	Fast
CROSS	0.1	7.2	7.3	Short
CPS	0.1	24.0	24.1	Fast
GID	0.1	19.8	19.9	Short
FIR	0.1	22.6	22.7	Fast
1 310	0.1	16.0	16.1	Short
SDI+H	0.1	11.5	11.6	Fast
501011	0.1	8.3	8.4	Short
Bot of SDitH	0.1	12.1	12.1	Fast, V3
	0.1	5.7	5.8	Shortest, V3

Scheme	Public Key size	Signature size	Total size	Variant
WAVE	3200	9.1	3202	_
Durandal	15.2	<u> </u>	10.3	
Durandar	0.5	4.1 8.4	8.0	- Fact
Ideal Rank BG	0.5	6.1	6.6	Short
MinDard, Ear	18.2	9.3	27.5	Fast
MinKank Fen	18.2	7.1	25.3	Short
Bank SDP For	0.9	7.4	8.3	Fast
Rank SD1 Fen	0.9	5.9	6.8	Short
Bou	0.1	18.4	18.5	Fast
Deu	0.1	12.1	12.2	Short
PKP BC	0.1	9.8	9.9	Fast
I I I DG	0.1	8.8	8.9	Short
FuLeeca	0.4	0.3	0.7	-

Hash-and-Sign: CFS

PROVER		VERIFIER
KEY GENERATION		
$\mathcal{S} = H$ parity-check matrix		
$\mathcal{P} = (t, HP)$ permuted H		
SIGNING		
Choose message m		
$s = \operatorname{Hash}(m)$		
Find $e: s = eH^{\top} = eP(HP)^{\top}$,		
and $\operatorname{wt}(e) \leq t$		
	$\xrightarrow{m,eP}$	
		VERIFICATION
		Check if $wt(eP) \leq t$
		and $eP(HP)^{\top} = \operatorname{Hash}(m)$

Hash-and-Sign: CFS

PROVER		VERIFIER
KEY GENERATION		
$\mathcal{S} = H$ parity-check matrix		
$\mathcal{P} = (t, HP)$ permuted H		
SIGNING		
Choose message m		
$s = \operatorname{Hash}(m)$		
Find e : $s = eH^{+} = eP(HP)^{+}$,		
and $\operatorname{wt}(e) \leq t$		
	$\xrightarrow{m,eP}$	
		VERIFICATION
		Check if $wt(eP) \le t$
		and $eP(HP)^{\top} = \operatorname{Hash}(m)$

Problem: Distinguishability

Hash-and-Sign: CFS

PROVER		VERIFIER
KEY GENERATION		
$\mathcal{S} = H$ parity-check matrix		
$\mathcal{P} = (t, HP)$ permuted H		
SIGNING		
Choose message m		
$s = \operatorname{Hash}(m)$		
Find $e: s = eH^{\top} = eP(HP)^{\top}$,		
and $\operatorname{wt}(e) \leq t$		
	$\xrightarrow{m,eP}$	
		VERIFICATION
		Check if $wt(eP) \le t$
		and $eP(HP)^{\top} = \text{Hash}(m)$

Not any s is syndrome of low weight e

ZKID

SIGNING	
Choose message m	
Construct signature s from S, m	
$\xrightarrow{m,s}$	
	VERIFICATION
	Verify signature s using \mathcal{P}, m

Signature Scheme

ZKID

Signature Scheme

Fiat-Shamir

PROVER		VERIFIER
KEY GENERATION		
Given \mathcal{P}, \mathcal{S} of some ZKID and		
message m		
SIGNING		
Choose commitment c		
$b = \operatorname{Hash}(m, c)$		
Compute response r_b		
Signature $s = (b, r_b)$		
	$\xrightarrow{m,s}$	
		VERIFICATION
		Using r_b , \mathcal{P} construct c
		check if $b = \operatorname{Hash}(m, c)$

CVE

PROVER		VERIFIER
KEY GENERATION		
Choose e with $wt(e) \le t$		
H parity-check matrix		
Compute $s = eH^{\top}$	$\mathcal{P}=(H,s,$	$\xrightarrow{t)}$
		VERIFICATION
Choose $u \in \mathbb{F}_q^n, \sigma \in \mathcal{S}_n$		
Set $c_1 = \operatorname{Hash}(\sigma, uH^{\top})$		
Set $c_2 = \operatorname{Hash}(\sigma(u), \sigma(e))$	$\xrightarrow{c_1,c_2}$	
	$\stackrel{z}{\leftarrow}$	Choose $z \in \mathbb{F}_q^{\times}$
Set $y = \sigma(u + ze)$	\xrightarrow{y}	
$r_1 = \sigma$	$\stackrel{b}{\longleftarrow}$	Choose $b \in \{1, 2\}$
$r_2 = \sigma(e)$	$\xrightarrow{r_b}$	$b = 1$: $c_1 = \operatorname{Hash}(\sigma, \sigma^{-1}(y)H^{\top} - zs)$
		$b = 2$: wt($\sigma(e)$) = t
		and $c_2 = \operatorname{Hash}(y - z\sigma(e), \sigma(e))$

CVE

PROVER		VERIFIER
KEY GENERATION		
Choose e with $wt(e) \le t$		Recall SDP: (1) $s = eH^{\top}$ (2) wt(e) $\leq t$
H parity-check matrix		
Compute $s = eH^{\top}$	$\mathcal{P}=(H,s)$	$\xrightarrow{s,t)}$
		VERIFICATION
Choose $u \in \mathbb{F}_q^n, \sigma \in \mathcal{S}_n$		
Set $c_1 = \operatorname{Hash}(\sigma, uH^{\top})$		
Set $c_2 = \operatorname{Hash}(\sigma(u), \sigma(e))$	$\xrightarrow{c_1,c_2}$	
	$\stackrel{z}{\leftarrow}$	Choose $z \in \mathbb{F}_q^{\times}$
Set $y = \sigma(u + ze)$	\xrightarrow{y}	-
$r_1 = \sigma$	$\stackrel{b}{\longleftarrow}$	Choose $b \in \{1, 2\}$
$r_2 = \sigma(e)$	$\xrightarrow{r_b}$	$b = 1$: $c_1 = \operatorname{Hash}(\sigma, \sigma^{-1}(y)H^{\top} - zs)$
		$b = 2$: wt($\sigma(e)$) = t
		and $c_2 = \operatorname{Hash}(y - z\sigma(e), \sigma(e))$

CVE

PROVER		VERIFIER
KEY GENERATION		
Choose e with $wt(e) \le t$		
H parity-check matrix		
Compute $s = eH^{\top}$	$\mathcal{P}=(H,s,$	$\xrightarrow{t)}$
		VERIFICATION
Choose $u \in \mathbb{F}_q^n, \sigma \in \mathcal{S}_n$		
Set $c_1 = \text{Hash}(\sigma, uH^{\top})$		Problem: big signature sizes
Set $c_2 = \operatorname{Hash}(\sigma(u), \sigma(e))$	$\xrightarrow{c_1,c_2}$	i iobieni. Dig signature sizes
	$\stackrel{z}{\leftarrow}$	Choose $z \in \mathbb{F}_q^{\times}$
Set $y = \sigma(u + ze)$	\xrightarrow{y}	
$r_1 = \sigma$	$\stackrel{b}{\longleftarrow}$	Choose $b \in \{1, 2\}$
$r_2 = \sigma(e)$	$\xrightarrow{r_b}$	$b = 1$: $c_1 = \operatorname{Hash}(\sigma, \sigma^{-1}(y)H^{\top} - zs)$
		$b = 2$: wt($\sigma(e)$) = t
		and $c_2 = \operatorname{Hash}(y - z\sigma(e), \sigma(e))$

- Cheating probability = Probability of impersonator getting accepted
- For security level 2^λ want cheating probability $2^{-\lambda}$
- If cheating probability δ , with N rounds \rightarrow cheating probability δ^N

- Cheating probability = Probability of impersonator getting accepted
- For security level 2^λ want cheating probability $2^{-\lambda}$
- If cheating probability δ , with N rounds \rightarrow cheating probability δ^N
- might need many rounds: large communication cost

- Cheating probability = Probability of impersonator getting accepted
- For security level 2^{λ} want cheating probability $2^{-\lambda}$
- If cheating probability δ , with N rounds \rightarrow cheating probability δ^N
- might need many rounds: large communication cost
- solution: compression technique
- do not send c_0^i, c_1^i in each round i
- before 1. round send $c = \operatorname{Hash}(c_0^1, c_1^1, \dots, c_0^N, c_1^N)$
- *i*th round: receiving challenge *b* prover sends r_b^i, c_{1-b}^i
- end: verifier checks $c = \text{Hash}(c_0^1, c_1^1, \dots, c_0^N, c_1^N)$

C. Aguilar, P. Gaborit, J. Schrek. "A new zero-knowledge code based identification scheme with reduced communication", IEEE Information Theory Workshop, 2011.

- Cheating probability = Probability of impersonator getting accepted
- For security level 2^{λ} want cheating probability $2^{-\lambda}$
- If cheating probability δ , with N rounds \rightarrow cheating probability δ^N
- might need many rounds: large communication cost
- other solution: MPC in the head
- third party: trusted helper sends commitments $\rightarrow \delta = 0$
- instead prover sends seeds of commitment: not $\rm ZK \rightarrow cut$ and choose
- x < N times send response, N x times send the seed of commitment
- to compress: use Merkle root or seed tree

T. Feneuil, A. Joux, M. Rivain. "Syndrome decoding in the head: Shorter signatures from zero-knowledge proofs", 2022.

	ZKID	Hash-and-Sign
reduction to NP-hard		
low public key size		
low signature size		
fast verification		

	ZKID	Hash-and-Sign
reduction to NP-hard	\checkmark	×
low public key size		
low signature size		
fast verification		

	ZKID	Hash-and-Sign
reduction to NP-hard	\checkmark	X
low public key size	\checkmark	×
low signature size		
fast verification		

	ZKID	$\operatorname{Hash-and-Sign}$	
reduction to NP-hard	\checkmark	×	-
low public key size	CVE: 70 B	WAVE: 3 MB	NIST: 3 KB
low signature size			
fast verification			

	ZKID	Hash-and-Sign	
reduction to NP-hard	\checkmark	×	•
low public key size	CVE: 70 B	WAVE: 3 MB	NIST: 3 KB
low signature size	\sim	\checkmark	
fast verification			

	ZKID	Hash-and-Sign	
reduction to NP-hard	\checkmark	×	
low public key size	CVE: 70 B	WAVE: 3 MB	NIST: 3 KB
F	0.12.10.2		
low signature size	CVE: 43 KB	WAVE: 1 KB	NIST: 2 KB
fast verification			

	ZKID	Hash-and-Sign	
reduction to NP-hard	\checkmark	×	-
low public key size	CVE: 70 B	WAVE: 3 MB	NIST: 3 KB
low signature size	CVE: 43 KB	WAVE: 1 KB	NIST: 2 KB
fast verification	\sim	\checkmark	