Behaviour of Random Ring-Linear Codes

Violetta Weger

Technical University of Munich
TII
ACCESS
October 5, 2021
joint work with Eimear Byrne, Anna-Lena Horlemann and Karan Khathuria

Large interest in code-based cryptography in

- new metrics, such as sum-rank metric, Lee metric,
- new ambient spaces, such as finite chain rings.

Large interest in code-based cryptography in

- new metrics, such as sum-rank metric, Lee metric,
- new ambient spaces, such as finite chain rings.

How do random codes behave over finite chain rings?

Large interest in code-based cryptography in

- new metrics, such as sum-rank metric, Lee metric,
- new ambient spaces, such as finite chain rings.

How do random codes behave over finite chain rings?

- What parameters should we expect?
- What minimum distance should we expect?

Outline

(1) Ring-Linear Coding Theory
(2) Parameters: Density of Free Codes

- of Given Type
- of Given Rank
- Open Problems
(3) Minimum Distance
- Singleton Bounds in the Lee Metric
- Plotkin Bounds in the Lee Metric
- Gilbert-Varshamov Bound
- Open Problems

Finite Chain Rings

Definition (Chain Ring)

A ring \mathcal{R} is called a chain ring, if the ideals of \mathcal{R} form a chain: for all ideals $I, J \subseteq \mathcal{R}$ we either have $I \subseteq J$ or $J \subseteq I$.

Let $\langle\pi\rangle$ be the unique maximal ideal of \mathcal{R}.

- s is the nilpotency index: the smallest positive integer such that $\pi^{s}=0$.
- q is the size of the residue field: $q=|\mathcal{R} /\langle\pi\rangle|$.

Thus, $|\mathcal{R}|=q^{s}$.

Example

- $\mathbb{F}_{q}[X ; \sigma] /\left(X^{s}\right)$ for some $\sigma \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$,
- $G R\left(p^{s}, r\right):$ for $s=1: \mathbb{F}_{p^{r}}$ and for $r=1: \mathbb{Z} / p^{s} \mathbb{Z}$,

Ring-Linear Coding Theory

	Classical	\mathcal{R}-Linear
Ambient space	Finite field \mathbb{F}_{q}	
Linear code	$\mathcal{C} \subseteq \mathbb{F}_{q}^{n}$ linear subspace	
Parameters	length n dimension k	

Ring-Linear Coding Theory

	Classical	\mathcal{R}-Linear
	Finite field \mathbb{F}_{q}	Finite chain ring
Ambient space		\mathcal{R}
Linear code	$\mathcal{C} \subseteq \mathbb{F}_{q}^{n}$	$\mathcal{C} \subseteq \mathcal{R}^{n}$
	linear subspace	\mathcal{R}-submodule
Parameters	length n	length n
	dimension k	$?$

Ring-Linear Coding Theory

Let $\mathcal{C} \subseteq \mathcal{R}^{n}$ be a code, then

$$
\mathcal{C} \cong \underbrace{\langle 1\rangle \times \cdots \times\langle 1\rangle}_{k_{1}} \times \underbrace{\langle\pi\rangle \times \cdots \times\langle\pi\rangle}_{k_{2}} \times \cdots \times \underbrace{\left\langle\pi^{s-1}\right\rangle \times \cdots \times\left\langle\pi^{s-1}\right\rangle}_{k_{s}} .
$$

Then we say \mathcal{C} has

- subtype $\left(k_{1}, \ldots, k_{s}\right)$,
- type $k=\sum_{i=1}^{s} \frac{s-i+1}{s} k_{i}=\log _{q^{s}}(|\mathcal{C}|)$,
- rate $R=k / n$,
- rank $K=\sum_{i=1}^{s} k_{i}$,
- free rank k_{1}.

$$
0 \leq k_{1} \leq k \leq K \leq n
$$

If $k_{1}=k=K$, we say that \mathcal{C} is a free code.

Ring-Linear Coding Theory

Systematic Form

If \mathcal{C} has subtype $\left(k_{1}, \ldots, k_{s}\right)$ and rank K then

$$
G=\left(\begin{array}{ccccc}
\operatorname{Id}_{k_{1}} & * & \cdots & * & * \\
0 & p \operatorname{Id}_{k_{2}} & \cdots & p * & p * \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & p^{s-1} \operatorname{Id}_{k_{s}} & p^{s-1} *
\end{array}\right) \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{K \times n} .
$$

If \mathcal{C} is a free code, then

$$
G=\left(\begin{array}{ll}
\operatorname{Id}_{k} & A
\end{array}\right) \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{k \times n} .
$$

Question: Density of Free Codes

Fix n and a rate $R=k / n$. A code $\mathcal{C} \subseteq \mathcal{R}^{n}$ of rate R, can have any subtype $\left(k_{1}, \ldots, k_{s}\right)$ with

$$
k=\sum_{i=1}^{s} \frac{s-i+1}{s} k_{i} .
$$

How likely is it that a random code is free?

Question: Density of Free Codes

Fix n and a rate $R=k / n$. A code $\mathcal{C} \subseteq \mathcal{R}^{n}$ of rate R, can have any subtype $\left(k_{1}, \ldots, k_{s}\right)$ with

$$
k=\sum_{i=1}^{s} \frac{s-i+1}{s} k_{i} .
$$

How likely is it that a random code is free?

Probability of a free code:

$$
P(n)=\frac{\text { number of free codes of type } k}{\text { number of all codes of type } k} .
$$

Then, the density of free codes is given by

$$
\lim _{n \rightarrow \infty} P(n),
$$

if the limit exists.

Counting Codes

Proposition

The number of codes of \mathcal{R}^{n} with subtype $\left(k_{1}, \ldots, k_{s}\right)$ is given by

$$
N_{n, q}\left(k_{1}, \ldots, k_{s}\right)=q^{\sum_{i=1}^{s}\left(n-\sum_{j=1}^{i} k_{j}\right) \sum_{j=1}^{i-1} k_{j}} \prod_{i=1}^{s}\left[\begin{array}{c}
n-\sum_{j=1}^{i-1} k_{j} \\
k_{i}
\end{array}\right]_{q}
$$

Corollary

The number of free codes of type k is then given by

$$
N_{n, q}(k, 0, \ldots, 0)=q^{(n-k) k(s-1)}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}
$$

Thomas Honold and Ivan Landjev "Linear codes over finite chain rings", The electronic journal of combinatorics, 2000 .

Counting Codes

Definition

Let $L(s, n, k)$ to be the set of all possible subtypes for type k :

$$
L(s, n, k):=\left\{\left(k_{1}, \ldots, k_{s}\right) \left\lvert\, \sum_{i=1}^{s} k_{i} \frac{s-i+1}{s}=k\right., \sum_{i=1}^{s} k_{i} \leq n\right\} .
$$

Definition

Let $L(s, n, k)$ to be the set of all possible subtypes for type k :

$$
L(s, n, k):=\left\{\left(k_{1}, \ldots, k_{s}\right) \left\lvert\, \sum_{i=1}^{s} k_{i} \frac{s-i+1}{s}=k\right., \sum_{i=1}^{s} k_{i} \leq n\right\} .
$$

The number of codes in \mathcal{R}^{n} of type k is

$$
M(n, k, q, s):=\sum_{\left(k_{1}, \ldots, k_{s}\right) \in L(s, n, k)} N_{n, q}\left(k_{1}, \ldots, k_{s}\right) .
$$

Counting Codes

The number of $[n, k]$ linear codes over \mathbb{F}_{q} is given by the q-binomial coefficient

$$
\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q}=\prod_{i=0}^{k-1} \frac{q^{n}-q^{i}}{q^{k}-q^{i}}
$$

Counting Codes

The number of $[n, k]$ linear codes over \mathbb{F}_{q} is given by the q-binomial coefficient

$$
\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q}=\prod_{i=0}^{k-1} \frac{q^{n}-q^{i}}{q^{k}-q^{i}}
$$

Definition

The q-multinomial coefficient is defined as

$$
\left[\begin{array}{c}
n \\
m
\end{array}\right]_{q}^{(r)}:=\sum_{j_{1}+\cdots+j_{r}=m} q^{\sum_{\ell=1}^{r-1}\left(n-j_{\ell}\right) j_{\ell+1}}\left[\begin{array}{l}
n \\
j_{1}
\end{array}\right]_{q}\left[\begin{array}{c}
j_{1} \\
j_{2}
\end{array}\right]_{q} \ldots\left[\begin{array}{c}
j_{r-1} \\
j_{r}
\end{array}\right]_{q}
$$

$$
M(n, k, q, s)=\left[\begin{array}{c}
n \\
k s
\end{array}\right]_{q}^{(s)}
$$

Ole S. Warnaar "The Andrews-Gordon identities and q-multinomial coefficients",
Communications in mathematical physics, 1997.

Density of Free Codes

The probability to have a free code of rate $R=k / n$ is

$$
P(n)=\frac{q^{(n-k) k(s-1)}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}}{M(n, k, q, s)}
$$

Density of Free Codes

The probability to have a free code of rate $R=k / n$ is

$$
P(n)=\frac{q^{(n-k) k(s-1)}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}}{M(n, k, q, s)}
$$

Example

The density of free codes over $\mathbb{Z} / 4 \mathbb{Z}$ is
~ 0.59546.

Combinatorial Tools

The q-Pochhammer symbol

$$
(a ; q)_{r}=\prod_{i=0}^{r-1}\left(1-a q^{i}\right), \quad(a ; q)_{\infty}=\prod_{i=0}^{\infty}\left(1-a q^{i}\right)
$$

We denote by $(q)_{r}=(q ; q)_{r}$.

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\prod_{i=0}^{k-1} \frac{q^{n}-q^{i}}{q^{k}-q^{i}}=\frac{(q)_{n}}{(q)_{k}(q)_{n-k}}
$$

- Generating function for partitions: $\sum_{n \geq 0} p(n) q^{n}=\frac{1}{(q)_{\infty}}$
- Series involving $(a ; q)_{r}$ are called q-series
- q-binomial theorem:

$$
\sum_{n \geq 0} \frac{(a ; q)_{n}}{(q)_{n}} z^{n}=\frac{(a z ; q)_{\infty}}{(z ; q)_{\infty}}
$$

Density of Free Codes

Anne Schilling. "Multinomials and polynomial bosonic forms for the branching functions of the $\widehat{s u}_{M}(2) \times \widehat{s u}_{N}(2) / \widehat{s u}_{M+N}(2)$ conformal coset models", Nuclear Physics B, 1996.

Theorem

The density as $n \rightarrow \infty$ of free codes in \mathcal{R}^{n} of type k is given by

$$
d(q, s)=\left(\sum_{\substack{k_{2}, \ldots, k_{s} \geq 0 \\ s \mid K_{2}+\cdots+K_{s}}} \frac{(1 / q)^{K_{2}^{2}+\cdots+K_{s}^{2}-\left(K_{2}+\cdots+K_{s}\right)^{2} / s}}{(1 / q)_{k_{2}} \cdots(1 / q)_{k_{s}}}\right)^{-1}
$$

where $K_{i}=\sum_{j=2}^{i} k_{j}$.

Eimear Byrne, Anna-Lena Horlemann, Karan Khathuria and Violetta Weger "Density of Free Modules over Finite Chain Rings", 2021.

If $s=2$ we can write this nicer:

$$
\frac{2}{(-\sqrt{1 / q} ; 1 / q)_{\infty}+(\sqrt{1 / q} ; 1 / q)_{\infty}} .
$$

In fact,

$$
\frac{2}{(-\sqrt{1 / 2} ; 1 / 2)_{\infty}+(\sqrt{1 / 2} ; 1 / 2)_{\infty}} \sim 0.59546
$$George E. Andrews and Rodney J. Baxter. "Lattice gas generalization of the hard hexagon model. III. q-trinomial coefficients", Journal of statistical physics, 1987.

菁
Lucy Joan Slater. "Further Identities of the Rogers-Ramanujan Type", Proceedings of the London Mathematical Society, 1952.

Rogers-Ramanujan Identities

Theorem (Rogers-Ramanujan Identities)

Let $|q|<1$, then

$$
\sum_{n \geq 0} \frac{q^{n^{2}}}{(q)_{n}}=\frac{1}{\left(q ; q^{5}\right)_{\infty}\left(q^{4} ; q^{5}\right)_{\infty}}
$$

and

$$
\sum_{n \geq 0} \frac{q^{n^{2}+n}}{(q)_{n}}=\frac{1}{\left(q^{3} ; q^{5}\right)_{\infty}\left(q^{2} ; q^{5}\right)_{\infty}}
$$

\square Srinivasa Ramanujan and Leonard James Roger. "Proof of certain identities in combinatory analysis.", Proc. Cambridge Philos. Soc, 1919.

Andrews-Gordon Identity

Theorem (Andrews-Gordon Identity)

For $|q|<1$ it holds that

$$
\begin{aligned}
A G I(q, s): & =\sum_{n_{1}, \ldots, n_{s-1} \geq 0} \frac{q^{N_{1}^{2}+\cdots+N_{s-1}^{2}}}{(q)_{n_{1}} \cdots(q)_{n_{s-1}}} \\
& =\frac{\left(q^{s} ; q^{2 s+1}\right)_{\infty}\left(q^{s+1} ; q^{2 s+1}\right)_{\infty}\left(q^{2 s+1} ; q^{2 s+1}\right)_{\infty}}{(q)_{\infty}}
\end{aligned}
$$

where $N_{i}=n_{i}+\cdots+n_{s-1}$.

George E. Andrews. "An analytic generalization of the Rogers-Ramanujan identities for odd moduli.", Proceedings of the National Academy of Sciences, 1974.Basil Gordon. "A combinatorial generalization of the Rogers-Ramanujan identities", American Journal of Mathematics, 1961.

Density of Free Codes

Theorem

The density as $n \rightarrow \infty$ of free codes in \mathcal{R}^{n} of type k is given by

$$
d(q, s)=\left(\sum_{\substack{k_{2}, \ldots, k_{s} \geq 0 \\ s \mid K_{2}+\cdots+K_{s}}} \frac{(1 / q)^{K_{2}^{2}+\cdots+K_{s}^{2}-\left(K_{2}+\cdots+K_{s}\right)^{2} / s}}{(1 / q)_{k_{2}} \cdots(1 / q)_{k_{s}}}\right)^{-1}
$$

where $K_{i}=\sum_{j=2}^{i} k_{j}$.

$$
A G I(1 / q, s)=\sum_{k_{2}, \ldots, k_{s} \geq 0} \frac{(1 / q)^{K_{2}^{2}+\cdots+K_{s}^{2}}}{(1 / q)_{k_{2}} \cdots(1 / q)_{k_{s}}}
$$

Bounds

Theorem

The density as $n \rightarrow \infty$ of free codes in \mathcal{R}^{n} of type k denoted by $d(q, s)$ can be bounded as follows:

$$
0<(1 / q)_{\infty} \leq A G I(1 / q, s)^{-1} \leq d(q, s) \leq A G I\left(1 / q^{\prime}, s\right)^{-1}<1
$$

$$
\text { for } q^{\prime}:=q^{s^{2}-s} \text {. }
$$

Other Densities

Corollary

The probability for a code in \mathcal{R}^{n} of type k to be free is at least $(1 / q)_{\infty}$.

q	2	3	5	7	11	13
$(1 / q)_{\infty}$	0.2888	0.5601	0.7603	0.8368	0.9008	0.9172

Other Densities

Corollary

The probability for a code in \mathcal{R}^{n} of type k to be free is at least $(1 / q)_{\infty}$.

q	2	3	5	7	11	13
$(1 / q)_{\infty}$	0.2888	0.5601	0.7603	0.8368	0.9008	0.9172

Corollary

The density of free codes in \mathcal{R}^{n} of type k for $q \rightarrow \infty$ is 1 .

Density for Fixed Rank

The set of weak compositions of K into s parts is

$$
C(s, K):=\left\{\left(k_{1}, \ldots, k_{s}\right) \mid 0 \leq k_{i} \leq K, \sum_{i=1}^{s} k_{i}=K\right\} .
$$

The number of codes in \mathcal{R}^{n} of rank K is given by

$$
W(n, K, q, s):=\sum_{\left(k_{1}, \ldots, k_{s}\right) \in C(s, K)} N_{n, q}\left(k_{1}, \ldots, k_{s}\right) .
$$

Density for Fixed Rank

The set of weak compositions of K into s parts is

$$
C(s, K):=\left\{\left(k_{1}, \ldots, k_{s}\right) \mid 0 \leq k_{i} \leq K, \sum_{i=1}^{s} k_{i}=K\right\} .
$$

The number of codes in \mathcal{R}^{n} of rank K is given by

$$
W(n, K, q, s):=\sum_{\left(k_{1}, \ldots, k_{s}\right) \in C(s, K)} N_{n, q}\left(k_{1}, \ldots, k_{s}\right) .
$$

Theorem

Let K and n be positive integers with $K=R^{\prime} n$. The density of free codes in \mathcal{R}^{n} of given rank K for $n \rightarrow \infty$ is

$$
\begin{cases}0 & \text { if } 1 / 2<R^{\prime}<1 \\ 1 & \text { if } R^{\prime}<1 / 2 \\ \geq A G I(1 / q, s)^{-1} & \text { if } R^{\prime}=1 / 2\end{cases}
$$

What parameters should we expect?

- Free codes of fixed rate as $n \rightarrow \infty$ are neither sparse nor dense. The density is independent of the rate and at least $(1 / q)_{\infty}$.
- Free codes of fixed rank-rate as $n \rightarrow \infty$ is either dense or sparse, depending on $R^{\prime}=K / n$.
- For large enough q, we expect a random code of fixed type to be free.

Open Problems

- Establish a simplified condition on $\left(k_{1}, \ldots, k_{s}\right),\left(\bar{k}_{1}, \ldots, \bar{k}_{s}\right) \in L(s, n, k)$ such that we have

$$
N_{n, q}\left(k_{1}, \ldots, k_{s}\right) \leq N_{n, q}\left(\bar{k}_{1}, \ldots, \bar{k}_{s}\right) .
$$

- For a fixed subtype $\left(k_{1}, \ldots, k_{s}\right)$ what is the density of codes having this subtype?

We can endow \mathcal{R} with several metrics:

- Hamming metric
- Euclidean metric
- Homogeneous metric
- Lee metric, if $\mathcal{R}=\mathbb{Z} / p^{s} \mathbb{Z}$

For a code $\mathcal{C} \subseteq \mathcal{R}^{n}$ its minimum distance is given by

$$
d(\mathcal{C})=\min \{d(x, y) \mid x, y \in \mathcal{C}, x \neq y\} .
$$

Definition (Lee Metric)

$$
\begin{array}{llrl}
x \in \mathbb{Z} / p^{s} \mathbb{Z} & : & \operatorname{wt}_{L}(x) & =\min \left\{x,\left|p^{s}-x\right|\right\}, \\
x \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} & : & \operatorname{wt}_{L}(x) & =\sum_{i=1}^{n} \operatorname{wt}_{L}\left(x_{i}\right), \\
x, y \in\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n} & : & d_{L}(x, y) & =\operatorname{wt}_{L}(x-y) .
\end{array}
$$

Example $(\mathbb{Z} / 4 \mathbb{Z})$

$$
\begin{array}{ll}
\mathrm{wt}_{L}(0)=0 & \mathrm{wt}_{L}(2)=2 \\
\mathrm{wt}_{L}(1)=1 & \mathrm{wt}_{L}(3)=1
\end{array}
$$

For $M=\left\lfloor\frac{p^{s}}{2}\right\rfloor$:

$$
\begin{gathered}
0 \leq \mathrm{wt}_{H}(x) \leq \mathrm{wt}_{L}(x) \leq M \mathrm{wt}_{H}(x) \leq M n \\
d_{H}(\mathcal{C}) \leq d_{L}(\mathcal{C}) \leq M d_{H}(\mathcal{C})
\end{gathered}
$$

Classical Singleton Bound

Theorem (Singleton Bound)

A code $\mathcal{C} \subseteq \mathbb{F}_{q}^{n}$ of dimension k has minimum Hamming distance

$$
d_{H}(\mathcal{C}) \leq n-k+1
$$

Codes that achieve this bound are called maximum distance separable (MDS) codes.

- For $n \leq q+1$ we have a construction of MDS codes: (extended) RS codes
- For $q \rightarrow \infty$ MDS codes have density 1
- For $n \rightarrow \infty$ MDS codes have density 0 (assuming the MDS conjecture)

How do maximum Lee distance (MLD) codes behave?

- What is the analog of the Singleton bound in the Lee metric?
- Are MLD codes dense for n or q going to infinity?

1. Clearly $d_{L}(\mathcal{C}) \leq M d_{H}(\mathcal{C})$
2. Hamming Singleton bound: $d_{H}(\mathcal{C}) \leq n-k+1$
3. If $d_{L}(\mathcal{C}) \leq a d_{H}(\mathcal{C})$, then

$$
\left\lfloor\frac{d_{L}(\mathcal{C})-1}{a}\right\rfloor \leq d_{H}(\mathcal{C})-1
$$

for any such a.

Proposition

For a linear code $\mathcal{C} \subseteq\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ of rank K we have

$$
d_{H}(\mathcal{C}) \leq n-K+1
$$

- $\mathcal{C}^{\prime}=\mathcal{C} \cap\left\langle p^{s-1}\right\rangle$.
- \mathcal{C} has subtype $\left(k_{1}, \ldots, k_{s}\right)$ and a generator matrix G in standard form:

$$
\mathcal{C}^{\prime}=\left\{x G \mid x \in p^{s-1}\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{k_{1}} \times \cdots \times\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{k_{s}}\right\} .
$$

- $\left|\mathcal{C}^{\prime}\right|=p^{k_{1}+\cdots+k_{s}}=p^{K}$.
- \mathcal{C}^{\prime} can be identified with an $[n, K]$ linear code over \mathbb{F}_{p}.

Steven T. Dougherty and Keisuke Shiromoto "MDR codes over \mathbb{Z}_{k} ", IEEE Transactions on Information Theory, 2000.

Theorem (Shiromoto)

For any code $\mathcal{C} \subseteq\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ of type k, we have that

$$
\left\lfloor\frac{d_{L}(\mathcal{C})-1}{M}\right\rfloor \leq n-k .
$$

Easily follows as $d_{L}(\mathcal{C}) \leq M d_{H}(\mathcal{C}) \leq M(n-k+1)$ and the floor remark [3.]

Singleton Bounds in the Lee Metric

Theorem (Shiromoto)

For any code $\mathcal{C} \subseteq\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ of type k, we have that

$$
\left\lfloor\frac{d_{L}(\mathcal{C})-1}{M}\right\rfloor \leq n-k .
$$

Easily follows as $d_{L}(\mathcal{C}) \leq M d_{H}(\mathcal{C}) \leq M(n-k+1)$ and the floor remark [3.]

Example

Let us consider the code $\mathcal{C}=\langle(1,2)\rangle$ over $\mathbb{Z} / 5 \mathbb{Z}$, which has $M=2, n=2, k=1$ and $d_{L}=3$. This code attains the bound of Shiromoto as

$$
\left\lfloor\frac{3-1}{2}\right\rfloor=2-1 .
$$

Keisuke Shiromoto "Singleton bounds over finite rings.", Journal of Algebraic Combinatorics, 2000.

How many codes attain this bound?

How many codes attain this bound?

Theorem
 The only linear codes that attain this Singleton bound are equivalent to $\mathcal{C}=\langle(1,2)\rangle \subseteq(\mathbb{Z} / 5 \mathbb{Z})^{2}$.

Theorem (Alderson-Huntemann)

For any code $\mathcal{C} \subseteq\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ of type $1<k<n$ a positive integer, we have that

$$
d_{L}(\mathcal{C}) \leq M(n-k)
$$

Theorem (Alderson-Huntemann)

For any code $\mathcal{C} \subseteq\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ of type $1<k<n$ a positive integer, we have that

$$
d_{L}(\mathcal{C}) \leq M(n-k)
$$

Example

Let $\mathcal{C}_{3}=\langle(2,0,1),(1,3,4)\rangle$ over $\mathbb{Z} / 5 \mathbb{Z}$. Here we have $n=3, k=2, M=2$ and $d_{L}=2$. This code attains the bound of Alderson-Huntemann since

$$
d_{L}=2=M(n-k)=2
$$

\square Tim L. Alderson and Svenja Huntemann "On maximum Lee distance codes.", Journal of Discrete Mathematics, 2013.

How many codes attain this bound?

How many codes attain this bound?

Theorem

The only linear codes that attain this Singleton bound are

- for p odd:
- codes with $p^{s}=5, k+1 \leq n \leq k+3$,
- free codes with $p^{s} \in\{7,9\}, n=k+1$,
- for $p=2$:
- free codes with $s=2, k+1 \leq n \leq k+2$,
- free codes with $s=3, n=k+1$,
- $k+1=K \in\{n, n-1\}$.

How many codes attain this bound?

Theorem

The only linear codes that attain this Singleton bound are

- for p odd:
- codes with $p^{s}=5, k+1 \leq n \leq k+3$,
- free codes with $p^{s} \in\{7,9\}, n=k+1$,
- for $p=2$:
- free codes with $s=2, k+1 \leq n \leq k+2$,
- free codes with $s=3, n=k+1$,
- $k+1=K \in\{n, n-1\}$.
- The density of MLD codes is 0 for $n \rightarrow \infty$
- The density of MLD codes is 0 for $p \rightarrow \infty$

Let wt be any weight and d be the minimum distance of \mathcal{C}, then

$$
d(|\mathcal{C}|-1) \leq \sum_{c \in \mathcal{C}} \mathrm{wt}(c)
$$

For the Lee metric, this yields the bound:

$$
d_{L}(\mathcal{C}) \leq \frac{|\mathcal{C}|}{|\mathcal{C}|-1} \overline{\mathrm{wt}}_{L}(\mathcal{C})
$$

where

$$
\overline{\mathrm{wt}}_{L}(\mathcal{C}):=\frac{1}{|\mathcal{C}|} \sum_{a \in \mathcal{C}} \mathrm{wt}_{L}(a)
$$

is the average Lee weight of the code $\mathcal{C} \subseteq\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$.

The average Lee weight over $\mathbb{Z} / p^{s} \mathbb{Z}$ is given by

$$
\bar{D}= \begin{cases}\frac{p^{2 s}-1}{4 p^{s}} & \text { if } p \text { is odd } \\ 2^{s-2} & \text { if } p=2\end{cases}
$$

Theorem (Wyner and Graham)

For any code $\mathcal{C} \subseteq\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ of type k we have that

$$
d_{L}(\mathcal{C}) \leq \frac{n \bar{D}}{1-1 / p^{s k}}
$$

Since

$$
\overline{\mathrm{wt}}_{L}(\mathcal{C}) \leq n \bar{D}
$$

Aaron D. Wyner and Ronald L. Graham "An upper bound on minimum distance for a k-ary code.", Inf. Control., 1968.

Plotkin Bounds in the Lee Metric

For any subcode \mathcal{C}^{\prime}

$$
d_{L}(\mathcal{C}) \leq \frac{\left|\mathcal{C}^{\prime}\right|}{\left|\mathcal{C}^{\prime}\right|-1} \overline{w t}_{L}\left(\mathcal{C}^{\prime}\right)
$$

Theorem (Chiang and Wolf)

For a free linear code $\mathcal{C} \subseteq\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ of type k we have that

$$
d_{L}(\mathcal{C}) \leq \frac{(n-k+1) \bar{D}}{1-1 / p^{s}}
$$

- Choose a $(n-k) \times n$ parity-check matrix H for the code \mathcal{C}.
- Form the $(n-1) \times n$ matrix H^{\prime} by appending the rows of the $(k-1) \times n$ matrix $\left[I d_{k-1} \mid 0\right]$ to H.
- The code with parity-check matrix H^{\prime} is a subcode that contains a word c with $\operatorname{wt}_{H}(c) \leq n-k+1: \mathcal{C}^{\prime}=\langle c\rangle$.
J. Chung-Yaw Chiang and Jack K. Wolf "On channels and codes for the Lee metric", Information and Control, 1971.

Theorem

For any linear code $\mathcal{C} \subseteq\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ of free rank $k_{1} \geq 1$ we have that

$$
d_{L}(\mathcal{C}) \leq \frac{\left(n-k_{1}+1\right) \bar{D}}{1-1 / p^{s}}
$$

- choose a $\left(n-k_{1}\right) \times n$ parity-check matrix H for the code \mathcal{C}.
- Form the $(n-1) \times n$ matrix H^{\prime} by appending the rows of the $\left(k_{1}-1\right) \times n$ matrix $\left[I d_{k_{1}-1} \mid 0\right]$ to H.
- The code with parity-check matrix H^{\prime} is a subcode that contains a word of Hamming weight at most $n-k_{1}+1$.

$$
d_{L}(\mathcal{C}) \leq \frac{|\langle c\rangle|}{|\langle c\rangle|-1} \overline{\mathrm{wt}}_{L}(\langle c\rangle),
$$

for a minimum Hamming weight codeword c.

- If we can take c in the free part: we get the Chiang and Wolf bound with k_{1}.
- If $c \in\left\langle p^{s-\ell}\right\rangle$: how do we bound $\overline{\mathrm{wt}}_{L}(\langle c\rangle)$?

We introduce the support subtype

- For $j \in\{1, \ldots, n\}$ let π_{j} be the j-th coordinate map.
- Define

$$
n_{i}(\mathcal{C}):=\left|\left\{j \in\{1, \ldots, n\} \quad \mid \quad\left\langle\pi_{j}(\mathcal{C})\right\rangle=\left\langle p^{i}\right\rangle\right\}\right| .
$$

- For a code $\mathcal{C} \subseteq\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$, we call $\left(n_{0}, \ldots, n_{s}\right)$ its support subtype.

We introduce the support subtype

- For $j \in\{1, \ldots, n\}$ let π_{j} be the j-th coordinate map.
- Define

$$
n_{i}(\mathcal{C}):=\left|\left\{j \in\{1, \ldots, n\} \quad \mid \quad\left\langle\pi_{j}(\mathcal{C})\right\rangle=\left\langle p^{i}\right\rangle\right\}\right| .
$$

- For a code $\mathcal{C} \subseteq\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$, we call $\left(n_{0}, \ldots, n_{s}\right)$ its support subtype.

Example

Let \mathcal{C} be the code over $\mathbb{Z} / 8 \mathbb{Z}$ generated by

$$
G=\left(\begin{array}{lllll}
1 & 3 & 5 & 0 & 2 \\
0 & 2 & 4 & 2 & 6 \\
0 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 4 & 4
\end{array}\right)
$$

then \mathcal{C} has subtype $(1,1,2)$ and support subtype $(3,2,0,0)$.

We introduce the support subtype

- For $j \in\{1, \ldots, n\}$ let π_{j} be the j-th coordinate map.
- Define

$$
n_{i}(\mathcal{C}):=\left|\left\{j \in\{1, \ldots, n\} \quad \mid \quad\left\langle\pi_{j}(\mathcal{C})\right\rangle=\left\langle p^{i}\right\rangle\right\}\right| .
$$

- For a code $\mathcal{C} \subseteq\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$, we call $\left(n_{0}, \ldots, n_{s}\right)$ its support subtype.

Example

Let \mathcal{C} be the code over $\mathbb{Z} / 8 \mathbb{Z}$ generated by

$$
G=\left(\begin{array}{lllll}
1 & 3 & 5 & 0 & 2 \\
0 & 2 & 4 & 2 & 6 \\
0 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 4 & 4
\end{array}\right)
$$

then \mathcal{C} has subtype $(1,1,2)$ and support subtype $(3,2,0,0)$.

Lemma

Let $\mathcal{C} \subseteq\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ be a linear code of support subtype $\left(n_{0}, \ldots, n_{s}\right)$. Then

$$
\overline{w t}_{L}(\mathcal{C})= \begin{cases}\frac{1}{4 p^{s}}\left(p^{2 s}\left|n-n_{s}\right|-\sum_{i=0}^{s-1} p^{2 i} n_{i}\right) & \text { if } p \text { is odd } \\ 2^{s-2}\left|n-n_{s}\right| & \text { if } p=2\end{cases}
$$

Theorem

Let $\mathcal{C} \subseteq\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ be linear code. Let $\ell \in\{1, \ldots, s\}$ such that there exists $y \in \mathcal{C}$ satisfying $w t_{H}(y)=d_{H}(y)$ and $y \in\left\langle p^{s-\ell}\right\rangle$. Then

$$
d_{L}(\mathcal{C}) \leq \begin{cases}\frac{p^{s-\ell}\left(p^{\ell}+1\right)}{4} d_{H}(\mathcal{C}) & \text { if } p \text { is odd } \\ \frac{2^{s-2+\ell}}{2^{\ell}-1} d_{H}(\mathcal{C}) & \text { if } p=2\end{cases}
$$

Plotkin Bound in the Lee Metric

We can always choose $\ell=1$ (there is always a minimal Hamming weight codeword in the socle)

Corollary

Let $\mathcal{C} \subseteq\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ be a linear code of rank K. Then

$$
\left\lfloor\frac{d_{L}(\mathcal{C})-1}{A}\right\rfloor \leq n-K,
$$

for

$$
A:= \begin{cases}\frac{p^{s-1}(p+1)}{4} & \text { if } p \text { is odd } \\ 2^{s-1} & \text { if } p=2 .\end{cases}
$$

Eimear Byrne and Violetta Weger "Bounds in the Lee Metric", in preparation.

Example

We consider the code $\mathcal{C}=\langle(0,1,1),(2,0,0),(0,0,2)\rangle \subset(\mathbb{Z} / 4 \mathbb{Z})^{3}$. This code attains the new bound for $\ell=1$ since

$$
d_{L}=2=2(n-K+1) .
$$

It does not attain the bound of Chiang and Wolf with k_{1}, as

$$
d_{L} \leq \frac{4}{3}(3-1+1)=4
$$

We also note that we cannot choose $\ell=2$, since the only codewords that have minimal Hamming weight are divisible by 2. In fact:

$$
d_{L}=2 \not \leq \frac{4}{3}=\frac{4}{3}(3-3+1) .
$$

Comparison of Bounds

Comparison of bounds for codes over $\mathbb{Z} / 5^{5} \mathbb{Z}$ of type ($10, k_{2}, 0,0,0$) and length $2 K, K=10+k_{2}$.

Density

Note that in order to meet the new bound with $\ell=1$, we need

1. the socle $\mathcal{C}^{\prime}=\mathcal{C} \cap\left\langle p^{s-1}\right\rangle$ is an MDS code, we can identify it with a $[n, K]$ linear code over \mathbb{F}_{p},
2. a $x \in \mathcal{C}^{\prime}$ which generates a Lee-equidistant code.

Density

Note that in order to meet the new bound with $\ell=1$, we need

1. the socle $\mathcal{C}^{\prime}=\mathcal{C} \cap\left\langle p^{s-1}\right\rangle$ is an MDS code, we can identify it with a $[n, K]$ linear code over \mathbb{F}_{p},
2. a $x \in \mathcal{C}^{\prime}$ which generates a Lee-equidistant code.

$$
\Downarrow
$$

1. Due to the MDS conjecture: assume $n \leq p+1$ and $K \leq p$.
2. Due to the characterization of Lee-equidistant codes of Wood: x consists of repetitions of $\left(\pm 1, \ldots, \pm \frac{p-1}{2}\right)$.

嘈
Jay Wood "The structure of linear codes of constant weight", Transactions of the American Mathematical Society, 2002.

Density

Note that in order to meet the new bound with $\ell=1$, we need

1. the socle $\mathcal{C}^{\prime}=\mathcal{C} \cap\left\langle p^{s-1}\right\rangle$ is an MDS code, we can identify it with a $[n, K]$ linear code over \mathbb{F}_{p},
2. a $x \in \mathcal{C}^{\prime}$ which generates a Lee-equidistant code.

$$
\Downarrow
$$

1. Due to the MDS conjecture: assume $n \leq p+1$ and $K \leq p$.
2. Due to the characterization of Lee-equidistant codes of Wood: x consists of repetitions of $\left(\pm 1, \ldots, \pm \frac{p-1}{2}\right)$.

Can put either 1 or 2 repetitions!

目
Jay Wood "The structure of linear codes of constant weight", Transactions of the American Mathematical Society, 2002.

Density

Proposition

Let $\mathcal{C} \subset\left(\mathbb{Z} / p^{s} \mathbb{Z}\right)^{n}$ have rank K. If \mathcal{C} meets the new bound then length $n \leq p+1$ and either

$$
K=n-p+2 \leq 3 \text { and } d_{L}(\mathcal{C})=\frac{p^{s-1}\left(p^{2}-1\right)}{4}
$$

or

$$
K=n+1-\frac{p-1}{2} \leq \frac{p+5}{2} \text { and } d_{L}(\mathcal{C})=\frac{p^{s-1}\left(p^{2}-1\right)}{8}
$$

- For $n \rightarrow \infty$: the socle \mathcal{C}^{\prime} is an MDS code over \mathbb{F}_{p}, by the MDS conjecture the density of such codes is zero.
- For $p \rightarrow \infty$: Lee-equidistant cyclic modules over \mathbb{F}_{p} of length $\frac{p-1}{2}$ or $p-1 \leq n \leq p+1$ have density zero.

Classical Gilbert-Varshamov Bound

- Random codes over \mathbb{F}_{q} in the Hamming metric achieve the GV bound with high probability

Alexander Barg, G. David Forney "Random codes: Minimum distances and error exponents", IEEE Transactions on Information Theory, 2002.

TJohn Pierce "Limit distribution of the minimum distance of random linear codes", IEEE Transactions on Information Theory, 1967.

- Random rank-metric codes over \mathbb{F}_{q} achieve the GV bound with high probability
\square Pierre Loidreau "Asymptotic behaviour of codes in rank metric over finite fields", Designs, codes and cryptography, 2014.

Do ring-linear codes also attain the GV bound?

- wt: weight function on \mathcal{R}^{n}.
- $\quad V(n, w):=\left|\left\{v \in \mathcal{R}^{n} \mid \operatorname{wt}(v) \leq w\right\}\right|$.
- N : the maximal weight an element of \mathcal{R}^{n} can achieve.

$$
g(\delta):=\lim _{n \rightarrow \infty} \frac{1}{n} \log _{q^{s}}(V(n, \delta N))
$$

- $A L(n, d)$: the maximal size of a code in \mathcal{R}^{n} having minimum distance d
-

$$
\bar{R}(\delta):=\limsup _{n \rightarrow \infty} \frac{1}{n} \log _{q^{s}} A L(n, \delta N)
$$

Gilbert-Varshamov Bound

The asymptotic Gilbert-Varshamov bound now states that

$$
\bar{R}(\delta) \geq 1-g(\delta)
$$

Gilbert-Varshamov Bound

The asymptotic Gilbert-Varshamov bound now states that

$$
\bar{R}(\delta) \geq 1-g(\delta)
$$

Theorem

For the Lee metric, Hamming metric and homogeneous metric, we have that a random code over a finite chain ring achieves the Gilbert-Varshamov bound with high probability.Eimear Byrne, Anna-Lena Horlemann, Karan Khathuria and Violetta Weger "Density of Free Modules over Finite Chain Rings", 2021.

Summary

- Linear MLD codes are sparse.
- Plotkin-optimal linear codes in the Lee metric are sparse.
- Random linear codes over finite chain rings attain the GV bound.

Open Problems

- Give a construction of optimal codes for the new bound (for any subtype).
- Is there some other way to give a 'better' Singleton-like bound?

Thank you!

