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Motivation

Large interest in code-based cryptography in

new metrics, such as sum-rank metric, Lee metric,

new ambient spaces, such as finite chain rings.

How do random codes behave over finite chain rings?

What parameters should we expect?

What minimum distance should we expect?
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Finite Chain Rings

Definition (Chain Ring)

A ring R is called a chain ring, if the ideals of R form a chain:
for all ideals I, J ⊆ R we either have I ⊆ J or J ⊆ I.

Let 〈π〉 be the unique maximal ideal of R.

s is the nilpotency index: the smallest positive integer
such that πs = 0.

q is the size of the residue field: q =| R/〈π〉 |.
Thus, | R |= qs.

Example

Fq[X;σ]/(Xs) for some σ ∈ Aut(Fq),

GR(ps, r) : for s = 1 : Fpr and for r = 1 : Z/psZ,
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Ring-Linear Coding Theory

Classical R-Linear

Ambient space
Finite field Fq

Finite chain ring
R

Linear code
C ⊆ Fn

q

C ⊆ Rn

linear subspace

R-submodule

Parameters
length n

length n

dimension k

?
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Ring-Linear Coding Theory

Let C ⊆ Rn be a code, then

C ∼= 〈1〉 × · · · × 〈1〉︸ ︷︷ ︸
k1

×〈π〉 × · · · × 〈π〉︸ ︷︷ ︸
k2

× · · · × 〈πs−1〉 × · · · × 〈πs−1〉︸ ︷︷ ︸
ks

.

Then we say C has

subtype (k1, . . . , ks),

type k =
∑s

i=1
s−i+1

s ki = logqs (| C |) ,
rate R = k/n,

rank K =
∑s

i=1 ki,

free rank k1.

0 ≤ k1 ≤ k ≤ K ≤ n.

If k1 = k = K, we say that C is a free code.
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Ring-Linear Coding Theory

Systematic Form

If C has subtype (k1, . . . , ks) and rank K then

G =


Idk1 ∗ · · · ∗ ∗

0 pIdk2 · · · p∗ p∗
...

...
...

...
0 0 · · · ps−1Idks ps−1∗

 ∈ (Z/psZ)K×n .

If C is a free code, then

G =
(
Idk A

)
∈ (Z/psZ)k×n .
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Question: Density of Free Codes

Fix n and a rate R = k/n. A code C ⊆ Rn of rate R, can have
any subtype (k1, . . . , ks) with

k =

s∑
i=1

s− i+ 1

s
ki.

How likely is it that a random code is free?

Probability of a free code:

P (n) =
number of free codes of type k

number of all codes of type k
.

Then, the density of free codes is given by

lim
n→∞

P (n),

if the limit exists.
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Counting Codes

Proposition

The number of codes of Rn with subtype (k1, . . . , ks) is given by

Nn,q(k1, . . . , ks) = q
∑s

i=1(n−
∑i

j=1 kj)
∑i−1

j=1 kj
s∏

i=1

[
n−

∑i−1
j=1 kj

ki

]
q

,

Corollary

The number of free codes of type k is then given by

Nn,q(k, 0, . . . , 0) = q(n−k)k(s−1)
[
n

k

]
q

.

Thomas Honold and Ivan Landjev “Linear codes over finite chain rings”, The electronic

journal of combinatorics, 2000.
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Counting Codes

Definition

Let L(s, n, k) to be the set of all possible subtypes for type k:

L(s, n, k) :=

{
(k1, . . . , ks) |

s∑
i=1

ki
s− i+ 1

s
= k,

s∑
i=1

ki ≤ n

}
.

The number of codes in Rn of type k is

M(n, k, q, s) :=
∑

(k1,...,ks)∈L(s,n,k)

Nn,q(k1, . . . , ks).
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Counting Codes

The number of [n, k] linear codes over Fq is given by the
q-binomial coefficient[

n

k

]
q

=

k−1∏
i=0

qn − qi

qk − qi
.

Definition

The q-multinomial coefficient is defined as[
n

m

](r)
q

:=
∑

j1+···+jr=m

q
∑r−1

`=1 (n−j`)j`+1

[
n

j1

]
q

[
j1
j2

]
q

· · ·
[
jr−1
jr

]
q

.

M(n, k, q, s) =

[
n

ks

](s)
q

.

Ole S. Warnaar “The Andrews–Gordon identities and q-multinomial coefficients”,

Communications in mathematical physics, 1997.
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Density of Free Codes

The probability to have a free code of rate R = k/n is

P (n) =
q(n−k)k(s−1)

[
n
k

]
q

M(n, k, q, s)
.

Example

The density of free codes over Z/4Z is

∼ 0.59546.
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Combinatorial Tools

The q-Pochhammer symbol

(a; q)r =

r−1∏
i=0

(
1− aqi

)
, (a; q)∞ =

∞∏
i=0

(
1− aqi

)
.

We denote by (q)r = (q; q)r.[
n

k

]
q

=

k−1∏
i=0

qn − qi

qk − qi
=

(q)n
(q)k(q)n−k

.

Generating function for partitions:
∑
n≥0

p(n)qn = 1
(q)∞

Series involving (a; q)r are called q-series

q-binomial theorem:∑
n≥0

(a; q)n
(q)n

zn =
(az; q)∞
(z; q)∞

.
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Density of Free Codes

Anne Schilling. “Multinomials and polynomial bosonic forms for the branching functions

of the ŝuM (2)× ŝuN (2)/ŝuM+N (2) conformal coset models”, Nuclear Physics B, 1996.

Theorem

The density as n→∞ of free codes in Rn of type k is given by

d(q, s) =

 ∑
k2,...,ks≥0

s|K2+···+Ks

(1/q)K
2
2+···+K2

s−(K2+···+Ks)2/s

(1/q)k2 · · · (1/q)ks


−1

,

where Ki =
∑i

j=2 kj .

Eimear Byrne, Anna-Lena Horlemann, Karan Khathuria and Violetta Weger “Density of

Free Modules over Finite Chain Rings”, 2021.
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Special case s = 2

If s = 2 we can write this nicer:

2

(−
√

1/q; 1/q)∞ + (
√

1/q; 1/q)∞
.

In fact,

2

(−
√

1/2; 1/2)∞ + (
√

1/2; 1/2)∞
∼ 0.59546.

George E. Andrews and Rodney J. Baxter. “Lattice gas generalization of the hard

hexagon model. III. q-trinomial coefficients”, Journal of statistical physics, 1987.

Lucy Joan Slater. “Further Identities of the Rogers-Ramanujan Type”, Proceedings of

the London Mathematical Society, 1952.
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Rogers-Ramanujan Identities

Theorem (Rogers-Ramanujan Identities)

Let | q |< 1, then

∑
n≥0

qn
2

(q)n
=

1

(q; q5)∞(q4; q5)∞
,

and ∑
n≥0

qn
2+n

(q)n
=

1

(q3; q5)∞(q2; q5)∞
.

Srinivasa Ramanujan and Leonard James Roger. “Proof of certain identities in

combinatory analysis.”, Proc. Cambridge Philos. Soc, 1919.
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Andrews-Gordon Identity

Theorem (Andrews-Gordon Identity)

For | q |< 1 it holds that

AGI(q, s) :=
∑

n1,...,ns−1≥0

qN
2
1+···+N2

s−1

(q)n1 · · · (q)ns−1

=
(qs; q2s+1)∞(qs+1; q2s+1)∞(q2s+1; q2s+1)∞

(q)∞
,

where Ni = ni + · · ·+ ns−1.

George E. Andrews. “An analytic generalization of the Rogers-Ramanujan identities for

odd moduli.”, Proceedings of the National Academy of Sciences, 1974.

Basil Gordon. “A combinatorial generalization of the Rogers-Ramanujan identities”,

American Journal of Mathematics, 1961.
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Density of Free Codes

Theorem

The density as n→∞ of free codes in Rn of type k is given by

d(q, s) =

 ∑
k2,...,ks≥0

s|K2+···+Ks

(1/q)K
2
2+···+K2

s−(K2+···+Ks)2/s

(1/q)k2 · · · (1/q)ks


−1

,

where Ki =
∑i

j=2 kj .

AGI(1/q, s) =
∑

k2,...,ks≥0

(1/q)K
2
2+···+K2

s

(1/q)k2 · · · (1/q)ks
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Bounds

Theorem

The density as n→∞ of free codes in Rn of type k denoted by
d(q, s) can be bounded as follows:

0 < (1/q)∞ ≤ AGI (1/q, s)−1 ≤ d(q, s) ≤ AGI(1/q′, s)−1 < 1,

for q′ := qs
2−s.
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Other Densities

Corollary

The probability for a code in Rn of type k to be free is at least
(1/q)∞.

q 2 3 5 7 11 13

(1/q)∞ 0.2888 0.5601 0.7603 0.8368 0.9008 0.9172

Corollary

The density of free codes in Rn of type k for q →∞ is 1.
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Density for Fixed Rank

The set of weak compositions of K into s parts is

C(s,K) :=

{
(k1, . . . , ks) | 0 ≤ ki ≤ K,

s∑
i=1

ki = K

}
.

The number of codes in Rn of rank K is given by

W (n,K, q, s) :=
∑

(k1,...,ks)∈C(s,K)

Nn,q(k1, . . . , ks).

Theorem

Let K and n be positive integers with K = R′n. The density of
free codes in Rn of given rank K for n→∞ is

0 if 1/2 < R′ < 1,

1 if R′ < 1/2,

≥ AGI(1/q, s)−1 if R′ = 1/2.
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Summary

What parameters should we expect?

Free codes of fixed rate as n→∞ are neither sparse nor
dense. The density is independent of the rate and at least
(1/q)∞.

Free codes of fixed rank-rate as n→∞ is either dense or
sparse, depending on R′ = K/n.

For large enough q, we expect a random code of fixed type
to be free.
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Open Problems

Open Problems

Establish a simplified condition on
(k1, . . . , ks), (k̄1, . . . , k̄s) ∈ L(s, n, k) such that we have

Nn,q(k1, . . . , ks) ≤ Nn,q(k̄1, . . . , k̄s).

For a fixed subtype (k1, . . . , ks) what is the density of codes
having this subtype?
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Minimum Distance

We can endow R with several metrics:

Hamming metric

Euclidean metric

Homogeneous metric

Lee metric, if R = Z/psZ

For a code C ⊆ Rn its minimum distance is given by

d(C) = min{d(x, y) | x, y ∈ C, x 6= y}.
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Minimum Distance

Definition (Lee Metric)

x ∈ Z/psZ : wtL(x) = min{x, | ps − x |},
x ∈ (Z/psZ)n : wtL(x) =

∑n
i=1 wtL(xi),

x, y ∈ (Z/psZ)n : dL(x, y) = wtL(x− y).

Example (Z/4Z)

wtL(0) = 0 wtL(2) = 2

wtL(1) = 1 wtL(3) = 1

For M = bp
s

2 c:
0 ≤ wtH(x) ≤ wtL(x) ≤MwtH(x) ≤Mn,

dH(C) ≤ dL(C) ≤MdH(C).
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Classical Singleton Bound

Theorem (Singleton Bound)

A code C ⊆ Fn
q of dimension k has minimum Hamming distance

dH(C) ≤ n− k + 1.

Codes that achieve this bound are called maximum distance
separable (MDS) codes.

For n ≤ q + 1 we have a construction of MDS codes:
(extended) RS codes

For q →∞ MDS codes have density 1

For n→∞ MDS codes have density 0
(assuming the MDS conjecture)
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Singleton Bound in the Lee Metric

How do maximum Lee distance (MLD) codes behave?

What is the analog of the Singleton bound in the Lee
metric?

Are MLD codes dense for n or q going to infinity?
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Some Observations

1. Clearly dL(C) ≤MdH(C)
2. Hamming Singleton bound: dH(C) ≤ n− k + 1

3. If dL(C) ≤ adH(C), then⌊
dL(C)− 1

a

⌋
≤ dH(C)− 1

for any such a.
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Some Observations

Proposition

For a linear code C ⊆ (Z/psZ)n of rank K we have

dH(C) ≤ n−K + 1.

C′ = C ∩ 〈ps−1〉.
C has subtype (k1, . . . , ks) and a generator matrix G in
standard form:

C′ =
{
xG | x ∈ ps−1 (Z/psZ)k1 × · · · × (Z/psZ)ks

}
.

|C′| = pk1+···+ks = pK .

C′ can be identified with an [n,K] linear code over Fp.

Steven T. Dougherty and Keisuke Shiromoto “MDR codes over Zk”, IEEE Transactions

on Information Theory, 2000.
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Singleton Bounds in the Lee Metric

Theorem (Shiromoto)

For any code C ⊆ (Z/psZ)n of type k, we have that⌊
dL(C)− 1

M

⌋
≤ n− k.

Easily follows as dL(C) ≤MdH(C) ≤M(n− k+ 1) and the floor
remark [3.]

Example

Let us consider the code C = 〈(1, 2)〉 over Z/5Z, which has
M = 2, n = 2, k = 1 and dL = 3. This code attains the bound of
Shiromoto as ⌊

3− 1

2

⌋
= 2− 1.

Keisuke Shiromoto “Singleton bounds over finite rings.”, Journal of Algebraic

Combinatorics, 2000.
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Singleton Bounds in the Lee Metric

How many codes attain this bound?

Theorem

The only linear codes that attain this Singleton bound are
equivalent to C = 〈(1, 2)〉 ⊆ (Z/5Z)2 .
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Singleton Bounds in the Lee Metric

Theorem (Alderson-Huntemann)

For any code C ⊆ (Z/psZ)n of type 1 < k < n a positive integer,
we have that

dL(C) ≤M(n− k).

Example

Let C3 = 〈(2, 0, 1), (1, 3, 4)〉 over Z/5Z. Here we have
n = 3, k = 2,M = 2 and dL = 2. This code attains the bound of
Alderson-Huntemann since

dL = 2 = M(n− k) = 2.

Tim L. Alderson and Svenja Huntemann “On maximum Lee distance codes.”, Journal of

Discrete Mathematics, 2013.
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Singleton Bounds in the Lee Metric

How many codes attain this bound?

Theorem

The only linear codes that attain this Singleton bound are

for p odd:

codes with ps = 5, k + 1 ≤ n ≤ k + 3,
free codes with ps ∈ {7, 9}, n = k + 1,

for p = 2 :

free codes with s = 2, k + 1 ≤ n ≤ k + 2,
free codes with s = 3, n = k + 1,
k + 1 = K ∈ {n, n− 1}.

The density of MLD codes is 0 for n→∞
The density of MLD codes is 0 for p→∞

Violetta Weger Behaviour of Random Ring-Linear Codes



Singleton Bounds in the Lee Metric

How many codes attain this bound?

Theorem

The only linear codes that attain this Singleton bound are

for p odd:

codes with ps = 5, k + 1 ≤ n ≤ k + 3,
free codes with ps ∈ {7, 9}, n = k + 1,

for p = 2 :

free codes with s = 2, k + 1 ≤ n ≤ k + 2,
free codes with s = 3, n = k + 1,
k + 1 = K ∈ {n, n− 1}.

The density of MLD codes is 0 for n→∞
The density of MLD codes is 0 for p→∞

Violetta Weger Behaviour of Random Ring-Linear Codes



Singleton Bounds in the Lee Metric

How many codes attain this bound?

Theorem

The only linear codes that attain this Singleton bound are

for p odd:

codes with ps = 5, k + 1 ≤ n ≤ k + 3,
free codes with ps ∈ {7, 9}, n = k + 1,

for p = 2 :

free codes with s = 2, k + 1 ≤ n ≤ k + 2,
free codes with s = 3, n = k + 1,
k + 1 = K ∈ {n, n− 1}.

The density of MLD codes is 0 for n→∞
The density of MLD codes is 0 for p→∞

Violetta Weger Behaviour of Random Ring-Linear Codes



Plotkin Bounds in the Lee Metric

Let wt be any weight and d be the minimum distance of C, then

d(|C| − 1) ≤
∑
c∈C

wt(c).

For the Lee metric, this yields the bound:

dL(C) ≤ |C|
|C| − 1

wtL(C),

where

wtL(C) :=
1

|C|
∑
a∈C

wtL(a)

is the average Lee weight of the code C ⊆ (Z/psZ)n.
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Plotkin Bounds in the Lee Metric

The average Lee weight over Z/psZ is given by

D =

{
p2s−1
4ps if p is odd,

2s−2 if p = 2.

Theorem (Wyner and Graham)

For any code C ⊆ (Z/psZ)n of type k we have that

dL(C) ≤ nD

1− 1/psk
.

Since
wtL(C) ≤ nD.

Aaron D. Wyner and Ronald L. Graham “An upper bound on minimum distance for a

k-ary code.”, Inf. Control., 1968.
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Plotkin Bounds in the Lee Metric

For any subcode C′

dL(C) ≤ | C′ |
| C′ | −1

wtL(C′).

Theorem (Chiang and Wolf)

For a free linear code C ⊆ (Z/psZ)n of type k we have that

dL(C) ≤ (n− k + 1)D

1− 1/ps
.

Choose a (n− k)× n parity-check matrix H for the code C.
Form the (n− 1)× n matrix H ′ by appending the rows of
the (k − 1)× n matrix [Idk−1 | 0] to H.
The code with parity-check matrix H ′ is a subcode that
contains a word c with wtH(c) ≤ n− k + 1: C′ = 〈c〉.

J. Chung-Yaw Chiang and Jack K. Wolf “On channels and codes for the Lee metric”,

Information and Control, 1971.
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Plotkin Bounds in the Lee Metric

Theorem

For any linear code C ⊆ (Z/psZ)n of free rank k1 ≥ 1 we have
that

dL(C) ≤ (n− k1 + 1)D

1− 1/ps
.

choose a (n− k1)× n parity-check matrix H for the code C.
Form the (n− 1)× n matrix H ′ by appending the rows of
the (k1 − 1)× n matrix [Idk1−1 | 0] to H.

The code with parity-check matrix H ′ is a subcode that
contains a word of Hamming weight at most n− k1 + 1.
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Plotkin Bounds in the Lee Metric

dL(C) ≤ |〈c〉|
|〈c〉| − 1

wtL(〈c〉),

for a minimum Hamming weight codeword c.

If we can take c in the free part: we get the Chiang and
Wolf bound with k1.

If c ∈ 〈ps−`〉: how do we bound wtL(〈c〉)?
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Plotkin Bounds in the Lee Metric

We introduce the support subtype

For j ∈ {1, . . . , n} let πj be the j-th coordinate map.

Define

ni(C) := |{j ∈ {1, . . . , n} | 〈πj(C)〉 = 〈pi〉}|.

For a code C ⊆ (Z/psZ)n, we call (n0, . . . , ns) its support
subtype.

Example

Let C be the code over Z/8Z generated by

G =


1 3 5 0 2
0 2 4 2 6
0 0 4 0 0
0 0 0 4 4


then C has subtype (1, 1, 2) and support subtype (3, 2, 0, 0).
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Plotkin Bounds in the Lee Metric

Lemma

Let C ⊆ (Z/psZ)n be a linear code of support subtype
(n0, . . . , ns). Then

wtL(C) =


1

4ps

(
p2s|n− ns| −

s−1∑
i=0

p2ini

)
if p is odd,

2s−2|n− ns| if p = 2.
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Plotkin Bounds in the Lee Metric

Theorem

Let C ⊆ (Z/psZ)n be linear code. Let ` ∈ {1, . . . , s} such that
there exists y ∈ C satisfying wtH(y) = dH(y) and y ∈ 〈ps−`〉.
Then

dL(C) ≤


ps−`(p` + 1)

4
dH(C) if p is odd,

2s−2+`

2` − 1
dH(C) if p = 2.

Eimear Byrne and Violetta Weger “Bounds in the Lee Metric”, in preparation.
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Plotkin Bound in the Lee Metric

We can always choose ` = 1 (there is always a minimal
Hamming weight codeword in the socle)

Corollary

Let C ⊆ (Z/psZ)n be a linear code of rank K. Then⌊
dL(C)− 1

A

⌋
≤ n−K,

for

A :=


ps−1(p+ 1)

4
if p is odd,

2s−1 if p = 2.

Eimear Byrne and Violetta Weger “Bounds in the Lee Metric”, in preparation.
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Plotkin Bounds in the Lee Metric

Example

We consider the code C = 〈(0, 1, 1), (2, 0, 0), (0, 0, 2)〉 ⊂ (Z/4Z)3.
This code attains the new bound for ` = 1 since

dL = 2 = 2(n−K + 1).

It does not attain the bound of Chiang and Wolf with k1, as

dL ≤
4

3
(3− 1 + 1) = 4.

We also note that we cannot choose ` = 2, since the only
codewords that have minimal Hamming weight are divisible by
2. In fact:

dL = 2 6≤ 4

3
=

4

3
(3− 3 + 1).
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Comparison of Bounds

Comparison of bounds for codes over Z/55Z of type
(10, k2, 0, 0, 0) and length 2K,K = 10 + k2.
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Density

Note that in order to meet the new bound with ` = 1, we need

1. the socle C′ = C ∩ 〈ps−1〉 is an MDS code, we can identify it
with a [n,K] linear code over Fp,

2. a x ∈ C′ which generates a Lee-equidistant code.

⇓

1. Due to the MDS conjecture: assume n ≤ p+ 1 and K ≤ p.
2. Due to the characterization of Lee-equidistant codes of

Wood: x consists of repetitions of (±1, . . . ,±p−1
2 ).

Can put either 1 or 2 repetitions!

Jay Wood “The structure of linear codes of constant weight”, Transactions of the

American Mathematical Society, 2002.
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Density

Proposition

Let C ⊂ (Z/psZ)n have rank K. If C meets the new bound then
length n ≤ p+ 1 and either

K = n− p+ 2 ≤ 3 and dL(C) =
ps−1(p2 − 1)

4
,

or

K = n+ 1− p− 1

2
≤ p+ 5

2
and dL(C) =

ps−1(p2 − 1)

8
.
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Density

For n→∞: the socle C′ is an MDS code over Fp, by the
MDS conjecture the density of such codes is zero.

For p→∞: Lee-equidistant cyclic modules over Fp of
length p−1

2 or p− 1 ≤ n ≤ p+ 1 have density zero.
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Classical Gilbert-Varshamov Bound

Random codes over Fq in the Hamming metric achieve the
GV bound with high probability

Alexander Barg, G. David Forney “Random codes: Minimum distances and error

exponents”, IEEE Transactions on Information Theory, 2002.

John Pierce “Limit distribution of the minimum distance of random linear codes”,

IEEE Transactions on Information Theory, 1967.

Random rank-metric codes over Fq achieve the GV bound
with high probability

Pierre Loidreau “Asymptotic behaviour of codes in rank metric over finite fields”,

Designs, codes and cryptography, 2014.

Do ring-linear codes also attain the GV bound?
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Gilbert-Varshamov Bound

wt: weight function on Rn.

V (n,w) :=| {v ∈ Rn | wt(v) ≤ w} | .

N : the maximal weight an element of Rn can achieve.

g(δ) := lim
n→∞

1

n
logqs (V (n, δN)) .

AL(n, d): the maximal size of a code in Rn having
minimum distance d

R(δ) := lim sup
n→∞

1

n
logqs AL(n, δN).
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Gilbert-Varshamov Bound

The asymptotic Gilbert-Varshamov bound now states that

R(δ) ≥ 1− g(δ).

Theorem

For the Lee metric, Hamming metric and homogeneous metric,
we have that a random code over a finite chain ring achieves the
Gilbert-Varshamov bound with high probability.

Eimear Byrne, Anna-Lena Horlemann, Karan Khathuria and Violetta Weger “Density of

Free Modules over Finite Chain Rings”, 2021.
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Open Problems

Summary

Linear MLD codes are sparse.

Plotkin-optimal linear codes in the Lee metric are sparse.

Random linear codes over finite chain rings attain the GV
bound.

Open Problems

Give a construction of optimal codes for the new bound
(for any subtype).

Is there some other way to give a ‘better’ Singleton-like
bound?
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Thank you!
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