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Motivation

Large interest in code-based cryptography in
@ new metrics, such as sum-rank metric, Lee metric,

e new ambient spaces, such as finite chain rings.
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Motivation

Large interest in code-based cryptography in
@ new metrics, such as sum-rank metric, Lee metric,

e new ambient spaces, such as finite chain rings.

How do random codes behave over finite chain rings?

o What parameters should we expect?

o What minimum distance should we expect?
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@ Ring-Linear Coding Theory

© Parameters: Density of Free Codes
e of Given Type
e of Given Rank
@ Open Problems

© Minimum Distance
e Singleton Bounds in the Lee Metric
@ Plotkin Bounds in the Lee Metric
o Gilbert-Varshamov Bound
@ Open Problems
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Finite Chain Rings

Definition (Chain Ring)

A ring R is called a chain ring, if the ideals of R form a chain:
for all ideals I,J C R we either have I C J or J C I.

Let (m) be the unique maximal ideal of R.

@ s is the nilpotency index: the smallest positive integer
such that 7% = 0.

e ¢ is the size of the residue field: ¢ =| R/(m) |.
Thus, | R |= ¢°.

o Fy[X;0]/(X?) for some o € Aut(F,),
o GR(p®,r): for s =1:Fy and forr =1:7Z/p°Z,
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Ring-Linear Coding Theory

Classical R-Linear

Ambient space Finite field If,

CEF"
Linear code . Ccly
linear subspace
length n

Parameters . .
dimension k
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Ring-Linear Coding Theory

Classical R-Linear

Ambient space Finite field F, Finite chain ring
R
Linear cod CChy CCR
cat code linear subspace R-submodule
length n length n

Parameters . .
dimension k ?
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Ring-Linear Coding Theory

Let C C R" be a code, then

k1 ko ks

Then we say C has
e subtype (k1,...,ks),
o type k=), =k =log,. (| C ),
e rate R =k/n,

rank K =57 | k;,

free rank k;.

0<ki <k<K<n.
If k1 = k = K, we say that C is a free code.



Ring-Linear Coding Theory

Systematic Form

If C has subtype (ki1,...,ks) and rank K then

Idy, * e * *
0 pldg, --- D D
G = ' . 2 . e (Z/psZ)KXn
0 0 - pTldg, p¥lx

If C is a free code, then

G = (1d, A) € (Z/p°T)™".
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Question: Density of Free Codes

Fix n and a rate R = k/n. A code C C R™ of rate R, can have
any subtype (ki,...,ks) with
S s—i+1
k= —k;.

How likely is it that a random code is free?
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Question: Density of Free Codes

Fix n and a rate R = k/n. A code C C R™ of rate R, can have
any subtype (ki,...,ks) with

s

k=Y %k
=1

How likely is it that a random code is free?

Probability of a free code:

number of free codes of type k
P(n) =

number of all codes of type k
Then, the density of free codes is given by

lim P(n),

n—o0

if the limit exists.
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Counting Codes

Proposition

The number of codes of R™ with subtype (ki, ..., ks) is given by

8 1—1
Npg(kr,. .. ks) = goim1 (= Eima k) Eisi by H[ k] |
=i q

The number of free codes of type k is then given by

Vk(s—1) |
Nogl(0,...,0) = 0He-0 ]
q

@ Thomas Honold and Ivan Landjev “Linear codes over finite chain rings”, The electronic

journal of combinatorics, 2000.
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Counting Codes

Definition
Let L(s,n, k) to be the set of all possible subtypes for type k:

L(s,n,k)::{kl,..., \Zk —/<; Zk <n}
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Counting Codes

Definition
Let L(s,n, k) to be the set of all possible subtypes for type k:

L(s,n,k)::{kl,..., \Zk —/<; Zk <n}

The number of codes in R"™ of type k is

M(n, k,q,s) = > Npg(k1, .. ks).
(K1,..sks)EL(s,n,k)
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Counting Codes

The number of [n, k] linear codes over F, is given by the
g-binomial coefficient

i
- k _ qi°
Fly iz @ —d
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Counting Codes

The number of [n, k] linear codes over F, is given by the
g-binomial coefficient

-5

- kE_ i

klg 54" —4

The g-multinomial coefficient is defined as
n (T) r—1 . . n ]1 1 1
)

q Jitetir=m J
(s)
M, g, ) m .

k‘sq

Definition

@ Ole S. Warnaar “The Andrews—Gordon identities and g-multinomial coefficients”,

Communications in mathematical physics, 1997.
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Density of Free Codes

The probability to have a free code of rate R = k/n is
B q(nfk)k(sfl) [Z]

Pn) = M(n,k,q,s) .
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Density of Free Codes

The probability to have a free code of rate R = k/n is
B q(nfk)k(sfl) [Z]

Pn) = M(n,k,q,s) .

The density of free codes over Z/AZ is

~ (0.59546.
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Combinatorial Tools

The g-Pochhammer symbol

r—1 0o

(@;q)r =[] (1 =ad’), (a9)00=]](1—aqd).

i=0 =0

We denote by (q)r = (q; @)

° H Hq —q (@)n

F =7 (@r@nr

e Generating function for partitions: ) p(n)g” ﬁ
n>0 =

@ Series involving (a; q), are called g-series

@ g-binomial theorem:

Z (Q;Q)nzn ~ (az;q)0

= (@n (25 @)oo
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Density of Free Codes

@ Anne Schilling. “Multinomials and polynomial bosonic forms for the branching functions
of the 5up7(2) X 5un(2)/5unr4 N (2) conformal coset models”, Nuclear Physics B, 1996.

Theorem

The density as n — oo of free codes in R™ of type k is given by

=il
(1/q)KG+ K~ (ot +Ka)? /s

d(q,s) = >

ka,....ks >0 (1/q)k2 o (1/q)ks
sl Ko+t K

where K; = 23':2 k;.

@ Eimear Byrne, Anna-Lena Horlemann, Karan Khathuria and Violetta Weger “Density of
Free Modules over Finite Chain Rings”, 2021.
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Special case s = 2

If s = 2 we can write this nicer:
2

(V174 1/)0 + (V/1/81/0) 00

In fact,
2

(—v/1/2;1/2)00 + (v/1/2:1/2) o0

@ George E. Andrews and Rodney J. Baxter. “Lattice gas generalization of the hard

~ (0.59546.

hexagon model. III. g-trinomial coefficients”, Journal of statistical physics, 1987.

@ Lucy Joan Slater. “Further Identities of the Rogers-Ramanujan Type”, Proceedings of
the London Mathematical Society, 1952.
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Rogers-Ramanujan Identities

Theorem (Rogers-Ramanujan Identities)
Let | q|< 1, then

and

o e (6%07)00(0% )0

@ Srinivasa Ramanujan and Leonard James Roger. “Proof of certain identities in
combinatory analysis.”, Proc. Cambridge Philos. Soc, 1919.
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Andrews-Gordon Identity

Theorem (Andrews-Gordon Identity)

For | q|< 1 it holds that

iy Al

AGI((L 3) = Z (Q)nl s <Q)ns—1

N,e..,Ms—1>0
(qs; q28+1)oo(qs+1; q2s+1)oo(q28+1§ q2s—i-1)OO

= 9

(@)oo

where N; =n; + -+ ng_1.

@ George E. Andrews. “An analytic generalization of the Rogers-Ramanujan identities for

odd moduli.”, Proceedings of the National Academy of Sciences, 1974.

@ Basil Gordon. “A combinatorial generalization of the Rogers-Ramanujan identities”,

American Journal of Mathematics, 1961.
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Density of Free Codes

Theorem

The density as n — oo of free codes in R™ of type k is given by

!
2. 2_ (Kot )2 /s
(1/q)K2+ +KZ—(Ko+-+Ks)*/

o) = kg,g:kszo (1/@ks - (/@) 7

'5‘K2++Ks

where K; = Z;ZQ k;.

(1/q)" 8+
AW = D Wa
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Bounds

Theorem
The density as n — oo of free codes in R™ of type k denoted by
d(q,s) can be bounded as follows:

0< (1/9)o0 < AGI (1/q,5)”" < d(q,s) < AGI(1/¢,s)™ < 1,

2—8

for ¢’ == q* 5.
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Other Densities

The probability for a code in R™ of type k to be free is at least
(1/)oo-

q 2 3 5 7 11 13
(1/q)s | 0.2888 | 0.5601 | 0.7603 | 0.8368 | 0.9008 | 0.9172
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Other Densities

The probability for a code in R™ of type k to be free is at least
(1/)oo-

q 2 3 5 7 11 13
(1/q)s | 0.2888 | 0.5601 | 0.7603 | 0.8368 | 0.9008 | 0.9172

The density of free codes in R™ of type k for ¢ — oo is 1.
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Density for Fixed Rank

The set of weak compositions of K into s parts is

C(SvK) :{(kh,ks)‘OSszK;Zkz:K}

i=1

The number of codes in R"™ of rank K is given by

W(n,K,q,s) := > Npg(k,. . k).
(k17~--7ks)€C(S,K)
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Density for Fixed Rank

The set of weak compositions of K into s parts is

C(SvK) :{(kh,ks)‘OSszK;Zkz:K}

i=1

The number of codes in R"™ of rank K is given by

W(n,K,q,s) := > Npg(k,. . k).
(k17~--7ks)€C(S,K)

Theorem

Let K and n be positive integers with K = R'n. The density of
free codes in R™ of given rank K for n — oo is

if1/2< R <1,

0
1 if R <1/2,
> AGI(1/q,8)"r if R =1/2.

Violetta Weger Behaviour of Random Ring-Linear Codes



Summary

What parameters should we expect?

@ Free codes of fixed rate as n — oo are neither sparse nor
dense. The density is independent of the rate and at least

(1/q)o0-

@ Free codes of fixed rank-rate as n — oo is either dense or
sparse, depending on R’ = K/n.

o For large enough ¢, we expect a random code of fixed type
to be free.
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Open Problems

Open Problems

o Establish a simplified condition on

(ki,...,ks), (k1,...,ks) € L(s,n, k) such that we have

Npg(ky .o ks) < Npg(ka, .o ks).

e For a fixed subtype (k1,...,ks) what is the density of codes
having this subtype?
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Minimum Distance

We can endow R with several metrics:

Hamming metric
Euclidean metric
Homogeneous metric

Lee metric, if R = Z/p°Z

e 6 o

For a code C C R"™ its minimum distance is given by

d(C) = min{d(z,y) | z,y € C,z # y}.
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Minimum Distance

Definition (Lee Metric)

x € Z/p°Z : wtrp(z) = min{z,|p® -z |},
x € (Z/p°Z)" cowtp(x) = Yon g wir(z),
xr,y € (Z/p°Z)" : dp(z,y) = wtr(z—y).

Example (Z/47Z)
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Classical Singleton Bound

Theorem (Singleton Bound)

A code C CFy of dimension k has minimum Hamming distance

dH(C)Sn—k-i-l.

Codes that achieve this bound are called maximum distance
separable (MDS) codes.

o For n < g+ 1 we have a construction of MDS codes:
(extended) RS codes

o For ¢ — oo MDS codes have density 1

e For n — oo MDS codes have density 0
(assuming the MDS conjecture)
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Singleton Bound in the Lee Metric

How do maximum Lee distance (MLD) codes behave?

e What is the analog of the Singleton bound in the Lee
metric?

@ Are MLD codes dense for n or ¢ going to infinity?
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Some Observations

1. Clearly dr(C) < Mdg(C)
2. Hamming Singleton bound: dy(C) <n—k+1
3. If dr.(C) < ady(C), then

{dL(C) -1

” JSdH(C)_l

for any such a.
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Some Observations

Proposition

For a linear code C C (Z/p*Z)" of rank K we have

dp(C) <n—K+1.

o C'=Cn(p*h).
@ C has subtype (k1,...,ks) and a generator matrix G in
standard form:

¢ = {a:G |z € p L (Z/p*Z)F x - x (Z/pSZ)kS}.

e C’ can be identified with an [n, K| linear code over F,,.

@ Steven T. Dougherty and Keisuke Shiromoto “MDR codes over Z”, IEEE Transactions
on Information Theory, 2000.
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Singleton Bounds in the Lee Metric

Theorem (Shiromoto)

For any code C C (Z/p°Z)" of type k, we have that

VL((JZ\B‘/_ 1J <n-—k

Easily follows as dr,(C) < Mdy(C) < M(n—k+ 1) and the floor
remark [3.]
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Singleton Bounds in the Lee Metric

Theorem (Shiromoto)
For any code C C (Z/p°Z)" of type k, we have that

O <n-

M

Easily follows as dr,(C) < Mdy(C) < M(n—k+ 1) and the floor
remark [3.]

Let us consider the code C = ((1,2)) over Z/5Z, which has
M =2,n=2,k=1and dy, = 3. This code attains the bound of

Shiromoto as

7 oo

@ Keisuke Shiromoto “Singleton bounds over finite rings.”, Journal of Algebraic
Combinatorics, 2000.
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Singleton Bounds in the Lee Metric

How many codes attain this bound?
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Singleton Bounds in the Lee Metric

How many codes attain this bound?

The only linear codes that attain this Singleton bound are
equivalent to C = ((1,2)) C (Z/5Z)*.

Violetta Weger Behaviour of Random Ring-Linear Codes



Singleton Bounds in the Lee Metric

Theorem (Alderson-Huntemann)

For any code C C (Z/p*Z)" of type 1 < k < n a positive integer,
we have that
dr(C) < M(n — k).
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Singleton Bounds in the Lee Metric

Theorem (Alderson-Huntemann)

For any code C C (Z/p*Z)" of type 1 < k < n a positive integer,
we have that
dr(C) < M(n — k).

Example

Let C3 = ((2,0,1),(1,3,4)) over Z/5Z. Here we have
n=3k=2 M =2 and d;, = 2. This code attains the bound of

Alderson-Huntemann since

| \

dp=2=M(n—k) =2

v

@ Tim L. Alderson and Svenja Huntemann “On maximum Lee distance codes.”, Journal of

Discrete Mathematics, 2013.
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Singleton Bounds in the Lee Metric

How many codes attain this bound?
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Singleton Bounds in the Lee Metric

How many codes attain this bound?

Theorem

The only linear codes that attain this Singleton bound are
o for p odd:
e codes with p° =5,k+1<n<k+ 3,
o free codes with p® € {7,9},n =k + 1,
o forp=2:
o free codes with s =2, k+1<n<k+2,
o free codes with s =3,n=Fk+ 1,
o k+1=K € {n,n—1}.
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Singleton Bounds in the Lee Metric

How many codes attain this bound?

Theorem

The only linear codes that attain this Singleton bound are
o for p odd:
e codes with p° =5,k+1<n<k+ 3,
o free codes with p® € {7,9},n =k + 1,
o forp=2:
o free codes with s =2, k+1<n<k+2,
o free codes with s =3,n=Fk+ 1,
o k+1=K € {n,n—1}.

o The density of MLD codes is 0 for n — oo
o The density of MLD codes is 0 for p — oo
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Plotkin Bounds in the Lee Metric

Let wt be any weight and d be the minimum distance of C, then
a(el - 1) < 3 wi(e)
ceC

For the Lee metric, this yields the bound:

€]
cl -1

dr(C) < wir(C),

where

WtL : ZWtL

aGC
is the average Lee weight of the code C C (Z/p°Z)".
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Plotkin Bounds in the Lee Metric

The average Lee weight over Z/p°Z is given by

5 Pt i pis odd,
2572 ifp=2.

Theorem (Wyner and Graham)

For any code C C (Z/p°Z)" of type k we have that

nD
dL(C) - 1— 1/psk
Since
wtr(C) < nD.

@ Aaron D. Wyner and Ronald L. Graham “An upper bound on minimum distance for a
k-ary code.”, Inf. Control., 1968.
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Plotkin Bounds in the Lee Metric

For any subcode C’

c| —
a(0) < ‘C','_lwmc’).

Theorem (Chiang and Wolf)
For a free linear code C C (Z/p°Z)" of type k we have that

(n—k+1)D
1-1/ps

e Choose a (n — k) x n parity-check matrix H for the code C.

e Form the (n — 1) x n matrix H' by appending the rows of
the (k — 1) x n matrix [Idg_1 | 0] to H.

@ The code with parity-check matrix H’ is a subcode that
contains a word ¢ with wty(c) <n—k+1: C' = (¢).

dL(C) <

@ J. Chung-Yaw Chiang and Jack K. Wolf “On channels and codes for the Lee metric”,

Information and Control, 1971.
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Plotkin Bounds in the Lee Metric

For any linear code C C (Z/p°Z)" of free rank ky > 1 we have
that

@ choose a (n — k1) x n parity-check matrix H for the code C.

e Form the (n — 1) x n matrix H' by appending the rows of
the (k1 — 1) x n matrix [Idy, 1 | 0] to H.

@ The code with parity-check matrix H' is a subcode that
contains a word of Hamming weight at most n — k; + 1.
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Plotkin Bounds in the Lee Metric

(@) < [ L (@),

for a minimum Hamming weight codeword c.

o If we can take c in the free part: we get the Chiang and

Wolf bound with k.
o If c € (p*~*): how do we bound wtz((c))?
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Plotkin Bounds in the Lee Metric

We introduce the support subtype

e For j € {1,...,n} let m; be the j-th coordinate map.
o Define

ni(C) = {7 € {1,...,n} | (m(C)) = ")}
e For a code C C (Z/p*Z)", we call (ng,...,ns) its support
subtype.
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Plotkin Bounds in the Lee Metric

We introduce the support subtype

e For j € {1,...,n} let m; be the j-th coordinate map.
o Define

ni(C) = {7 € {1,...,n} | (m(C)) = ")}
e For a code C C (Z/p*Z)", we call (ng,...,ns) its support
subtype.

Example

Let C be the code over Z /87 generated by

1 3 5 0 2
G:02426

then C has subtype (1,1, 2) and support subtype (3,2,0,0).

v
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Plotkin Bounds in the Lee Metric

We introduce the support subtype

e For j € {1,...,n} let m; be the j-th coordinate map.
o Define

ni(C) = {7 € {1,...,n} | (m(C)) = ")}
e For a code C C (Z/p*Z)", we call (ng,...,ns) its support
subtype.

Example

Let C be the code over Z /87 generated by

o O O =
S N W
= s Ot

= O NN O

= O O N

0 0

then C has subtype (1, 1,2) and support subtype (3,2,0,0).

v
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Plotkin Bounds in the Lee Metric

Let C C (Z/p°Z)" be a linear code of support subtype
(ng,...,ns). Then

1 =1
1p° <P28|” — Nl — ZPQZm) if p is odd,

=0

wir,(C) =

2572|p — n| if p=2.
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Plotkin Bounds in the Lee Metric

Theorem

Let C C (Z/p*Z)" be linear code. Let £ € {1,...,s} such that

there exists y € C satisfying wty (y) = dg(y) and y € (p*~F).
Then

s—L( 0
p(ide(C) if p is odd,
dr(C) <
9s—2+L .
ﬁdH(C) ifp=2.

@ Eimear Byrne and Violetta Weger “Bounds in the Lee Metric”, in preparation.
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Plotkin Bound in the Lee Metric

We can always choose £ = 1 (there is always a minimal
Hamming weight codeword in the socle)

Corollary

Let C C (Z/p*Z)" be a linear code of rank K. Then

_dL(C/)l_ 1J S n — K7
for

1
i) if p is odd,

251 ifp=2.

@ Eimear Byrne and Violetta Weger “Bounds in the Lee Metric”, in preparation.
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Plotkin Bounds in the Lee Metric

Example

We consider the code C = ((0,1,1),(2,0,0),(0,0,2)) C (Z/AZ)>.
This code attains the new bound for ¢ = 1 since

dL:2:2(n—K—|—1).
It does not attain the bound of Chiang and Wolf with k1, as
4
dr < 5(3—1—1—1):4.
We also note that we cannot choose £ = 2, since the only

codewords that have minimal Hamming weight are divisible by
2. In fact:

4 4
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Comparison of Bounds

Comparison of bounds for codes over Z/5°Z of type
(10, k2,0,0,0) and length 2K, K = 10 + k.

-10%
PR Chiang-Wolf
3 | — New bound
J— Wyner-Graham
Shiromoto
2.5 | | - - = Alderson-Huntemann
~
=
§ 2 1
<
g
=
o 15[ N
m
1F N
0.5 I I I I I I I
0 2 4 6 8 10 12 14

Value of ko
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Note that in order to meet the new bound with £ = 1, we need

1. the socle C' = CN (p*~1) is an MDS code, we can identify it
with a [n, K] linear code over [,

2. a x € C' which generates a Lee-equidistant code.
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Note that in order to meet the new bound with £ = 1, we need

1. the socle C' = CN (p*~1) is an MDS code, we can identify it
with a [n, K] linear code over [,

2. a x € C' which generates a Lee-equidistant code.
U

1. Due to the MDS conjecture: assume n < p+ 1 and K < p.

2. Due to the characterization of Lee-equidistant codes of
Wood: z consists of repetitions of (£1,..., :l:%).

@ Jay Wood “The structure of linear codes of constant weight”, Transactions of the

American Mathematical Society, 2002.
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Note that in order to meet the new bound with £ = 1, we need

1. the socle C' = CN (p*~1) is an MDS code, we can identify it
with a [n, K] linear code over [,

2. a x € C' which generates a Lee-equidistant code.
U

1. Due to the MDS conjecture: assume n < p+ 1 and K < p.

2. Due to the characterization of Lee-equidistant codes of
Wood: z consists of repetitions of (£1,..., :l:%).

Can put either 1 or 2 repetitions!

@ Jay Wood “The structure of linear codes of constant weight”, Transactions of the

American Mathematical Society, 2002.
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Density

Proposition

Let C C (Z/p*Z)" have rank K. If C meets the new bound then
length n < p+ 1 and either

s—1 271
Ken—p+2<3anddy(C)=2_® =1

1
K:n+1—35—§p+5
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e For n — oo: the socle C’ is an MDS code over Fp, by the
MDS conjecture the density of such codes is zero.

e For p — oo: Lee-equidistant cyclic modules over F,, of
length % or p—1<n <p+ 1 have density zero.
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Classical Gilbert-Varshamov Bound

e Random codes over [, in the Hamming metric achieve the
GV bound with high probability

@ Alexander Barg, G. David Forney “Random codes: Minimum distances and error

exponents”, IEEE Transactions on Information Theory, 2002.

@ John Pierce “Limit distribution of the minimum distance of random linear codes”,

IEEE Transactions on Information Theory, 1967.

e Random rank-metric codes over [, achieve the GV bound
with high probability

@ Pierre Loidreau “Asymptotic behaviour of codes in rank metric over finite fields”,

Designs, codes and cryptography, 2014.

Do ring-linear codes also attain the GV bound?
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Gilbert-Varshamov Bound

o wt: weight function on R".

° V(n,w) = {veR"|wtv) <w}|.

o N: the maximal weight an element of R" can achieve.

° 9(6) = lim ~log,. (V(n,6N)).

n—oo N

(]

AL(n,d): the maximal size of a code in R™ having
minimum distance d

— 1
° R(6) := limsup — log s AL(n,éN).

n—oo N
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Gilbert-Varshamov Bound

The asymptotic Gilbert-Varshamov bound now states that

R(6) >1—g(9).
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Gilbert-Varshamov Bound

The asymptotic Gilbert-Varshamov bound now states that

R(6) >1—g(9).

For the Lee metric, Homming metric and homogeneous metric,

we have that a random code over a finite chain ring achieves the
Gilbert-Varshamov bound with high probability.

@ Eimear Byrne, Anna-Lena Horlemann, Karan Khathuria and Violetta Weger “Density of
Free Modules over Finite Chain Rings”, 2021.
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Open Problems

Summary

@ Linear MLD codes are sparse.

Plotkin-optimal linear codes in the Lee metric are sparse.

o Random linear codes over finite chain rings attain the GV
bound.

Open Problems

e Give a construction of optimal codes for the new bound
(for any subtype).

(]

Is there some other way to give a ‘better’ Singleton-like
bound?
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Thank you!

Beh

ing-Linear Codes
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