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Introduction

The concept of stabilization in algebraic topology has its origin in the Suspension Theorem by Hans Freuden-

thal. This important concept led to the definition of stable homotopy groups, creating a whole new field

in algebraic topology: stable homotopy theory. In the 1960s, topological spectra appeared on the scene

of stable homotopy theory, due to the work of Atiyah on bordisms [Ati61] and Whitehead on generalized

homology theories [Whi62]. Since then, spectra have been used successfully in algebraic topology and ge-

ometry, providing many new insights. From an early stage, it was clear that the stable category of spectra

should allow a symmetric monoidal structure,such as the smash product on pointed topological spaces. This

structure, called the smash product of spectra was first introduced by Boardman [Boa65] and Vogt [Vog70].

There have been various approaches to define the smash product of spectra, for example via Γ-spaces by

Lydakis [Lyd99], or via the topological Day convolution in [MMSS01], which is the approach we are going

to follow in the present thesis.

More precisely, we define the category of spectra via module objects over the sphere spectrum in the

enriched functor category [C,Top∗cg]. Here the category C carries the structural properties of the desired

spectrum. That is, for a sequential spectrum consisting only of a sequence of pointed topological spaces

Xn and structure maps ΣXn → Xn+1, we consider the category Seq with objects given by natural num-

bers. This approach allows us to construct sequential, symmetric and orthogonal spectra in a very efficient

way. To have the possibility to define module objects in the enriched functor category, we need to endow it

with a symmetric monoidal structure. Such a structure is given by the Day convolution. One of the main

advantages of the Day convolution is that it can be defined in a very general setting, allowing us to treat

many different cases with only one construction. In the first part, we follow the notes ”Introduction to

Stable Homotopy Theory” [nLa19], which are based on the approach of [MMSS01] and [HSS98]. We define

the categories of sequential, symmetric and orthogonal spectra and then we construct the smash product of

structured spectra. Then we endow these categories with the projective model structure, which leads to the

definition of the strict model structure of spectra. However, the strict model structure does not capture the

concept of stabilization. Therefore, we need to introduce the stable model structure of spectra, providing a

convenient framework to perform stable homotopy theory.

One of the major recent applications of the theory of spectra is the classification of Topological Quantum

Field Theories (TQFT). That is, deformation classes of invertible Topological Field Theories are in one-to-

one correspondence with the torsion subgroup of the abelian group given by homotopy classes of maps of

certain spectra. This result is due to the work of Freed, Hopkins and Teleman in [FHT10] and [FH16], which

is based on the description of the homotopy type of the cobordism category using spectra, by [GMTW09].

A TQFT being a symmetric monoidal functor between (∞, n)-categories is said to be invertible if it factors

trough the corresponding higher Picard groupoid. Therefore, the classification of such invertible field theories

goes hand in hand with the classification of functors between Picard groupoids. However, this classification

is based on the fact that any Picard groupoid defines a spectrum. To understand how Picard groupoids

and spectra are related we need to introduce Γ-spaces and Γ-categories. In Section 4, we show how one

can associate a Γ-category to any Picard groupoid, which itself defines a spectrum. The relation between

Γ-spaces and spectra was first studied by Segal in [Seg74]. However, we use a different construction following

the lecture notes of Boyarchenko on Picard groupoids and spectra [Boy19]. The combination of these two

approaches allows us to construct a pair of functors

{Picard groupoids}� {connective spectra}

which unfortunately do not define an adjunction. One approach to handle this problem is to focus on the

functors between the corresponding simplicial localizations. Indeed, we can endow the category of Picard

groupoids with a model structure and, by considering the stable model structure on the category of spectra,

we get a pair of functors between their simplicial localizations. This pair of simplicial functors should eventu-

ally become an adjunction and capture the relation between Picard groupoids and spectra. Since the study of

simplicial localizations is strongly related with the study of (∞, 1)-categories, we will follow Lurie’s approach
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[Lur09] and introduce∞-categories (weak Kan complexes) as a convenient model for (∞, 1)-categories. With

this framework, we should eventually be able to restate the relation between Picard groupoids and spectra in

the setting of ∞-categories. Current research in this area investigating the connection between Waldhausen

categories and spectra in the ∞-categorical setting can be found for example in [Fio13].

One of the advantages of considering the ∞-category of Picard groupoids and the ∞-category of spectra

is that they capture higher coherence data. As an example, consider the category of spectra. By construction

it is a simplicial category. The consequences of having a symmetric monoidal structure on the category of

spectra is the ability to define algebraic objects, such as monoid objects and module objects within this

category. Therefore, the smash product of spectra leads to the possibility to construct an E∞-ring. An

E∞-ring is an algebraic object characterized by the property that associativity is only satisfied up to ho-

motopy. However, these homotopies themselves should also satisfy some associativity relations up to higher

homotopies, and so on. The idea of trying to define algebraic objects satisfying relations in a homotopy

coherent way agrees with the motivation behind higher category theory. This connection between spectra

and higher category theory is investigated in the second part of the thesis. More precisely, we first define

two models for (∞, 1)-categories, simplicial categories and ∞-categories. We then endow these categories

with suitable model structures, and see how the nerve-realization construction N∆ a C provides a Quillen

equivalence between these model categories. As a main result, we establish the connection between symmet-

ric monoidal structures on simplicial categories and coCartesian fibrations on ∞-categories. More precisely,

we show how a symmetric monoidal structure (C,⊗, 1) on a simplicial category can be encoded into a single

enriched functor p : C⊗ → FinSet∗. This construction is well known for ordinary categories and the resulting

functors are called Grothendieck opfibrations. We show that there exists an enriched analogue construction,

called simplicial Grothendieck opfibration.

Grothendieck opfibrations, as mentioned before, define symmetric monoidal structures. Therefore, we

show that its corresponding type of maps in the ∞-categorical setting is that of a coCartesian fibration.

A symmetric monoidal structure on an ∞-category is therefore given by a certain coCartesian fibration.

Whereas it is relatively straightforward to show that a non-enriched Grothendieck opfibration between ordi-

nary categories induces a coCartesian fibration via the regular nerve functor, it is more challenging to show

that simplicial Grothendieck opfibrations also induce coCartesian fibrations via the coherent nerve functor.

The latter allows us to show that any simplicial symmetric monoidal structure defines a corresponding struc-

ture on its coherent nerve. The previous observation corresponds to the results of [BW18a] which were proven

by using a different approach. This agreement established while writing the present thesis. Moreover, it was

shown by Nikolaus and Sagave in [NS15] that any symmetric monoidal structure on a presentable∞-category

comes from a monoidal structure on a model category. Now we can apply this result to the Day convolution

of enriched functors, which provides a different approach to define the Day convolution on the∞-category of

enriched functors. The standard approach to define∞-categorical Day convolution is using the theory of op-

erads, such as for example in [Lur12]. However, these two constructions should agree up to weak equivalence.

The lack of results concerning the compatibility between the two notions of Day convolution was one of

the main motivations for the present thesis, and remains unknown to the author until this day. Another

interesting question is the possibility to construct the ∞-category of spectra and its smash product using

the Day convolution. To answer this question, one needs to check if the same techniques used to define the

simplicial category of spectra also work when dealing with ∞-categories. The fact that the coherent nerve

functor has nice preservation properties concerning monoidal structures gives hope for an affirmative answer.

The present work starts with a short introduction to stable homotopy theory.

In Section 1 we introduce stable homotopy groups and generalized homology theories and show how spectra

are related to them via the Brown Representability Theorem.

In Section 2 we construct the smash product of spectra following the notes on [nLa19].

In Section 3 we use the definition of the category of spectra via diagram categories to define the strict and

stable model structure.
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In Section 4 we show how Picard groupoids, Γ-spaces and spectra are related to each other. In particular

this motivates the use of ∞-categories.

In Section 5 we first introduce the Bergner model structure on the category of small simplicial categories.

Then following [Lur09] and [Gro10] we introduce∞-categories and show how symmetric monoidal structures

are being preserved via the coherent nerve functor. Finally we can apply the results on symmetric monoidal

∞-categories to the Day convolution of enriched functors. The Day convolution being a key ingredient in

the construction of the smash product, motivates further investigation concerning the∞-category of spectra

and its relation to the ∞-category of enriched functors. We conclude by giving a short sketch of possible

developments in this particular area.
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Notation

In the following we denote with

• sSet the category of simplicial sets.

• sSet∗ the category of pointed simplicial sets.

• Topcg the category of compactly generated topological spaces and continuous maps.

• Top∗cg the category of pointed compactly generated topological spaces and base point preserving con-

tinuous maps.

• TopCW the category of topological spaces admitting a CW-complex structure.

• Top∗cg,fin the category of pointed compactly generated spaces admitting a structure of a finite CW-

complex.

• ∆ the simplex category.

• Cat the category of small categories and functors.

• sSet-Cat the category of small simplicial categories and simplicial functors.

• HoM the homotopy category of a model category M.

• hC the category of components of a simplicial category C.
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1 Stable homotopy theory

The philosophy behind stable homotopy theory is the stability of certain topological invariants under tak-

ing the suspension. Such invariants are for example homology and cohomology theories or, as showed by

Freudenthal, also homotopy theory. The study of such invariants, satisfying this stability axiom, led to the

definition of generalized homology and cohomology theories and their connections to spectra. Since then

stable homotopy theory has been frequently used to reduce hard geometric problems to more accessible

problems in stable homotopy theory. This was done for example in the work of Thom [Tho54], where he

introduced the Thom spectrum and showed how the homotopy groups of this spectrum are in relation with

the cobordism ring.

In this section we follow [AGP08] and [Swi02].

1.1 Freudenthal suspension theorem

The foundation of stable homotopy theory was laid by the Freudenthal suspension theorem in 1937. It

demonstrates how the suspension operation acts on higher homotopy groups. That is, given a pointed space

X we define the suspension homomorphism

Σ : πq(X) −→ πq+1(ΣX)

[f ] 7−→ [Σf ]

where for a map f : Sq → X we define Σf : Sq ∧ S1 f∧id−−−→ X ∧ S1.

Theorem 1.1. (Freudenthal suspension, [AGP08]) Let X be an n-connected pointed space. Then the

suspension homomorphism

Σ : πq(X)→ πq+1(ΣX)

is an isomorphism for q < 2n+ 1 and a surjection for q = 2n+ 1.

If we now consider an n-connected space X, we obtain by iteration of the suspension homomorphism a

sequence of maps.

πq(X)→ πq+1(ΣX)→ πq+2(Σ2X)→ · · ·

By the Freudenthal suspension theorem, we would guess that this sequence eventually stabilizes. Indeed, it

can be shown that in the sequence

· · · → πq+k(ΣkX)→ πq+k+1(Σk+1X)→ · · ·

all morphisms are isomorphisms for k > q−1−2n. Therefore, taking the colimit yields the stable homotopy

group of X.

Definition 1.1. Let X be a pointed space. Then we define the q-th stable homotopy group of X as the

colimit over the above sequence

πSq (X) := colim
k

πq+k(ΣkX)

To understand the structure behind stable homotopy theory, we consider a pointed space X and denote

with Xk = ΣkX the k-th suspension of X. This yields a sequence of pointed spaces (Xk)k∈N together with

structure maps

ΣXk → Xk+1

This structure maps are the canonical homeomorphisms, which do not carry any information. Therefore,

we want to generalize the above definition, such that the general structure is preserved, but allowing the

structure maps to be of any kind. This leads to the definition of a topological spectrum.
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1.2 Sequential spectra

Definition 1.2. A sequential spectrum in the category Top∗cg is a sequence of pointed compactly gener-

ated topological spaces X = (Xn)n∈N together with pointed continuous maps

σn : S1 ∧Xn → Xn+1

for all n ∈ N, called the structure maps.

A morphism of sequential spectra f : X → Y is a collection of base point preserving continuous maps

fn : Xn → Yn such that all diagrams of the form

S1 ∧Xn Xn+1

S1 ∧ Yn Yn+1

id∧fn

σXn

fn+1

σYn

commute. The corresponding category of sequential spectra with component spaces in the category Top∗cg
is denoted with SeqSpec(Top∗cg).

Remark 1.1. A first example of a sequential spectrum is given by iterating the suspension of a pointed

space. This yields the suspension spectrum of a pointed space X, denoted by Σ∞X. In the case where we

take X = S0, the corresponding suspension spectrum is called the sequential sphere spectrum Sseq = Σ∞S0.

In the spirit of Definition 1.1 we now define the homotopy groups of sequential spectra.

Definition 1.3. Let X = (Xn) be a sequential spectrum. Then we define the q-th homotopy group of X as

πq(X) := colim
k

πq+k(Xk) for q ∈ Z.

Remark 1.2. Notice that by construction

πq(Σ
∞X) = πSq (X)

the q-th homotopy group of the suspension spectrum of X equals the q-th stable homotopy group of the

space X. Moreover, the above definition extends to a functor

π• : SeqSpec(Top∗cg)→ AbZ

from the category of sequential spectra to the category of Z-graded abelian groups. Indeed, an application

of the Eckmann-Hilton argument shows, that the homotopy groups of sequential spectra are abelian groups.

Example 1.1. ([Fre13]) As already mentioned, in stable homotopy theory spectra can be used to break

down hard geometric problems to algebraic ones. Consider for example the abelian group ΩSOn of oriented

cobordism classes of n-dimensional manifolds. This cobordism groups are in general hard to compute.

However, they are related to the stable homotopy groups of a certain spectrum via the Pontrjagin-Thom

isomorphism. In the following, we are going to construct this spectrum, called the Thom spectrum.

To do so, we first need to recall an important property of the Thom space of a real vector bundle. Suppose

we are given a real vector bundle E → B, then there is a homeomorphism

Th(Rn ⊕ E) ' Sn ∧ Th(E) = ΣnTh(E)

Let now ESO(n)→ BSO(n) denote the universal principal SO(n)-bundle. Then the associated fiber bundle

ESO(n)×SO(n) Rn =: S(n)

is called the universal vector bundle or the tautological bundle. It can be shown that the tautological bundle

satisfies the following stability property.
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R⊕ S(n) S(n+ 1)

BSO(n) BSO(n+ 1)

f

y

i

That is, there is an isomorphism between the pullback of the tautological bundle S(n+1) along the inclusion

i and the bundle R⊕ S(n).

R⊕ S(n) ∼= i∗(S(n+ 1))

Now we define the (oriented) Thom spectrum to be the following sequential spectrum.

(MSO)n := Th(S(n))

The structure maps are constructed as follows.

σn : S1 ∧ Th(S(n))
'−→ Th(R⊕ S(n))

Th(f)−−−−→ Th(S(n+ 1))

This shows that (MSO)n indeed defines a sequential spectrum. The reason why the Thom spectrum plays

an important role in stable homotopy theory is due to the following fact, known as the Pontrjagin-Thom

isomorphism. Namely, there is an isomorphism

πn(MSO) ∼= ΩSOn

from the n-th stable homotopy group of the Thom spectrum to the abelian group of oriented cobordism

classes of n-dimensional manifolds.

1.3 Generalized homology and cohomology

Definition 1.4. A reduced generalized cohomology theory h is a collection of functors

hq :
(
Top∗cg

)op → Ab

and natural isomorphisms

σq : hq ◦ Σ→ hq−1

indexed by q ∈ Z, satisfying the following axioms.

(i) (homotopy invariance) If f, g : X → Y are two base point preserving maps, such that there is a

base point preserving homotopy f ∼ g between them, then the induced maps

f∗ = g∗ : hq(Y )→ hq(X)

are equal for all q ∈ Z.

(ii) (exactness) For every inclusion i : A ↪→ X of pointed spaces, there is an exact sequence of abelian

groups for all q ∈ Z
hq(Cone(i))

j∗−→ hq(X)
i∗−→ hq(A)

where j : X → Cone(i) is the canonical inclusion into the cone of i.

Example 1.2. An example of a reduced generalized cohomology theory is given by the ordinary reduced

singular cohomology H̃q(−, G) with coefficients in an abelian group G. Notice that ”generalized” in this

context means that we also want to consider cohomology theories which do not need to satisfy the Dimension

axiom, being part of the Eilenberg-Steenrod axioms.
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Similarly there is also an axiomatic definition of a reduced generalized homology theory, being a

collection of functors and natural isomorphisms

hq : Top∗cg → Ab σq : hq → hq+1 ◦ Σ

indexed by q ∈ Z, satisfying the corresponding dualized axioms given by Definition 1.4.

We want to show that to any sequential spectrum E = {En} we can associate a reduced generalized homology

resp. cohomology theory. Indeed, let X be a pointed CW-complex and define the spectrum E ∧X by taking

the smash product component-wise. This means that (E ∧X)n = En ∧X. Given a sequential spectrum E,

we denote with ΣnE the spectrum shifted by n. The component spaces of the shifted spectrum are then

just given by (ΣnE)m = Em+n. Now we can make the following definition.

Definition 1.5. Let E = {En} be a sequential spectrum. Then the associated homology resp. associ-

ated cohomology theory is given by

hEn (X) := πn(E ∧X)

hnE(X) := [Σ∞X,ΣnE]

Remark 1.3. Notice that in the above definition, the notation [−,−] denotes the set of equivalence classes

of maps of spectra up to homotopy. Here a homotopy between two maps of spectra f0, f1 : E → E′ is given

by a map H : E ∧ I+ → E′ such that for the two inclusions

i0 : E → E ∧ I+ and i1 : E → E ∧ I+

we have that H ◦ i0 = f0 and H ◦ i1 = f1. Moreover, it can be shown that for two sequential spectra E,E′

the set [E,E′] is an abelian group.

Example 1.3. Taking the sphere spectrum S, we notice that the associated homology theory is given by

hSn(X) = πn(S ∧X) = πn(Σ∞X) = πSn (X)

the stable homotopy groups.

Since a cohomology theory is just a collection of functors satisfying certain axioms, we want to investigate

the properties of such functors. Especially the Brown Representability Theorem plays an important role,

connecting generalized cohomology theories with spectra. Brown showed that a certain class of functors

called Brown functors are representable. These functors need to satisfy certain axioms, such as allowing a

Mayer-Vietoris argument and preserving (co)products. Therefore, it is clear that the axioms are inspired by

the properties of the cohomology functors.

Remark 1.4. Notice that in the following definition the homotopy category of pointed CW-complexes is

not to be confused with the homotopy category induced by a model structure. In this case hTop∗CW denotes

the category with the same objects as in Top∗CW and morphisms given by homotopy classes of maps. That

is, for X,Y two CW-complexes we have

hTop∗CW (X,Y ) = π0 (Maps [X,Y ])

This category is also called the category of components and will be defined with more generality in

Definition 5.6.

Definition 1.6. Consider a contravariant functor T from the category of components of pointed CW-

complexes to the category of pointed sets.

T : hTop∗CW → Set∗

Then T is called a Brown functor if it fulfills the following two axioms

4



(i) (Wedge Axiom) Let {Xα} be a family of pointed spaces and consider iα : Xα ↪→
∨
αXα the inclusion.

Then the map induced by the inclusions iα

T

(∨
α

Xα

)
→
∏
α

T (Xα)

is an isomorphism of sets.

(ii) (Mayer-Vietoris) Let (X;A,B) be an excisive triad. Then for any u ∈ T (A) and v ∈ T (B) such

that u|T (A∩B) = v|T (A∩B), there exists an element z ∈ T (X) such that z|T (A) = u and z|T (B) = v.

Example 1.4. It can be shown that the reduced cohomology functors H̃q(−, G) satisfy both axioms and

are therefore Brown functors for all q ∈ N.

Proposition 1.1. ([Swi02]) For E a sequential spectrum the associated homology and cohomology theories

hE∗ and h∗E are indeed reduced generalized homology/cohomology theories in the sense of Definition 1.4 and

moreover they satisfy the wedge axiom of Definition 1.6.

Remark 1.5. Notice that a reduced homology/cohomology theory satisfying the wedge axiom is called an

additive homology theory.

Theorem 1.2. (Brown representability, [AGP08]) Every Brown functor T is representable in the cate-

gory of path-connected pointed CW-complexes, i.e. there is a pointed CW-complex Y , unique up to homotopy

equivalence, and a natural isomorphism

Φ : [−, Y ] −→ T

This theorem has an important consequence, namely consider some h∗ to be a reduced generalized coho-

mology theory satisfying the wedge axiom. It can be shown that the Mayer-Vietoris axiom follows from the

axioms of a reduced cohomology theory. Hence for all q ∈ Z the functor

hq : Top∗CW → Ab

is a Brown functor and therefore by the Brown Representability Theorem there exists a family of CW-

complexes Yq, and natural isomorphisms

[Z, Yq]
∼−→ hq(Z)

for all connected pointed CW-complexes Z and all q ∈ Z. Now by defining Eq := ΩYq+1 it follows that for

any CW-complex X , not necessarily connected, its suspension ΣX is connected and therefore

hq(X) ∼= hq+1(ΣX) ∼= [ΣX,Yq] ∼= [X,ΩYq] = [X,Eq]

Hence to any reduced cohomology theory we can associate a family of CW-complexes {Yq} unique up to

homotopy, such that there are natural isomorphisms

[−, Yq]
∼−→ hq

Since hq is a reduced cohomology theory, it follows that for all spaces X there are natural isomorphisms

[X,Yq] ∼= hq(X) ∼= hq+1(ΣX) ∼= [ΣX,Yq+1]

and therefore we can deduce that

[X,Yq]
∼−→ [X,ΩYq+1]

for all CW-complexes X. This shows that there is a family of homotopy equivalences

σ̃q : Yq → ΩYq+1

We conclude that any reduced cohomology theory gives rise to a sequential spectrum having the property,

that the dualized structure maps σ̃q are in fact homotopy equivalences. Such a spectrum is then called an

Ω-spectrum.
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Definition 1.7. An Ω-spectrum in the category Top∗cg is a sequential spectrum {Xn}, such that the

adjoint structure maps

σ̃n : Xn →Maps
[
S1, Xn+1

]
= ΩXn+1

are weak homotopy equivalences for all n ∈ Z.

This definition allows us to state the following beautiful theorem, being one of the main consequences of

Theorem 1.2.

Theorem 1.3. ([AGP08]) Each additive reduced cohomology theory h∗ on the category Top∗cg determines

an Ω-spectrum E = {En} such that there are natural isomorphisms

hn
∼−→ [−, En]

Conversely for any Ω-spectrum E = {En} there is a natural isomorphism

hnE(−) ∼= [−, En]

to the associated additive reduced cohomology theory h∗E.

Example 1.5. An important example is given by the reduced singular cohomology with coefficients in an

abelian group G. It is clear that H∗(−, G) defines an additive reduced cohomology theory. Hence it follows

that there exists an Ω-spectrum K(G,n) such that

H̃n(X,G) ∼= [X,K(G,n)]

This spectrum is called the Eilenberg-MacLane spectrum with component spaces given by the unique (up

to homotopy) CW-complexes K(G,n) such that for q ≥ 1

πq(K(G,n)) =

{
G if q = n

0 else

There is a similar result on the representability of reduced generalized homology theories satisfying the wedge

axiom.

Theorem 1.4. ([Swi02]) Each additive reduced generalized homology theory h∗ on the category Top∗cg de-

termines an Ω-spectrum E = {En} representing the homology theory. This means that there are natural

isomorphisms

hn
∼−→ hEn

This short introduction to stable homotopy theory should be seen as a motivation to the following sections.

In particular we have seen that spectra and homology/cohomology theories are closely related. Therefore, we

want to examine the category of spectra and define a smash product, making it into a symmetric monoidal

category. This provides an interesting framework, for example allowing the definition of dualizable objects,

having applications in the classification of Topological Quantum Field Theories. The construction of a smash

product of structured spectra was done by Boardman, Vogt, Puppe and Adams in the 1960s and 1970s. The

approach that we are going to use is making more use of category theory and is based on the Day convolution

of enriched functors, developed by Day [Day70] in 1970. The concept of diagram categories to define spectra

was used in [MMSS01] and [HSS98] which we use together with [nLa19] as main references.
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2 The smash product of spectra

Why do we want to consider a smash product of spectra? To answer this question we look at the following

example. Suppose we are given the monoidal category of pointed topological spaces endowed with the smash

product. Then a monoid object in this category is given by a space X together with a multiplication

µ : X ∧X → X

which satisfies the associativity and the unitality axiom. However, this construction seems too strict, as we

wish to have objects satisfying weaker versions of associativity and unitality. Namely, we want to look at

spaces endowed with a structure being associative and unital only up to coherent homotopy. The need of

having a good definition of such homotopy coherent structures motivates the definition of the smash product

of spectra. In particular it is possible to pass certain structures on categories, such as Day convolution and

smash product of spectra, to their analogue structures on (∞, 1)-categories. This allows us to define so called

E∞-rings, being commutative monoids in the stable (∞, 1)-category of spectra. These results also led to the

notion of ”Brave New Algebra”, focusing on the properties of structured ring spectra.

In this section we follow the lecture notes ”Introduction to Stable Homotopy Theory” [nLa19], providing a

modern approach to stable homotopy theory.

2.1 Categorical algebra

In the following we will mostly work with topologically enriched categories. Therefore, we will call a topolog-

ically enriched category just a topological category, in the hope to keep the content more legible. Similarly

a topologically enriched functor will be just called a topological functor.

Definition 2.1. A (pointed) topological monoidal category is a (pointed) topologically enriched cat-

egory C equipped with

1. A (pointed) topologically enriched functor

⊗ : C× C→ C

called the tensor product.

2. An object 1C called the unit object.

3. A natural isomorphism

aX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z)

called the associator.

4. Natural isomorphisms

lX : 1C ⊗X → X

rX : X ⊗ 1C → X

called left and right unitor.

Such that the triangle and pentagon axioms are satisfied.

A1 (Triangle axiom) For all objects X,Y ∈ C the following diagram commutes.

(X ⊗ 1C)⊗ Y X ⊗ (1C ⊗ Y )

X ⊗ Y
rX⊗idY

aX,1C,Y

idX⊗lY
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A2 (Pentagon axiom) For all objects W,X, Y, Z ∈ C the following diagram commutes.

(W ⊗X)⊗ (Y ⊗ Z)

((W ⊗X)⊗ Y )⊗ Z W ⊗ (X ⊗ (Y ⊗ Z))

(W ⊗ (X ⊗ Y ))⊗ Z W ⊗ ((X ⊗ Y )⊗ Z)

aW,X,Y⊗ZaW⊗X,Y,Z

aW,X,Y ⊗idZ

aW,X⊗Y,Z

idW⊗aX,Y,Z

Example 2.1. The category of pointed compactly generated topological spaces
(
Top∗cg,∧, S0

)
endowed with

the smash product is a pointed topological monoidal category. The unit object is given by S0. Moreover,

we notice that for two topological spaces X,Y ∈ Top∗cg there is a canonical homeomorphism

X ∧ Y ' Y ∧X

In fact many monoidal categories carry this kind of symmetry, motivating the definition of braided and

symmetric monoidal structures.

Definition 2.2. A topological braided monoidal category is a topological monoidal category (C,⊗, 1)

equipped with a family of natural isomorphisms

τX,Y : X ⊗ Y ∼−→ Y ⊗X

called the braiding, such that the following diagrams commute for all X,Y, Z ∈ C.

(X ⊗ Y )⊗ Z X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X

(Y ⊗X)⊗ Z Y ⊗ (X ⊗ Z) Y ⊗ (Z ⊗X)

τX,Y ⊗id

aX,Y,Z τX,Y⊗Z

aY,Z,X

aY,X,Z id⊗τX,Z

X ⊗ (Y ⊗ Z) (X ⊗ Y )⊗ Z Z ⊗ (X ⊗ Y )

X ⊗ (Z ⊗ Y ) (X ⊗ Z)⊗ Y (Z ⊗X)⊗ Y

id⊗τY,Z

a−1
X,Y,Z τX⊗Y,Z

a−1
Z,X,Y

a−1
X,Z,Y

τX,Z⊗id

The commutativity of these two diagrams is sometimes denoted as the hexagon identities.

Example 2.2. A nice example of a braided monoidal category also motivating the term ”braided” is given

by the braid category B. The objects in B are given by natural numbers 0, 1, 2, . . . and the morphisms are

given by

B(n,m) =

{
Bn if n = m

∅ if n 6= m

where Bn denotes the braid group on n strings. The braid category can be endowed with a monoidal product

as follows.

+ : B× B −→ B
(n,m) 7−→ n+m

Now we equip the monoidal category B with a braiding. That is, a family of natural isomorphisms

τn,m : n+m→ m+ n

given by the following braid.
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• • · · · • • ∗ ∗ · · · ∗ ∗

∗ ∗ · · · ∗ ∗ • • · · · • •

Definition 2.3. A topological symmetric monoidal category is a topological braided monoidal cate-

gory (C,⊗, 1, τ) such that the braiding satisfies the following condition:

τY,X ◦ τX,Y = idX⊗Y

for all objects X,Y ∈ C.

Remark 2.1. Notice that the braiding on the braid category B does not satisfy the above condition.

τm,n ◦ τn,m 6= idn+m

Hence the braided monoidal category B is not symmetric.

Definition 2.4. Given a (pointed) topological symmetric monoidal category C with tensor product ⊗, we

call C closed monoidal if for each object Y ∈ C there is a pair of adjoint functors

C
Y⊗(−)

//
C

hom(Y,−)
oo _

For all X,Y ∈ C the object hom(Y,X) ∈ C is called the internal hom of X and Y . In particular for all

objects X,Y, Z there are natural isomorphisms

C(X ⊗ Y,Z) ∼= C(X,hom(Y,Z))

Remark 2.2. The notation for the internal hom introduced above for a general symmetric monoidal category

is not going to be used in the specific cases appearing in the present thesis. We then use the ”standard”

notation. That is,

• in the category Top∗cg we denote the inner hom with respect to the smash product by Maps[−,−]

• in the category sSet we denote the inner hom with respect to the Cartesian product by [−,−]

The strategy is to construct the category of spectra as a category of certain module objects in an enriched

functor category. Therefore, we first need to specify what we mean by an enriched functor and how we enrich

the category of such functors. To do so we need the notion of enriched ends, which we will introduce here

in the specific case working over the category Top∗cg. In Section 5.1 we will generalize this construction and

see how the definition of an enriched end via equalizers agrees with the classical definition using dinatural

transformations.

In the following we will work mostly with pointed topological categories. Hence let C,D be two such

categories. Then we denote with C×D their pointed topological product category. It follows that

(C×D) ((c1, d1), (c2, d2)) = C(c1, c2) ∧D(d1, d2)

Now given a bifunctor

F : C×D→ Top∗cg

it follows that for all objects (c1, d1), (c2, d2) there are maps

F(c1,d1),(c2,d2) : C(c1, c2) ∧D(d1, d2)→ Top∗cg (F (c1, d1), F (c2, d2))
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Using the closed model structure on Top∗cg with internal hom denoted by Maps[−,−] we have that

Maps [C(c1, c2),Maps [F (c1, d), F (c2, d)]] ∼= Maps [C(c1, c2) ∧ F (c1, d), F (c2, d)]

(θc1,c2(d) : f 7→ F (f, idd)) 7→ ρc1,c2,d

and similarly

Maps [D(d1, d2),Maps [F (c, d1), F (c, d2)]] ∼= Maps [D(d1, d2) ∧ F (c, d1), F (c, d2)](
θ′d1,d2

(c) : g 7→ F (idc, g)
)
7→ λd1,d2,c

The two maps constructed via the internal hom andjunction are denoted with

ρc1,c2,d : C(c1, c2) ∧ F (c1, d)→ F (c2, d)

λd1,d2,c : D(d1, d2) ∧ F (c, d1)→ F (c, d2)

Considering the special case where D = Cop we obtain the following two actions.

ρc1,c2,d : C(c1, c2) ∧ F (c2, d)→ F (c1, d) given by the pullback on the first variable.

λd1,d2,c : C(d1, d2) ∧ F (c, d1)→ F (c, d2) given by the pushforward on the second variable.

Hence we are ready to define topological enriched ends and coends of topological bifunctors.

Definition 2.5. Let C be a small pointed topological category and let

F : Cop × C→ Top∗cg

be a pointed topological functor. Then we define

(i) the enriched coend of F , denoted

∫ c∈C
F (c, c), is the coequalizer in Top∗cg of the two actions

∐
c,d∈C

C(c, d) ∧ F (d, c)

∐
ρc,d,c

∐
λd,c,d

∐
c∈C

F (c, c)
coeq.−−−→

∫ c∈C
F (c, c)

which are given by

ρc,d,c : C(c, d) ∧ F (d, c)→ F (c, c)

λd,c,d : C(c, d) ∧ F (d, c)→ F (d, d)

(ii) the enriched end of F , denoted

∫
c∈C

F (c, c), is the equalizer in Top∗cg of the two actions

∫
c∈C

F (c, c)
eq.−−→

∏
c∈C

F (c, c)

∐
θd,c(d)

∐
θ′c,d(c)

∏
c,d∈C

Maps [C(c, d), F (c, d)]

which are given by

θd,c(d) : F (d, d)→Maps [C(c, d), F (c, d)]

θ′c,d(c) : F (c, c)→Maps [C(c, d), F (c, d)]
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Lemma 2.1. Let C be a small pointed topological category. Then for F,G : C→ Top∗cg two pointed topological

functors there is a bifunctor

Maps [F (−), G(−)] : Cop × C→ Top∗cg

whose end is a topological space ∫
c∈C

Maps [F (c), G(c)] ∈ Top∗cg

such that the underlying pointed set is isomorphic to the set of natural transformations between F and G.

Hence for the forgetful functor U : Top∗cg → Set∗, there is an isomorphism

U

(∫
c∈C

Maps [F (c), G(c)]

)
∼= [C,Top∗cg](F,G)

Proof. Using the fact that the forgetful functor U preserves all limits, there is an equalizer diagram in Set∗

U

(∫
c∈C

Maps [F (c), G(c)]

)
→
∏
c∈C

Top∗cg(F (c), G(c))
∏
c,d∈C

Top∗cg (C(c, d),Maps [F (c), G(c)])

Now we notice that ∏
c∈C

Top∗cg(F (c), G(c)) ∼= {ηc : F (c)→ G(c)}

Hence the left hand side is equivalent to the collection of morphisms in Top∗cg indexed on objects of C. To

compute the equalizer we have to look at the actions. They are given by

ρc2,c1,d : Maps [F (c2), G(d)] −→Maps [C(c1, c2),Maps [F (c1), G(d)]]

f : F (c2)→ G(d) 7→ (g : c1 → c2 7→ f ◦ F (g))

which is essentially precomposing with F (g) and

ρ′d1,d2,c : Maps [F (c), G(d1)] −→Maps [C(d1, d2),Maps [F (c), G(d2)]]

h : F (c)→ G(d1) 7→ (k : d1 → d2 7→ G(k) ◦ h)

which is postcomposing with G(k). Hence taking the equalizer means that in the set {ηc : F (c)→ G(c)} for

all morphisms k : c → d the action of precomposing ηd by F (k) is equal to the action of postcomposing ηc
by G(k). This means that the following diagram is commutative.

F (c) G(c)

F (d) G(d)

ηc

F (k) G(k)

ηd

This means that η : F → G is a natural transformation.

The above lemma motivates the following definition of a topological enrichment of the category [C,Top∗cg]

of pointed topological functors.

Definition 2.6. Let C be a small pointed topological category. Then we define a topological enrichment on

[C,Top∗cg] by defining

[C,Top∗cg](F,G) :=

∫
c∈C

Maps [F (c), G(c)]

via the end construction from Lemma 2.1.
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Remark 2.3. The composition operation of the topological enrichment is defined as follows.

(∫
c∈C

Maps [F (c), G(c)]

)
∧
(∫

c∈C
Maps [G(c), H(c)]

) ∏
c∈C

Maps [F (c), G(c)] ∧Maps [G(c), H(c)]

∏
c∈C

Maps [F (c), H(c)]

m

Notice that the horizontal arrow is given by the smash product of the following maps, being part of the

definition of the two ends. ∫
c∈C

Maps [F (c), G(c)]→
∏
c∈C

Maps [F (c), G(c)]

∫
c∈C

Maps [G(c), H(c)]→
∏
c∈C

Maps [G(c), H(c)]

The vertical arrow is given by the composition in Top∗cg.∫
c∈C

Maps [F (c), H(c)]
∏
c∈C

Maps [F (c), H(c)] · · ·

(∫
c∈C

Maps [F (c), G(c)]

)
∧
(∫

c∈C
Maps [G(c), H(c)]

)

π1

π2

mc

By construction the composition m satisfies π1◦m = π2◦m. Hence by the universal property of the equalizer

there is a map

c : [C,Top∗cg](F,G) ∧ [C,Top∗cg](G,H)→ [C,Top∗cg](F,H)

which defines the desired composition.

The following two propositions are the topologically enriched analogues of the Yoneda Lemma resp. the

Co-Yoneda Lemma.

Proposition 2.1. ([Kel05]) Let C be a small pointed topological category and F : C → Top∗cg a pointed

topological functor. Then for any c ∈ C there is a natural isomorphism

[C,Top∗cg](C(c,−), F ) ∼= F (c)

Remark 2.4. Using Definition 2.6 there is an isomorphism∫
d∈C

Maps [C(c, d), F (d)] ∼= F (c)

Proposition 2.2. Let C and F : C→ Top∗cg be as above. Then for every c ∈ C there is a natural isomorphism∫ d∈C
C(d, c) ∧ F (d) ∼= F (c)

Proof. This is the dual argument of the above proposition.
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The aim will be to endow the category [C,Top∗cg] with a suitable monoidal product that we can later use

to define the smash product of spectra. Since (Top∗cg,∧, S0) is already monoidal, it motivates the following

proposition.

Remark 2.5. Notice that given a pointed topological functor X ∈ [C,Top∗cg] and a pointed space K ∈
Top∗cg, the ”smash product” of X and K defines a pointed topological functor as follows.

X ∧K : C −→ Top∗cg

c 7−→ X(c) ∧K

This construction extends to a functor denoted by

(−) ∧K : [C,Top∗cg]→ [C,Top∗cg]

Similarly we define for K ∈ Top∗cg and X ∈ [C,Top∗cg] a pointed topological functor by

Maps [K,X] : C→ Top∗cg

c 7→Maps [K,X(c)]

Also this construction extends to a functor

Maps [K,−] : [C,Top∗cg]→ [C,Top∗cg]

Proposition 2.3. Let C be as above and X,Y ∈ [C,Top∗cg] and K ∈ Top∗cg. Then there are natural

isomorphisms

(i) [C,Top∗cg](X ∧K,Y ) ∼= Maps
[
K, [C,Top∗cg](X,Y )

]
(ii) [C,Top∗cg](X,Maps [K,Y (−)]) ∼= Maps

[
K, [C,Top∗cg](X,Y )

]
Hence there is a pair of adjoint functors

[C,Top∗cg]
(−)∧K

//
[C,Top∗cg]

Maps[K,−]
oo _

Proof. (i) By definition one has

[C,Top∗cg](X ∧K,Y ) =

∫
c∈C

Maps [X(c) ∧K,Y (c)]

Now using that Top∗cg is closed monoidal we obtain∫
c∈C

Maps [X(c) ∧K,Y (c)] ∼=
∫
c∈C

Maps [K,Maps [X(c), Y (c)]]

∼= Maps

[
K,

∫
c∈C

Maps [X(c), Y (c)]

]
where the second isomorphism comes from the fact that the functor Maps [K,−] preserves ends. Again

by Definition 2.6 one obtains

Maps

[
K,

∫
c∈C

Maps [X(c), Y (c)]

]
= Maps

[
K, [C,Top∗cg](X,Y )

]
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(ii) By definition one has

[C,Top∗cg](X,Maps [K,Y, )] =

∫
c∈C

Maps [X(c),Maps [K,Y (c)]]

Then by the closed monoidal structure in Top∗cg it follows that

∫
c∈C

Maps [X(c),Maps [K,Y (c)]] ∼=
∫
c∈C

Maps [X(c) ∧K,Y (c)]

∼=
∫
c∈C

Maps [K,Maps [X(c), Y (c)]]

∼= Maps

[
K,

∫
c∈C

Maps [X(c), Y (c)]

]
= Maps

[
K, [C,Top∗cg](X,Y )

]
Combining the isomorphisms from (i) and (ii) we get that the two functors indeed form an adjoint pair.

2.2 Topological Day convolution

The aim of this section will be to define a suitable closed monoidal structure on the functor category

[C,Top∗cg], which will be essential in the construction of the smash product of spectra. In the following, let

(C,⊗, 1C) be a small pointed topological monoidal category.

Definition 2.7. The topological Day convolution tensor product on [C,Top∗cg] is given by the bifunctor

⊗
Day

: [C,Top∗cg]× [C,Top∗cg]→ [C,Top∗cg]

(X,Y ) 7→ X ⊗
Day

Y

where we define (
X ⊗

Day
Y

)
(c) :=

∫ c1,c2∈C×C
C(c1 ⊗ c2, c) ∧X(c1) ∧ Y (c2)

As the categories C and Top∗cg are both endowed with a monoidal structure, we want to investigate the

relation between these structures and the topological Day convolution. To do so, we need the following

definition, which arises naturally from the monoidal structure on Top∗cg.

Definition 2.8. The external tensor product on [C,Top∗cg] is given by the bifunctor

−
∧ : [C,Top∗cg]× [C,Top∗cg]→ [C× C,Top∗cg]

which is defined as follows.

(X
−
∧ Y )(c1, c2) = X(c1) ∧ Y (c2)

The next proposition relates the external tensor product and the topological Day convolution via Kan

extensions.
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Proposition 2.4. The Day convolution tensor product of two functors X,Y ∈ [C,Top∗cg] is isomorphic to

the left Kan extension of the external tensor product along the monoidal product on C. Hence we have that

there is a natural isomorphism

X ⊗
Day

Y ∼= Lan⊗(X
−
∧ Y )

where

C× C C

Top∗cg

X
−
∧Y

⊗

Lan⊗(X
−
∧Y )

Proof. Using the coend formula in Remark 5.4, left Kan extensions can be written as coends, i.e

Lan⊗(X
−
∧ Y )(c) =

∫ (m1,m2)∈C×C
C(m1 ⊗m2, c) • (X(m1) ∧ Y (m2))

where • denotes the copowering in Top∗cg which is given by the smash product. Hence we can write

Lan⊗(X
−
∧ Y )(c) =

∫ (m1,m2)∈C×C
C(m1 ⊗m2, c) ∧X(m1) ∧ Y (m2)

Now using Definition 2.7 we immediately have that

Lan⊗(X
−
∧ Y )(c) =

(
X ⊗

Day
Y

)
(c)

Since we can describe the Day convolution as a Kan extension, it has the following universal property.

Corollary 2.1. Using the characterization of the Day convolution as a left Kan extension, it inherits a

universal property. That is, for every X,Y, Z ∈ [C,Top∗cg]

[C,Top∗cg]

(
X ⊗

Day
Y,Z

)
∼= [C× C,Top∗cg]

(
X
−
∧ Y,Z ◦ ⊗

)
Proof. This follows immediately from the universal property of the left Kan extension of X

−
∧Y along ⊗.

Now we can finally endow the functor category with the desired monoidal product given by the Day convo-

lution tensor product.

Proposition 2.5. The Day convolution tensor product makes [C,Top∗cg] into a pointed topological monoidal

category with tensor unit C(1C,−). Moreover, if the category (C,⊗, 1C) is equipped with a symmetric braiding

τ , then so is

(
[C,Top∗cg], ⊗

Day
,C(1,−)

)
.

Proof. (i) Associativity We need to show that for all X,Y, Z ∈ [C,Top∗cg] there are natural isomorphisms

aX,Y,Z :

(
X ⊗

Day
Y

)
⊗

Day
Z
∼=−→ X ⊗

Day

(
Y ⊗

Day
Z

)
Indeed, we have

X ⊗
Day

(
Y ⊗

Day
Z

)
(c) =

∫ c1,c2

C(c1 ⊗ c2, c) ∧X(c1) ∧

(∫ d1,d2

C(d1 ⊗ d2, c2) ∧ Y (d1) ∧ Z(d2)

)
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Now using the Fubini theorem for coends we obtain

∫ c1,c2

C(c1 ⊗ c2, c) ∧X(c1) ∧

(∫ d1,d2

C(d1 ⊗ d2, c2) ∧ Y (d1) ∧ Z(d2)

)

∼=
∫ c1,d1,d2

(∫ c2

C(c1 ⊗ c2, c) ∧ C(d1 ⊗ d2, c2)

)
∧X(c1) ∧ Y (d1) ∧ Z(d2)

Using the Co-Yoneda Lemma 2.2 we get∫ c2

C(c1 ⊗ c2, c) ∧ C(d1 ⊗ d2, c2) ∼= C(c1 ⊗ (d1 ⊗ d2), c)

and therefore the above equation simplifies to

∼=
∫ c1,d1,d2

C(c1 ⊗ (d1 ⊗ d2), c) ∧X(c1) ∧ Y (d1) ∧ Z(d2)

On the other side we have similarly (using Fubini and the Co-Yoneda Lemma)(
X ⊗

Day
Y

)
⊗

Day
Z(c) =

∫ c1,c2

C(c1 ⊗ c2, c) ∧

(∫ d1,d2

C(d1 ⊗ d2, c1) ∧X(d1) ∧ Y (d2)

)
∧ Z(c2)

∼=
∫ c2,d1,d2

(∫ c1

C(c1 ⊗ c2, c) ∧ C(d1 ⊗ d2, c1)

)
∧X(d1) ∧ Y (d2) ∧ Z(c2)

∼=
∫ c2,d1,d2

C((d1 ⊗ d2)⊗ c2, c) ∧X(d1) ∧ Y (d2) ∧ Z(c2)

Now using the associator in C in the first variable

ax,y,z : x⊗ (y ⊗ z) ∼−→ (x⊗ y)⊗ z

we get the induced natural isomorphisms, defining the associator in [C,Top∗cg]. As the associator in

C satisfies the pentagon axiom, the induced diagram in [C,Top∗cg] also commutes and therefore the

pentagon axiom holds true.

(ii) Tensor unit We need to show that C(1,−) is the tensor unit, i.e there are natural isomorphisms

rX : X ⊗
Day

C(1,−)
∼=−→ X

lX : C(1,−) ⊗
Day

X
∼=−→ X

Indeed, by definition

X ⊗
Day

C(1,−) =

∫ c1,c2

C(c1 ⊗ c2,−) ∧X(c1) ∧ C(1, c2)

∼=
∫ c1

(∫ c2

C(c1 ⊗ c2,−) ∧ C(1, c2)

)
∧X(c1)

Now again by the Co-Yoneda Lemma and the fact that 1 is the tensor unit in C we get∫ c2

C(c1 ⊗ c2,−) ∧ C(1, c2) ∼= C(c1,−)

Hence we obtain

X ⊗
Day

C(1,−) ∼=
∫ c1

C(c1,−) ∧X(c1) ∼= X

The left unitor isomorphism is constructed in a similar way. Similarly the triangle axiom is induced

by the triangle axiom given by the monoidal structure on C.
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(iii) Braiding Using the same strategy as above, write the Day convolution product as a coend and use

the braiding in C to define an induced braiding in [C,Top∗cg].

It turns out that the monoidal structure on [C,Top∗cg] is closed, which is the statement of the next proposition.

Proposition 2.6. The category

(
[C,Top∗cg], ⊗

Day
,C(1,−)

)
is closed monoidal with internal hom given by

[X,Y ]Day(c) =

∫
c1,c2

Maps [C(c⊗ c1, c2),Maps [X(c1), Y (c2)]]

Proof. We need to show that there is a pair of adjoint functors

[C,Top∗cg]
[Y,−]Day

//
[C,Top∗cg]

Y ⊗
Day

(−)
oo _

Let X,Y, Z ∈ [C,Top∗cg]. Then by definition

[C,Top∗cg](X, [Y,Z]Day) =

∫
c

Maps [X(c), [Y, Z]Day(c)]

∼=
∫
c

∫
c1,c2

Maps [X(c),Maps [C(c⊗ c1, c2),Maps [Y (c1), Z(c2)]]]

Here we used the definition of the internal hom and the fact that Maps [X(c),−] preserves ends. Now using

the closed monoidal structure on Top∗cg we get

Maps [X(c),Maps [C(c⊗ c1, c2),Maps [Y (c1), Z(c2)]]] ∼= Maps [X(c) ∧ C(c⊗ c1, c2) ∧ Y (c1), Z(c2)]

Hence it follows

[C,Top∗cg](X, [Y,Z]Day) ∼=
∫
c

∫
c1,c2

Maps [C(c⊗ c1, c2) ∧X(c) ∧ Y (c1), Z(c2)]

∼=
∫
c2

Maps

[∫ c,c1

C(c⊗ c1, c2) ∧X(c) ∧ Y (c1), Z(c)

]
=

∫
c2

Maps

[
(X ⊗

Day
Y )(c2), Z(c2)

]
= [C,Top∗cg](X ⊗

Day
Y,Z)

where we used Fubini and again the fact that Maps [−,−] ”preserves” ends resp. coends.

Proposition 2.7. (Yoneda Embedding) The Yoneda Embedding

Y : (Cop,⊗, 1) −→
(

[C,Top∗cg], ⊗
Day

,C(1,−)

)
c 7−→ C(c,−)

defines a strong monoidal functor, i.e the embedding preserves the tensor product and the tensor unit up to

isomorphism.

Remark 2.6. To avoid messy notation we define yc(−) := C(c,−)
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Proof. The fact that the tensor unit is preserved follows from Proposition 2.5 where we show that y1 is

indeed the tensor unit with respect to the Day convolution. Hence what is left to show is the preservation

of the tensor product.

(yc1 ⊗
Day

yc2)(c) ∼=
∫ d1,d2

C(d1 ⊗ d2, c) ∧ C(c1, d1) ∧ C(c2, d2)

(Fubini and 2x Co-Yoneda Lemma) ∼= C(c1 ⊗ c2, c)
= yc1⊗c2(c)

2.3 S-modules

In this section we want to describe spectra as module objects over a monoid in the category [C,Top∗cg].

This will later allow us to define the smash product in a proper way and deduce some of its most important

properties. To do so, we need to introduce some categorical constructions, such as monoid objects and

module objects.

Definition 2.9. Given a monoidal category (C,⊗, 1) we call a triple (A,µ, ε) a monoid object in C if

A ∈ C is an object and

µ : A⊗A→ A

ε : 1→ A

are two maps called multiplication and unit, satisfying the following axioms.

(i) (Associativity)

(A⊗A)⊗A A⊗ (A⊗A) A⊗A

A⊗A A

a(A,A,A)

µ⊗id

id⊗µ

µ

µ

(ii) (Unitality)

1⊗A A⊗A A⊗ 1

A

ε⊗id

lA

µ

id⊗ε

rA

Where rA and lA are the right and left unitor isomorphisms in C.

(iii) (Commutativity) Moreover, if (C,⊗, 1) has the structure of a symmetric monoidal category with

braiding τ , then a monoid (A,µ, ε) is called a commutative monoid, if the following diagram com-

mutes.

A⊗A A⊗A

A

τA,A

µ µ

Remark 2.7. We write Mon(C,⊗, 1) for the category of monoids in C and CMon(C,⊗, 1) for its subcategory

of commutative monoids.
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Definition 2.10. Given a monoid (A,µ, ε) in C a left-module object in C over (A,µ, ε) consists of an

object N ∈ C and a morphism ρ : A⊗N → N , called the action, such that the following axioms are satisfied.

(i) (Unitality)

1⊗N A⊗N

N

ε⊗id

lN

ρ

(ii) (Action property)

(A⊗A)⊗N A⊗ (A⊗N) A⊗N

A⊗N N

a(A,A,N)

µ⊗id

id⊗ρ

ρ

ρ

Remark 2.8. Given a monoidal category (C,⊗, 1) and a monoid (A,µ, ε) we denote with A-Mod(C,⊗, 1)

the category of module objects in C over A.

Lemma 2.2. There is an equivalence of categories

[C,Top∗cg] ' y1-Mod([C,Top∗cg])

Proof. This follows immediately from the fact that in a monoidal category every object can be regarded as

a left module over the tensor unit in a canonical way.

Now we want to investigate the (commutative) monoid objects in the functor category [C,Top∗cg]. To do so

we first need the following definitions.

Definition 2.11. Let (C,⊗, 1C) and (D,⊗, 1D) be two topological monoidal categories. A topological lax

monoidal functor F : C→ D consists of the following data.

1. A topological functor F : C→ D.

2. A morphism e : 1D → F (1C).

3. A natural transformation for all x, y ∈ C

µx,y : F (x)⊗ F (y)→ F (x⊗ y)

satisfying the following axioms.

(i) (Associativity) For all objects x, y, z ∈ C the diagram commutes

(F (x)⊗D F (y))⊗D F (z) F (x)⊗D (F (y)⊗D F (z))

F (x⊗C y)⊗D F (z) F (x)⊗D F (y ⊗C z)

F ((x⊗C y)⊗C z) F (x⊗C (y ⊗C z))

aDF (x),F (y),F (z)

µx,y⊗idF (z) idF (x)⊗µy,z

µx⊗y,z µx,y⊗z

F (aCx,y,z)
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(ii) (Unitality) For all x ∈ C the following diagrams commute

1D ⊗D F (x) F (1C)⊗D F (x) F (x)⊗D 1D F (x)⊗D F (1C)

F (x) F (1C ⊗C x) F (x) F (x⊗C 1C)

e⊗idF (x)

lDF (x)
µ1,x

idF (x)⊗e

rDF (x)
µx,1

F (lCx ) F (rCx )

(iii) (Commutativity) If moreover the categories C and D are equipped with a symmetric braiding

τ and σ, then the lax monoidal functor F is called braided monoidal, if the following diagram

commutes.

F (x)⊗ F (y) F (y)⊗ F (x)

F (x⊗ y) F (y ⊗ x)

σF (x),F (y)

µx,y µy,x

F (τx,y)

Remark 2.9. Morphisms of such lax monoidal functors are natural transformations which are compatible

with the product and the unit, and satisfy certain diagram axioms. Such natural transformations are called

monoidal natural transformations. Hence we can write MonFunc(C,D) for the category of lax monoidal

functors and monoidal natural transformations and SymMonFunc(C,D) for the category of symmetric lax

monoidal functors and symmetric monoidal natural transformations. A lax monoidal functor is called a

(strong) monoidal functor, if the morphisms µ and e are isomorphisms.

Proposition 2.8. ([MMSS01] ) Let (C,⊗, 1) be a pointed topological (symmetric) monoidal category and

regard (Top∗cg,∧, S0) as a pointed topological symmetric monoidal category. Then monoids resp. commuta-

tive monoids in

(
[C,Top∗cg], ⊗

Day
, y1

)
are equivalent to lax monoidal resp. symmetric lax monoidal functors

of the form

F : (C,⊗, 1)→ (Top∗cg,∧, S0)

This means that there are equivalences of categories

Mon

(
[C,Top∗cg], ⊗

Day
, y1

)
' MonFunc(C,Top∗cg)

CMon

(
[C,Top∗cg], ⊗

Day
, y1

)
' SymMonFunc(C,Top∗cg)

To define spectra as module objects, we need to define the corresponding source categories, which are Seq,

Sym and Orth.

Definition 2.12. We define the following pointed topological symmetric monoidal categories

(i) The category Seq whose objects are natural numbers and whose morphisms are given by

Seq(n,m) =

{
S0 if n = m

∗ if n 6= m

The tensor product is given by addition and the tensor unit is 0. Therefore, Seq is symmetric monoidal.

(ii) The category Sym whose objects are finite sets

n = {1, ..., n}
0 = ∅
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and whose morphisms are automorphisms on those sets, i.e

Sym(n,m) =

{
(Sn)+ if n = m

∗ if n 6= m

The tensor product is given by the disjoint union of finite sets and the tensor unit is the empty set 0.

Sym is a symmetric monoidal category with braiding

τn,m : nqm→ mq n

which is the canonical morphism in Sn+m that shuffles the first n elements past the remaining m

elements.

(iii) The category Orth whose objects are finite dimensional real inner product spaces (V, 〈−,−〉) and

whose morphisms are given by linear isometric isomorphisms, i.e.

Orth(V,W ) =

{
O(V )+ if dim(V ) = dim(W )

∗ else

The tensor product is given by the direct sum and the tensor unit by the zero vector space. Orth is

a symmetric monoidal category with braiding

τV,W : V ⊕W →W ⊕ V

given by the canonical orthogonal transformation.

(iv) The full subcategory Top∗cg,fin ↪→ Top∗cg with objects given by pointed compactly generated spaces

admitting a structure of a finite CW-complex. The symmetric monoidal structure is given by the

ordinary smash product of pointed topological spaces, with unit object S0 and braiding

τX,Y : X ∧ Y '−→ Y ∧X

given by the canonical homeomorphism.

Remark 2.10. There is a sequence of faithful subcategory inclusions

Seq ↪−→ Sym ↪−→ Orth ↪−→ Top∗cg,fin

n 7−→ n 7−→ Rn 7−→ Sn

where the last inclusion is given by the one-point compactification, normally denoted by V 7→ SV .

As these categories are all possible source categories for the functor category [C,Top∗cg], this sequence of

inclusions should induce a sequence of functors on those functor categories.

Proposition 2.9. Let F : C→ D be a lax monoidal functor between pointed topological monoidal categories.

Then the induced functor

F ∗ : [D,Top∗cg] −→ [C,Top∗cg]

X 7−→ X ◦ F

preserves monoid objects under the Day convolution tensor product. Hence there is a functor

F ∗ : Mon([D,Top∗cg])→ Mon([C,Top∗cg])

Moreover, for any fixed monoid object A ∈ Mon([D,Top∗cg]) there is a functor

F ∗ : A-Mod([D,Top∗cg]) −→ F ∗(A)-Mod([C,Top∗cg])
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Proof. Using Proposition 2.8 we have that

Mon

(
[D,Top∗cg], ⊗

Day
, y1

)
' MonFunc(D,Top∗cg)

the category of monoids is equivalent to the corresponding category of lax monoidal functors. Since the

induced functor F ∗ is just composition with F , where F is lax monoidal by assumption. We now use the

fact that the composition of lax monoidal functors yields again a lax monoidal functor. Hence monoid objects

are sent to monoid objects. The same arguments also show that for a fixed monoid object A, the functor

F ∗ ”preserves” A-module objects.

Using the above proposition we obtain a sequence of restriction functors

Exc(Top∗cg)
orth∗−−−→ [Orth,Top∗cg]

sym∗−−−→ [Sym,Top∗cg]
seq∗−−−→ [Seq,Top∗cg]

where we denote with Exc(Top∗cg) = [Top∗cg,fin,Top∗cg] the category of pre-excisive functors. The

categories [Orth,Top∗cg], [Sym,Top∗cg] and [Seq,Top∗cg] are called the categories of orthogonal, symmetric

and sequential sequences. Having in mind that we want to model spectra using these functor categories, we

define the corresponding sphere spectra as follows.

Sexc := Top∗cg,fin(S0,−)

Sorth := orth∗ (Sexc)

Ssym := sym∗ (Sorth)

Sseq := seq∗ (Ssym)

Notice that by definition the excisive sphere spectrum Sexc is the tensor unit, whereas Sorth, Ssym and Sseq

are not the tensor units in their corresponding sequence categories.

Proposition 2.10. ([nLa19]) The functors seq, sym and orth are strong monoidal functors when equipped

with the following canonical isomorphisms

(i) seq(n)q seq(m) = {1, ..., n} q {1, ...,m} ∼= {1, ...,m+ n} = seq(n+m)

(ii) sym(n)⊕ sym(m) = Rn ⊕ Rm ∼= Rn+m = sym(nqm)

(iii) orth(V ) ∧ orth(W ) = SV ∧ SW ' SV⊕W = orth(V ⊕W )

Moreover, the functors sym and orth are braided monoidal, whereas the functor seq is not braided monoidal.

Now using the fact that Sexc is the tensor unit we have by Lemma 2.2 that there is an equivalence of

categories

Exc(Top∗cg) ' Sexc-Mod(Exc(Top∗cg))

By Proposition 2.10 seq, sym and orth are strong monoidal, hence by applying Proposition 2.9 we get induced

functors

orth∗ : Sexc-Mod→ Sorth-Mod

sym∗ : Sorth-Mod→ Ssym-Mod

seq∗ : Ssym-Mod→ Sseq-Mod

Notice that the sphere spectra are all monoid objects in their corresponding sequence categories. Hence it

makes sense taking module objects over them. Moreover, it follows that Sexc, Sorth and Ssym are commutative

monoids since the corresponding subcategory inclusions are braided monoidal.

Now we want to use the above categories of module objects to formalize spectra.
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Lemma 2.3. Using the identification of Proposition 2.8 the monoid objects Sseq, Ssym and Sorth have the

following representation as monoidal functors

Sseq : Seq −→ Top∗cg Ssym : Sym −→ Top∗cg Sorth : Orth −→ Top∗cg

n 7−→ Sn n 7−→ Sn V 7−→ SV

Proof. Follow the identification of monoid objects with monoidal functors given by Proposition 2.8.

Recall the definition of the category SeqSpec(Top∗cg) given in Definition 1.2. In the following proposition we

show that sequential spectra are indeed module objects over the sequential sphere spectrum in the category

of sequential sequences [Seq,Top∗cg].

Proposition 2.11. There is an equivalence of categories

(−)seq : Sseq-Mod ' SeqSpec(Top∗cg)

Proof. On objects the functor (−)seq is defined as

X 7→ Xseq

where the component spaces are given by

(Xseq)n = X(n)

Since X is a module object over Sseq there is an action on X given by

ρ : Sseq ⊗
Day

X → X

Using the universal property of the Day convolution from Corollary 2.1 we obtain

[Seq,Top∗cg](Sseq ⊗
Day

X,X) ∼= [Seq× Seq,Top∗cg](Sseq

−
∧X,X ◦+)

ρ 7−→ ρ̃

Therefore, given a pair (m,n) ∈ Seq× Seq there are maps

Sseq(m) ∧X(n)→ X(m+ n)

Taking m = 1 and applying Lemma 2.3, we obtain the desired structure maps.

S1 ∧X(n)→ X(n+ 1)

On the other hand we now need to show that any Sseq-action arises from structure maps of the form

S1 ∧X(n)→ X(n+ 1)

Therefore, assume we are given structure maps

σn : S1 ∧X(n)→ X(n+ 1)

Then by the following diagram

S1 ∧ S1 ∧X(n) S1 ∧X(n+ 1)

S2 ∧X(n) X(n+ 2)

'

id∧σn

σn+1

ρ(2,n)
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there is a unique morphism ρ(2,n) such that the diagram commutes. By an inductive argument there is a

unique family ρ(m,n) : Sm ∧X(n)→ X(n+m) of morphisms such that the following diagram commutes

Sn1 ∧ Sn2 ∧X(n3) Sn1 ∧X(n2 + n3)

Sn1+n2 ∧X(n3) X(n1 + n2 + n3)

'

id∧ρ(n2,n3)

ρ(n1,n2+n3)

ρ(n1+n2,n3)

Using the characterization of the sphere spectrum as a monoidal functor, i.e Sseq(m) = Sm, the above

constructed family {ρ(m,n)} induces a morphism ρ ∈ [Seq× Seq,Top∗cg](Sseq

−
∧X,X ◦+) which then gives

rise to an action

ρ : Sseq ⊗
Day

X → X

using the isomorphism of Corollary 2.1. The fact that the above diagram commutes shows that (X, ρ)

satisfies the action property and is therefore a module object over the sphere spectrum.

This proposition motivates the following definition.

Definition 2.13. We define the following categories.

(i) The category of orthogonal spectra given by OrthSpec(Top∗cg) := Sorth-Mod.

(ii) The category of symmetric spectra given by SymSpec(Top∗cg) := Ssym-Mod.

This abstract characterization of spectra allows us to define the smash product of orthogonal and symmetric

spectra.

Let (A,µ, ε) be a commutative monoid in the closed symmetric monoidal category (C,⊗, 1) and consider

(N1, ρ1), (N2, ρ2) ∈ A-Mod(C) two module objects over A. Then there are maps

N1 ⊗A⊗N2 N1 ⊗N2

A⊗N1 ⊗N2

id⊗ρ2

τ(N1,A)⊗id ρ1⊗id

We define the tensor product of N1 and N2 over A as the coequalizer of

N1 ⊗A⊗N2

id⊗ρ2

(ρ1◦τ(N1,A))⊗id
N1 ⊗N2

coeq.−−−→ N1 ⊗A N2

Proposition 2.12. ([HSS98]) Let C and A be as above, then if all coequalizers exist in C the bifunctor

⊗A : A-Mod(C)×A-Mod(C)→ A-Mod(C)

makes A-Mod(C) into a symmetric monoidal category with tensor unit A. Moreover, if all equalizers exist

in C, then the monoidal structure is closed, with internal hom given by homA

Remark 2.11. Recall that the monoidal category C is closed with internal hom given by hom(x, y). Then

the internal hom in the category A-Mod(C) is defined as the equalizer

homA(N1, N2)
eq.−−→ hom(N1, N2) hom(A⊗N1, N2)

where the upper morphism is given by

hom(ρ1, N2) : hom(N1, N2)→ hom(A⊗N1, N2)
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and the lower is given by the composition

hom(N1, N2)
hom(N1,ϕ)−−−−−−−→ hom(N1,hom(A,A⊗N2))

∼−→ hom(A⊗N1, A⊗N2)
hom(A⊗N1,ρ2)−−−−−−−−−−→ hom(A⊗N1, N2)

where the map ϕ is the image under the adjunction isomorphism of the identity map idA⊗N2 .

Using the fact that Ssym and Sorth are both commutative monoids, Proposition 2.12 implies that the categories

OrthSpec(Top∗cg) and SymSpec(Top∗cg) are both equipped with a closed symmetric monoidal tensor product.

The unit object is then given by the corresponding sphere spectrum. This tensor product will be called the

smash product of spectra.

Definition 2.14. The categories OrthSpec(Top∗cg) and SymSpec(Top∗cg) both carry a closed symmetric

monoidal tensor product, called the smash product of spectra, denoted by

∧ : SymSpec(Top∗cg)× SymSpec(Top∗cg) −→ SymSpec(Top∗cg)

(X,Y ) 7−→ X ⊗Ssym
Y

∧ : OrthSpec(Top∗cg)×OrthSpec(Top∗cg) −→ OrthSpec(Top∗cg)

(X,Y ) 7−→ X ⊗Sorth
Y

3 The strict and stable model category of spectra

In this chapter we continue following the lecture notes ”Introduction to Stable Homotopy Theory” [nLa19]

in order to endow the category of spectra with the strict and the stable model structure.

3.1 The strict model category of spectra

Following Definition 1.2 there is a natural way to endow the category SeqSpec(Top∗cg) with a model structure.

On the other hand there is also a natural way to endow the enriched functor category [C,Top∗cg] with a model

structure, called the projective model structure. The aim of this section is to show that these two model

structures agree under the equivalence established in Proposition 2.11.

Definition 3.1. Let f ∈ SeqSpec(Top∗cg) be a morphism of spectra. Then we say that f is

(i) a strict weak equivalence if each component fn : Xn → Yn is a weak equivalence in the classical

model structure on Top∗cg.

(ii) a strict fibration if each component fn is a fibration in the classical model structure on Top∗cg.

(iii) a strict cofibration if the maps

f0 : X0 −→ Y0

(fn+1, σ
Y
n ) : Xn+1 q (S1 ∧ Yn) −→ Yn+1

are cofibrations in the classical model structure on Top∗cg.

Remark 3.1. The map (fn+1, σ
Y
n ) is given by the universal property of the pushout

S1 ∧Xn S1 ∧ Yn

Xn+1 Xn+1 q S1 ∧ Yn

Yn+1

(fn+1,σ
Y
n )
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Theorem 3.1. The classes of morphisms Wstrict, Fibstrict and Cofstrict endow the category SeqSpec(Top∗cg)

with a model structure, which will be called the strict model structure on sequential spectra.

Proof. See Theorem 3.3

Proposition 3.1. A sequential spectrum X ∈ SeqSpec(Top∗cg) is cofibrant in the strict model structure

precisely if

(i) X0 is cofibrant in Top∗cg

(ii) for all n ∈ N the map σn : S1 ∧Xn → Xn+1 is a cofibration in Top∗cg

In particular CW-Spectra are cofibrant.

Proof. This follows directly from Definition 3.1.

Lemma 3.1. In the strict model structure on SeqSpec(Top∗cg) every object X is fibrant.

Proof. This follows directly from Definition 3.1.

By Proposition 2.11 we can identify sequential spectra as module objects in the category [Seq,Top∗cg]. For

functor categories whose target categories are endowed with a model structure there are two canonical model

structures, the projective and the injective model structure. Hence, it seems straightforward, that we endow

the category SeqSpec(Top∗cg) with such a model structure. The question that arises at this point is, if it will

be equivalent to the strict model structure defined in Theorem 3.1.

Remark 3.2. Recall that an excellent model category S is a model category equipped with a symmetric

monoidal structure satisfying the following conditions.

1. The model category S is combinatorial.

2. Every monomorphism in S is a cofibration, and the collection of cofibrations is stable under products.

3. The collection of weak equivalences in S is stable under filtered colimits.

4. The symmetric monoidal structure

⊗ : S× S→ S

is a Quillen bifunctor.

5. The model category S satisfies the invertibility hypothesis (see [Lur09]).

Notice that we introduce the notion of an excellent model category because of technical reasons. That is, we

only use the fact that the category sSet is an excellent model category, such that we can show the existence

of the projective model structure on enriched diagrams in sSet.

Definition 3.2. Let S be an excellent model category, A an S-enriched cofibrantly generated model category

and C a small S-enriched category. A natural transformation η : F → G in the enriched functor category

[C,A] is said to be a

(i) projective weak equivalence if the induced map F (x) → G(x) is a weak equivalence in A for all

x ∈ C.

(ii) projective fibration if the induced map F (x)→ G(x) is a fibration in A for all x ∈ C.

(iii) projective cofibration if it has the left lifting property with respect to every morphism α in [C,A]

which is simultaneously a weak equivalence and a projective fibration.
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Proposition 3.2. ([Lur09]) Let S, A and C be as in Definition 3.2. Then there is a model structure on

[C,A] which is determined by the weak equivalences, projective fibrations and projective cofibrations. This

model structure is called the projective model structure on [C,A].

In particular we have that the category sSet endowed with the standard model structure and the Cartesian

product is an excellent model category. Hence it follows that also the model category sSet∗ of pointed

simplicial sets endowed with the smash product defines an excellent model category. On the other hand

we have that the Quillen model structure on Top∗cg does not have the property of a combinatorial model

structure. Nevertheless, also for diagrams in Top∗cg there exists a projective model structure.

Theorem 3.2. ([Pia91]) Let C be a small category enriched over Top∗cg and consider the category of topolog-

ical functors [C,Top∗cg]. Then the projective model structure on [C,Top∗cg] exists. More precisely, the classes

of weak equivalences, projective fibrations and projective cofibrations given by Definition 3.2 define a model

structure.

To use Proposition 3.2 to define a model structure on SeqSpec(Top∗cg) we need to identify the category of

module objects over the sphere spectrum with a functor category.

Proposition 3.3. Let (A,µ, ε) be a monoid in (C,⊗, 1). Then A canonically becomes a left module over

itself by taking ρ = µ. More generally, for X ∈ C any object, we have that A ⊗X naturally becomes a left

A-module object by setting

ρ : A⊗ (A⊗X)
α−1

(A,A,X)−−−−−−→ (A⊗A)⊗X µ⊗id−−−→ A⊗X

The A-modules of this form are called free modules and the corresponding free functor F : C→ A-Mod(C)

is left adjoint to the forgetful functor U , i.e.

C
F //

A-Mod(C)
U
oo _

Proof. We need to show that for any object X ∈ C and any A-module object N , there is a natural isomor-

phism

A-Mod(C)(F (X), N) ∼= C(X,U(N))

Hence we consider a morphism f out of a free A-module. That is, a morphism in C

f : A⊗X → N

such that the following diagram commutes.

A⊗A⊗X A⊗N

A⊗X N

µ⊗id

id⊗f

ρ

f

To obtain a map f̃ : X → N consider the following composition.

f̃ : X
lX−→ 1⊗X ε⊗id−−−→ A⊗X f−→ N

This composition then defines the natural map

Ψ : A-Mod(C)(F (X), N)→ C(X,U(N))

f : A⊗X → N 7→ f̃ : X → N

By definition the map f̃ fits into the following commutative diagram.
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A⊗X A⊗N

A⊗ 1⊗X

A⊗A⊗X A⊗N

id⊗lX

id⊗f̃

=

id⊗ε⊗id

id⊗f

Pasting both diagrams on top of each other yields the following diagram.

A⊗X A⊗N

A⊗A⊗X A⊗N

A⊗X N

id⊗f̃

=

id⊗f

µ⊗id ρ

f

By the unit law it follows that the left vertical composition is the identity. Therefore, we conclude by the

commutativity of the diagram

f = ρ ◦ (idA ⊗ f̃)

that f is uniquely determined by f̃ . Therefore, the natural map Ψ is indeed an isomorphism.

Remark 3.3. Recall that by Proposition 2.7 there is an embedding

(Cop,⊗, 1)→
(

[C,Top∗cg], ⊗
Day

, y1

)
Hence for A ∈ [C,Top∗cg] a monoid object we can define the category A-FreeModC of free modules over A

on objects in C under the Yoneda embedding. That is, the category with free left A modules of the form

A ⊗
Day

yc for c ∈ C as objects and A-FreeModC(c1, c2) = A-Mod

(
A ⊗

Day
yc1 , A ⊗

Day
yc2

)
as morphisms.

Proposition 3.4. ([MMSS01]) Let A ∈ [C,Top∗cg] be a monoid object. Then the category of left module

objects over A in [C,Top∗cg] is equivalent to the enriched functor category with source category A-FreeModC

A-Mod([C,Top∗cg]) '
[
A-FreeModC,Top∗cg

]
Using the above proposition we can now represent the categories SeqSpec(Top∗cg),SymSpec(Top∗cg) and

OrthSpec(Top∗cg) as enriched functor categories. Therefore, we use Proposition 3.2 in the simplicial setting

to endow them with a model structure, whereas in the topological setting we use Theorem 3.2. Indeed we

have the following equivalences of categories

SeqSpec(Top∗cg) = Sseq-Mod '
[
Sseq-FreeModSeq,Top∗cg

]
SymSpec(Top∗cg) = Ssym-Mod '

[
Ssym-FreeModSym,Top∗cg

]
OrthSpec(Top∗cg) = Sorth-Mod '

[
Sorth-FreeModOrth,Top∗cg

]
To apply Proposition 3.2 and Theorem 3.2 to these enriched functor categories respectively, we need to check

that S?-FreeMod? are small sSet∗ resp. Top∗cg-enriched categories for ? ∈ {Seq,Sym,Orth}. Indeed, the

categories S?-FreeMod? are Top∗cg-enriched by definition and small, since the objects are identified with

those in the corresponding small categories Seq, Sym and Orth. In the simplicial setting, the categories

Seq, Sym and Orth can be enriched accordingly.
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Theorem 3.3. The categories of

(i) pre-excisive functors Exc(Top∗cg) resp. Exc(sSet∗)

(ii) orthogonal spectra OrthSpec(Top∗cg) resp. OrthSpec(sSet∗)

(iii) symmetric spectra SymSpec(Top∗cg) resp. SymSpec(sSet∗)

(iv) sequential spectra SeqSpec(Top∗cg) resp. SeqSpec(sSet∗)

each admit a projective model category structure whose weak equivalences and fibrations are those morphisms

who induce weak equivalences or fibrations on all component spaces in the classical model structure on Top∗cg
or on sSet∗ respectively. These model structures are called the strict model structures of spectra.

Moreover, there is a diagram of Quillen pairs, given by the adjoint pairs orth! a orth∗, sym! a sym∗ and

seq! a seq∗.

Sexc-Modstrict Sorth-Modstrict Ssym-Modstrict Sseq-Modstrict

orth∗

orth!

sym∗

sym!

seq∗

seq!

Proof. In the case where we consider spectra in pointed simplicial sets, the existence of the model structures

is given in by Proposition 3.2 using that sSet∗ is an excellent model category and the fact that there are

equivalences of categories

S?-Mod ' [S?-FreeMod?, sSet∗]

for ? in {Seq,Sym,Orth,Exc}. In the case where we consider spectra with component spaces in Top∗cg, the

existence of the projective model structure is given by Theorem 3.2 and the fact that there are equivalences

of categories

S?-Mod '
[
S?-FreeMod?,Top∗cg

]
for ? in {Seq,Sym,Orth,Exc}. Then by Definition 3.2, the fibrations and weak equivalences are those

morphisms who induce fibrations and weak equivalences on component spaces in the model structure on

Top∗cg. The existence of the adjoint functors seq!, sym! and orth! is given by topological/simplicial left Kan

extension, i.e. for an object X ∈ Sseq we have that X : Seq→ Top∗cg is a topological functor. Then consider

the left Kan extension of X along seq : Seq→ Sym

Seq Top∗cg

Sym

seq

X

Lanseq(X)

Hence we can define the adjoint functor.

seq! : Sseq-Mod −→ Ssym-Mod

X 7−→ Lanseq(X)

Similarly we define the functors sym! and orth!. These functors are Quillen pairs, since the three right adjoint

restriction functors are defined along the inclusions of Remark 2.10 and therefore preserve weak equivalences

and fibrations. Then by Definition A.9 and Lemma 1.3.4 in [Hov99] it follows that the adjunction pairs are

indeed Quillen pairs.

Similarly as the Quillen model structure on Top∗cg determines classical homotopy theory, we want to endow

the categories of spectra with a suitable model structure. This model structure should then determine stable

homotopy theory. More precisely, we want to have a notion of weak equivalences between spectra, having

the property that the induced maps on stable homotopy groups are isomorphisms. Such a model structure

is then called a stable model structure. In particular the suspension and loop space functors Σ and Ω induce
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equivalences on the stable homotopy category of spectra, motivating its name. It becomes clear that the

strict model structure, only providing Quillen equivalences on the component spaces, does not have this

property. Therefore, we consider the following definition.

Definition 3.3. Let E ∈ S?-Mod be a spectrum for ? in {Seq,Sym,Orth,Exc}. Then define the stable

homotopy groups of E to be

π∗(E) := πS∗ (seq∗(E))

the stable homotopy groups of E regarded as a sequential spectrum. A map of spectra f : E → E′ is then

called a stable weak equivalence, if the induced maps on the stable homotopy groups are isomorphisms

π(f)∗ : π(E)∗
∼=−→ π(E′)∗

Theorem 3.4. The category of sequential spectra SeqSpec(Top∗cg) admits a model structure with

(i) weak equivalences given by stable weak equivalences.

(ii) cofibrations given by the cofibrations in the strict model structure.

(iii) fibrant objects are given by Ω-spectra.

This model structure is called the stable model structure on sequential spectra.

Proof. One way to show that such a model structure exists, is to take the left Bousfield localization of

the strict model structure SeqSpec(Top∗cg)strict with respect to the class of stable weak equivalences. The

resulting model structure has precisely as weak equivalences the stable weak equivalences, and as cofibrations

the cofibrations in the strict model structure. What is then left to show is that the fibrant objects are given

by the Ω-spectra. The existence of the left Bousfield localization is given by Proposition 4.1.8. and Theorem

4.1.1. in [Hir03].

Remark 3.4. Similarly as for sequential spectra we can also endow the categories of structured spectra

SymSpec(Top∗cg) and OrthSpec(Top∗cg) with a stable model structure. Also in this model structure the

weak equivalences are given by the stable weak equivalences and the fibrant objects are given by the Ω-

spectra. Moreover, we have that the homotopy theory of structured spectra is equivalent to the homotopy

theory of sequential spectra. More precisely, there are Quillen equivalences

SeqSpec(Top∗cg)stable

seq!
//
OrthSpec(Top∗cg)stable

seq∗
oo _

SeqSpec(Top∗cg)stable

seq!
//
SymSpec(Top∗cg)stable

seq∗
oo _

A detailed discussion about the relations between the stable model categories of structured spectra can be

found in [MMSS01].
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4 Γ-spaces and the K-theory functor

To motivate the relation between spectra, Γ-spaces and Picard groupoids, we recall an important result by

[FHT10] on the classification of invertible quantum field theories. Freed and Hopkins define in [FH16] an

extended n-dimensional Topological Quantum Field Theory (TQFT) to be a symmetric monoidal functor

from the (∞, n)-category of bordisms Bordn(Hn) to a symmetric monoidal (∞, n)-category C.

F : Bordn(Hn)→ C

Here Hn denotes the symmetry group of the bordism category. We will not go into further details on the

symmetry group or on the structure of the bordism category, as it should remain only a motivating example.

A TQFT is said to be invertible, if it factors trough the higher Picard groupoids of the corresponding

categories. First notice that both (∞, n)-categories are endowed with a symmetric monoidal structure. The

category C by assumption and Bordn(Hn) by disjoint union of manifolds. Hence an invertible TQFT allows

the following decomposition

Bordn(Hn) C

Bordn(Hn) C×

F

F̃

where Bordn(Hn) is the Picard groupoid obtained by adding formal inverses and C× the Picard groupoid

obtained by removing the non-invertible morphisms. Therefore, classifying invertible TQFTs is equivalent

to the classification of symmetric monoidal functors of Picard groupoids.

To classify such functors, it is convenient to first pass via the K-theory functor to Γ-categories and then pass

to connective spectra via Segal’s construction. Hence the classification problem of invertible TQFTs turns

into a classification problem of maps of spectra, which can be approached with stable homotopy theory.

Keeping this example in mind, we now show how we can pass from Picard groupoids to spectra via Γ-spaces

and vice versa.

4.1 Γ-spaces

Following [Seg74] and [Boy19] we introduce Γ-spaces and show how they are related to Spectra. Whereas

the approach of Boyarchenko is based on categorical constructions, such as Kan extensions, the approach of

Segal is more of a constructive nature.

Definition 4.1. Let Γ be the category whose objects are finite sets and whose morphisms are are defined as

follows. For S, T ∈ Γ, a morphism S → T is a map of sets θ : S → P (T ) such that θ(x)∩ θ(y) = ∅ whenever

x, y ∈ S with x 6= y.

This category is also called Segal’s category.

Definition 4.2. Let C be a category. Then a Γ-object of C is a functor

Γop → C

The category of Γ-objects of C is given by the functor category Fun(Γop,C) and will be denoted by ΓC.

Remark 4.1. While working with Γ-objects one is only interested in the category Γop, which is equivalent

to the category of finite pointed sets, denoted by FinSet∗. Hence Γ-objects can be regarded as functors

FinSet∗ → C
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The definition of Γ-objects seems similar to the one of simplicial objects, which show to be a slightly weaker

version of Γ-objects. Indeed, any Γ-object yields a simplicial object as follows. Consider the faithful functor

ι : ∆ −→ Γ

[m] 7−→ m

where [m] = m = {1, ...,m} and for f : [m]→ [n] morphism in ∆ the morphism ι(f) : m→ n is defined by

θ : m −→ P (n)

i 7−→ θ(i) = {j | f(i− 1) < j ≤ f(i)}

Then for X : Γop → C we define its associated simplicial object as the composition

Xsimp : ∆op ιop

−−→ Γop X−→ C

Remark 4.2. In the following we will mostly look at Γ-objects in the categories Top∗cg, sSet and Cat.

Definition 4.3. Let C be a model category. Then a Γ-object A : Γop → C is said to be a special Γ-object

if for each n ≥ 0 the morphisms

A(n)→
n-times︷ ︸︸ ︷

A(1)× . . .×A(1)

induced by the maps A(θk) : A(n)→ A(1) where

θk : 1→ P (n)

1→ {k}

are weak equivalences in the model structure on C.

Remark 4.3. In the case n = 0 notice that for A to be a special Γ-space it is required that the map

A(0)→ ∗ is a weak equivalence, where ∗ is the terminal object in C.

By endowing the category Cat with the canonical model structure we obtain the following definition.

Definition 4.4. A Γ-category C : Γop → Cat is said to be special, if

(i) C(0) is equivalent to the category with one object and one morphism

(ii) for each n ≥ 0 the functor

Pn : C(n)→ C(1)× . . .× C(1)

is an equivalence of categories.

Corollary 4.1. ([Seg74]) Let C be a special Γ-category. Then its classifying space |C| is a special Γ-space

|C| : Γop → Top

S 7→ |N(C(S))|

Lemma 4.1. Let A : Γop → Top be a special Γ-space. Then the space A(1) has an H-space structure.

Proof. Since A is special we have that the map A(2) → A(1) × A(1) is a homotopy equivalence, hence we

define the product on A(1) as follows.

A(1)×A(1)→ A(2)→ A(1)

Notice that the right map is induced by 1 → 2 in Γ given by θ : 1 7→ {1, 2}. The neutral element is given

by the unique map 0+ → 1+ in the category FinSet∗ which then induces an inclusion A(0) → A(1). By

hypothesis A(0) ' ∗ hence we take the neutral element in A(1) to be the image of the base point ∗ under

the above inclusion.
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Remark 4.4. Let X be a topological H-space. Then we say that X allows a weak homotopy inverse if

π0(X) has a group structure induced by the H-space structure.

Definition 4.5.

(i) A topological Γ-space A is said to be very special, if it is special and the H-space structure on A(1)

admits a weak homotopy inverse.

(ii) A Γ-space A : Γop → sSet∗ is said to be very special, if it is special and its geometric realization |A|
is very special, i.e. the H-space structure on |A(1)| admits a weak homotopy inverse.

(iii) A Γ-category C : Γop → Cat is said to be very special, if it is special and its classifying space |C| is

very special, i.e. the H-space structure on |N(C(1))| admits a weak homotopy inverse.

Now that we have established the basic properties of Γ-spaces we want to investigate how Γ-spaces and

sequential spectra are related. The aim will be to construct a pair of adjoint functors Hom(S,−) and S ∧−
between the categories SeqSpec(sSet∗) and ΓsSet∗.

Let E,F ∈ SeqSpec(sSet∗) and consider the enriched hom space SeqSpec(sSet∗)(E,F ) ∈ sSet∗ which is

defined in the same way as in Definition 2.6. We want to extend this hom space to a Γ-space. Therefore, we

define

Hom(E,F )(n) := SeqSpec(sSet∗)(

n-times︷ ︸︸ ︷
E × . . .× E,F )

Moreover, for any f : m→ n we need to define structure maps

Hom(E,F )(n)→ Hom(E,F )(m)

Hence let f be given by the corresponding map θ : m→ P (n). Then define the map f̃ : Em → En as follows.

For any 1 ≤ i ≤ m there are diagonal maps

∆(i) : E →
θ(i)-times︷ ︸︸ ︷

E × . . .× E

hence there is a family of maps

f̃i : E
∆(i)−−−→ E × . . .× E ↪→ En

which then induce a unique morphism f̃ : Em → En. Notice that in the case where θ(i) = ∅, we define the

diagonal map ∆(i) : E → ∗ to be the unique map to the terminal object in SeqSpec(sSet∗). Now the map

f̃ induces a map

f̃∗ : SeqSpec(sSet∗)(En, F )→ SeqSpec(sSet∗)(Em, F )

which is the desired structure map.

Lemma 4.2. Considering the stable model structure on SeqSpec(sSet∗) and that F is an Ω-spectrum, then

the Γ-space Hom(E,F ) is very special.

Proof. First we need to show that the Γ-space Hom(E,F ) is special, i.e. that the maps

Pn : Hom(E,F )(n)→ SeqSpec(sSet∗)(E,F )× . . .× SeqSpec(sSet∗)(E,F )

are weak equivalences of simplicial sets for any n ≥ 0. Indeed, notice that the inclusion

E ∨W ↪→ E × E

is a stable homotopy equivalence. Therefore, the induced maps
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SeqSpec(sSet∗)(E ∨ . . . ∨ E,F )

SeqSpec(sSet∗)(E × . . .× E,F ) SeqSpec(sSet∗)(E,F )× . . .× SeqSpec(sSet∗)
Pn

give the desired homotopy equivalences Pn and thus the Γ-space Hom(E,F ) is special. To show that

SeqSpec(sSet∗) is very special we need to look at the component space SeqSpec(sSet∗)(E,F ). By definition

we have

π0 (SeqSpec(sSet∗)(E,F )) =
[
S0,SeqSpec(sSet∗)(E,F )

]
Now using Proposition 2.3 it follows that[

S0,SeqSpec(sSet∗)(E,F )
] ∼= [E ∧ S0, F ] ∼= [E,F ]

Now using that F is an Ω-spectrum implies that [E,F ] is an abelian group. Hence the Γ-space is very

special.

Proposition 4.1. Let S ∈ SeqSpec(sSet∗) be the sphere spectrum. Then we have an adjunction

S ∧ − : ΓsSet∗
//
SeqSpec(sSet∗) : Hom(S,−)oo _

First we give the construction of the functor S∧− and after we show that they indeed form a pair of adjoint

functors. To construct the functor S ∧ − we need the notion of simplicial spheres.

Definition 4.6. Let [n] ∈ ∆, then we define the simplicial set ∆[n] as follows

∆[n] : ∆op → Set∗

[q] 7→ ∆([q], [n])

Now define S0 = ∗ q ∗ and S1 as the pushout in sSet∗

S0 ∗

∆[1] S1

For n ≥ 1 define Sn =

n-times︷ ︸︸ ︷
S1 ∧ ... ∧ S1. These simplicial sets are called simplicial spheres.

Definition 4.7. The inclusion

S : Γop → sSet∗

n 7→ Sn

is called the sphere inclusion.

Now let A : Γop → sSet∗ be a Γ-space and consider its left Kan extension along the sphere inclusion S.

Γop sSet∗

sSet∗

A

S
LanS(A)
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The functor LanS(A) : sSet∗ → sSet∗ induces a functor

LanS(A)∗ : SeqSpec(sSet∗)→ SeqSpec(sSet∗)

E 7→ LanS(A) ◦ E

Then we define the functor S ∧ − as

S ∧ − : ΓsSet∗ → SeqSpec(sSet∗)

A 7→ LanS(A)∗(S)

where S denotes the sphere spectrum in SeqSpec(sSet∗).

Proof. We need to show that the functors Hom(S,−) and S∧− form an adjunction. Therefore, let A ∈ ΓsSet∗

and E ∈ SeqSpec(sSet∗). Then look at the set of morphisms

ΓsSet∗(A,Hom(S, E)) ∼=
∫
k∈Γop

sSet∗
(
A(k),SeqSpec(sSet∗)

(
S×k, E

))
Now using the fact that for any K ∈ sSet∗ the functor

K ∧ − : SeqSpec(sSet∗)→ SeqSpec(sSet∗)

is the left adjoint of the functor

SeqSpec(sSet∗)(K,−) : SeqSpec(sSet∗) −→ SeqSpec(sSet∗)

E 7−→ (n 7→ [K,En])

(which is the analogue of Proposition 2.3 for sSet∗), we obtain

sSet∗
(
A(k),SeqSpec(sSet∗)

(
S×k, E

)) ∼= SeqSpec(sSet)
(
A(k) ∧ S×k, E

)
and therefore

ΓsSet∗(A,Hom(S, E)) ∼=
∫
k∈Γop

SeqSpec(sSet)
(
A(k) ∧ S×k, E

)
∼= SeqSpec(sSet∗)

(∫ k∈Γop

A(k) ∧ S×k, E

)
On the other hand we have by definition and Lemma 4.3 that

(S ∧A)n ∼=
∫ k∈Γop

(Sn)×k ∧A(k)

Hence we get that

S ∧A ∼=
∫ n∈Seq

Seq(n,−) ∧ (S ∧A)n

∼=
∫ n∈Seq ∫ k∈Γop

Seq(n,−) ∧ (Sn)×k ∧A(k)

∼=
∫ k∈Γop

A(k) ∧

(∫ n∈Seq
Seq(n,−) ∧ (Sn)×k

)

∼=
∫ k∈Γop

A(k) ∧ S×k

and now it follows that

ΓsSet∗(A,Hom(S, E)) ∼= SeqSpec(sSet∗) (S ∧A,E)

By construction this isomorphism is natural and therefore the functors form an adjoint pair.
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Lemma 4.3. ([DGM12]) For a Γ-space A there is a natural isomorphism

(S ∧A)n ∼=
∫ k∈Γop

(Sn)×k ∧A(k)

for any n ∈ N.

Proof. This follows form the fact that the left Kan extension LanS(A) can be written as a coend given by

the so called coend formula in Remark 5.4. Therefore, we have

LanS(A) ∼=
∫ k∈Γop

sSet∗(Sk,−) ∧A(k)

Hence it follows that

(S ∧A)n = (LanS(A) ◦ S)n ∼=
∫ k∈Γop

sSet∗(Sk, Sn) ∧A(k)

which concludes the proof.

Since the construction of the functor S∧− is rather abstract, we would like to have an explicit construction

such that computations can be done more easily. In [Seg74], Segal provides such a construction being an

explicit description of this functor.

Definition 4.8. Let A ∈ ΓsSet∗ be a special Γ-space and X ∈ sSet∗ a pointed simplicial set. Then we

define an associated functor X : Γ → sSet∗ as follows. For any n ∈ Γ put X(n) := X×n and for any map

m→ n which is given by θ : m→ P (n) define

X(θ) : X×m → X×n

(x1, ..., xm) 7→ (x′1, ..., x
′
n)

where x′j = xi for j ∈ θ(i) and x′j = ∗ otherwise. Then we define the Γ-space X ⊗Γ A

X ⊗Γ A : Γop → sSet∗

k 7→

∐
n≥0

X(n)×A(n× k)

 / ∼

where the quotient is given by the equivalence relation

Xm ×A(m× k) 3 (x1, ..., xm, A(θ × idk)(a)) ∼ (X(θ)(x1, ..., xm), a) ∈ Xn ×A(n× k)

for all xj ∈ X and all a ∈ A(n×k) and any map θ : m→ n. Notice that with θ× idk we mean the morphism

in Γ given by

m× k → P (n× k)

(i, j) 7→ θ(i)× {j}

Definition 4.9. Let A ∈ ΓsSet∗ be a special Γ-space. Then we define its n-th classifying space BnA as

the Γ-space

BnA = Sn ⊗Γ A

The sequence A(1), BA(1), B2A(1), ... then defines a sequential spectra denoted by BA. In fact there is a

functor

B : ΓsSet∗ → SeqSpec(sSet∗)

Proposition 4.2. ([Seg74]) There is a pair of adjoint functors

B : ΓsSet∗
//
SeqSpec(sSet∗) : Hom(S,−)oo _
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4.2 Picard groupoids and spectra

In the following let (C,⊗, 1) be a symmetric monoidal category. Then we define

π0(C) := { [X] | X ∈ C}

as the set of isomorphism classes of objects in C. Notice that π0(C) is an abelian monoid under the tensor

product, i.e. there is an action given by

π0(C)× π0(C)→ π0(C)

([X], [Y ]) 7→ [X ⊗ Y ]

with identity element [1].

Definition 4.10. A category C is said to be a groupoid if it is a small category and every morphism is an

isomorphism.

Definition 4.11. A symmetric monoidal category (C,⊗, 1) is a Picard groupoid if the underlying category

is a groupoid and π0(C) is an abelian group.

Remark 4.5. For a Picard groupoid C there is an autoequivalence for any fixed object X ∈ C given by the

functor

X ⊗− : C→ C

Y 7→ X ⊗ Y

This functor induces an isomorphism on the following groups of automorphisms in C.

ψX : AutC(1)→ AutC(X)

ϕ : 1→ 1 7→ X ⊗ ϕ : X → X

Now define the following group homomorphism

π0(C)→ AutC(1)

[X] 7→ cX = ψ−1
X⊗X(τX,X)

where τX,X ∈ AutC(X ⊗X) is the braiding of the symmetric monoidal category.

Definition 4.12. A Picard groupoid C is said to be strictly commutative or just strict if for every X ∈ C

we have cX = id1.

Now we want to construct a functor

K : {strict symmetric monoidal categories } → ΓCat

called the K-theory functor.

Let P be a strict symmetric monoidal category. Then for every finite set S ∈ Γ define the category K(P)(S)

whose objects are collections {XU}U⊂S of objects XU ∈ P indexed by subsets U ⊂ S together with isomor-

phisms

ψU,V : XU ⊗XV

∼=−−→ XU∪V

for all pairs of disjoint subsets U, V ⊂ S such that they are compatible with the symmetric braiding.

XU ⊗XV XU∪V

XV ⊗XU XV ∪U

τXU,XV

ψU,V

ψV,U

37



We set X∅ = 1P and for all U ⊂ S the map ψ∅,U : 1P ⊗ XU → XU is the counit constraint and ψU,∅ :

XU ⊗ 1P → XU is the unit constraint. A morphism in K(P)(S)

f : ({XU}, {ψU,V })U,V⊂S → ({YU}, {ψ̃U,V })U,V⊂S

is given by a collection {fU}U⊂S of morphisms fU : XU → YU in P indexed by U ⊂ S, such that they are

compatible with the maps ψU,V and ψ̃U,V and f∅ = id1P
.

In the following, we want to show that K(P) can be equipped with the structure of a Γ-category, i.e.

K(P) : Γop → Cat defines a functor. Hence let f : S → T be a morphism in Γ given by θ : S → P (T ). Then

there is an induced functor

K(P)[f ] : K(P)(T )→ K(P)(S)

{XU}U⊂T 7→ {Xθ−1(U)}

which maps a morphism g : X → Y in K(P)(T ) to the morphism

K(P)[f ](g) : {Xθ−1(U)} → {Yθ−1(U)}

which is indexed by gθ−1(U) : Xθ−1(U) → Yθ−1(U).

Example 4.1. Let S = 2 and T = 3 and let f : 2→ 3 be the morphism given by

θ : {1, 2} → P ({1, 2})
1 7→ {1, 2}
2 7→ {3}

Now let P be a strict symmetric monoidal category as above. Objects of K(P)(3) are given by

X = (1, X{1}, X{2}, X{3}, X{1,2}, X{1,3}, X{2,3}, X{1,2,3}). Then the induced functor K(P)[f ] maps the object

X to K(P)[f ](X) = (1, Z{1}, Z{2}, Z{1,2}) where we have

Z{1} = XU such that θ−1(U) = {1} hence Z{1} = X{1,2}

Z{2} = XU such that θ−1(U) = {2} hence Z{2} = X{3}

Z{1,2} = XU such that θ−1(U) = {1, 2} hence Z{1,2} = 1

therefore K(P)[f ](X) = (1, X{1,2}, X{3}, 1).

This structure turns K(P) into a Γ-category.

Lemma 4.4. For every strict symmetric monoidal category P the associated Γ-category K(P) is special and

if π0(P) is an abelian group, then K(P) is very special.

Proof. Let P be a strict symmetric monoidal category. We want to show that K(P) is a special Γ-category,

i.e. by Definition 4.4 we need to show that K(P)(0) is equivalent to the category with one object and one

morphism and that for each n ≥ 0 there are equivalences of categories

Pn : K(P)(n)→ K(P)(1)× · · · ×K(P)(1) (1)

By definition the category K(P)(0) has one object X∅ = 1P and one morphism id1. Moreover, the functor

(1) is by definition

Pn : K(P)(n) −→ K(P)(1)× · · · ×K(P)(1)

{XU} 7−→
(
{1, X{1}}, {1, X{2}}, . . . , {1, X{n}}

)
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Consider now the inverse functor

Qn : K(P)(1)× · · · ×K(P)(1) −→ K(P)(n)(
{1, Z1}, . . . , {1, Zn}

)
7−→ {XU}U⊂n

where

XU =
⊗
j∈U

Zj

Looking at the composition of those functors we have

Pn ◦Qn : K(P)(n) −→ K(P)(n)

{XU} 7−→

⊗
j∈U

X{j}


Using the fact that there are isomorphisms XU∪V

∼=−→ XU ⊗XV for all disjoint U, V it follows that there are

natural isomorphisms ⊗
j∈U

X{j}
∼=−→ XU

and therefore Pn ◦Qn is naturally isomorphic to the identity functor on K(P)(n). On the other side consider

the composition

Qn ◦ Pn : K(P)(1)×n −→ K(P)(n) −→ K(P)(1)×n

(
{1, Z1}, . . . , {1, Zn}

)
7−→

⊗
j∈U

Zj

 7−→ (
{1, Z1}, . . . , {1, Zn}

)
which is equal to the identity functor on K(P)(1)×n. Therefore, Pn is an equivalence of categories for all

n ≥ 0.

Now let π0(P) be an abelian group. To show that K(P) is very special, we need to show that the H-space

structure on K(P)(1) admits a weak inverse. First we notice that the H-space structure on K(P)(1) is given

by the monoidal product, which also induces the group structure on π0(P). Indeed, the product on K(P)(1)

is given by

K(P)(1)×K(P)(1) −−−−−−→ K(P)(2) −−−−−−→ K(P)(1)(
{1, Z1}, {1, Z2}

)
7−−→ {1, Z1, Z2, Z1 ⊗ Z2} 7−−→ {1, Z1 ⊗ Z2}

Now we notice that K(P)(1) ∼= P hence there is a natural isomorphism of groups

π0(P)
∼=−→ π0(K(P)(1))

which shows that the H-space structure on K(P)(1) admits a weak inverse. This shows that K(P) is a very

special Γ-category.

Remark 4.6. Lemma 4.4 implies that if we restrict the functor K to the category of strict Picard groupoids,

we get a functor

K : {strict Picard groupoids} → ΓvsCat

where ΓvsCat denotes the subcategory of very special Γ-categories.

On the other hand we can associate a Picard groupoid to a very special Γ-space A : Γop → sSet∗ in the

following way.
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Definition 4.13. Let X be a topological space. Then define the fundamental groupoid Π(X) to be the

category with objects given by the points of X and with morphisms x→ y given by the equivalence classes

of paths from x to y up to homotopy.

Now let A be a very special Γ-space. Define Π(A) := Π(|A(1)|) to be the fundamental groupoid of the

geometric realization of A(1). The H-space structure on A(1) induces a bifunctor denoted by

⊗ : Π(A)×Π(A)→ Π(A)

Lemma 4.5. ([Pat12]) The bifunctor ⊗ : Π(A) × Π(A) → Π(A) induced by the H-space structure on A(1)

gives Π(A) the structure of a symmetric monoidal category with tensor unit given by the base point of A(1).

Moreover, if A is very special, then Π(A) is a Picard groupoid.

To investigate how the functors K and Π are related we need the following lemma.

Lemma 4.6. ([DGM12]) Let N : Cat→ sSet be the nerve functor. Then for C : Γop → Cat a Γ-category

consider the composition

N ◦ C : Γop → Cat→ sSet∗

n 7→ C(n) 7→ N (C(n))+

which defines naturally a Γ-space. If C is a special resp. very special Γ-category then N ◦ C is special resp.

very special.

Using the above lemma we get a pair of functors

{strict Picard groupoids} ΓvsCat ΓvssSet∗
K N◦−

Π

Composing this functor pair with the corresponding functors defined in Proposition 4.1 yields the following

pair of functors,

{strict Picard groupoids} ΓvsCat ΓvssSet∗ SeqSpec(sSet∗)

{strict Picard groupoids} ΓvssSet∗ Ω-SeqSpec(sSet∗)

K N◦− S∧−

Π Hom(S, - )

which show how to pass from strict Picard groupoids to sequential spectra and vice versa. Since the functors

S ∧ − and Hom(S,−) form an adjunction pair, the question arises if the functors Π and (N ◦ −) ◦ K are

also adjoint. To give an answer to this question we need to understand the fundamental groupoid functor

Π : sSet∗ → Grpd.

4.3 The fundamental groupoid functor

Proposition 4.3. There exists an adjunction

τ : sSet
//
Cat : Noo _

Proof. Since Cat is locally small and co-complete, we can apply the nerve-realization machinery of Propo-

sition 5.4 which then proves the result.
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Definition 4.14. The forgetful functor U : Grpd→ Cat which sends a groupoid to its underlying category

has a left adjoint, denoted by G : Cat→ Grpd and is called the free groupoid functor.

Theorem 4.1. ([GJ09]) Let Z be a simplicial set. Then the groupoids (G ◦ τ)(Z) and Π(|Z|) are naturally

equivalent as categories.

Corollary 4.2. There is a pair of adjoint functors

sSet
G◦τ //

Grpd
N
oo _

Proof. The adjunction pair follows from the fact that the composition of adjoint functors is again adjoint.

In this case we use Proposition 4.3 and compose the two adjoint pairs

Cat
G //

Grpd
U
oo _ sSet

τ //
Cat

N
oo _

These adjunction pairs lift naturally to adjunction pairs of Γ-objects.

Lemma 4.7. There is a pair of adjoint functors

ΓGrpd
N◦(−)

//
ΓsSet

(G◦τ)◦(−)
oo _

Proof. We need to show that for any A ∈ ΓsSet and G ∈ ΓGrpd there are natural isomorphisms

ΓGrpd((G ◦ τ) ◦A,G) ∼= ΓsSet(A,N ◦ G) (2)

Using the Co-Yoneda Lemma we obtain

ΓGrpd((G ◦ τ) ◦A,G) ∼=
∫
k∈Γop

Grpd
(

(G ◦ τ)(A(k)),G(k)
)

ΓsSet(A,N ◦ G) ∼=
∫
k∈Γop

sSet
(
A(k), N(G(k))

)
Now we use Corollary 4.2 to obtain natural isomorphisms for any k ∈ Γop

sSet
(
A(k), N(G(k))

)
∼= Grpd

(
(G ◦ τ)(A(k)),G(k)

)
which then induce the desired natural isomorphisms of (2).

Now that we have established all the necessary adjunctions, we put the pieces together and try to understand

how they correspond to each other. Theorem 4.1 allows us to write Π as the composition of G ◦ τ and EV1

up to equivalence of categories, as indicated in the diagram below. Notice that EV1 denotes the evaluation

functor at the object 1 ∈ Γop.

{strict Picard groupoids} ΓvsCat

sSet ΓvssSet

K

N◦(−)G◦τ

Ev1

Π
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This diagram is not commutative, since the lower left triangle just commutes up to equivalence of categories.

One approach to handle this problem is to endow the category of strict Picard groupoids with a model

structure, such that the weak equivalences are given by equivalences of groupoids, see for example [Hol08].

Then by endowing sSet with its standard model structure, we obtain a diagram of model categories. By

simply passing to the homotopy categories of the corresponding model categories, a lot of information would

be lost. Therefore, we should rather consider the diagram of their corresponding simplicial localizations resp.

their associated ∞-categories. This approach is a motivation for the following chapter, where we introduce

∞-categories and see how we can endow them with symmetric monoidal structures.
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5 Higher categories

Heuristically a higher category is a structure given by a class of objects called 0-cells, a class of morphisms

between the objects called 1-cells, a class of morphisms between the 1-cells called 2-cells, and so on. These

higher morphisms or higher cells can be composed and need to satisfy certain coherence properties. Moreover,

by asking that all k-cells are isomorphisms for all k > n, it arises the motivation behind an (∞, n)-category.

Imposing these invertibility properties on higher morphisms provides a generalization of∞-groupoids, where

we consider all higher morphisms to be invertible. There exist many models for higher categories, each of

which carries its advantages and disadvantages. The reason why we need to find structures being models for

higher categories is the fact that there is currently no axiomatic definition of a higher category. For certain

higher categories however, an axiomatization is possible, such as given by the work of Toën in [Toe04]. One

example of such a model are topological categories. Indeed, let C be a topological category. Then the 0-cells

are the objects of C and the 1-cells are the morphisms of C. Having two 1-cells, say f : x→ y and g : x→ y,

a 2-cell is then given by a path γ : f ⇒ g in the topological space C(x, y), i.e. γ : I → C(x, y). Given two

2-cells, say γ : f ⇒ g and δ : f ⇒ g, a 3-cell is then given by a homotopy between the paths γ and δ, i.e. a

3-cell is a map H : I × I → C(x, y). In this manner we can define cells in any dimension, leading to a model

of a higher category, namely an (∞, 1)-category.

An important property of (∞, 1)-categories is that they each represent a homotopy theory. Indeed, it

was shown by Dwyer and Kan in [DK80], that any category with weak equivalences D provides a simplicial

category LD, the simplicial localization of D. This localization still carries a coherent homotopical structure,

in contrast to the regular localization, where one just formally inverts the weak equivalences ([Ber10]). On

the other hand one can show, that for any simplicial category C, there is a category with weak equivalences

D, such that C is weakly equivalent to the simplicial localization LD of D. This notion of weak equivalence

between simplicial categories, which we define in Section 5.2, is called Dwyer-Kan equivalence and provides a

model structure on the category sSet-Cat of small simplicial categories. This notion of weak equivalence has

the property that if two model categories M and N are Quillen equivalent, then their simplicial localizations

LM ' LN are weakly equivalent. Hence the model structure on simplicial categories is one approach to

construct a homotopy theory of homotopy theories.

The previously established theory to describe the category of structured spectra using the Day convolution

relies heavily on topological categories. Hence the question of whether we can define the Day convolution in a

homotopy coherent way arises. The motivation behind this approach comes from the fact that topological or

simplicial categories provide a model for (∞, 1)-categories. Therefore, we want to investigate how algebraic

structures, such as symmetric monoidal products can be defined within this model. There have been various

approaches to provide models for (∞, 1)-categories and it turned out that most of these models are Quillen

equivalent. As for example discussed in [Ber10]. Since we defined spectra via enriched diagram categories, it

seems straightforward to consider the category of small topological or simplicial categories as our preferred

model. Therefore, we first need to establish some basic theory on enriched categories, especially on topological

and on simplicial categories.

5.1 Enriched categories

In the following we will focus on simplicial categories. The same statements also hold for topological cat-

egories using the change of base Quillen equivalence induced by the geometric realization adjunction. As

already mentioned before, we will denote the category of small simplicial categories by sSet-Cat. To con-

struct the topological Day convolution, we defined an enrichment on the functor category [C,Top∗cg]. This

enrichment is given by Definition 2.6 and can be generalized to give an enrichment of the functor category

[C,D]sSet where C and D are simplicial categories. This construction allows us to eventually prove that the

category sSet-Cat is closed cartesian. To do so we first recall the notion of enriched ends.

For ordinary categories and functors, ends are introduced using dinatural transformations, such as in [ML98].

Definition 5.1. Given two ordinary categories C,D and two ordinary functors S, T : Cop × C → D a

dinatural transformation α : S ⇒ T is a function which assigns to each object c ∈ C a morphism
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αc : S(c, c)→ T (c, c) in D, called the component of α at c, in such a way that for every f : c→ c′ in C the

following diagram commutes.

S(c,c) T (c, c)

S(c′, c) T (c, c′)

S(c′, c′) T (c′, c′)

αc

T (id,f)S(f ,id)

S(id,f)

αc′

T (f ,id)

Using the language of dinatural transformations, we can give a concise definition of an end of a functor

F : Cop × C→ D between ordinary categories.

Definition 5.2. An end of a functor F : Cop×C→ D is a pair 〈e, π〉 where e is an object of D and π : e⇒ F

is a dinatural transformation with the property that for every dinatural transformation β : d⇒ F there is a

unique arrow h : d→ e in D, such that for all c ∈ C we have βc = πc ◦h. The end of the functor F is usually

denoted with e =
∫
c∈C F (c, c).

To define ends in the enriched setting, we first need to establish a suitable analogue for dinatural transfor-

mations, which we will call simplicial dinatural transformations.

Let F : Cop × C → sSet be a simplicial functor. Then we notice that there are two ”actions” of C on F

which are given component wise by

λc1,c2,c3 : F (c1, c2)× C(c2, c3)→ F (c1, c3)

ρc1,c2,c3 : F (c2, c3)× C(c1, c2)→ F (c1, c3)

These actions arise from the fact that sSet is closed cartesian. More precisely, for any c1, c2, c3 objects in C

there are maps

F (c1,−)c2,c3 : C(c2, c3)→ sSet(F (c1, c2), F (c1, c3))

F (−, c3)c1,c2 : C(c1, c2)→ sSet(F (c2, c3), F (c1, c3))

Then the fact that sSet is closed cartesian shows that there are isomorphisms

sSet [C(c2, c3), sSet(F (c1, c2), F (c1, c3))]
∼=−−→ sSet [F (c1, c2)× C(c2, c3), F (c1, c3)]

F (c1,−)c2,c3 7−−→ λc1,c2,c3

sSet [C(c1, c2), sSet(F (c2, c3), F (c1, c3))]
∼=−−→ sSet [F (c2, c3)× C(c1, c2), F (c1, c3)]

F (−, c3)c1,c2 7−−→ ρc1,c2,c3

Using this special property of simplicial functors F , we give the following definition.

Definition 5.3. Let C be a simplicial category and F : Cop × C → sSet a simplicial functor. Then for

an object s ∈ sSet a simplicial dinatural transformation α : s ⇒ F from s to F is a family of maps

αc : v → F (c, c) in sSet indexed over objects c ∈ C, such that for all pairs of objects c, c′ in C the following

diagram commutes

s× C(c, c′) F (c, c)× C(c, c′)

F (c′, c′)× C(c, c′) F (c, c′)

αc×id

αc′×id λc,c,c′

ρc,c′,c′
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Hence we can give now the definition of a simplicial end, which is the exact analogue of Definition 5.2 using

simplicial dinatural transformations.

Definition 5.4. A simplicial end of a simplicial functor F : Cop × C → sSet is a pair 〈e, π〉 where e is

a simplicial set and π : e ⇒ F is a simplicial dinatural transformation with the property that for every

simplicial dinatural transformation β : s ⇒ F there is a unique map of simplicial sets h : s → e, such that

for all c ∈ C we have βc = πc ◦ h. The simplicial end of the simplicial functor F is usually denoted with

e =
∫
c∈C F (c, c).

Remark 5.1. A different approach to define enriched ends and coedns can be given using equalizers and

coequalizers. Indeed, let F : Cop × C → sSet be a simplicial functor and αc : e → F (c, c) a family of maps

in sSet. Asking that α : e⇒ F defines a simplicial dinatural transformation is equivalent to the statement

that e equalizes the following diagram,

e =

∫
c∈C

F (c, c)
∏
αc−−−→

∏
c∈C

F (c, c)

∏
λ∗c,c,d

∏
ρ∗c,d,d

∏
c,d∈C

[C(c, d), F (c, d)]

where

λ∗c1,c2,c3 : F (c1, c2)→ [C(c2, c3), F (c1, c3)]

ρ∗c1,c2,c3 : F (c2, c3)→ [C(c2, c3), F (c1, c3)]

are the adjoint maps of λc1,c2,c3 and ρc1,c2,c3 . Then the universal property of the end 〈e, α〉 translates into the

universal property showing that e is the equalizer of the above diagram. Similarly coends can be described

by coequalizers. ∐
c,d∈C

C(c, d)× F (d, c)

∐
λd,c,d

∐
ρc,d,c

∐
c∈C

F (c, c)
coeq.−−−→

∫ c∈C
F (c, c)

Hence existence of enriched ends and coends is equivalent to the existence of ends and coends in the given

category.

Now we are ready to give the general construction of the enrichment on the category of simplicial functors

[C,D]sSet.

Definition 5.5. Let C,D be two simplicial categories and consider the category of simplicial functors from

C to D denoted by [C,D]sSet. Let F,G be two simplicial functors, then there is a bifunctor

D(F (−), G(−)) : Cop × C→ sSet

whose end defines the simplicial enrichment on [C,D]sSet, which is denoted by

[C,D]sSet(F,G) :=

∫
c∈C

D(F (c), G(c))

Remark 5.2. The end always exists, since the category sSet is complete and cocomplete, i.e. has all

small limits and all small colimits respectively. What is left to show is that the above definition defines

indeed a simplicial enrichment on the functor category [C,D]sSet. That is, we need to show that there is a

composition, given by a simplicial map

[C,D]sSet(F,G)× [C,D]sSet(G,H)→ [C,D]sSet(F,H)
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Lemma 5.1. The category of simplicial functors [C,D]sSet with hom sets given by the above definition is a

small simplicial category.

Proof. What is left to show is that there is a composition in [C,D]sSet. Hence let F,G,H be simplicial

functors from C to D. Then by definition there are dinatural transformations with component maps

αc :

∫
c∈C

D(F (c), G(c))→ D(F (c), G(c))

βc :

∫
c∈C

D(G(c), H(c))→ D(G(c), H(c))

γc :

∫
c∈C

D(F (c), H(c))→ D(F (c), H(c))

Hence by taking their product we get a family of maps

αc × βc :

∫
c∈C

D(F (c), G(c))×
∫
c∈C

D(G(c), H(c))→ D(F (c), G(c))×D(G(c), H(c))

Then using composition in D we obtain a family of simplicial maps

compD
F (c),G(c),H(c) ◦ (αc × βc) :

∫
c∈C

D(F (c), G(c))×
∫
c∈C

D(G(c), H(c))→ D(F (c), H(c))

Now we want to use the universal property of the simplicial dinatural transformation γ to show that there

exists a unique map ∫
c∈C

D(F (c), G(c))×
∫
c∈C

D(G(c), H(c))→
∫
c∈C

D(F (c), H(c))

Hence we need to show that compD
F (c),G(c),H(c) ◦ (αc × βc) defines a simplicial dinatural transformation.

Indeed, let c, c′ be two objects of C, then we need to show that the following diagram commutes.∫
c∈C D(F (c), G(c))×

∫
c∈C D(G(c), H(c))× C(c, c′) D(F (c), G(c))×D(G(c), H(c))× C(c, c′)

D(F (c′), G(c′))×D(G(c′), H(c′))× C(c, c′) D(F (c), H(c))× C(c, c′)

D(F (c′), H(c′))× C(c, c′) D(F (c), G(c′))

αc×βc×id

αc′×βc′×id compD×id

compD×id λF,H
c,c,c′

ρF,H
c,c′c′

To prove this, we notice that the following diagrams commute by construction.∫
c∈C D(F (c), G(c))× C(c, c′) D(F (c), G(c))× C(c, c′)

D(F (c), G(c))× C(c, c′) D(F (c), G(c′))

αc×id

αc′×id λF,G
c,c,c′

ρF,G
c,c′,c′

∫
c∈C D(G(c), H(c))× C(c, c′) D(G(c), H(c))× C(c, c′)

D(G(c), H(c))× C(c, c′) D(G(c), H(c′))

βc×id

βc′×id λG,H
c,c,c′

ρG,H
c,c′,c′
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Hence the above diagrams show, that for all x ∈
∫
c∈C D(F (c), G(c)) and all y ∈

∫
c∈C D(G(c), H(c)) and all

f ∈ C(c, c′) the following morphisms agree

αc′(x) ◦ F (f) = G(f) ◦ αc(x)

βc′(y) ◦G(f) = H(f) ◦ βc(y)

Then the upper right path of the first diagram sends (x, f) to the morphism H(f) ◦ βc(y) ◦ αc(x) and the

lower left path sends (x, f) to the morphism βc′(y) ◦ αc′(x) ◦ F (f). Then using the above identities we have

βc′(y) ◦ αc′(x) ◦ F (f) = βc′(y) ◦G(f) ◦ αc(x)

= H(f) ◦ βc(y) ◦ αc(x)

Hence the two morphisms agree, which shows that the first diagram commutes. This shows that compD
F (c),G(c),H(c)◦

(αc×βc) defines indeed a simplicial dinatural transformation. Then by the universal property of ends, there

is a unique map of simplicial sets

Γ :

∫
c∈C

D(F (c), G(c))×
∫
c∈C

D(G(c), H(c))→
∫
c∈C

D(F (c), H(c))

such that for all c ∈ C the following diagram commutes.∫
c∈C D(F (c), G(c))×

∫
c∈C D(G(c), H(c))

∫
c∈C D(F (c), H(c))

D(F (c), G(c))×D(G(c), H(c)) D(F (c), H(c))

αc×βc

Γ

γc

compD
F (c),G(c),H(c)

Then Γ defines the desired composition in the category [C,D]sSet which makes it a simplicial category.

By the above lemma we have that [C,D]sSet defines a simplicial category. Therefore, we can now prove

the following important proposition, which states that the enriched functor category defines an inner hom

object.

Proposition 5.1. Let C be any simplicial category. Then the following functors form an adjoint pair.

sSet-Cat
C×(−)

//
sSet-Cat

[C,−]sSet

oo _

Proof. We need to show that for any two simplicial categories A and D there are natural isomorphisms

sSet-Cat(A× C,D) ∼= sSet-Cat(A, [C,D]sSet)

Hence we first define a map

ϕ : sSet-Cat(A× C,D)→ sSet-Cat(A, [C,D]sSet)

which associates to every simplicial functor F : A× C→ D a corresponding simplicial functor ϕ(F ). Given

such a simplicial functor F , we define

ϕ(F ) : A→ [C,D]sSet

a 7→ F (a,−)

Notice that F (a,−) is indeed a simplicial functor, as by assumption we have that for all c, c′ ∈ C, there is a

simplicial map

F(a,c),(a,c′) : A(a, a)× C(c, c′)→ D(F (a, c), F (a, c′))
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which induces the map

F(a,c),(a,c′)(ida,−) : C(c, c′)→ D(F (a, c), F (a, c′))

This shows that F (a,−) is indeed an object of [C,D]sSet. Next, we need to show that ϕ(F ) is a simplicial

functor. That is, for a, a′ objects in A there need to be simplicial maps of the form

ϕ(F )a,a′ : A(a, a′)→ [C,D]sSet(F (a,−), F (a′,−))

preserving composition and identities. Using the fact that F is simplicial we have for any two fixed objects

a, a′ ∈ A a family of simplicial maps indexed by objects c ∈ C

αc = F(a,c),(a′,c)(−, idc) : A(a, a′)→ D(F (a, c), F (a′, c))

We want to show that αc are the component maps of a simplicial dinatural transformation α : A(a, a′) ⇒
D(F (a,−), F (a′,−)). That is, we need to show that the following diagram of simplicial sets commutes for

all c, c′ objects in C.

A(a, a′)× C(c, c′) D(F (a, c), F (a′, c))× C(c, c′)

D(F (a, c′), F (a′, c′))× C(c, c′) D(F (a, c), F (a′, c′))

αc×id

αc′×id λc,c,c′

ρc,c′,c′

Hence we need to show that for all f : a→ a′ and all g : c→ c′ the following morphisms in D agree.

F (a′, g) ◦ F (f, c) = F (f, c′) ◦ F (a, g)

This property is clearly satisfied since F is assumed to be a simplicial functor from A× C to D. Therefore,

α defines a simplicial dinatural transformation. Then the universal property for simplicial ends implies that

there is a simplicial map

ϕ(F )a,a′ : A(a, a′)→
∫
c∈C

D(F (a, c), F (a′, c)) = [C,D]sSet (ϕ(F )(a), ϕ(F )(a′))

such that for all c ∈ C the following diagram commutes.

A(a, a′)
∫
c∈C D(F (a, c), F (a′, c))

D(F (a, c), F (a′, c))

ϕ(F )a,a′

αc πc

What is left to show is that the simplicial map ϕ(F )a,a′ preserves composition and identities, i.e. we need

to show that

ϕ(F )a,a(ida) = idF (a,−)

ϕ(F )a,a′′(g ◦ f) = ϕ(F )a′,a′′(g) ◦ ϕ(F )a,a′(f)

Using the projection πc we can easily see that for all c ∈ C we have

αc(ida) = F(a,c),(a,c)(ida, idc)

= idF (a,c)

= πc(ϕ(F )a,a(ida))

which implies that ϕ(F )a,a(ida) = idF (a,−).

To show the second property we consider objects a, a′, a′′ in A and the fact that the following diagram is

commutative for all c ∈ C.
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A(a, a′)×A(a′, a′′) A(a, a′′)

D(F (a, c), F (a′, c))×D(F (a′, c), F (a′′, c)) D(F (a, c), F (a′′, c))

βc

compA
a,a′,a′′

compD

This is again due to the fact, that F is a simplicial functor. Hence we get a family of simplicial maps βc
which again are the component maps of a simplicial dinatural transformation.

β : A(a, a′)×A(a′, a′′)⇒ D(F (a,−), F (a′′,−))

Indeed, as above we check the commutativity of the following diagram of simplicial sets for all c, c′ in C.

A(a, a′)×A(a′, a′′)× C(c, c′) D(F (a, c), F (a′′, c))× C(c, c′)

D(F (a, c′), F (a′′, c′))× C(c, c′) D(F (a, c), F (a′′, c))

βc×id

βc′×id

Again the commutativity of this diagram is a direct consequence of the fact that F is simplicial. Then by

the universal property of simplicial ends there is a simplicial map

κ : A(a, a′)×A(a′, a′′)→
∫
c∈C

D(F (a, c), F (a′′, c′))

such that βc = π′′c ◦ κ for all c in C. Notice that π′′c is the component map given by

π′′c :

∫
c∈C

D(F (a, c), F (a′′, c′))→ D(F (a, c), F (a′′, c′))

Using the construction above we know that the maps

αc : A(a, a′)→ D(F (a, c), F (a′, c))

α′c : A(a′, a′′)→ D(F (a′, c), F (a′′, c))

define simplicial natural transformations, which then show that there are unique maps of simplicial sets

ϕ(F )a,a′ : A(a, a′)→
∫
c∈C

D(F (a, c), F (a′, c))

ϕ(F )a′,a′′ : A(a′, a′′)→
∫
c∈C

D(F (a′, c), F (a′′, c))

Then by definition we have that βc = compD ◦ (α′c × α′′c ), which shows that the upper triangle of solid

arrows commutes for all c ∈ C.

A(a, a′)×A(a′, a′′)
∫
c∈C D(F (a, c), F (a′, c))×

∫
c∈C D(F (a′, c), F (a′′, c))

D(F (a, c), F (a′, c))×D(F (a′, c), F (a′′, c))
∫
c∈C D(F (a, c), F (a′′, c))

D(F (a, c), F (a′′, c))

αc×α′c

ϕ(F )a,a′×ϕ(F )a′,a′′

Γ
πc×π′c

compD
π′′c

By construction of the composition Γ we know that the lower right diagram commutes. Hence the whole

diagram commutes, which shows that κ = Γ ◦ (ϕ(F )a,a′ × ϕ(F )a′,a′′) by uniqueness of these maps. Hence

for any two maps f : a → a′ and g : a′ → a′′, we have that κ(f, g) = ϕ(F )(g ◦ f) = Γ(ϕ(F )(f), ϕ(F )(g)) =

ϕ(F )(g) ◦ ϕ(F )(f). This finally shows that ϕ(F ) : A→ [C,D]sSet is indeed a simplicial functor.
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Conversely we want to define a map

ψ : sSet-Cat(A, [C,D]sSet)→ sSet-Cat(A× C,D)

Therefore, let G : A→ [C,D]sSet be a simplicial functor. Then define the functor ψ(G) on objects as follows

ψ(G) : A× C→ D

(a, c) 7→ G(a)[c]

where G(a) : C→ D is a simplicial functor by definition. For f : a→ a′ an arrow in A we have a simplicial

natural transformation.

ψ(G)(f) : G(a)→ G(a′)

That is, for all c ∈ C there are arrows

ψ(G)(f)c : G(a)[c]→ G(a′)[c]

such that for any arrow h : c→ c′ in C the following diagram commutes.

G(a)[c] G(a′)[c]

G(a)[c′] G(a′)[c′]

ψ(G)(f)c

G(a)[h] G(a′)[h]

ψ(G)(f)c′

This shows that ψ(G)(f, h) : G(a)[c]→ G(a′)[c′] is well defined and that ψ(G) is indeed a simplicial functor.

By construction ϕ and ψ are inverse to each other and therefore we have established the required isomorphism

sSet-Cat(A× C,D) ∼= sSet-Cat(A, [C,D]sSet)

which is natural by construction.

Using that the cartesian product on sSet-Cat defines a symmetric monoidal structure, it follows as an

immediate consequence of Proposition 5.1 that the monoidal structure is closed.

Proposition 5.2. The category sSet-Cat endowed with the cartesian product has the structure of a closed

symmetric monoidal category. The unit is given by the category with one object and one morphism [0] and

the inner hom is given by the simplicial functor category [−,−]sSet.

Proof. This follows from Proposition 5.1 and the fact that (sSet-Cat,×, [0]) is a symmetric monoidal cate-

gory.

5.2 The Bergner model structure

Similarly as for ordinary category theory, the notion of an isomorphism of simplicial categories is way too

strong. Intuitively we consider two simplicial categories to be weak equivalent if there exists a simplicial

functor F : C → D which is essentially surjective up to simplicial homotopy and such that for all x, y ∈ C

the induced map of simplicial sets

Fx,y : C(x, y)→ D(F (x), F (y))

is a Quillen weak equivalence of simplicial sets. Therefore, we want to define a model structure on sSet-Cat,

which has as weak equivalences exactly these weaker versions of equivalences of simplicial categories. This

weak equivalences were first considered by Kan and Dwyer in their work on simplicial localizations [DK80]

and later it was shown by Bergner in [Ber04] that they define a model category structure on sSet-Cat.
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Definition 5.6. Given a simplicial category C we define its homotopy category or its category of com-

ponents hC to be the category with the same objects, and morphisms given by

hC(x, y) = π0C(x, y)

The composition is induced by the composition of C via the connected components functor π0.

Remark 5.3. It is shown in [Col06] that for suitable simplicial categories C there exists a model structure

on C, such that the classical homotopy category HoC is equivalent to the category of components hC.

Definition 5.7. A simplicial functor F : C→ D is

(i) a weak equivalence or Dwyer-Kan equivalence if

(a) the induced functor hF : hC→ hD is an equivalence of categories

(b) for any x, y ∈ C, the induced map

Fx,y : C(x, y)→ D(F (x), F (y))

is a Quillen weak equivalence.

(ii) a fibration if

(a) for any objects x, y ∈ C, the induced map

Fx, y : C(x, y)→ D(F (x), F (y))

is a Kan fibration of simplicial sets.

(b) the induced functor hF : hC→ hD is an isofibration.

Having defined the classes of weak equivalences and fibrations, we can state the following theorem.

Theorem 5.1. ([Ber04]) There is a cofibrantly generated model category structure on sSet-Cat with weak

equivalences given by the Dwyer-Kan equivalences and fibrations given by Definition 5.7. This model structure

is called the Bergner model structure.

Proposition 5.3. ([Ber04]) The Bergner model structure on sSet-Cat is right proper.

Since fibrations in the Bergner model structure are explicitly defined and not only given by lifting properties,

it turns out that the fibrant objects have a nice characterization, given only by local properties.

Definition 5.8. A simplicial category C is said to be locally fibrant, if for all X,Y ∈ C the corresponding

simplicial hom set C(X,Y ) is a Kan complex.

Corollary 5.1. A simplicial category C is fibrant in the Bergner model structure, if and only if it is locally

fibrant.

Proof. Let C be a simplicial category. Then it is fibrant if the map C → [0] is a fibration. That is, for all

objects X,Y in C the induced map

C(X,Y )→ ∗

is a Kan fibration. Therefore, C(X,Y ) is a Kan complex for all objects X,Y and hence C is locally fibrant.

Conversely, let C be a locally fibrant category. Then to deduce that C is fibrant, we only need to show that

the functor induced by F : C→ [0] on the categories of components

hF : hC→ h[0]

is an isofibration. But since h[0] = [0] contains only one object, this holds trivially. Therefore we conclude

that C is fibrant.
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An important observation is that even though we are given a closed symmetric monoidal structure on

sSet-Cat, the model structure is not compatible with this product. More precisely, the category sSet-Cat

endowed with the Bergner model structure and the cartesian product is not a monoidal model category.

Indeed, consider the simplicial category [1] with two objects and only one non-trivial morphism. Denote

with ∂[1] the simplicial category with only two objects and only identity morphisms. Then the functor

i : ∂[1]→ [1] is a cofibration, since it is one of the generating cofibrations. Now consider the functor

i�i : ([1]× ∂[1]) q
∂[1]×∂[1]

(∂[1]× [1])→ [1]× [1]

Then the left hand side is the discrete simplicial category given by

• •

• •

Now let C denote this category. Then we see that C((0, 0), (1, 1)) = ∂∆1. But for the category on the right

side we have ([1]× [1]) ((0, 0), (1, 1)) = ∆0 ×∆0 = ∆0. Hence the induced map

∂∆1 → ∆0

is not a monomorphism and therefore not a cofibration in the Quillen model structure on simplicial sets.

This shows that i�i is not a cofibration. Here we use the fact that a cofibration F : C→ D in the Bergner

model structure induces cofibrations in the Quillen model structure on the simplicial hom sets.

Fx,y : C(x, y)→ D(F (x), F (y))

This shows in particular that the cartesian product is not a Quillen bifunctor, hence the model structure

can not be monoidal.

5.3 Nerve and realization

The theory of enriched categories leads to an important general categorical construction, which is called the

nerve-realization construction.

Definition 5.9. Let V be a category and consider a category C which is enriched over V. Then we say that

C is tensored over V if there exists a functor

⊗ : V× C→ C

such that for every v ∈ V and x, y ∈ C there is a natural isomorphism

C(v ⊗ x, y) ∼= V(v,C(x, y))

Remark 5.4. Enriched categories allowing a tensoring can be used to give a construction for Kan extensions.

Suppose we are given functors G : C → A and F : C → D, where D and A are V-enriched categories.

Assuming that A is tensored over V, it follows that the left Kan extension of G along F is given by the coend

LanF (G) ∼=
∫ c∈C

D(F (c),−)⊗G(c)

This presentation is sometimes called the ”coend formula”. For more details you may consider [Lor15].

Definition 5.10. Let C be a V-enriched small category. Then the enriched Yoneda embedding is the

functor given by

Y : C→ Fun(Cop,V)

c 7→ C(−, c)
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Now assume we are given a functor i : C→ D, where C is a small category and D is tensored over V. Then

we can define the D-coherent nerve functor as

N : D→ Fun(Cop,V)

d 7→ D(i(−), d)

Moreover, we can define the corresponding realization functor τ : Fun(Cop,V)→ D as left Kan extension of

i along the enriched Yoneda embedding Y.

C D

Fun(Cop,V)

i

Y
LanY(i)

Proposition 5.4. Let C be a small category and let D be a locally small V-enriched cocomplete category

tensored over V. Then for every functor i : C→ D the D-coherent nerve N is a right adjoint to the realization

functor τ , i.e.

Fun(Cop,V)
τ //

D
N
oo _

Proof. Let K ∈ Fun(Cop,V) and d ∈ D. Then we have by the coend formula

D (τ(K), d) ∼=
∫
c∈C

D (Fun(Cop,V)(Y(c),K)⊗ i(c), d)

(Yoneda Lemma) ∼=
∫
c∈C

D(K(c)⊗ i(c), d)

(tensoring) ∼=
∫
c∈C

V (K(c),D(i(c), d))

=

∫
c∈C

V (K(c), N(d)(c))

∼= Fun(Cop,V) (K,N(d))

Since all the isomorphisms are natural, the statement follows immediately.

Example 5.1. Let T be a topological space and denote with O(T ) the category of open subsets of T . Then

define the functor

i : O(T ) −→ Top/T

U 7−→ U ↪→ T

Since the category Top is locally small, it is enriched over Set. Moreover, Top is cocomplete, hence it is

tensored over Set. The same holds then for Top/T and we can apply the nerve-realization machinery, which

induces the following adjunction.

Fun(O(T )op,Set)
τ //

Top/T
N
oo _

Now notice that Fun(O(T )op,Set) = PSh(T ) is just the category of presheaves on the topological space T .

Hence given a presheaf F , its sheafification is given by F∗ = (τ ◦ N)(F). Therefore, one could define the

category of sheaves on T as the essential image of the functor τ ◦ N . Similarly, given a space U ↪→ T , its

étalification is given by (N ◦ τ)(U), hence one could define the category of étale-spaces over T to be the

essential image of the functor N ◦ τ . Then it follows that there is an equivalence of categories

τ : Sh(T )� Et(T ) : N

This nice example of a nerve-realization construction is due to [MML92].
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5.4 ∞-categories

In the previous section we established a model structure on simplicial categories, providing a homotopy theory

of (∞, 1)-categories. The advantage of topological categories as a model for (∞, 1)-categories is that these

objects are relatively easy to define. On the other hand they are hard to work with and the model structure on

simplicial categories does not behave well, such as not being a cartesian model structure. Therefore, a more

suitable model of (∞, 1)-categories is needed. Such a new model is given by simplicial sets, in particular

weak Kan complexes. First denoted as quasi-categories they were introduced by Boardman and Vogt in

[BV06] and then studied by Joyal in [Joy02]. Moreover, there is a homotopy theory of quasi-categories,

which turns out to be Quillen equivalent to the homotopy theory of simplicial categories. Following [Lur09]

and [Gro10] we will define an ∞-category to be a weak Kan complex. That is, a simplicial set with certain

lifting properties. Then we will state the connection between this new model and the previous one given by

simplicial categories. To do so we need to endow sSet with a new model structure, called the Joyal model

structure.

Definition 5.11. Let K ∈ sSet be a simplicial set, then K is a Kan complex if for any 0 ≤ i ≤ n and

any morphism Λni → K in sSet there is an extension ∆n → K such that the following diagram commutes

Λni K

∆n

Remark 5.5. Here Λni denotes the i-th horn, obtained from the standard n-simplex ∆n by deleting the

interior and the face opposite the i-th vertex.

Equivalently one can define Kan complexes as the fibrant objects in the standard model category structure

on sSet.

Corollary 5.2. Let X ∈ Topcg be a topological space. Then the associated singular simplicial complex

Sing(X) is a Kan complex.

Proof. Since in the standard model structure on Topcg every object is fibrant and since by definition the

right Quillen functor Sing : Topcg → sSet preserves fibrations, it follows that Sing(X) is fibrant in sSet for

every topological space X. Therefore, Sing(X) is a Kan complex.

Remark 5.6. Similarly as one defines the Bergner model structure on sSet-Cat it is possible to endow

the category of small topological categories Topcg-Cat with a model structure, such that the following

adjunction

sSet-Cat
|·|
//
Topcg-Cat

Sing
oo _

defines a Quillen equivalence. Such an adjunction is usually called a change of base adjunction, as we

change the base of enrichment. This follows from the general discussion about model structures on enriched

categories in section A.3.2. in [Lur09].

Now we notice that given a topological category C it follows by definition that the corresponding simplicial

category Sing C is fibrant in the Bergner model structure. Indeed, the simplicial category Sing C has hom

spaces given by

Sing C(x, y) = Sing (C(x, y))

Since by Corollary 5.2 the singular complex of a topological space is a Kan complex, it is an immediate

consequence of Proposition 5.1 that Sing C is a fibrant object in the Bergner model structure. We formulate

this statement as a corollary.

Corollary 5.3. For any topological category C, its corresponding simplicial category Sing C is fibrant in the

Bergner model structure.
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Definition 5.12. Let C be an ordinary category. Then define the nerve of C to be the simplicial set

N(C) : ∆op → Set

[n] 7→ Fun([n],C)

Here Fun([n],C) denotes the set of all functors [n]→ C, where [n] is the category with

• Ob([n]) = [n] = {0, 1, ..., n}

• [n](i, j) =


idi if i = j

i→ j if i < j

∅ if i > j

Remark 5.7. The definition of the nerve follows from the generalized nerve-realization construction given

by Proposition 5.4. The realization functor then defines a left adjoint to the nerve functor and is constructed

as a left Kan extension. In this particular case, we define the realization functor τ : sSet→ Cat as follows

∆ Cat

sSet

Y

i

LanY(i)

Then the realization is given by τ = LanY(i) the left Kan extension of i along the Yoneda embedding Y.

Proposition 5.5. The following functors form an adjoint pair

sSet
τ //

Cat
N
oo _

Proof. Since Cat is locally small and cocomplete, we can apply the nerve-realization machinery of Proposi-

tion 5.4 which then proves the result.

We now want to investigate what kind of simplicial sets arise from applying the nerve functor to categories.

Proposition 5.6. ([Lur09]) Let K be a simplicial set. Then the following are equivalent.

(i) ∃ a small category C such that K ∼= N(C)

(ii) For any 0 < i < n and any morphism Λni → K there is a unique extension making the diagram

commute

Λni K

∆n

∃!

Definition 5.13. An ∞-category is a simplicial set K which fulfills the following lifting property. For

any 0 < i < n and any morphism Λni → K there is an extension ∆n → K such that the following diagram

commutes

Λni K

∆n

Example 5.2. By Proposition 5.6 it follows that a first class of examples of ∞-categories is given by the

nerves N(C) of categories.
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Now that we have established the basic definition of an ∞-category, we want to define analogous structures

such as the opposite category of an ∞-category or over and under ∞-categories.

Definition 5.14. Let S be a simplicial set. Then define Sop to be the simplicial set given by Sop
n = Sn and

with face and degeneracy maps given by

dop
i : Sop

n → Sop
n−1 = dn−i : Sn → Sn−1

sop
i : Sop

n → Sop
n+1 = sn−i : Sn → Sn+1

This simplicial set is called the opposite simplicial set. If K is an∞-category, then we define its opposite

∞-category to be Kop, which is clearly an ∞-category.

To define over and under∞-categories, we try to establish a universal property, characterizing over and under

categories for ordinary categories. Then by passing the universal property to sSet we can give analogue

definitions for ∞-categories.

Definition 5.15. For C,D two categories, we define the join C ∗D to be the category with

• objects Ob(C ∗D) = Ob(C)qOb(D)

• and for X,Y ∈ C ∗D morphisms given by

C ∗D(X,Y ) =


C(X,Y ) if X,Y ∈ C

D(X,Y ) if X,Y ∈ D

∅ if X ∈ D and Y ∈ C

∗ if X ∈ C and Y ∈ D

Now recall that for a category C and X ∈ C, the over-category C/X is the category with objects given by

morphisms C → X in C, and morphisms given by commutative triangles of the form.

C C ′

X

Notice that specifying an object X ∈ C is equivalent to give a functor X : [0]→ C. Then the over category

is described using the universal property, that for any other category D there is a bijection

Cat(D,C/X) ∼= HomX(D ∗ [0],C)

where HomX(D ∗ [0],C) is the subset of Cat(D ∗ [0],C) consisting of all those functors F such that F |[0] =

X : [0]→ C. We now define an analogous construction called the join of simplicial sets. The simplicial join

allows us to define over and under ∞-categories by using the same universal property.

Definition 5.16. Let S,K be two simplicial sets. Then define the simplicial join S ∗K to be the simplicial

set given by

(S ∗K)[n] = S[n] ∪K[n] ∪

 ⋃
i+j=n−1

S[i]×K[j]


Remark 5.8. It can be shown that for two ∞-categories S,K their join S ∗ K is also an ∞-category

(Proposition 1.2.8.3. in [Lur09]).
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Definition 5.17. Let S,K be two simplicial sets and p : K → S any morphism. Then define the simplicial

set S/p as follows.

S/p : ∆op → Set

[n] 7→ Homp(∆
n ∗K,S)

Here Homp(∆
n ∗K,S) = {f ∈ sSet(∆n ∗K,S) | f|K = p}.

Proposition 5.7. Let K,S and p be as above. Then the simplicial set S/p has the universal property that

for any other Y ∈ sSet there is a bijection

sSet(Y, S/p) ∼= Homp(Y ∗K,S)

Hence S/p is the analogue of the over-category in the simplicial setting and is called the simplicial set over

p. Moreover, if S is an ∞-category, then S/p is also an ∞-category.

Remark 5.9. The proof of Proposition 5.7 uses the notions of inner and left fibrations which are introduced

later in Definition 5.22 and Definition 5.23. Therefore, the reader may skip the proof in a first round.

Proof. Notice that for Y = ∆n a standard simplex, the universal property is fulfilled by definition, since we

have

sSet(∆n, S/p) ∼= (S/p)n = Homp(∆
n ∗K,S)

Now recall that any simplicial set can be obtained from standard simplices by gluing. That is, for a simplicial

set Y we can define the diagram

FY : ∆/Y −→ sSet

∆n → Y 7−→ ∆n

such that colim FY ∼= Y . Therefore, we only need to check that the corresponding sides are compatible

under taking colimits. Since for all X ∈ sSet the hom functor

sSet(−, X) : sSetop → Set

sends colimits in sSet to limits, it follows that

sSet(Y, S/p) ∼= sSet(colim FY , S/p) ∼= lim sSet(FY , S/p)

Similarly we obtain for the left hand side

Homp(Y ∗K,S) ∼= Homp((colim FY ) ∗K,S)

Now using that the functor − ∗K preserves colimits (Remark 1.8.8.2 in [Lur09]) it follows that

Homp(Y ∗K,S) ∼= lim Homp(FY ∗K,S)

Since the functor FY sends objects to standard simplices, it follows from the above discussion that

lim sSet(FY , S/p) ∼= lim Homp(FY ∗K,S)

which concludes the proof of the first part. Now let S be an ∞-category. Then by Proposition 5.13, where

we consider the diagram

∅ ⊂ K p−→ S
q−→ ∆0

it follows under the assumption that S is an ∞-category that the map q is an inner fibration. Thus we

deduce that the induced map

S/p → S ×
∆0

(∆0)/r ∼= S

where r = q ◦ p, is a right fibration. Then using that right fibrations have the right lifting property with

respect to all horn inclusions for 0 < i ≤ n it follows in particular, that for every map Λni → S/p there is a

lift in the following diagram for 0 < i < n.
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Λni S/p

∆n S

This shows that S/p is an ∞-category. A similar proof using the dual statement of Proposition 5.13 on left

fibrations shows that, under the same assumptions, Sp/ is also an ∞-category.

Remark 5.10. Given an∞-category C, specifying objects x ∈ C is equivalent to give morphisms x : ∆0 → C.

Hence we define the over ∞-category as C/x using Definition 5.17. Similarly to give an arrow f : x→ y in C

it is the same as to give a morphism f : ∆1 → C, hence the over ∞-category C/f is defined in the same way.

The aim will now be to show that ∞-categories can either be modeled by simplicial categories. More

precisely there will be a Quillen equivalence between the category of simplicial sets endowed with a new

model structure and the category simplicial categories endowed with the Bergner model structure. To do so

we fist need to establish a pair of adjoint functors between those categories.

Definition 5.18. Let J be a finite non-empty ordered set. Then define the simplicial category C
[
∆J
]

to

be the category with

• objects Ob
(
C
[
∆J
])

= J

• and for i, j ∈ J the morphisms are given by

C
[
∆J
]

(i, j) =

{
∅ if j < i

N(Pi,j) if i ≤ j

where Pi,j denotes the partially ordered set

Pi,j := {I ⊂ J | i, j ∈ I and for all k ∈ I : i ≤ k ≤ j}

Then regarding Pi,j as a category, its nerve N(Pi,j) gives the desired simplicial enrichment.

• For i0 ≤ i1 ≤ · · · ≤ in in J , the composition

C
[
∆J
]

(i0, i1)× · · · × C
[
∆J
]

(in−1, in)→ C
[
∆J
]

(i0, in)

is induced by the following map of partially ordered sets.

Pi0,i1 × · · · × Pin−1,in → Pi0,in

(I1, · · · , In) 7→ I1 ∪ · · · ∪ In

It turns out that the above construction is functorial, i.e. that the above construction defines a functor.

Definition 5.19. Let f : J → L be a morphism in ∆ between two partially ordered finite sets. Then define

the simplicial functor on objects

C[f ] : C
[
∆J
]
→ C

[
∆L
]

i 7→ f(i)

and on morphisms for i ≤ j in J

C
[
∆J
]

(i, j)→ C
[
∆L
]

(f(i), f(j))
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by applying the nerve functor to the map

Pi,j → Pf(i),f(j)

I 7→ f(I)

This then defines a functor

C : ∆→ sSet-Cat

[n] 7→ C [∆n]

Definition 5.20.

(i) Let C be a simplicial category. Then the simplicial nerve N∆(C) is the simplicial set given by

N∆(C) : ∆op → Set

[n] 7→ sSet-Cat (C [∆n] ,C)

(ii) Let C be a topological category. Then the topological nerve NT(C) is the simplicial set given by

NT (C) : ∆op → Set

[n] 7→ sSet-Cat (C [∆n] ,Sing(C))

Remark 5.11. Notice that in general the simplicial resp. topological nerve of a simplicial resp. topological

category does not coincide with the nerve of the underlying ordinary category.

Proposition 5.8. ([Lur09])

(i) Let C be a simplicial category such that for every pair X,Y ∈ C the simplicial set C(X,Y ) is a Kan

complex, then the simplicial nerve N∆(C) is an ∞-category.

(ii) Let C be a topological category. Then the topological nerve NT(C) is an ∞-category.

Now that we have constructed the coherent nerve functor, we want to define its left adjoint, the realization

functor. Consider the Yoneda embedding

Y : ∆→ sSet

[n] 7→ ∆(−, [n])

Then since the category of simplicial categories has all small limits, the left Kan extension of

C : ∆→ sSet-Cat along the Yoneda embedding exists.

∆ sSet-Cat

sSet

Y

C

LanY(C)

Definition 5.21. The left Kan extension LanY(C) constructed above is called the realization functor and

denoted by

C : sSet→ sSet-Cat

Proposition 5.9. The realization functor C : sSet→ sSet-Cat is left adjoint to the coherent nerve functor

N∆.
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Remark 5.12. Following Remark 5.4, the extension C can be described as a coend

C(K) =

∫ [m]∈∆

sSet(∆m,K)× C[∆m]

∼=
∫ [m]∈∆

Km × C[∆m]

where we consider the set Km as a simplicial category with objects given by the set Km and only identity

morphisms.

Proof. Since the category sSet-Cat is locally small and co-complete, we can apply the nerve-realization

machinery of Proposition 5.4 which proves the statement.

Combining the above proposition with the adjunction leads to the following corollary.

Corollary 5.4. The following functors form an adjoint pair.

sSet
|C|
//
Topcg-Cat

NT

oo _

Proof. By definition the topological nerve is given by the composition NT = N∆ ◦Sing and similarly we have

that |C| = | · | ◦ C. Having that C a N∆ and | · | a Sing it follows that |C| a NT .

Suppose we are given an ordinary category C, then it can be regarded as a topological category by endowing

its hom spaces with the discrete topology. Similarly, it can also be regarded as a simplicial category by

endowing its hom spaces with the constant simplicial structure. Applying the coherent nerve on a ”trivially”

enriched category should agree with applying the regular nerve on the ordinary base category C. To show

that this is indeed the case, we need the following proposition.

Proposition 5.10. ([Rie14]) Let π0 : Topcg → Set denote the path component functor. Then π0 is left

adjoint to the discrete inclusion functor incl : Set→ Topcg which endows any set with the discrete topology.

Since both functors preserve products, the above adjunction induces a change of base adjunction of categories

enriched over Topcg and Set.

Topcg-Cat
(π0)∗

//
Set-Cat = Cat

incl∗

oo _

Proposition 5.11. ([Rie14]) The following diagram of adjoint pairs is commutative. That is, the inner and

the outer triangle commute.

sSet

Topcg-Cat Cat

|C̃|
τ

(π0)∗

>
NT

⊥
incl∗

>
N

Remark 5.13. Using similar arguments, the same also holds for the simplicial nerve-realization adjunction

C a N∆ and the induced change of base adjunction (π0)∗ a const∗.
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5.5 The Joyal model structure

We now have established a coherent adjunction pair C a N∆ using the nerve-realization process and a model

structure on the category of simplicial categories. Eventually we want to show that the above adjunction

is in fact a Quillen equivalence. The Joyal model structure on sSet is now the only missing piece in this

picture, and shall be discussed in this section.

Theorem 5.2. ([Lur09]) There exists a combinatorial model structure on the category sSet where

(i) a morphism p : S → S′ of simplicial sets is a cofibration if and only if it is a monomorphism.

(ii) a morphism p : S → S′ of simplicial sets is a weak equivalence or Joyal equivalence if and only if

the induced simplicial functor

C[p] : C[S]→ C[S′]

is a Dwyer-Kan equivalence of simplicial categories.

This model structure is called the Joyal model structure on sSet and we have that the adjunction

sSetJoyal

C //
sSet-Cat

N∆

oo _

is a Quillen equivalence.

Since fibrations are defined only up to lifting properties, the characterization of fibrant objects can not be

obtained as easily as in the Bergner model structure. On the other hand, the motivation behind the Joyal

model structure is only revealed by its fibrant objects, which are precisely the ∞-categories.

Theorem 5.3. ([Lur09]) In the Joyal model structure on sSet a simplicial set X is fibrant if and only if X

is an ∞-category.

Remark 5.14. Notice that this agrees with Proposition 5.8 in the following sense. We have seen that a

simplicial category C is fibrant if and only if it is locally fibrant. That is, all hom sets are Kan complexes.

Now using that the coherent nerve is a right Quillen functor it follows that N∆(C) is a fibrant object in the

Joyal model structure, hence is an ∞-category.

We have already seen in the definition of ∞-categories that lifting properties are in general not always given

for all horn inclusions. Hence we need a classification of maps having the right lifting properties with respect

to certain horn inclusions. This leads to the definition of inner, left and right fibrations, which are due to

Joyal [Joy02].

Definition 5.22. Let p : S → T be a morphism of simplicial sets. Then we call p an inner fibration if

it has the right lifting property with respect to all inner horn inclusions, i.e. for all commutative diagrams

0 < i < n

Λni S

∆n T

p

there exists a unique morphism ∆n → S making the diagram commute.

Remark 5.15. Inner fibrations normally arise as induced maps of the form N∆(C)→ N∆(D) where C→ D

are fibrations in the Bergner model structure. In fact we can even weaken this assumption. Namely, we

can consider maps only satisfying the property that the induced simplicial maps on the hom spaces are Kan

fibrations. Most morphisms that we will consider between ∞-categories will be of this form.
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Definition 5.23. A morphism of simplicial sets f : X → S is

(i) a left fibration if f has the right lifting property with respect to all horn inclusions Λni ↪→ ∆n for all

0 ≤ i < n.

(ii) a right fibration if f has the right lifting property with respect to all horn inclusions Λni ↪→ ∆n for

all 0 < i ≤ n.

Remark 5.16. The reason why we consider left fibrations is that they characterize simplicial sets fibered

over Kan complexes. That is, given a left fibration f : X → S and any vertex s ∈ S, the fiber Xs = X ×
S
{s}

is a Kan complex and for any edge f : s→ s′ in S there is an induced map f! : Xs → Xs′ on the fibers.

Proposition 5.12. ([Lur09]) Let F : C→ D be a functor between simplicial categories. Suppose that C and

D are fibrant, and that for every pair of objects c, c′ in C, the associated map

C(c, c′)→ D(F (c), F (c′))

is a Kan fibration. Then the induced map N∆(F ) : N∆(C) → N∆(D) is an inner fibration between ∞-

categories.

Remark 5.17. Left and right fibrations will turn out to play an important role in characterizing so called

coCartesian fibrations, which incorporate the notion of symmetric monoidal structures on ∞-categories.

Moreover, they also set the necessary framework to state the ∞-categorical Grothendieck construction,

being one of the Key ingredients in the proof of Theorem 5.2, which can be found in [Lur09]. In our case

the∞-categorical Grothendieck construction is used to prove the important Proposition 5.17. Therefore, we

want to investigate some important stability properties of left fibrations.

Proposition 5.13. ([Joy02]) Suppose we are given a diagram of simplicial sets

A ⊆ B p−→ X
q−→ S

where q is an inner fibration and let r = q ◦ p : B → S, p0 = p|A, and r0 = r|A. Then the following holds.

(i) The induced map Xp/ → Xp0/ ×
Sr0/

Sr/ is a left fibration.

(ii) The induced map X/p → X/p0
×
S/r0

S/r is a right fibration.

Lemma 5.2. Suppose that we are given the following diagram

∅ ⊆ ∆0 c−→ X
q−→ S

where q is a Joyal fibration. Then the induced map Xc/ → Sd/ is a Joyal fibration, where d = q(c) is a

vertex in S.

Proof. Since a Joyal fibration is in particular also an inner fibration, it follows by Proposition 5.13 that the

following map is a left fibration.

Xc/ → X ×
S
Sd/

Looking at the pullback diagram

X ×
S
Sd/ Sd/

X S
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we notice that given the Joyal fibration q : X → S, the map X ×
S
Sd/ → Sd/ is also a Joyal fibration since

fibrations are preserved under pullbacks. Hence taking the composition, we obtain the desired map

Xc/ → X ×
S
Sd/ → Sd/

which is then clearly a Joyal fibration.

As mentioned before, the proof of Theorem 5.2 relies heavily on the∞-categorical Grothendieck construction,

which we will introduce shortly. The Grothendieck construction allows us to detect left fibrations as fibrant

objects in a certain model structure on the category sSet/B of simplicial sets over B. Moreover, we will

establish a Quillen equivalence to the category of simplicial diagrams endowed with the projective model

structure, such that fibrant objects correspond to diagrams with component spaces given by Kan complexes.

Remark 5.18. Notice that for a simplicial set X, the left cone over X is given by X/ := ∆0 ∗X and the

right cone by X. := X ∗∆0. Moreover, for a simplicial set g : X → B the cone of g is given by the following

pushout.

X X/

B X/ q
X
B

g

Definition 5.24. Let B be a simplicial set and consider a morphism f : X → Y in sSet/B . Then f is a

covariant equivalence if the induced morphism of cones

X/ q
X
B → Y / q

Y
B

is a Joyal equivalence.

Theorem 5.4. ([Lur09]). There is a structure of a left proper model category on sSet/B such that a morphism

f : X → Y is a

(i) cofibration if it is monomorphism

(ii) weak equivalence if it is a covariant equivalence

and such that the fibrant objects are given by the left fibrations over B. This model structure is called the

covariant model structure on sSet/B.

The∞-categorical Grothendieck construction establishes an equivalence between simplicial maps f : X → B

having the property that the fibers Xb are Kan complexes for all vertices b ∈ B, and simplicial functors

C(B) → sSet taking values in Kan complexes. The covariant model structure then defines a homotopy

theory of such fibered simplicial maps, which detects them as fibrant objects. Therefore, we endow the

category of simplicial functors [C(B), sSet] with the projective model structure, such that fibrant objects

are given by functors taking values in Kan complexes.

Remark 5.19. Recall that in the projective model structure on [C(B), sSet] a natural transformation

between simplicial functors η : F → G is

(i) a weak equivalence if for all objects c ∈ C(B) the induced maps ηc : F (c) → G(c) are Quillen equiva-

lences.

(ii) a fibration if for all objects c ∈ C(B) the induced maps ηc : F (c)→ G(c) are Kan fibrations.

(iii) a cofibration if it has the left lifting property with respect to every natural transformation τ between

objects in [C(B), sSet] being a weak equivalence and a fibration.
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Theorem 5.5. ([Ste15]) Let B be a simplicial set. Then there is a Quillen equivalence

sSet/B

StB //
[C(B), sSet]

UnB

oo _

between the covariant model structure on sSet/B and the projective model structure on [C(B), sSet].

Remark 5.20. This result, also known as the straightening-unstraightening Theorem, is the core of the

∞-categorical Grothendieck construction. Given a morphism f : X → B over B, the straightening functor

StB associates to f a simplicial functor

StB(f) : C(B)→ sSet

Notice that f also induces a functor of simplicial categories C(X) → C(B). Then taking the pushout in

sSet-Cat we obtain the simplicial category

C(X) C(B)

C(X/) C(X/) q
C(X)

C(B)

which we denote by StB(X). Then the functor StB(f) is given by

StB(f) : C(B)→ StB(X)
StB(X)(v,−)−−−−−−−−→ sSet

where v denotes the cone point of X/. The existence of the right adjoint functor UnB can be shown formally

using the adjoint functor theorem. The idea behind the unstraightening functor is that given a simplicial

functor F : C(B) → sSet, we can think of it as an assignment of a simplicial set Fb to every vertex b of

B, and a simplicial map Fb → Fb′ to every edge from b to b′, together with coherence data taking care of

the higher dimensional cells of B. The simplicial sets Fb can now be identified with fibers of a morphism

f : X → B over B. Hence the unstraightening functor associates to the functor F a morphism f over B,

such that for all vertices b in B, the fibers Xb are homotopy equivalent to F (b).

In the case where the simplicial set B is given by the coherent nerve N∆(C) of a simplicial category, the

Grothendieck construction can be slightly modified.

Corollary 5.5. ([Ste15]) The following pair of functors is a Quillen equivalence

sSet/N∆(C)

StN∆(C)
//
[C, sSet]

UnN∆(C)

oo _

Remark 5.21. The following statement on left fibrations can be proven using the Grothendieck construction

introduced above. Similarly the dual statements regarding right fibrations hold, which can be found in

[Lur09]. Notice that in this case one should consider the contravariant model structure on the category

sSet/B, where fibrant objects are given by right fibrations.

Proposition 5.14. ([Lur09]) Suppose we are given a commutative diagram of simplicial sets

X Y

S

f

p q

where p and q are left fibrations. Then the following are equivalent.
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(i) For each vertex s ∈ S the induced map Xs → Ys is a homotopy equivalence of Kan complexes.

(ii) The map f is a Joyal equivalence.

By definition it is clear, that a trivial Kan fibration is also a left fibration. The converse is not true in

general, but if the fibers of the left fibration satisfy certain properties, we can deduce the following important

statement.

Proposition 5.15. ([Lur09]) Let p : S → T be a left fibration of simplicial sets. Suppose that for every

vertex t ∈ T , the fiber St is contractible. Then p is a trivial Kan fibration.

Having established the basic properties of inner, left and right fibrations, we now want to concentrate on

the ”regular” fibrations in the Joyal model structure. Since Joyal fibrations are defined in Theorem 5.2 only

via lifting properties, we want to establish a different characterization. We can do so, if the Joyal fibrations

are morphisms between fibrant objects.

Proposition 5.16. ([Lur09]) Let p : C → D be a simplicial map where D is a fibrant object in the Joyal

model structure. Then p is a Joyal fibration if and only if the following two conditions are satisfied.

(i) p is an inner fibration.

(ii) For every equivalence f : d→ d′ in D and every vertex c ∈ C with p(c) = d, there exists an equivalence

f ′ : c→ c′ in C with p(f ′) = f .

An important application of the Grothendieck construction is the characterization of left fibrations arising

from simplicial functors. In particular, we want to show that the forgetful functor Cα/ → Cc/ from the

category under the morphism α : c→ c′, projecting to the left morphism

c c′ c

7−→

c′′ c′′

α

f◦α f
f◦α

induces a left fibration N∆(Cα/)→ N∆(Cc/).

Proposition 5.17. Let C be a simplicial category and α ∈ C a morphism. Suppose α : c → c′, then the

simplicial map

N∆(Cα/)→ N∆(C/c)

induced by the forgetful functor sending a commutative triangle under α to the left morphism, is a left

fibration.

Proof. Consider the simplicial functor

U : Cc/ → sSet

s 7→ N∆(Cα/)s

where N∆(Cα/)s is the fiber of the simplicial map u : N∆(Cα/)→ N∆(Cc/) over the vertex s : c→ c′′. Then

by definition, the Grothendieck construction implies that the associated simplicial map UnN∆(Cc/)(U) ∼= u.

Notice that this follows from the property that the fibers of the simplicial map u are given by discrete simpli-

cial sets (as shown below), hence the coherence datum is trivial. In general, the given construction does not

create an isomorphism, but rather a weak equivalence. Since Corollary 5.5 implies that the unstraightening
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functor is a right Quillen functor, it preserves fibrations. We recall that left fibrations are the fibrant objects

in the covariant model structure, hence it is left to show that the functor U is fibrant in the projective model

structure. This means, we need to show that for all objects s ∈ Cc/, the simplicial set N∆(Cα/)s is a Kan

complex. By definition we have that the fiber is given by the pullback N∆(Cα/) ×
N∆(Cc/)

∗ which is isomorphic

to N∆

(
Cα/ ×

Cc/

[0]

)
since the coherent nerve functor preserves limits. Looking at the pullback in sSet-Cat

we notice

Cα/ ×
Cc/

[0] [0]

Cα/ Cc/

s

that it is given by the discrete groupoid
∐

Cα(c′,c′′)

[0], where Cα(c′, c′′) is the set of morphisms g : c′ → c′′ in

C satisfying g ◦ α = s. Hence it follows that its coherent nerve is a discrete simplicial set, which is indeed a

Kan complex. This shows that U is fibrant in the projective model structure.

5.6 Symmetric monoidal ∞-categories

As we have seen in Section 2, structured spectra can be defined using the Day convolution. Therefore, we

want to apply the coherent nerve functor to the topological functor category [C,Top∗cg]. We then get a

corresponding ∞-category of functors, which should inherit a symmetric monoidal structure. But what is a

monoidal structure on an ∞-category? To answer this question, we need to define a class of functors which

incorporate all the information encoded in the definition of a symmetric monoidal structure. This section is

devoted to introduce such functors, called Grothendieck opfibrations, and their corresponding analogues in

the ∞-categorical setting. We use [Gro10] and [Lur09] as main references in this section.

Definition 5.25. Let F : C→ D be a functor between ordinary categories. Then specifying an object d ∈ D

is equivalent to give a functor d : [0]→ D. Now define the fiber of F over d to be the pullback Cd given by

Cd C

[0] D

y
F

d

Definition 5.26. Let F : C → D be a functor and let f : c1 → c2 be a morphism in C over the morphism

α : d1 → d2 in D, i.e. we have that F (f) = α. Then call f an F -coCartesian morphism if for all objects

c3 in C the hom set C(c2, c3) is the pullback given by the following diagram.

C(c2, c3) C(c1, c3)

D(F (c2), F (c3)) D(F (c1), F (c3))

Fc2,c3

(·)◦f

y
Fc1,c3

(·)◦α

Remark 5.22. Notice that f is an F -coCartesian morphism if and only if for any morphism h : c1 → c3
in C and γ = F (h) : d1 → d3 it follows that for every β : d2 → d3 such that γ = β ◦ α, there is a unique

morphism g : c2 → c3 such that β = F (g) and h = g ◦ f .

Definition 5.27. Let F : C → D be a functor. Then F is a Grothendieck opfibration if for all c1 ∈ C

and for all morphisms α : F (c1) → d2 in D there is an F -coCartesian morphism f : c1 → c2 such that

F (f) = α.

66



The reason why we consider Grothendieck opfibrations is due to the following fact. Morphisms in D induce

functors between the fibers of opfibrations over the source and target objects of the given morphism. More

precisely, let F : C → D be a Grothendieck opfibration. Then let α : d1 → d2 be any morphism in D and

define the functor

α! : Cd1
→ Cd2

c1 7→ codom(f)

where c1 is an object of C such that F (c1) = d1. Then since F is a Grothendieck opfibration, there exists a

F -coCartesian morphism f : c1 → c2 in C with F (f) = α. Then codom(f) = c2 which is clearly an object of

Cd2 .

Now let g : c1 → c̃1 be an arrow in Cd1
. Then by hypothesis there are two F -coCartesian morphisms

f : c1 → c2 and f̃ : c̃1 → c̃2. Consider the morphism h = f̃ ◦ g : c1 → c̃2 which has the property that

F (f̃ ◦ g) = F (f̃) ◦ F (g) = F (f̃) = α. Now by Remark 5.22 it follows that for every β : d2 → d2 such

that γ = F (h) = β ◦ α there is a unique morphism g̃ : c2 → c̃2 such that β = F (g̃). But as seen before

γ = F (h) = α hence the only morphism is β = idd2
. Hence there is a unique morphism g̃ : c2 → c̃2 such

that F (g̃) = idd2
, which shows that g̃ is a morphism in Cd2

. Hence for morphisms, the functor is given by

α! : Cd1 → Cd2

g : c1 → c̃2 7→ g̃ : c2 → c̃2

This property motivates the definition of Grothendieck opfibrations. An important observation is that by

the above constructions one might assume that the association d 7→ Cd is functorial, which is not true in

general. This is due to the fact that for α : d1 → d2 and β : d2 → d3 two composable morphisms in D one

has (β ◦ α)! 6= β! ◦ α!. But one can show that there exists a unique natural isomorphism

(β ◦ α)! ∼= β! ◦ α!

Now we want to use the theory of Grothendieck opfibrations to give an equivalent definition of a symmetric

monoidal structure on a category C.

Remark 5.23. Let (C,⊗, 1, σ) be a symmetric monoidal category. Then define the category C⊗ as follows.

(i) Objects are finite and possibly empty sequences of objects of C denoted by [C1, ..., Cm].

(ii) A morphism from [C1, ...Cn] to [C ′1, ..., C
′
m] is given by a pair (α, {fj}1≤j≤m) consisting of a morphism

α : 〈n〉 → 〈m〉 of finite pointed sets together with a family of morphisms

fj :
⊗
α(i)=j

Ci → C ′j

for all 1 ≤ j ≤ m in the category C. Notice that if α−1(j) = ∅ for some j, then fj : 1C → C ′j .

(iii) Composition in C⊗ is defined as follows. Given two morphisms f : [C1, ..., Cn] → [C ′1, ..., C
′
m] and g :

[C ′1, ..., C
′
m]→ [C ′′1 , ..., C

′′
l ], which are determined by the morphisms α : 〈n〉 → 〈m〉 and β : 〈m〉 → 〈l〉,

then the composition g ◦ f is the map determined by the morphism β ◦α : 〈n〉 → 〈l〉 and the family of

morphisms

(g ◦ f)k :
⊗

(β◦α)(i)=k

Ci
∼=−−→

⊗
β(j)=k

⊗
α(i)=j

Ci

⊗
β(j)=k

fj

−−−−−→
⊗
β(j)=k

C ′j
gk−−−→ C ′′k

for 1 ≤ k ≤ l, i.e. (g ◦ f) = (β ◦ α, {(g ◦ f)k}1≤k≤l).
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Lemma 5.3. For every monoidal category (C,⊗, 1), the category C⊗ is equipped with a forgetful functor

p : C⊗ → FinSet∗

[C1, ..., Cn] 7→ 〈n〉 = {1, ..., n} q {∗}
(α, {fj}1≤j≤m) 7→ α : 〈n〉 → 〈m〉

to the category of finite pointed sets.

Proof. Since the functor is already defined on objects and morphisms, we only need to show that it preserves

identity morphisms and compositions. By construction we have that p preserves composition and that the

identity map f : [C1, ..., Cn] → [C1, ..., Cn] is given by the pair (id〈n〉, {idCi}1≤i≤n). Hence by applying the

functor p we obtain the identity map on the finite pointed set 〈n〉.

Using Definition 5.25 we denote the fiber of p over the set 〈n〉 by C⊗〈n〉. Now we want to show that the functor

p is in fact a Grothendieck opfibration, such that we have induced functors on the fibers.

Proposition 5.18. If (C,⊗, 1, σ) is a symmetric monoidal category, then the forgetful functor

p : C⊗ → FinSet∗ is a Grothendieck opfibration. Moreover, this functor satisfies the Segal condition.

That is, the Segal maps

C⊗〈n〉 → C×n

are equivalences of categories for all n ≥ 0. Conversely, any Grothendieck opfibration

p : D→ FinSet∗ satisfying the Segal condition encodes a symmetric monoidal structure on C = D〈1〉.

Proof. First we proof that a Grothendieck opfibration p : D → FinSet∗ satisfying the Segal condition

induces a symmetric monoidal structure on D〈1〉.

Consider the morphism in FinSet∗ given by

m : 〈2〉 → 〈1〉
1 7→ 1

2 7→ 1

Using that p is a Grothendieck opfibration we obtain an induced functor m! on the fibers. Moreover, by the

Segal condition the fibers can be identified with finite products of D〈1〉 = C. Hence we obtain a functor

C× C
'−−→ D〈2〉

m!−−→ D〈1〉 = C

This functor is denoted with ⊗ : C×C→ C and will be the monoidal product on C. Notice that by the Segal

condition D〈0〉 ' [0]. Moreover, the unique map u : 〈0〉 → 〈1〉 induces a functor

[0] ' D〈0〉
u!−−→ D〈1〉 = C

which classifies an object in C denoted by 1C. This object will be the tensor unit. To construct the symmetric

braiding σ, consider the morphism

s : 〈2〉 → 〈2〉
1 7→ 2

2 7→ 1

Notice that m ◦ s = m hence there is a natural isomorphism of functors from D〈2〉 to C.

σ : m! ∼= m! ◦ s!
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Consider now the Segal map (ρ1!, ρ2!) : D〈2〉 → C × C and let X,Y ∈ C be two objects. Then there is an

object D ∈ D〈2〉 such that (ρ1!, ρ2!)(D) ∼= (X,Y ). Since σ is a natural isomorphism we have a family of

isomorphisms in C× C given by

σD : m!(D) ∼= (m! ◦ s!)(D)

Now notice that under the hypothesis that (ρ1!, ρ2!)(D) ∼= (X,Y ) it follows that (ρ1!, ρ2!)(s!(D)) ∼= (Y,X).

Therefore, we have a family of isomorphisms

σX,Y : X ⊗ Y ∼= m!(D)
σD−−→ (m! ◦ s!)(D) ∼= Y ⊗X

which will be the braiding datum, satisfying the conditions of Definition 2.3. Now it is left to show that the

constructed datum (C,⊗, 1C, σ) defines a braided monoidal category, i.e. that there are natural isomorphisms

αX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z)

lX : 1C ⊗X → X rX : X ⊗ 1C → X

and the axioms A1 - A2 from Definition 2.1 are satisfied.

First consider the morphisms

〈3〉 m×id−−−−−→ 〈2〉 m−−→ 〈1〉 〈3〉 id×m−−−−−→ 〈2〉 m−−→ 〈1〉

where we define

(m× id)(i) =


1 if i = 1

1 if i = 2

2 if i = 3

(id×m)(i) =


1 if i = 1

2 if i = 2

2 if i = 3

Then by composing with m we see that (m× id) ◦m = (id×m) ◦m, which induces a natural isomorphism

α : (m× id)! ◦m! ∼= (id×m)! ◦m!

Using the Segal condition, we obtain a family of natural isomorphisms

αX,Y,Z : (X ⊗ Y )⊗ Z
∼=−−→ X ⊗ (Y ⊗ Z)

which define precisely the associativity constraint.

Now consider the morphism l : 〈1〉 → 〈2〉 given by l(1) = 2 and the morphism r : 〈1〉 → 〈2〉 given by r(1) = 1.

Then notice that m ◦ l = id〈1〉 = m ◦ r. Hence there are natural isomorphisms

l : m! ◦ l! ∼= idC r : m! ◦ r! ∼= idC

Now using that (ρ1!, ρ2!) defines an equivalence of categories, we obtain the natural isomorphisms

l : ⊗ ◦ (ρ1!, ρ2!) ◦ l! ∼= idC r : ⊗ ◦ (ρ1!, ρ2!) ◦ r! ∼= idC

By construction we have that

(ρ1!, ρ2!) ◦ l! : C→ C× C (ρ1!, ρ2!) ◦ r! : C→ C× C

X 7→ (1C, X) X 7→ (X, 1C)

and therefore the above natural isomorphisms induce isomorphisms of the form

lX : (⊗ ◦ (ρ1!, ρ2!) ◦ l!)(X) = 1C ⊗X
∼=−−→ X

rX : (⊗ ◦ (ρ1!, ρ2!) ◦ r!)(X) = X ⊗ 1C
∼=−−→ X
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which show that 1C is indeed the tensor unit of ⊗. The strategy to prove the triangle, the pentagon and the

hexagon axioms, is to find the right equalities of compositions of morphisms in the category FinSet∗, such

that they induce natural isomorphism of functors between the fibers. Then using the Segal condition we can

transform those isomorphisms into the desired commutative diagrams in C.

Conversely, we need to show that given a symmetric monoidal category (C,⊗, 1, σ) the corresponding forgetful

functor p : C⊗ → FinSet∗ is a Grothendieck opfibration. That is, for every object [C1, ..., Cn] and every

morphism α : 〈n〉 → 〈m〉 in FinSet∗, there is a p-coCartesian morphism f : [C1, ..., Cn]→ [C ′1, ..., C
′
m] such

that p(f) = α.

Let [C1, ..., Cn] be an object of C⊗ and let α : 〈n〉 → 〈m〉 be any morphism in FinSet∗. Consider the

morphism f given by the pair f = (α, {id ⊗
α(i)=j

Ci}1≤j≤m). In other words f defines the following morphism.

f : [C1, ..., Cn]→

 ⊗
α(i)=1

Ci, ...,
⊗

α(i)=m

Ci


Then by definition p(f) = α. Hence it is left to show that f is a p-coCartesian morphism. Therefore, let

h : [C1, ..., Cn]→ [C ′′1 , ..., C
′′
k ] be another morphism in C⊗ given by the pair h = (γ, {ht}1≤t≤k). By definition

the morphisms ht are of the form

ht :
⊗
γ(i)=t

Ci → C ′′t

and γ : 〈n〉 → 〈k〉. Then let β : 〈m〉 → 〈k〉 be a morphism such that γ = β ◦ α. We construct the morphism

g : [C ′1, ..., C
′
m]→ [C ′′1 , ..., C

′′
k ] as follows. For 1 ≤ l ≤ k define

gl :
⊗
β(j)=l

C ′j =
⊗
β(j)=l

⊗
α(i)=j

Ci =
⊗
γ(i)=l

Ci
hl−−→ C ′′l

Then g = (β, {gl}l) and therefore p(g) = β and by construction h = g ◦ f . This shows that f is indeed a

p-coCartesian morphism and it is unique up to isomorphism. Hence p is a Grothendieck opfibration.

To show that p satisfies the Segal condition, let

ρj : 〈n〉 → 〈1〉

be the unique morphism such that (ρj)−1(1) = j. Hence for any n ≥ 0 there is a family of functors

ρj ! : C⊗〈n〉 → C⊗〈1〉 ' C

Then by the universal property of the product, there is a unique morphism (ρ1!, ..., ρn!) : C⊗〈n〉 → C×n such

that the following diagram commutes for all 1 ≤ j ≤ n.

C×n

C⊗〈n〉 C

πj
(ρ1!,···,ρn!)

ρj !

Now recall the definition of the induced functor ρj ! on the fibers. Let [C1, ..., Cn] be an object in the fiber

and let ρ̃j denote the p-coCartesian lift of ρj . As we have seen above such a lift is given by the pair

ρ̃j = (ρj , idCj ) : [C1, ..., Cn]→ [Cj ]. Hence the induced functor is given by

[C1, ..., Cn] 7→ codom(ρ̃j) = [Cj ]

which is simply the j-th projection. Hence the datum
(
C⊗〈n〉, {ρ

j !}1≤j≤n
)

satisfies the universal property of

the product C×n in Cat up to equivalence of categories, which then implies the Segal condition.
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Proposition 5.18 is a powerful tool as we can encode the structure of a symmetric monoidal category into a

single morphism, satisfying a certain lifting property and satisfying the Segal condition. To define a monoidal

structure on an ∞-category in the sense of Definition 2.1, all the higher morphisms would lead to an infinite

amount of coherence diagrams. Using the above proposition the structure of the category FinSet∗ will take

care of those coherence conditions and allows a very concise definition of a symmetric monoidal ∞-category.

To do so, we want to investigate how the nerve functor acts on Grothendieck opfibrations, i.e. for F : C→ D

an opfibration what can we say about the induced morphism on the nerve N(F ) : N(C) → N(D). It will

turn out that such morphisms are given by coCartesian fibrations of simplicial sets.

Definition 5.28. Let p : X → S be an inner fibration of simplicial sets. Let f : ∆1 → X specify an edge

x→ y in X. Then we say that f is a p-cartesian edge if the induced map

X/f → X/y ×S/p(y)
S/p(f)

is a trivial Kan fibration.

Remark 5.24. Notice that given an edge f : ∆1 → X in X the inner fibration p induces a morphism

X/f → S/p(f) where p(f) : ∆1 f−→ X
p−→ S defines an edge in S. By precomposing with the degeneracy map

we obtain y : ∆0 s1
↪−→ ∆1 f−→ X, which then similarly induces a morphism X/f → X/y. Analogously one

defines the induced map S/p(f) → S/p(y). Moreover, the following diagram commutes by construction.

X/f S/p(f)

X/y S/p(y)

Hence by the universal property of the pullback, there is a unique map

X/f → X/y ×S/p(y)
S/p(f)

Definition 5.29. A morphism of simplicial sets p : X → S is a cartesian fibration if

(i) the morphism p is an inner fibration.

(ii) for every edge f : x → y in S and every vertex ỹ in X with p(ỹ) = y there exists a p-cartesian edge

f̃ : x̃→ ỹ with p(f̃) = f .

We say that p is a coCartesian fibration, if the opposite morphism pop : Xop → Sop is a cartesian fibration.

Remark 5.25. The motivation behind the definition of coCartesian fibrations is that they are the ∞-

categorical analogues of Grothendieck opfibrations.

Proposition 5.19. Let F : C→ D be a functor between ordinary categories. Then N(F ) : N(C)→ N(D) is

an inner fibration. Moreover, N(F ) is a coCartesian fibration if and only if F is a Grothendieck opfibration

Remark 5.26. To prove this proposition it is appropriate to use an equivalent and more tangible definition

of a coCartesian fibration than the one given in Definition 5.29. Notice that for p : K → S a morphism

of simplicial sets, we constructed the simplicial set S/p being the ∞-categorical analogue to the notion of

over categories. This construction can be dualized to define the simplicial set Sp/ being the ∞-categorical

analogue to under categories. Using this construction, we are able to restate Definition 5.29 as follows.

Definition 5.30. A morphism of simplicial sets p : X → S is a coCartesian fibration if
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(i) the morphism p is an inner fibration.

(ii) for every vertex c1 ∈ X and every edge α : p(c1) = d1 → d2 in S there is a p-coCartesian edge

f : c1 → c2 such that p(f) = α.

Notice that f : c1 → c2 is said to be a p-coCartesian edge, if the following morphism is a trivial Kan

fibration

Xf/ → Xc1/ ×Sp(c1)/
Sp(f)/

In order to prove Proposition 5.19 we need the following lemma.

Lemma 5.4. ([Gro10]) Let F : C→ D be a functor between ordinary categories. Then a morphism f : c1 →
c2 is F -coCartesian if and only if the following functor is an isomorphism of categories

Cf/ → Cc1/ ×DF (c1)/
DF (f)/

Remark 5.27. Notice that Cc1/ and DF (c1)/ denote the regular under categories under the objects c1
and F (c1) respectively, whereas Cf/ and DF (f)/ denote the categories with objects given by commutative

triangles

c1 c2 F (c1) F (c2)

c d

f F (f)

and morphisms given by g : c→ c′ resp. h : d→ d′, such that the obvious diagrams commute.

proof of Proposition 5.19.

”⇒” Suppose we are given a Grothendieck opfibration F : C→ D between ordinary categories. Then denote

C = N(C) and D = N(D) and let p = N(F ) be the induced morphism of simplicial sets p : C → D. Notice

that by Example 5.2 we already have that C,D are ∞-categories and it follows that p is automatically an

inner fibration of ∞-categories. Now let c1 ∈ C be a vertex. By construction, we can identify vertices of

N(C) with objects of C, hence c1 ∈ C. Similarly edges in N(D) can be identified with morphisms in D, hence

for any edge α : p(c1) = d1 → d2 in D we can consider α : F (c1) = d1 → d2 a morphism in D. Since F is an

opfibration there is an F -coCartesian lift f : c1 → c2 of α. Then f can be identified with an edge f : c1 → c2
in C. Now we apply Lemma 5.4 to the given F -coCartesian morphism f : c1 → c2. By construction it follows

that the nerve functor is compatible with the coslice construction, i.e. there are natural isomorphisms of

simplicial sets

N(Cf/) ∼= N(C)f/ = Cf/ N(Cc1/)
∼= N(C)c1/ = Cc1/

N(DF (f)/) ∼= N(D)N(F )(f)/ = Dp(f)/ N(DF (c1)/) ∼= N(D)N(F )(c1)/ = Dp(c1)

Therefore, it follows that

Cf/ ∼= N(Cf/)→ N(Cc1/ ×DF (c1)/
DF (f)/) ∼= Cc1/ ×Dp(c1)/

Dp(f)/

is an isomorphism of simplicial sets and therefore a trivial Kan fibration. This shows that f : c1 → c2
considered as an edge in C is indeed p-coCartesian and hence p is a coCartesian fibration.

”⇐” Let F : C→ D be a functor and let p : C → D denote the morphism of simplicial sets induced by the

nerve functor as before. Assume now that N(F ) = p is a coCartesian fibration. We need to show that F is

a Grothendieck opfibration, i.e. for every c1 ∈ C and every morphism α : F (c1) = d1 → d2 in D there is a

F -coCartesian lift f : c1 → c2 of α. Therefore, let c1 ∈ C and let α : d1 → d2 be any morphism in D.

Similarly as before we can identify objects of C and D with vertices of C and D respectively, and morphisms

with edges in the same way. Hence we can look at c1 : ∆0 → C and α : ∆1 → D. Since p is a coCartesian
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fibration there is a p-coCartesian edge f : c1 → c2 such that p(f) = α. This shows that there is a morphism

f : c1 → c2 in C such that F (f) = α. It is left to show that the morphism f is F -coCartesian. That is, the

following morphism needs to be an isomorphism of categories.

Cf/ → Cc1/ ×DF (c1)/
DF (f)/

Using the fact that f : ∆1 → C, considered as an edge in C, is p-coCartesian implies that

Cf/ → Cc1/ ×Dp(c1)/
Dp(f)/

is a trivial Kan fibration. Again using the fact that the nerve functor is compatible with the coslice con-

struction and preserves limits, it follows that

N(Cf/)→ N(Cc1/ ×DF (c1)/
DF (f)/)

is a trivial Kan fibration. Using Theorem 5.6 it follows that the functor

Cf/ → Cc1/ ×DF (c1)/
DF (f)/

is indeed an isomorphism of categories, which shows that f is F -coCartesian. It follows that F is a

Grothendieck opfibration.

Theorem 5.6. Let F : C → D be a functor between ordinary categories. Then F is an isomorphism of

categories if the induced map N(F ) : N(C)→ N(D) is a trivial Kan fibration.

Proof. Assume N(F ) is a trivial Kan fibration. By Theorem 3.6.4 in [Hov99] the map N(F ) has the right

lifting property with respect to the boundary inclusions ∂∆n ↪→ ∆n for all n ≥ 0.

For n = 0 we have that for any vertex d : ∆0 → N(D) there is a lift c : ∆ → N(C), making the following

diagram commutative.

∅ N(C)

∆0 N(D)

N(F )

d

c

The lift c defines a vertex in N(C) and hence can be identified with an object c ∈ C, having the property

that F (c) = d. This shows that the functor F is surjective, i.e. for every object d ∈ D there exists an object

c ∈ C with F (c) = d.

Let n = 1. Recall that a morphism in D is the same as an edge in N(D). Moreover, edges in N(D) can be

written as morphisms ∆1 → N(D). Let now f : d1 → d2 be such an edge. Then by the case n = 0 there

are vertices c1, c2 such that N(F )(ci) = di for i = 1, 2. Let ∂∆1 → N(C) be the morphism which associates

the two boundary vertices to the vertices c1 and c2. Then the lifting property implies that there is a lift

f̃ : ∆1 → N(C) such that the following diagram commutes.

∂∆1 N(C)

∆1 N(D)

N(F )

f

f̃

This edge corresponds to a morphism f̃ : c1 → c2 in C, such that F (f̃) = f . Hence for any c1, c2 ∈ C the

map

Fc1,c2 : HomC(c1, c2)→ HomD(F (c1), F (c2))

is surjective, i.e. the functor F is full.

Let n = 2 and let ∂∆2 → N(C) denote the triangle
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c1

c1 c2

f
idc1

g

Then the lifting property implies that for any commutative triangle σ : ∆2 → N(D) given by

F (c1)

F (c1) F (c2)

F (f)
idF (c1)

F (g)

there is a lift σ̃ : ∆2 → N(C), turning the triangle

c1

c1 c2

f
idc1

g

into a commutative diagram. This shows that for any c1, c2 ∈ C the map Fc1,c2 is injective, i.e. the functor

F is faithful.

Using the lifting properties for n = 0, 1, 2 we have showed that F is a surjective fully faithful functor, which

defines an isomorphism of categories.

We have seen that monoidal structures on ordinary categories can be encoded by Grothendieck opfibrations.

Those opfibrations correspond to coCartesian fibrations via the nerve functor. Hence we are now able to

define symmetric monoidal ∞-categories.

Definition 5.31. A symmetric monoidal ∞-category is a coCartesian fibration of simplicial sets

p : C→ N(FinSet∗)

satisfying the Segal condition. That is, the Segal maps are Joyal equivalences of simplicial sets for all n ≥ 0

(ρ1!, ..., ρn!) : C〈n〉 →
(
C〈1〉

)×n
Remark 5.28. Similarly as a Grothendieck opfibration defines a family of categories fibered over a base

category, the above coCartesian fibration p defines a family of∞-categories fibered over N(FinSet∗). Indeed,

one defines the fiber of p over a vertex 〈n〉 ∈ N(FinSet∗) as the pullback

C〈n〉 C

∆0 N(FinSet∗)

p

〈n〉

Using that p is an inner fibration, it follows that the fiber C〈n〉 is an ∞-category for all n ≥ 0. Moreover,

any edge α : 〈n〉 → 〈m〉 in N(FinSet∗) defines a unique functor

α! : C〈n〉 → C〈m〉

of ∞-categories.

So far we have seen that in the world of categories, symmetric monoidal structures can be described by

Grothendieck opfibrations, whereas in the world of ∞-categories, symmetric monoidal structures are de-

scribed by coCartesian fibrations. The link between those worlds is given by the regular nerve functor.
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Considering now simplicial or topological categories with enriched monoidal structures, we want to investi-

gate how the coherent nerve functors N∆ and NT act on enriched opfibrations. Eventually we will apply

this machinery to the Day convolution of enriched functors.

Recall from Definition 2.3 that a topological symmetric monoidal structure on a topological category C is the

datum (C,⊗, 1C, a, r, l, σ), where ⊗ : C× C→ C is a topological functor and a, r, l, σ are topological natural

isomorphisms satisfying the triangle, the pentagon and the hexagon axiom. Similarly we define simplicial

symmetric monoidal categories.

As before, we need to embody all the structure given by a simplicial symmetric monoidal category (C,⊗, 1, σ)

into a single simplicial functor p : C⊗ → FinSet∗. Notice that in this case we endow the category FinSet∗

with the trivial simplicial enrichment. The category C⊗ is then defined in the same way as before and inherits

a canonical simplicial enrichment.

Lemma 5.5. Let (C,⊗, 1, σ) be a simplicial symmetric monoidal category. Then the category C⊗ defined in

Remark 5.23 is simplicially enriched.

Proof. Let X = [X1, ..., Xn] and Y = [Y1, ..., Ym] be two objects in C⊗. First we define for any α ∈
FinSet∗ (〈n〉, 〈m〉) the simplicial set

C⊗α (X,Y ) =

m∏
j=1

C

 ⊗
i∈α−1(j)

Xi, Yj

 (3)

by using the fact that C is simplicially enriched. The hom space of the category C⊗ is then given by the

simplicial set

C⊗(X,Y ) =
∐

α∈FinSet∗(〈n〉,〈m〉)

C⊗α (X,Y )

Moreover, we have that for all objects X and Y there is a projection map

pX,Y : C⊗(X,Y ) −→ FinSet∗ (〈n〉, 〈m〉)
(α, {fj}) 7−→ α

It is left to show that the composition induces simplicial maps on the hom spaces, i.e.

C⊗(X,Y )× C⊗(Y,Z)→ C⊗(X,Z)

((α, {fj}), (β, {gk})) 7→ (β ◦ α, {hk})

is a simplicial map. Hence let X = [X1, ..., Xn], Y = [Y1, ..., Ym] and Z = [Z1, ..., Zl] be objects in C⊗ and

let α : 〈n〉 → 〈m〉, β : 〈m〉 → 〈l〉 be morphisms in FinSet∗. Then we have by (3)

C⊗α (X,Y )× C⊗β (Y,Z) ∼=
l∏

k=1

m∏
j=1

C

 ⊗
α(i)=j

Xi, Yj

× C

 ⊗
β(j′)=k

Yj′ , Zk


By fixing some k = 1, ..., l we have that the map

ρk :

 m∏
j=1

C(
⊗
α(i)=j

Xi, Yj)

× C

 ⊗
β(j′)=k

Yj′ , Zk

 −→ C

 ⊗
β(j)=k

⊗
α(i)=j

Xi, Zk


({fj}, gk) 7−→ gk ◦

⊗
β(j)=k

fj

is simplicial, since by hypothesis the monoidal product
⊗

: C× C→ C is a simplicial functor. Therefore, we

have that the map ρ =
⊕l

k=1 ρk defines a simplicial map

ρ : C⊗α (X,Y )× C⊗β (Y,Z)→ C⊗β◦α(X,Z)
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Then, by using the description of the hom space as coproduct, it follows that the composition is given by∐
α,β

ρ : C⊗(X,Y )× C⊗(Y,Z)→ C⊗(X,Z)

which is clearly a simplicial map. This shows that the category C⊗ is indeed simplicially enriched.

Remark 5.29. It follows that each simplicial symmetric monoidal category defines a simplicial functor

p : C⊗ → FinSet∗. This functor satisfies similar lifting properties as Grothendieck opfibrations, which are

compatible with the simplicial enrichment. Such functors will be called simplicial Grothendieck opfibrations.

Definition 5.32. Let F : C→ D be a simplicial functor between simplicial categories, and let f : c1 → c2 be

a morphism in C over the morphism α : d1 → d2 in D, i.e. we have that F (f) = α. Then call f a simplicial

F -coCartesian morphism if for all objects c3 in C the hom set C(c2, c3) is the pullback (in sSet) of the

following diagram.

C(c2, c3) C(c1, c3)

D(F (c2), F (c3)) D(F (c1), F (c3))

Fc2,c3

(·)◦f

y
Fc1,c3

(·)◦α

Definition 5.33. Let F : C → D be a simplicial functor between simplicial categories. Then F is a

simplicial Grothendieck opfibration if for all c1 ∈ C and for all morphisms α : F (c1)→ d2 in D there is

a simplicial F -coCartesian morphism f : c1 → c2 such that F (f) = α.

In the simplicial case we have a similar result as in the Set-enriched case.

Proposition 5.20. If (C,⊗, 1, σ) is a simplicial symmetric monoidal category, then the forgetful simplicial

functor p : C⊗ → FinSet∗ is a simplicial Grothendieck opfibration. Moreover, this functor satisfies the Segal

condition. That is, the Segal maps

C⊗〈n〉 → C×n

are equivalences of simplicial categories for all n ≥ 0.

Proof. Since the category C⊗ is canonically enriched over sSet as showed in Lemma 5.5 , this proof is similar

to the proof of Proposition 5.20.

Remark 5.30. In fact the theory of Grothendieck opfibrations can be generalized to V-enriched cate-

gories, where V is a monoidal category satisfying some additional properties. Also a generalization of the

Grothendieck construction to V-enriched categories is possible, as shown in [BW18b].

Consider now a topological symmetric monoidal category (C,⊗, 1, σ). Then, similarly as in the simplicial

case, there is a topological functor p : C⊗ → FinSet∗. By applying the topological nerve functor we

get a simplicial map of ∞-categories NT (p) : NT (C⊗) → N(FinSet∗). We have seen earlier, that in the

Set-enriched case, this simplicial map is a coCartesian fibration. Therefore, we want to investigate, if the

coherent nerve also produces such a coCartesian fibration. To do so, we first need to characterize simplicial

F -coCartesian morphisms of simplicial functors F : C→ D.

Lemma 5.6. Let F : C → D be a simplicial functor between fibrant simplicial categories, such that for all

pairs of objects c, c′ ∈ C the map

C(c, c′)→ D(F (c), F (c′))

is a Kan fibration. Moreover, let f : c1 → c2 be a morphism in C. Then the following are equivalent
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(i) The simplicial functor

Cf/ → Cc1/ ×
DF (c1)/

DF (f)/

is a Dwyer-Kan equivalence of simplicial categories.

(ii) For all c3 ∈ C, the following diagram is homotopy Cartesian.

C(c2, c3) C(c1, c3)

D(F (c2), F (c3)) D(F (c1), F (c3))

(−)◦f

Fc2,c3 Fc1,c3

(−)◦F (f)

Remark 5.31. Notice that a diagram of fibrant simplicial sets

A B

C D

where B → D is a Kan fibration, is said to be homotopy Cartesian, if there exists a Quillen weak

equivalence from A to the homotopy pullback of the given diagram.

A
∼−→ B ×hD C

Proof. This lemma basically follows from Proposition 5.28 and Proposition 2.4.1.10. in [Lur09]. However, it

would be more convenient to give a direct proof of the statement. Unfortunately such a proof could not be

established by now.

In comparison with Definition 5.32 of a simplicial coCartesian morphism, we notice that Lemma 5.28 gives a

motivation to weaken the assumptions on the commutativity of the diagrams. Indeed, consider a simplicial

functor p : C→ D satisfying the assumptions of Lemma 5.28. If we assume that for any morphism f : c1 → c2
in C the induced simplicial functor

Cf/ → Cc1/ ×
DF (c1)/

DF (f)/

is a Dwyer-Kan equivalence, it follows that there is a Joyal equivalence

N∆(Cf/)→ N∆(Cc1/) ×
N∆(DF (c1)/)

N∆(DF (f)/)

of∞-categories. Now it follows from Definition 5.29 that the map N∆(p) : N∆(C)→ N∆(D) is a coCartesian

fibration, if and only if for every vertex c1 ∈ N∆(C) and every edge α : p(c1) = d1 → d2 in N∆(D) there is a

N∆(p)-coCartesian lift f : c1 → c2 of α, i.e. the simplicial map

N∆(C)f/ → N∆(C)c1/ ×
N∆(D)F (c1)/

N∆(D)α/

is a trivial Kan fibration. Comparing the two simplicial maps above, we notice that the behavior of the

coherent nerve acting on the under category plays a crucial role. More precisely, we want look at the

following simplicial map N∆(Cf/)→ N∆(C)f/. In fact we show in the next section, that the coherent nerve

behaves well, acting on certain under categories resp. over categories. Therefore, we give the following

definition.
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Definition 5.34. Let F : C → D be a simplicial functor between simplicial categories, such that for all

pairs of objects c, c′ ∈ C the map Fc,c′ : C(c, c′) → D(F (c), F (c′)) is a Kan fibration. Then F is a weak

simplicial Grothendieck opfibration if for all c1 ∈ C and for all morphisms α : F (c1)→ d2 in D there is

a lift f : c1 → c2 of α such that the induced functor

Cf/ → Cc1/ ×
DF (c1)/

Dα/

is a Dwyer-Kan equivalence.

5.7 The coherent nerve on slice categories

In the last section, the question arose whether the coherent nerve of the under category defined by a simplicial

functor F : D→ C is equivalent to the simplicial set under the simplicial map N∆(F ). That is, if there is a

Joyal equivalence

N∆(CF/)
∼−→ N∆(C)N∆(F )/

For the special case where D is either the simplicial category with one object [0] or the simplicial category

[1] with two objects and a single non-identity morphism, we can give an affirmative answer. This section is

devoted to prove this statement. We will use the theory of derived hom spaces also called homotopy function

complexes. Therefore, we will introduce all the necessary theory in Appendix B, following chapters 15 to 17

in [Hir03].

A derived hom space is usually characterized by a cosimplicial resolution of an object in the corresponding

Reedy model structure. Therefore, we want to consider objects K in the Joyal model structure on sSet and

look for cosimplicial resolutions of those objects. The aim will be to find presentations of left derived hom

spaces in sSetJoyal and then use the coherent nerve adjunction to give presentations of left derived hom

spaces in sSet-Cat with respect to the Bergner model structure. Since the Joyal model structure is not

simplicial, the study of left derived hom spaces is rather technical. Therefore, we follow the paper of Dugger

and Spivak [DS11] to find cosimplicial resolutions of objects in sSetJoyal.

Definition 5.35. Let S be a set and denote with GS the groupoid with objects ob(GS) = S and a single

morphism a→ b for every a, b ∈ S. Then define the functor

E : Set→ sSet

S 7→ N(GS)

For n ∈ N we write En = E({0, 1, . . . , n})

Proposition 5.21. ([DS11]) For every K ∈ sSet the map K × En → K is a trivial fibration in the Joyal

model structure for any n ∈ N. Moreover, the cosimplicial object

K̃ : ∆ −→ sSet

[n] 7−→ K × En

defines a cosimplicial resolution for K, with respect to the Joyal model structure.

What we want to show next is that cosimplicial resolutions behave well under the join operation of simplicial

sets.

Proposition 5.22. Let K,S be two simplicial sets. Then the cosimplicial object

˜(K ∗ S)′ : ∆ −→ sSet

[n] 7−→ (K × En) ∗ S

is a cosimplicial resolution of K ∗ S, with respect to the Joyal model structure.
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Proof. Recall that with ∆K∗S we denote the constant cosimplicial object. Then we need to show that there

is a Reedy weak equivalence ˜(K ∗ S)′ → ∆K∗S and that ˜(K ∗ S)′ is Reedy cofibrant. First notice that for

any [n] ∈ ∆ the map

˜(K ∗ S)′
n

= (K × En) ∗ S −→ K ∗ S = ∆n
K∗S

is a Joyal equivalence by Proposition 5.21. Hence it follows by the definition of the Reedy model structure

([Hir03]), that ˜(K ∗ S)′ → ∆K∗S is indeed a Reedy weak equivalence.

To show that ˜(K ∗ S)′ is cofibrant in the Reedy model structure, we need to show that for all [m] ∈ ∆ the

latching map

Λ′m : Lm ˜(K ∗ S)′ → ˜(K ∗ S)′
m

is a cofibration in the Joyal model structure, i.e. is a monomorphism. By definition the latching object of
˜(K ∗ S)′ is the following colimit

Lm ˜(K ∗ S)′ = colim
[n]↪→[m]

[(K × En) ∗ S]

taken over all injections [n] ↪→ [m] in ∆ for fixed [m]. Notice that the join operation, considered as a functor,

− ∗ S : sSet→ sSetS/

preserves colimits (Remark 1.8.8.2 in [Lur09]). Therefore

colim
[n]↪→[m]

[(K × En) ∗ S] ∼=
[

colim
[n]↪→[m]

(K × En)

]
∗ S

Using Proposition 5.21 we have that the cosimplicial object K̃ is a cosimplicial resolution of K. Hence in

particular the latching maps

Λm : LmK̃ → K × Em

are monomorphisms for all m. It follows that

Λ′m : Lm ˜(K ∗ S)′ ∼= (LmK̃) ∗ S Λm∗S−−−−→ (K × En) ∗ S

is also a monomorphism for all m, proving that ˜(K ∗ S)′ is indeed cofibrant. This shows that K̃ ∗ S is a

cofibrant resolution of K ∗ S.

Remark 5.32. Notice that in the following, given a simplicial set Y or a simplicial category D, we denote

with RY and RD a fibrant approximation of Y and D. That is, RY and RD are fibrant objects in the

corresponding model categories, being weak equivalent to Y and D respectively.

Corollary 5.6. For X,Y ∈ sSetJoyal simplicial sets, a left derived hom space from X to Y is given by the

simplicial set

mapsSet(X,Y ) : ∆op −→ Set

[n] 7−→ sSet(X × En, RY )

Proof. This follows from Definition B.2 and Proposition 5.21.

Corollary 5.7. For X,Y, S ∈ sSetJoyal simplicial sets, a left derived hom space from X ∗ S to Y is given

by the simplicial set

m̃apsSet(X ∗ S, Y ) : ∆op −→ Set

[n] 7−→ sSet ((X × En) ∗ S,RY )
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Proof. This follows from Definition B.2 and Proposition 5.22.

Having established some presentations of left derived hom spaces in sSetJoyal, we want to use the Quillen

pair C ` N∆ to give some presentations of left derived hom spaces in sSet-CatBergner.

Proposition 5.23. Let K,S be simplicial sets and let D be a simplicial category. Then left derived hom

spaces in sSet-CatBergner are given by

mapsSet-Cat(C(K),D) : ∆op −→ sSet

[n] 7−→ sSet-Cat (C(K × En), RD)

from C(K) to D and

m̃apsSet-Cat(C(K ∗ S),D) : ∆op −→ sSet

[n] 7−→ sSet-Cat (C ((K × En) ∗ S) , RD)

from C (K ∗ S) to D.

Proof. This is an application of Proposition 16.2.1 in [Hir03] to the Quillen equivalence N∆ a C.

Proposition 5.24. Let G be a simplicial category. Then the functor

(−) ∗ G : sSet-CatBergner → sSet-CatBergner

preserves cofibrations.

Proof. We need to show that for a given cofibration f : C→ D, the simplicial functor f ∗ G : C ∗ G→ D ∗ G
is again a cofibration, i.e. has the left lifting property with respect to all trivial fibrations. By assumption,

let f be a cofibration. Moreover, notice that we have inclusion functors i : C → C ∗ G and j : D → D ∗ G,

such that the following diagram commutes

C C ∗ G

D D ∗ G

i

f f∗G

j

To show that f ∗ G is a cofibration let q : A→ B be a trivial fibration and consider functors ϕ : C ∗ G→ A

and ψ : D ∗ G→ B such that the following diagram commutes.

C ∗ G A

D ∗ G B

ϕ

f∗G q

ψ

Then the following diagram commutes.

C C ∗ G A

D D ∗ G B

f

i ϕ

qh

j ψ

By the fact that f is a cofibration there is a functor h : D → A such that the whole diagram commutes.

Now we define the functor h̃ : D ∗ G→ A on objects as
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h̃ : D ∗ G −→ A

d 7−→ h(d)

g 7−→ ϕ(g)

and on morphisms as

h̃ : D ∗ G −→ A

δ : d→ d′ 7−→ h(δ)

γ : g → g′ 7−→ ϕ(γ)

The only missing morphisms are the ones of the form d→ g for d ∈ D and g ∈ G. Consider now the diagram

∅ A(h(d), ϕ(g))

∆0 = (D ∗ G)(d, g) B(ψ(d), ψ(g))

qh(d),ϕ(g)

Using that q is a trivial fibration, it follows that the right vertical arrow qh(d),ϕ(g) is a trivial Kan fibration.

Then by the lifting properties of trivial Kan fibrations, there is a unique dashed arrow making the diagram

commute. This arrow precisely determines how h̃ acts on morphisms of the form d→ g. Hence the functor

h̃ provides a lift and therefore f ∗ G is cofibrant.

Proposition 5.25. Let Y ∈ sSet be any simplicial set and let D be a simplicial category. Then the

cosimplicial object given by

[n] 7−→ C(Y × En) ∗D

is a cosimplicial resolution of C(Y ) ∗D. Moreover, a left derived hom space is given by the simplicial set

m̂apsSet-Cat (C(Y ) ∗D,C) : ∆op −→ Set

[n] 7−→ sSet-Cat (C(Y × En) ∗D,C)

Proof. First we show that the cosimplicial object [n] 7→ C(Y × En) ∗ D is Reedy weak equivalent to the

constant cosimplicial object on C(Y ) ∗ D. By Proposition 5.21 we know that for all [n] there are weak

equivalences in sSetJoyal

Y × En → Y

hence we have weak equivalences in sSet-CatBergner

C(Y × En)→ C(Y )

then it follows that there are also weak equivalences

C(Y × En) ∗D→ C(Y ) ∗D

showing that the cosimplicial objects are indeed Reedy weak equivalent.

We are left to show that [n] 7→ C(Y × En) ∗D is Reedy cofibrant. First notice that the functor

(−) ∗D : sSet-Cat→ sSet-Cat/D

has a right adjoint, hence preserves colimits. Then the latching object of the cosimplicial object

[n] 7→ C(Y × En) ∗D at [m] is given by the colimit

L[m]

(
˜C(Y ) ∗D

)
= colim

[n]↪→[m]
(C(Y × En) ∗D) ∼=

(
colim

[n]→[m]
C(Y × En)

)
∗D =

(
L[m]C̃(Y )

)
∗D
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Hence using Proposition 5.23 we conclude that the latching map of ˜C(Y ) ∗D is given by

Λm : L[m]

(
˜C(Y ) ∗D

) ∼=−→ (
L[m]C̃(Y )

)
∗D Λ′m∗D−−−−→ C(Y × Em) ∗D

where Λ′m : L[m]C̃(Y ) → C(Y × Em) is the latching map of the cosimplicial resolution C̃(Y ). Therefore, we

have that for all [m] the map Λ′m is a cofibration. Now using Proposition 5.24 it follows that for all [m]

the map Λ′m ∗D is a cofibration, which shows that all latching maps Λm are indeed cofibrations. Hence the

cosimplicial object ˜C(Y ) ∗D is a cosimplicial resolution of C(Y ) ∗D.

Now that we are given several presentations of left derived hom spaces in the Joyal and in the Bergner model

structure, we can give a proof of the following proposition.

Proposition 5.26. Let F : D→ C be a simplicial functor where D ∈ {[0], [1]} and C is a fibrant simplicial

category. Then there is a weak equivalence in the Joyal model structure on sSet

N∆(C/F )
∼−→ N∆(C)/N∆(F )

Proof. The strategy to prove this proposition will be to use Theorem B.1. That is, we want to show that

for any simplicial set Y the induced map of left derived hom spaces

g∗ : LsSet(Y,N∆(C/F ))→ LsSet(Y,N∆(C)/N∆(F ))

is a Quillen weak equivalence. Then by Theorem B.1 it follows that

g : N∆(C/F )→ N∆(C)/N∆(F )

is a weak equivalence in the Joyal model structure.

First notice that N∆(C) is fibrant in the Joyal model structure, then by Proposition 1.2.9.3. in [Lur09] also

N∆(C)/N∆(F ) is fibrant.

First we look at the simplicial set given by

mapsSet

(
Y,N∆(C)/N∆(F )

)
n

= sSet
(
Y × En, N∆(C)/N∆(F )

)
∼= sSetN∆(F ) ((Y × En) ∗ S,N∆(C))

where we take S = N∆(D). Notice that sSetN∆(F ) ((Y × En) ∗ S,N∆(C)) is given by the pullback in Set

sSetN∆(F ) ((Y × En) ∗ S,N∆(C)) sSet ((Y × En) ∗ S,N∆(C))

∗ sSet (S,N∆(C))

y
(−)|S

N∆(F )

where the map ∗ → sSet (S,N∆(C)) is characterizing the simplicial map N∆(F ) : S → N∆(C) and the map

(−)|S : sSet ((Y × En) ∗ S,N∆(C))→ sSet (S,N∆(C))

is given by restriction of a simplicial map f to f|S . Then using Corollary 5.7 we can write the pullback as

follows.

sSetN∆(F ) ((Y × En) ∗ S,N∆(C)) m̃apsSet (Y ∗ S,N∆(C))n

∗ sSet (S,N∆(C))

(−)|S

N∆(F )
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Then define the simplicial set m̃apN∆(F )(Y ∗ S,N∆(C)) as the homotopy pullback of the diagram

m̃apN∆(F )(Y ∗ S,N∆(C)) m̃apsSet(Y ∗ S,N∆(C))

∆0 ∆sSet(S,N∆(C))

yho

where ∆sSet(S,N∆(C)) is the constant simplicial set on sSet (S,N∆(C)). To show that the homotopy pullback

agrees up to Quillen weak equivalence with the categorical pullback, we first notice that the Quillen model

structure on sSet is proper and that the map

m̃apsSet(Y ∗ S,N∆(C))→ ∆sSet(S,N∆(C))

is a Kan fibration. Then Corollary 13.3.8 in [Hir03] implies the desired result. It follows that there is a

Quillen weak equivalence

mapsSet

(
Y,N∆(C)/N∆(F )

) ∼−→ m̃apN∆(F )(Y ∗ S,N∆(C))

Moreover, using the Quillen pair C ` N∆, it follows that we have the following natural isomorphisms

sSet ((Y × En) ∗ S,N∆(C)) ∼= sSet-Cat (C ((Y × En) ∗ S) ,C)

= m̃apsSet-Cat (C (Y ∗ S) ,C)n

and

sSet(S,N∆(C)) ∼= sSet-Cat(C(S),C)

Hence we define m̃apF (C(Y ∗ S),C) as the homotopy pullback of the following diagram.

m̃apF (C(Y ∗ S),C) m̃apsSet-Cat(C(Y ∗ S),C)

∆0 ∆sSet-Cat(C(S),C)

yho

By definition it is clear that the following diagram commutes.

m̃apF (C(Y ∗ S),C) m̃apsSet-Cat(C(Y ∗ S),C)

m̃apN∆(F )(Y ∗ S,N∆(C)) m̃apsSet(Y ∗ S,N∆(C))

∆0 ∆sSet-Cat(C(S),C)

∆0 ∆sSet(S,N∆(C))

∼

id ∼

Then it follows by Proposition 13.3.14 in [Hir03] that the dashed arrow is a Quillen weak equivalence. Hence

we have that there is a Quillen weak equivalence

mapsSet

(
Y,N∆(C)/N∆(F )

) ∼−→ m̃apF (C(Y ∗ S),C)

On the other hand we have that

mapsSet(Y,N∆(C/F )) ∼= mapsSet-Cat(C(Y ),C/F )
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Then by looking at the components if follows

mapsSet-Cat(C(Y ),C/F )n ∼= sSet-CatF (C(Y × En) ∗D,C)

Similarly, we define the set sSet-CatF (C(Y × En) ∗D,C) as the pullback in the following diagram.

sSet-CatF (C(Y × En) ∗D,C) sSet-Cat (C(Y × En) ∗D,C)

∗ sSet-Cat(D,C)

y

We notice that

sSet-Cat (C(Y × En) ∗D,C) = m̂apsSet-Cat(C(Y ) ∗D,C)n

Therefore, we define m̂apF (C(Y ) ∗D,C) as the homotopy pullback of the following diagram.

m̂apF (C(Y ) ∗D,C) m̂apsSet-Cat(C(Y ) ∗D,C)

∆0 ∆sSet-Cat(D,C)

yho

Similarly as before we show, using properness of the Quillen model structure and the fact that the map

m̂apsSet-Cat(C(Y ) ∗D,C)→ ∆sSet-Cat(D,C)

is a Kan fibration, that the categorical pullback is Quillen weak equivalent to the homotopy pullback. This

shows that there is a Quillen weak equivalence

mapsSet(Y,N∆(C/F ))
∼−→ m̂apF (C(Y ) ∗D,C)

Now notice that C (N∆ ([0])) ∼= [0] and C (N∆ ([1])) ∼= [1] hence it follows that there is an isomorphisms

sSet-Cat (C(N∆(D),C) ∼= sSet-Cat (D,C)

since we just consider D = [0] or D = [1]. It follows that the constant simplicial sets are isomorphic, i.e.

∆sSet-Cat(C(N∆(D),C)
∼= ∆sSet-Cat(D,C)

Consider the two simplicial categories C(Y ) ∗D and C(Y ∗N∆(D)). By Corollary 4.2.1.4. in [Lur09] there

is a Dwyer-Kan equivalence of simplicial categories

C(Y ∗N∆(D))
∼−→ C(Y ) ∗ C(N∆(D))

Using the fact that there is a Dwyer-Kan equivalence of simplicial categories

C(N∆(D))
∼−→ D

it follows that there is a Dwyer-Kan equivalence

C(Y ∗N∆(D))
∼−→ C̃(Y ) ∗D

Then by Theorem B.1 there is a Quillen weak equivalence of left derived hom spaces

m̂apsSet-Cat(C(Y ) ∗D,C)
∼−→ m̃apsSet-Cat (C (Y ∗N∆(D)) ,C)

By looking at the homotopy pullback diagrams it follows
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m̃apF (C(Y ∗N∆(D)),C) m̃apsSet-Cat (C(Y ∗N∆(D)),C)

m̂apF (C(Y ) ∗D,C) m̂apsSet-Cat (C(Y ) ∗D,C)

∆0 ∆sSet-Cat(C(N∆(D),C)

∆0 ∆sSet-Cat(D,C)

∼ ∼

id ∼=

that there is a Quillen weak equivalence

m̂apF (C(Y ) ∗D,C)
∼−→ m̃apF (C(Y ∗N∆(D)),C)

Connecting all the pieces, we end up with a diagram of Quillen weak equivalences

m̂apF (C(Y ) ∗D,C) m̃apF (C(Y ∗N∆(D)),C)

mapsSet(Y,N∆(C/F )) mapsSet

(
Y,N∆(C)/N∆(F )

)
∼

∼ ∼

Then by the 2-out-of-3 property it follows that the map

mapsSet(Y,N∆(C/F ))→ mapsSet

(
Y,N∆(C)/N∆(F )

)
is a Quillen weak equivalence of left derived hom spaces. Since we choose Y arbitrarily, this is true for all

Y ∈ sSet. Hence Theorem B.1 implies that the map

N∆(C/F )→ N∆(C)/N∆(F )

is a Joyal weak equivalence.

Now using that the Quillen model structure on sSet is a left Bousfield localization of the Joyal model

structure ([JT06]), it follows that Joyal weak equivalences are also Quillen weak equivalences.

Proposition 5.27. ([JT06]) A Joyal equivalence between simplicial sets is a Quillen weak equivalence.

Corollary 5.8. In the setting of Proposition 5.26 there is a Quillen weak equivalence

N∆(C/F )→ N∆(C)/N∆(F )

Remark 5.33. From the proof of Proposition 5.26, it follows that the same result also holds for the dual

statement, i.e. for F : D→ C a simplicial functor, where D = [0], [1], there is a Joyal weak equivalence

N∆(CF/)→ N∆(C)N∆(F )/

which is in particular also a Quillen weak equivalence.

We notice that given a simplicial category C and a morphism f in C, the under category Cf/ is then defined

by identifying the morphisms f with the simplicial functor f : [1]→ C. Then Remark 5.33 implies that there

is a Quillen weak equivalence

N∆(Cf/)
∼−→ N∆(C)f/

Having established this important property of the coherent nerve functor, we can state the following propo-

sition.
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Proposition 5.28. Let p : C→ D be a simplicial functor between fibrant simplicial categories, such that for

all pairs of objects c, c′ ∈ C the map

C(c, c′)→ D(F (c), F (c′))

is a Kan fibration. Then p is a weak simplicial Grothendieck opfibration if and only if

N∆(p) : N∆(C)→ N∆(D)

is a coCartesian fibration.

Proof. ”⇒”:

Suppose that p is a weak simplicial Grothendieck opfibration. By Proposition 5.12 it is clear that N∆(p) is

an inner fibration. Hence we only need to show that for any vertex c1 in N∆(C) and every edge

α : N∆(p)(c1) =: d1 → d2 in N∆(D), there is a N∆(p)-coCartesian lift f : c1 → c2 of α. Indeed, let c1
be such a vertex and α : d1 → d2 such an edge. Then c1 can be regarded as an object of C and the edge

α : d1 → d2 can be identified with a morphism α : d1 → d2 in D. By hypothesis, p is a weak simplicial

Grothendieck opfibration. Hence there exists a lift f : c1 → c2 of α in C, such that there is a Dwyer-Kan

equivalence of simplicial categories

Cf/
∼−→ Cc1/ ×

Dp(c1)/

Dp(f)/

By applying the coherent nerve we obtain the following Joyal equivalence

N∆(Cf/)
∼−→ N∆(Cc1/) ×

N∆(Dp(c1)/)
N∆(Dp(f)/)

Now we apply Proposition 5.26 an get Joyal equivalences of the form

N∆(Cf/) ' N∆(C)f/ N∆(Cc1/) ' N∆(C)c1/ (4)

N∆(Dp(c1)/) ' N∆(D)d1/ N∆(Dp(f)/) ' N∆(D)α/ (5)

Now we want to show that the pullbacks

N∆(Cc1/) ×
N∆(Dd1/

)
N∆(Dα/) and N∆(C)c1/ ×

N∆(D)d1/

N∆(D)α/

are both Joyal equivalent to the corresponding homotopy pullbacks in the Joyal model structure. Since all

the objects in the pullback diagrams are fibrant, we only need to verify that at least one morphism in each

of the pullbacks is a Joyal fibration. For the right hand side, we notice that since p is a weak simplicial

Grothendieck opfibration, it follows that by Proposition 5.16 the map N∆(p) : N∆(C) → N∆(D) is a Joyal

fibration. Then by Proposition 5.13 we can decompose the map N∆(C)c1/ → N∆(D)d1/ as follows.

N∆(C)c1/ N∆(C) ×
N∆(D)

N∆(D)d1/ N∆(D)d1/

N∆(C) N∆(D)

y

Notice that the left horizontal morphism is a left fibration by Proposition 5.13. The right horizontal morphism

is a Joyal fibration, since fibrations are preserved under pullbacks. Then the composition

N∆(C)c1/ → N∆(D)d1/

is indeed a Joyal fibration. Therefore, the pullback N∆(C)c1/ ×
N∆(D)d1/

N∆(D)α/ is Joyal equivalent to the

homotopy pullback in sSetJoyal.

For the left hand side, we use Proposition 5.17 to show that the morphism

N∆(Dα/)→ N∆(Dd1/)
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is a left fibration, hence it is in particular also a Joyal fibration. This shows that also the pullback

N∆(Cc1/) ×
N∆(Dd1/

)
N∆(Dα/) is indeed Joyal equivalent to the homotopy pullback in the Joyal model struc-

ture. Since we have Joyal equivalences on the objects given by (4) and (5) it follows, using the fact that the

Joyal model structure is framed (Remark 5.34), that there is an induced weak equivalence on the pullbacks.

N∆(Cc1/) ×
N∆(Dd1/

)
N∆(Dα/)

∼−→ N∆(C)c1/ ×
N∆(D)d1/

N∆(D)α/

This provides the following commutative diagram.

N∆(Cf/) N∆(Cc1/) ×
N∆(Dp(c1)/)

N∆(Dp(f)/)

N∆(C)f/ N∆(C)c1/ ×
N∆(D)d1/

N∆(D)α/

Then by the 2-out-of-3 property, it follows that the dashed map is also a Joyal equivalence.

Consider now the following diagram

∗ ⊆ ∆1 f−→ N∆(C)
N∆(p)−−−−→ N∆(D)

Using that N∆(p) is an inner fibration, it follows by Proposition 5.13 that the dashed map above is a

left fibration. Since it is also a Joyal equivalence it follows by Proposition 5.14 that for all vertices s in

N∆(C)c1/ ×
N∆(D)d1/

N∆(D)α/ the induced map

(
N∆(C)f/

)
s
→

(
N∆(C)c1/ ×

N∆(D)d1/

N∆(D)α/

)
s

∼= ∗

is a homotopy equivalence. This shows that all fibers
(
N∆(C)f/

)
s

are contractible, which then implies using

Proposition 5.15 that the map

N∆(C)f/ → N∆(C)c1/ ×
N∆(D)d1/

N∆(D)α/

is a trivial Kan fibration. This shows that f is indeed a coCartesian lift of α, which shows that N∆(p) is a

coCartesian fibration.

”⇐”:

Suppose now that q := N∆(p) : N∆(C) → N∆(D) is a coCartesian fibration. Hence for every vertex c1 in

N∆(C) and every edge α : q(c1) = d1 → d2 in N∆(D) there is a coCartesian lift f , i.e.

N∆(C)f/ → N∆(C)c1/ ×
N∆(D)d1/

N∆(D)α/

is a trivial Kan fibration. Since the Quillen model structure is a left Bousfield localization of the Joyal model

structure, it follows that the class of Kan fibrations equals the class of trivial Joyal fibrations. Consider for

example Proposition 3.3.3. in [Hir03] as a reference. Hence the simplicial map

N∆(C)f/ → N∆(C)c1/ ×
N∆(D)d1/

N∆(D)α/

is a Joyal equivalence. Then using Proposition 5.26 it follows that the functor

Cf/
∼−→ Cc1/ ×

Dp(c1)/

Dp(f)/

is indeed a Dwyer-Kan equivalence of simplicial categories. This shows now that p : C → D is a weak

simplicial Grothendieck opfibration.
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Remark 5.34. Consider a model category M and X,Y : C → M small diagrams in M such that for all

α ∈ C the objects X(α) and Y (α) are fibrant. Moreover, let f : X → Y be a map of C-diagrams in M. In

general it is not true, that if we are given object wise weak equivalences

fα : X(α)
∼−→ Y (α)

that the induced map of homotopy limits holim(X) → holim(Y ) is also a weak equivalence. However, it

holds if the model category M is assumed to be framed, or if in particular the model category is right proper.

Since the Joyal model structure on sSet is not right proper, we need the fact that it is framed. Indeed, by

Proposition 5.21 it follows that to any simplicial set K, we can associate a cosimplicial resolution K̃ of K,

having the property that K̃0 ∼= K. Now notice that sSet endowed with the cartesian product and the Joyal

model structure is a monoidal model category. Therefore, it follows that to any simplicial set K we can

associate a simplicial resolution K̂, having the property that K ∼= K̂0. This eventually shows that sSetJoyal

is a framed model category according to Definition 16.6.21. in [Hir03].

The following theorem now shows that any symmetric monoidal topological category (C,⊗, 1, σ) gives rise to a

symmetric monoidal∞-category N∆(C). This fact might seem surprising, but actually an even more general

result has been showed by Nikolaus and Sagave in [NS15]. They showed that any presentably symmetric

monoidal ∞-category is represented by a symmetric monoidal model category. Now as we have seen in the

introduction of this chapter, any simplicial category C gives rise to a model category M, having the property

that its simplicial localization LM is weakly equivalent in the Bergner model structure to C. Hence if we

assume C to be symmetric monoidal, if follows that there is a symmetric monoidal model category M such

that LM ' C.

Theorem 5.7. Let (C,⊗, 1, σ) be a symmetric monoidal topological category. Then the associated∞-category

NT (C) is symmetric monoidal.

Proof. Let C be a symmetric monoidal topological category. Then the associated fibrant simplicial category

Sing C can be endowed with a symmetric monoidal structure. Hence it follows by Proposition 5.20 that

there is a simplicial Grothendieck opfibration

p : (Sing C)⊗ → FinSet∗

which satisfies the Segal condition. We need to show now that the induced map

N∆(p) : N∆

(
(Sing C)⊗

)
→ N∆(FinSet∗)

is a coCartesian fibration. First notice, by definition of the category (Sing C)⊗ and by the fact that Sing C

is locally fibrant, that the category (Sing C)⊗ is also locally fibrant. Since FinSet∗ is trivially enriched, it

is also fibrant with hom spaces given by discrete simplicial sets. Moreover, it follows by Proposition 5.11

that N∆(FinSet∗) = N(FinSet∗). We want to apply Proposition 5.28 to show that the induced map is a

coCartesian fibration. First notice that given objects X = [X1, ...., Xm] and Z = [Z1, ..., Zk] the hom space

of (Sing C)⊗ is defined as follows.

(Sing C)⊗(X,Z) =
∐

α∈FinSet∗(〈m〉,〈k〉)

(Sing C)⊗α (X,Y )

Therefore, the simplicial map induced by the functor p on the hom spaces is given by∐
α∈FinSet∗(〈m〉,〈k〉)

(Sing C)⊗α (X,Y ) −→ FinSet∗(p(X), p(Z)) = FinSet∗ (〈m〉, 〈k〉)

which is just the natural projection and therefore a Kan fibration. This shows that the functor p satisfies all

the necessary properties, such that we can apply Proposition 5.28. Since by hypothesis

p : (Sing C)⊗ → FinSet∗
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is a simplicial Grothendieck opfibration it is in particular also a weak simplicial Grothendieck opfibration.

Then Proposition 5.28 implies that the map

N∆(p) : N∆

(
(Sing C)⊗

)
→ N∆(FinSet∗) = N(FinSet∗)

is a coCartesian fibration. Moreover, we notice by the definition of the topological nerve NT and the fact

that the functor Sing : Topcg-Cat→ sSet-Cat is a right adjoint, that

NT
(
C⊗
) ∼= N∆

(
(Sing C)⊗

)
Therefore, we have that

q : NT
(
C⊗
) ∼=−→ N∆

(
(Sing C)⊗

) N∆(p)−−−−→ N(FinSet∗)

is a coCartesian fibration. Since p satisfies the Segal condition, we have that for all n ≥ 0 the functors

(Sing C)⊗〈n〉 → (Sing C)×n

are equivalences of simplicial categories. In particular these are Dwyer-Kan equivalences and therefore the

induced map

N∆

(
(Sing C)⊗〈n〉

)
−→ N∆

(
(Sing C)×n

)
is a Joyal equivalence. Then the following composition is still a Joyal equivalence.

N∆

(
(Sing C)⊗

)
〈n〉
∼= N∆

(
(Sing C)⊗〈n〉

)
−→ N∆

(
(Sing C)×n

) ∼= N∆ (Sing C)
×n

This shows that for all n ≥ 0 the induced Segal maps

NT (C⊗)〈n〉
∼−→ NT (C⊗)×n

are Joyal equivalences, which implies that q indeed defines a symmetric monoidal structure on NT (C).

5.8 The Day convolution on the ∞-category of enriched functors

To define an equivalent notion of topological Day convolution in the ∞-categorical setting, we first need to

specify the meaning of ”topological” in this context. To do so, we need the notion of the ∞-category of

spaces.

Definition 5.36. Let Kan denote the full subcategory of sSet spanned by the Kan complexes. Notice that

the simplicial mapping space makes Kan into a simplicial category. Then we define S := N∆(Kan) to be

the ∞-category of spaces.

Remark 5.35. First notice that even if we call S the ∞-category of spaces, we do not know yet that S

is indeed an ∞-category. Moreover, by considering the Quillen model structure on sSet we notice that

Kan = sSetcf can be regarded as the subcategory of fibrant and cofibrant objects. Indeed, since the fibrant

objects are precisely Kan complexes and any simplicial set is cofibrant. To see that S is indeed an∞-category,

we need the following result.

Proposition 5.29. The full subcategory Kan is a locally fibrant simplicial category. Consequently, the

simplicial set S is an ∞-category.

Proof. We need to show that for all X,Y ∈ Kan the corresponding mapping space MapsSet(X,Y ) is a Kan

complex. Recall that in the Quillen model structure on sSet every object is cofibrant and the fibrant objects

are given by Kan complexes. Using the fact that (sSet,×, ∗) endowed with the Quillen model structure is

a symmetric monoidal model category (Proposition 4.2.8 in [Hov99]), it follows that

× : sSet× sSet→ sSet
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is a Quillen bifunctor. By Remark 4.2.3 in [Hov99] we have that for any fibrant object Y in sSet, the functor

[−, Y ] : sSet→ sSetop

is a left Quillen functor and in particular preserves cofibrations. Given any simplicial set X we know that it

is cofibrant, i.e. there is a cofibration ∗ → X which is preserved under the above functor. That is, the map

[∗, Y ]→ [X,Y ]

in sSetop is a cofibration, which implies that

[X,Y ]→ [∗, Y ] ∼= Y

is a fibration in sSet. Since we choose Y to be fibrant, it follows now that also [X,Y ] is fibrant, i.e. the

mapping space is a Kan complex. Since this is true for any X and any fibrant Y , it follows that Kan is

locally fibrant.

Now we apply Remark 5.14 which implies that S = N∆(Kan) is an ∞-category.

Given a simplicial category C, we showed that we are able to endow the enriched functor category [C,Kan]

with a Day convolution tensor product. The corresponding ∞-category of enriched functors should be given

by the simplicial set [N∆(C), S]. Indeed, the following proposition shows that under certain assumptions, the

inner hom space [−,−] in sSet is an ∞-category.

Proposition 5.30. ([Lur09]) Let K be any simplicial set. Then the following statements hold.

(i) For every ∞-category C, the simplicial set [K,C] is an ∞-category.

(ii) Let C→ D be a Joyal equivalence of ∞-categories, then the induced map

[K,C]→ [K,D] is also a Joyal equivalence.

(iii) Let C be an ∞-category and K → K ′ a Joyal equivalence, then the induced map [K ′,C] → [K,C] is

also a Joyal equivalence.

Corollary 5.9. For any simplicial category C, the simplicial set [N∆(C), S] of functors into the ∞-category

of spaces, is again an ∞-category.

Proof. This follows directly from Proposition 5.29 and Proposition 5.30.

Similarly as we constructed the Day convolution on the category of pointed enriched functors [C,Top∗cg],

we can define the Day convolution in the same way on the topological category of functors [C,Topcg]. No-

tice that here we consider enriched functors between unpointed categories. In the unpointed case, we just

consider the cartesian product on Topcg instead of the smash product on Top∗cg, which allows us to define

the Day convolution in the same way. The reason why we used pointed spaces in the construction of the

Day convolution is a geometrical one. Namely, we wanted that the sphere spectrum, playing the role of the

tensor unit, induces structure maps of the form S1 ∧Xn → Xn+1 to the C-diagrams in Top∗cg. Nevertheless,

we are going to restrict ourselves to unpointed enriched functors. This is mostly due to notational reasons

and also because the pointed case can be handled easily by considering only slight modifications.

Corollary 5.10. Let C be a topological category and consider the symmetric monoidal topological cate-

gory

(
[C,Topcg], ⊗

Day
, 1, σ

)
. Then the ∞-category of enriched functors NT ([C,Topcg]) carries a symmetric

monoidal structure induced by the Day-Convolution.

Proof. This is the application of Theorem 5.7 to the topological symmetric monoidal category(
[C,Topcg], ⊗

Day
, 1, σ

)
.
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5.9 Outlook

Using Theorem 5.7 we were able to show, under the condition that C is a symmetric monoidal topologi-

cal category, that the topological Day convolution passes down the coherent nerve functor to a symmetric

monoidal structure on the∞-category NT
(
[C,Topcg]

)
of enriched functors. That is, we are given a coCarte-

sian fibration

p : NT

(
[C,Topcg]

⊗
Day

)
→ N(FinSet∗)

satisfying the Segal condition. However, this result is not yet in the desired form. We would like to give a

Day convolution on the∞-category [K, S] of functors into the∞-category of spaces. Such a Day convolution

exists, if we assume K to be a symmetric monoidal ∞-category, as for example showed in [Gla13]. By

definition we then have a coCartesian fibration

[K, S]⊗ −→ N(FinSet∗)

satisfying the Segal condition. Choosing C to be a symmetric monoidal topological category, we have again

by Theorem 5.7 that the corresponding ∞-category NT (C) is symmetric monoidal. Hence for K = NT (C)

we obtain a Day convolution on [NT (C), S], i.e. a coCartesian fibration

q : [NT (C), S]⊗ −→ N(FinSet∗)

We notice that especially the relation between the simplicial sets NT ([C,Topcg]) and [NT (C), NT (Topcg)]

plays an important role in the comparison between the two monoidal structures p and q.

Suppose we are given two topological categories C and D. Then it follows from Proposition 5.2 that

Top-Cat([C,D], [C,D]) ∼= Top-Cat([C,D]× C,D)

id 7→ ϕ : [C,D]× C→ D

Therefore, by applying the coherent nerve we obtain

sSet (NT ([C,D])×NT (C), NT (D)) ∼= sSet (NT ([C,D]), [NT (C), NT (D)])

NT (ϕ) 7→ ψ : NT ([C,D])→ [NT (C), NT (D)]

This shows that there is a canonical map of ∞-categories

ψ : NT ([C,D])→ [NT (C), NT (D)]

inducing the following diagram.

NT

(
[C,Topcg]

⊗
Day

)
[NT (C), S]

⊗

N(FinSet∗)

ψ⊗

p
q

Assume now that the map ψ is a Joyal equivalence and that the diagram commutes. Then if ψ⊗ carries

p-coCartesian edges to q-coCartesian edges, it follows that these two different notions of Day convolution are

equivalent in the coCartesian model structure on the category of marked simplicial sets over N(FinSet∗),

denoted by sSet+
/N(FinSet∗). However, neither the commutativity nor the fact that ψ is a weak equivalence

follows immediately from the established theory, motivating further investigation.
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A Model categories

As model categories and model structures are used widely throughout this paper, this section will give a

short introduction following Chapter 1 in [Hov99].

A.1 Model categories and their homotopy categories

Let C be a category, then we denote with MapC the category whose objects are the morphisms of C and

whose morphisms f → g are given by commutative squares in C.

x x′

y y′

f g

Definition A.1.

(i) A map f in C is a retract of a map g in C, if there is a commutative diagram of the form

x x′ x

y y′ y

f g f

where the horizontal composites are identities.

(ii) A functorial factorization is an ordered pair (α, β) of functors MapC → MapC, such that for all

f ∈ MapC it holds β(f) ◦ α(f) = f . This means in particular that the domain of α(f) is the domain

of f , the codomain of α(f) is the domain of β(f) and the codomain of β(f) is the codomain of f .

Remark A.1. Recall that in a general category an object x is a retract of an object y if there are morphisms

i : x→ y and r : y → x such that the composition r◦ i = idx. Hence it is easy to see that the above definition

of a retract coincides with the notion of a retract in the category MapC.

Definition A.2. Suppose i : a → b and p : x → y are maps in the category C. Then i has the left

lifting property with respect to p and p has the right lifting property with respect to i, if for every

commutative diagram of the form

a x

b y

i

f

p

g

h

there exists a lift h : b→ x such that h ◦ i = f and p ◦ h = g.

Definition A.3. A model structure on a category C is the data of three subcategories of MapC called

weak equivalences, cofibrations and fibrations, and two functorial factorizations (α, β) and (γ, δ) satisfying

the following axioms.

M1 (2-out-of-3) : If f and g are two composable morphisms of C and two of f , g and g ◦ f are weak

equivalences, then so is the third.

M2 (Retracts) : If f and g are morphisms of C such that f is a retract of g and g is a weak equivalence,

cofibration, or fibration, then so is f .
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M3 (Lifting property) : A morphism is said to be a trivial cofibration resp. trivial fibration, if it is

both a weak equivalence and a cofibration resp. fibration. Then trivial cofibrations have the left lifting

property with respect to fibrations and trivial fibrations have the right lifting property with respect to

cofibrations.

M4 (Factorization) : For any morphism f in C, α(f) is a cofibration and β(f) is a trivial fibration and γ(f)

is a trivial cofibration and δ(f) is a fibration. Hence every morphism can be factored as a composition

of trivial cofibrations/fibrations and fibrations/cofibrations.

Definition A.4. A model category is a category C with all small limits and small colimits together with

a model structure.

Remark A.2. A category with all small (co-)limits is called (co-)complete. This means that every model

category has an initial object, the colimit of the empty diagram, and a terminal object, the limit of the

empty diagram. If the morphism from the initial object to the terminal object is an isomorphism, we say

that the category is pointed.

Definition A.5. An object x of a model category C is called cofibrant, if the morphism 0 → x from the

initial object 0 to x is a cofibration. Similarly an object x is called fibrant if the morphism x → ∗ from x

to the terminal object ∗ is a fibration.

Let C be a pointed model category and ∗ its terminal object. Then we denote with C∗ the category under

the object ∗. Objects of C∗ are pairs (X, v) where X ∈ C and v : ∗ → X. Consider now the forgetful functor

U : C∗ → C, which has a left adjoint functor (−)+ : C → C∗ given by the assignment X 7→ X+ = X q ∗.
These two functors define an equivalence of the categories C and C∗. Since C is a model category the question

arises, if the model structure transfers through the mentioned adjunction to the category C∗.

Proposition A.1. ([Hov99]) Suppose C is a model category. Then we define a map f in C∗ to be a cofibration,

fibration, or weak equivalence if and only if U(f) is a cofibration, fibration, or weak equivalence in the model

structure on C. Then C∗ is also a model category.

Given a model category C, apply the functorial factorization (α, β) to the unique morphism iX : 0→ X for

any object X ∈ C. It follows that the morphism α(iX) : 0 → QX is a cofibration and β(iX) : QX → X a

trivial fibration. Hence there is a unique way to assign to each object X ∈ C its cofibrant replacement,

denoted by QX. Similarly the functorial factorization (γ, δ) applied to the unique morphism rX : X → ∗
gives a trivial cofibration γ(rX) : X → RX and a fibration δ(rX) : RX → ∗. Hence there is also a unique

way to assign to each object X ∈ C its fibrant replacement, denoted by RX. These assignments define

two functors

Q : C→ C R : C→ C

X 7→ QX X 7→ RX

called cofibrant/fibrant replacement functors.

Lemma A.1. ([Hov99]) Let C be a model category. Then a morphism is a cofibration resp. a trivial

cofibration if and only if it has the left lifting property with respect to all trivial fibrations resp. all fibrations.

Dually a morphism is a fibration resp. a trivial fibration if and only if it has the right lifting property with

respect to all trivial cofibrations resp. all cofibrations.

Remark A.3. Lemma A.1 shows that the axioms for a model category are overdetermined. That is given the

two subcategories of weak equivalences and cofibrations, the subcategory of fibrations is determined by the

right lifting property and similarly given weak equivalences and fibrations, the cofibrations are determined

by the left lifting property.
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The following corollary is very useful when working in concrete model categories such as Top or sSet.

Corollary A.1. In a model category C cofibrations resp. trivial cofibrations are closed under pushouts. That

is, given a pushout square where f is a cofibration resp. a trivial cofibration

A X

B Y

f g

p

then g is also a cofibration resp. a trivial cofibration. Dually fibrations resp. trivial fibrations are closed

under pullbacks.

Given a model category C with classes of weak equivalences, fibrations and cofibrations one might want to

look at objects of C up to weak equivalence. Since weak equivalences do not need to be isomorphisms in the

category C we construct the homotopy category of C by formally inverting the weak equivalences.

Definition A.6. Let C be a category and W be a subcategory of weak equivalences. Then we define the

quiver Q(C,W−1) as follows

Q(C,W−1) : X→ Set

X0 7→ Ob(C)

X1 7→ Mor(C) ∪ {w−1 | w ∈W}

and where

Q(s) : Mor(C) ∪ {w−1 | w ∈W} → Ob(C) Q(t) : Mor(C) ∪ {w−1 | w ∈W} → Ob(C)

Mor(C) 3 f 7→ dom(f) Mor(C) 3 f 7→ cod(f)

{w−1 | w ∈W} 3 w−1 7→ cod(w) {w−1 | w ∈W} 3 w−1 7→ dom(w)

Then we define the free category F (C,W−1) as the path category of the quiver Q(C,W−1), i.e.

F (C,W−1) := PQ(C,W−1)

Remark A.4. Notice that objects of F (C,W−1) are objects of C and morphisms are finite strings of com-

posable morphisms (f1, ..., fn) where fi is either a morphism of C or the reversal w−1
i of a morphism wi ∈W.

Definition A.7. Let C and W be as above. Then we define the category C
[
W−1

]
as the quotient category

of F (C,W−1) by the relations

1X ∼ (1X) for all objects X ∈ C

(g ◦ f) ∼ (f, g) for all composable arrows f, g ∈ C

iddom(w) ∼ (w,w−1) and idcod(w) ∼ (w−1, w) for all w ∈W

The category C
[
W−1

]
is called the localization of C by W.

Remark A.5. In the case where C is a model category and W the subcategory of weak equivalences, we

denote the localization by HoC, which is also called the homotopy category of C. Localizations in general

may not behave very well. That is, given a locally small category its localization by some subcategory may

not be locally small anymore. By treating categories in full generality this does not generate any issue, but

as we restricted ourselves to treat only locally small categories one should always be aware. Thankfully it

can be shown that the localization of a model category by its weak equivalences always defines a locally

small category.
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The localization of a category can be characterized by a universal property. Note that there is a functor

γ : C→ C
[
W−1

]
being the identity on objects and taking morphisms of W to isomorphisms in C

[
W−1

]
.

Lemma A.2. ([Hov99]) Let C be a category and W a subcategory.

(i) If F : C→ D is a functor that sends morphisms of W to isomorphisms in D, then there exists a unique

functor F
[
W−1

]
: C
[
W−1

]
→ D such that

(
F
[
W−1

])
◦ γ = F .

(ii) Suppose G : C→ D is a functor taking morphisms of W to isomorphisms and being equipped with the

universal property of (i), then there is a unique isomorphism C
[
W−1

] F−→ D such that F ◦ γ = δ.

As we will see later, it is important to consider the following full subcategories of a model category C.

• Cc the full subcategory of cofibrant objects

• Cf the full subcategory of fibrant objects

• Ccf the full subcategory of cofibrant and fibrant objects

which all carry the ”same” model structure up to weak equivalence, which is shown in the next Proposition.

Proposition A.2. ([Hov99]) Let C be a model category and let Cc, Cf and Ccf denote the full subcategories

defined above. Then the corresponding inclusion functors induce equivalences of categories

HoCcf → HoCc → HoC

HoCcf → HoCf → HoC

The above definition of the homotopy category of a model category is very abstract and does not really

motivate its name. Hence by a second approach we will define an abstract notion of homotopy equivalence

between arrows in a model category and use this notion to give a more tangible construction of the homotopy

category.

Definition A.8. Let C be a model category, and let f, g : B → X be two morphisms in C.

(i) A cylinder object for B is a factorization of the fold map ∇ : B q B → B into a cofibration

B qB i0+i1−−−→ Cyl(B) followed by a weak equivalence Cyl(B)
s−→ B.

(ii) A path object for X is a factorization of the diagonal map ∆ : X → X ×X into a weak equivalence

X
r−→ Path(X) followed by a fibration Path(X)

(p0,p1)−−−−→ X ×X.

(iii) A left homotopy from f to g is a morphism H : Cyl(B) → X for some cylinder object for B, such

that H ◦ i0 = f and H ◦ i1 = g. If such a left homotopy exists, we say that f and g are left homotopic,

written f
l∼ g.

(iv) A right homotopy from f to g is a morphism h : B → Path(X) for some path object for X, such that

p0 ◦ h = f and p1 ◦ h = g. If such a right homotopy exists, we say that f and g are right homotopic,

written f
r∼ g.

(v) We say that f and g are homotopic, written f ∼ g, if they are both left and right homotopic. Moreover

a morphism f : B → X is said to be a homotopy equivalence, if there is a morphism k : X → B such

that f ◦ k ∼ idX and k ◦ f ∼ idB .

Remark A.6. Notice that in the above definition the morphisms i0, i1 and p0, p1 are the corresponding

inclusion and projection morphisms, such that the following diagrams commute for a left homotopy H and

a right homotopy h between f and g.
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Cyl(B) X Cyl(B) X B Path(X) B Path(X)

B qB B B qB B X X ×X X X ×X

H H

f

h

(p0,p1) g

h

(p0,p1)i0+i1

i0

f i0+i1

i1

g

p0 p1

Moreover it follows that the natural choices for cylinder and path objects are the objects B × I and XI ,

which are defined to be the objects occurring in the functorial factorization of the fold map and the diagonal

map. Those objects are thus part of the datum of a model category.

We will see in the following proposition that left and right homotopies define an equivalence relation on

certain morphisms of the model category C, which allows us to talk about morphisms up to homotopy.

Proposition A.3. ([Hov99]) Let C be a model category and let B be a cofibrant object and X a fibrant object

of C. Then the left homotopy and right homotopy relations coincide and define an equivalence relation on

C(B,X).

Corollary A.2. The homotopy relation on the morphisms of Ccf is an equivalence relation and is compatible

with composition. Hence the quotient category Ccf/∼ exists.

Now we notice that the quotient category Ccf/∼ implements our intuition of a homotopy category of a model

category. Hence it is left to show that Ccf/∼ and HoC define indeed the same category up to equivalence. To

do so, we fist notice that the notion of homotopy equivalence and weak equivalence coincide in the cofibrant

and fibrant setting.

Proposition A.4. ([Hov99]) Let C be a model category. Then a morphism in Ccf is a weak equivalence if

and only if it is a homotopy equivalence.

Corollary A.3. Let C be a model category and let γ : Ccf → HoCcf and δ : Ccf → Ccf/∼ be the canonical

functors. Then there is a unique isomorphism of categories Ccf/∼
j−→ HoCcf such that j ◦ δ = γ. Moreover

j is the identity on objects.

Proof. One needs to show that the pair (δ,Ccf/∼) has the universal property of the localization of Ccf with

respect to weak equivalences. For details see Corollary 1.2.9. in [Hov99].

The following theorem, providing the desired categorical equivalence between these two notions of a homotopy

category can be considered the fundamental theorem of model categories.

Theorem A.1. Let C be a model category. Let γ : C→ HoC denote the canonical functor, and let Q denote

the cofibrant replacement functor of C and let R denote the fibrant replacement functor. Then

(i) the inclusion Ccf → C induces an equivalence of categories

Ccf/∼ −→ HoC

(ii) there are natural isomorphisms

C(QRX,QRY )/∼ ∼= HoC(γ(X), γ(Y )) ∼= C(RQX,RQY )/∼

(iii) if f : A→ B is a morphism in C such that γ(f) is an isomorphism in HoC, then f is a weak equivalence.
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A.2 Quillen functors and derived functors

The following will be a short introduction to Quillen functors and derived functors with the aim to give a

profound definition of Quillen equivalences and their properties.

In the following let C and D be two model categories, unless specified otherwise.

Definition A.9.

(i) A functor F : C → D is said to be a left Quillen functor if F is a left adjoint and preserves

cofibrations and trivial cofibrations.

(ii) A functor U : D → C is said to be a right Quillen functor if G is a right adjoint and preserves

fibrations and trivial fibrations.

(iii) A pair of adjoint functors F a G is said to be a Quillen adjunction or Quillen pair if F is a left

Quillen functor.

Remark A.7. It can be shown using Ken Brown’s Lemma that every left Quillen functor preserves weak

equivalences between cofibrant objects and that every right Quillen functor preserves weak equivalences

between fibrant objects. Moreover it is easy to see that a pair of adjoint functors F a G between to model

categories is a Quillen adjunction if and only if G is a right Quillen functor. For details see Lemma 1.3.4. in

[Hov99].

Definition A.10.

(i) If F : C → D is a left Quillen functor, define the total left derived functor LF : HoC → HoD to

be the composite

HoC
HoQ−−−→ HoCc

HoF−−−→ HoD

Given a natural transformation τ : F → F ′ of left Quillen functors, define the total derived natural

transformation Lτ : LF → LF ′ to be the composite Ho τ ◦ HoQ, so that one has (Lτ)X = τQX for

every X ∈ HoC.

(ii) If G : D → C is a right Quillen functor, define the total right derived functor RG : HoD → HoC

to be the composite

HoD
HoR−−−→ HoDf

HoG−−−→ HoC

Given a natural transformation η : G→ G′ of right Quillen functors define the total derived natural

transformation Rη : RG→ RG′ to be the composite Ho η ◦ HoR, so that one has (Rη)Y = ηRY for

every Y ∈ HoD.

Given a Quillen adjunction F a G between two categories, the corresponding total derived functors will

create a pair of adjoint functors between the corresponding homotopy categories. The main goal of this

section will be to investigate under what conditions this derived adjunction is in fact an equivalence of

categories. Such an adjunction will be called a Quillen equivalence.

Proposition A.5. ([Hov99]) Let F a G : C → D be a Quillen adjunction. Then the total derived functors

LF and RG form an adjoint pair of functors between the homotopy categories, i.e.

LF a GR : HoC→ HoD

This adjunction is called the derived adjunction.

Definition A.11. A Quillen adjunction F a G : C→ D is called a Quillen equivalence, if and only if for

all cofibrant X in C and fibrant Y in D, a morphism f : FX → Y is a weak equivalence in D, if and only if

ϕX,Y (f) : X → GY is a weak equivalence in C.
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Remark A.8. Notice that ϕ denotes the family of natural isomorphisms of hom sets

ϕX,Y : D(FX, Y )
∼=−→ C(X,GY )

given by the adjoint pair F a G.

Proposition A.6. ([Hov99]) Let F a G : C→ D be a Quillen adjunction. Then the following are equivalent.

(i) F a G is a Quillen equivalence.

(ii) The derived adjunction LF a RG is an adjoint equivalence of categories.

The next proposition will be a useful tool to check whether a Quillen adjunction is a Quillen equivalence.

Proposition A.7. ([Hov99]) Let F a G : C→ D be a Quillen adjunction. Then the following are equivalent.

(i) F a G is a Quillen equivalence.

(ii) F reflects weak equivalences between cofibrant objects, i.e. for every morphism f : X → X ′ in Cc such

that F (f) is a weak equivalence in D then f is a weak equivalence in C. Moreover for every fibrant Y

in D, the morphism (FQG)(Y )→ Y is a weak equivalence.

(iii) G reflects weak equivalences between fibrant objects and, for every cofibrant X in C the morphism

X → (GRF )(X) is a weak equivalence.

B Derived hom spaces

In this section we will introduce a very powerful tool to detect weak equivalences in model categories. To

do so, we associate to every pair of objects x, y in a model category M a simplicial set LM(x, y) which we

call the left derived hom space of x and y. In contrast to the hom sets of the homotopy category HoM,

the derived hom spaces carry higher homotopical coherence data. To introduce these spaces we will follow

Chapter 15, 16 and 17 in [Hir03].

B.1 (Co)Simplicial resolutions

Definition B.1. Let C be a model category and let x be an object of C.

(i) A cosimplicial resolution of x is a cofibrant approximation Q(∆x) → ∆x in the Reedy model

structure on C∆. Here ∆x denotes the constant cosimplicial object given by (∆x)n = x for all [n] ∈ ∆.

(ii) A simplicial resolution of x is a fibrant approximation ∆op
x → R(∆op

x ) in the Reedy model structure

on C∆op

. Here ∆op
x denotes the constant simplicial object given by (∆op

x )n = x for all [n] ∈ ∆op.

Proposition B.1. ([Hir03]) Let C and D be model categories and let F : C� D : G be a Quillen pair. Then

(i) if x is a cofibrant object of C and Q(∆x) → ∆x is a cofibrant resolution of x, then FQ(∆x) → ∆F (x)

is a cofibrant resolution of F (x).

(ii) if y is a fibrant object of D and ∆op
y → R(∆op

y ) is a simplicial resolution of y, then ∆op
G(y) → GR(∆op

y )

is a simplicial resolution of G(y).
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B.2 Left derived hom spaces

Definition B.2. If C is a model category and x, y are objects of C, then a left derived hom space from

x to y is a triple

(Q(∆x), Ry,LC(x, y))

where Q(∆x) is a cosimplicial resolution of x, Ry is a fibrant approximation of y and LC(x, y) is the simplicial

set defined by

LC(x, y)n = sSet(Q(∆x)n, Ry)

Proposition B.2. ([Hir03]) If C is a model category and x, y are objects of C, then a left derived hom space

from x to y is a fibrant simplicial set in the Quillen model structure on sSet.

Definition B.3. A change of left derived hom spaces is a triple (f, g, h), where

(i) f : Q′(∆x)→ Q(∆x) is a map of cosimplicial resolutions of x.

(ii) g : Ry → R′y is a map of fibrant approximations of y.

(iii) h : LC(x, y)→ L′C(x, y) is the map of simplicial sets induced by f and g.

Remark B.1. Notice that in the above definition, the left derived hom space L′C(x, y) is the simplicial set

defined by

L′C(x, y)n = sSet(Q′(∆x)n, R′y)

Proposition B.3. ([Hir03]) If C is a model category and x and y are objects in C, then a change of left

derived hom spaces is a weak equivalence of fibrant simplicial sets in the Quillen model structure on sSet.

Theorem B.1. ([Hir03]) If C is a model category and g : x→ y is a morphism in C, then the following are

equivalent.

(i) The morphism g is a weak equivalence in C.

(ii) For every object z in C the morphism g induces a weak equivalence of left derived hom spaces

g∗ : LC(z, x)→ LC(z, y)

in the Quillen model structure on sSet.

(iii) For every cofibrant object z in C the morphism g induces a weak equivalence of left derived hom spaces

g∗ : LC(z, x)→ LC(z, y)

in the Quillen model structure on sSet.

(iv) For every object z in C the morphism g induces a weak equivalence of left derived hom spaces

g∗ : LC(z, x)→ LC(z, y)

in the Quillen model structure on sSet.

(v) For every fibrant object z in C the morphism g induces a weak equivalence of left derived hom spaces

g∗ : LC(z, x)→ LC(z, y)

in the Quillen model structure on sSet.
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