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Higher Structures in Topological
Quantum Field Theory

Habilitationsschrift

submitted to the faculty of Science
of the University of Zürich
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Abstract

This thesis is comprised of 7 papers where we investigate aspects of higher structures
in the study of Topological Quantum Field Theory (TQFT) in the functorial formal-
ism. In particular, we study boundary conditions and defects in extended TQFTs,
and the constraints they induce on the algebraic structures involved. We use tech-
niques from homotopy theory and∞-categories to understand fully extended TQFTs
in the presence of boundary conditions, and their relation to anomalous field theories.
We also develeop a systematic study of homotopy actions of topological groups in the
framework of bicategories, which we apply to the classification of 2d framed and ori-
ented TQFTs, and which can be regarded as an algebraic counterpart of techniques
arising in homotopy theory.
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“Beware of the man who works hard to
learn something, learns it, and finds him-
self no wiser than before. He is full of
murderous resentment of people who are
ignorant without having come by their ig-
norance the hard way.”

K. Vonnegut, Cat’s Cradle





CHAPTER 1

Preface

1. Introduction

1.1. Topological Quantum Field Theory. Topological Field Theory (TFT)
has been a very active area of interaction between Mathematics and Physics for the
past 30 years. The study of Topological Field Theories has lead to new insight in
the mathematical foundations of Quantum Field Theory. At the same time, ideas
originated from TFT have provided deep insight into cobordism categories and the
structure of manifolds, emphasizing the relevance and importance of higher mathe-
matical structures.
In the seminal paper [69], Witten showed how techniques from field theory could
be used to produce manifold invariants. More precisely, he showed that the parti-
tion function for the SU(2)-Chern-Simons action computed as a path integral over
the space of connections of a principal SU(2)-bundle over a 3 dimensional framed
manifold M produces a diffeomorphism invariant. Moreover, he argued that by com-
puting the expectation value for an observable given by considering the holonomy1 of
a connection along a link L in M one obtains the Jones’ polynomial associated to L,
evaluated at a root of unity.
The formal properties of the path integral were used by Atiyah [1] to give an ax-
iomatic framework for Topological Quantum Field Theories (TQFT), following the
work of Segal [64] on Conformal Field Theory. Atiyah’s definition is best encoded
by using the language of categories: namely, a n-dimensional TQFT Z is a sym-
metric monoidal functor from the category of oriented cobordisms Cobor(n) to the
category of vector spaces Vectk, where k is a field, usually C. Briefly, Cobor(n) has
closed oriented (n− 1)-manifolds as objects, and n-dimensional cobordisms (modulo
diffeomorphisms) as morphisms. Then Z assigns a vector space Z(Σ) to a (n − 1)-
dimensional manifold Σ, and a linear map from Z(Σ) to Z(Σ′) to any cobordism
between Σ and Σ′. Crucially, the axioms force the vector space Z(Σ) to be finite
dimensional for any Σ. Since any n-dimensional closed manifold M can be regarded
as a cobordism from the empty set ∅ to itself, as a consequence of the monoidality of
Z one obtains an element Z(M) ∈ k, which is regarded as the partition function of
the TQFT evaluated at M , and it is a diffeomorphism invariant of M .
The functorial approach to Topological Quantum Field Theory is powerful enough
to allow for a complete classification in specific cases. For instance, for n = 1 a

1The holonomy is considered in the fundamental representation.
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2 1. PREFACE

TQFT is simply given by a finite dimensional vector space, while for n = 2 it is com-
pletely determined by a commutative Frobenius algebra. Both these results rely on
the fact that 1 and 2-dimensional compact manifolds with boundaries are somehow
easy to describe in terms of surgery, or “cut & paste”, which allows for a complete
presention of Cobor(n), n ≤ 2, in terms of generators and relations. In higher dimen-
sions, though, the situation becomes dramatically more complicated: indeed, at the
moment of writing there exist no classification result for n-dimensional TQFTs for
n > 3. We stress at this point that the functorial approach to TQFT is genuinely
nonperturbative, in the sense that it does not rely on any quantization framework, in
particular on any perturbative approach to Quantum Field Theory.
In [23], Freed proposed that an n-dimensional Topological Quantum Field Theory
arisingfrom local classical lagrangians via quantization should assign data also to man-
ifolds of higher codimension. Indeed, locality allows to decompose a n-dimensional
manifold M into higher codimensional (and hopefully simpler) pieces, and to compute
the manifold invariant via the algebraic data assigned to these pieces. In particular,
in [23] the case of the 3-dimensional Topological Quantum Field Theory given by
Dijkgraaf-Witten theory [18] was investigated in detail, and it was shown that it
assigns a category to the oriented circle S1, in such a way that the space of states and
partition functions are recovered consistently. Similarly, the 3d TQFT constructed
by Reshetikhin and Turaev in [59] from a modular tensor category C, and by Turaev
and Viro [67] via a state sum construction, can both be recast in such a framework.
To axiomatically formulate the notion of Topological Quantum Field Theories which
attach data to manifolds of codimension higher than 1, and which are called extended
TQFTs, the use of higher category theory is required. In [3], Baez and Dolan argued
that n-dimensional Topological Quantum Field Theories which are fully extended, i.e.
which attach data to higher codimensional manifolds up to the point, are described
as representation of a framed cobordism n-category, and, more importantly, were
conjectured to be completely classifiable: this conjecture is known as the Cobordism
hypothesis. More precisely, the Baez-Dolan conjecture states that the framed ex-
tended cobordism n-category Cobfrn is the free weak n-category generated by a single
fully dualizable object. Such a conjecture has eluded a proof for many years, one of
the reasons being the lack of a robust definition of a weak n-category for n > 3, and
a systematic way to perform algebra in such a setting. For 2-dimensional oriented
TQFTs2, a proof of the Cobordism Hypothesis was obtained in [61], where it was
shown that such TQFTs correspond to separable symmetric Frobenius algebras. The
techniques used in [61] rely heavily on Morse and Cerf theory for two-dimensional
manifolds with boundaries and corners, hence they are quite difficult to directly ex-
tend to higher dimensions.
By not only extending down, but also up, in [53] Lurie was able to give an exten-
sive account of a proof of the Cobordism Hypothesis formulated in the language of
(∞, n)-categories, a generalization of the notion of category. Though apparently more
complicated, the passage to∞-categories allows for a proof of the Baez-Dolan conjec-
ture via an induction procedure. More precisely, Lurie introduces an (∞, n)-category

2The coefficent target is given by the Morita bicategory of associative unital algebras
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of framed bordisms Bordfrn , whose definition is sketched3 in [53], and shows that

functors (in a suitable sense) between Bordfrn and any symmetric monoidal (∞, n)-
category C correspond to fully dualizable objects in C. He also argues that TQFTs
which are fully extended and defined on manifolds with additional tangential struc-
tures, i.e. orientation, spin, etc., can be recovered by considering homotopy fixed
points of the relevant group action on a topological space associated to the subcate-
gory of fully dualizable objects Cfd.
Topological Quantum Field Theories arising from classical lagrangians often admit
extended observables. For instance, Chern-Simons theory on a manifold M is in gen-
eral considered in the presence of a Wilson loop L, namely a 1-dimensional subman-
ifold L ⊂ M decorated by a character ρ of the structure group G. The expectation
value of the observable (L, ρ) could be equivalently regarded as the partition function
of a TQFT defined on a manifold with a defect. To make this precise, for each n

one can construct a cobordism category4 CobdefD (n) where objects and morphisms
are stratified manifold of dimension n − 1 and n, respectively, which are decorated
by suitable algebraic data D. A TQFT with defects is then a symmetric monoidal

functor from CobdefD (n) to Vectk. Such structures have been extensively investi-
gated [16, 47, 49, 55]: in particular, in [43] Kapustin proposed that the algebraic
data needed to define a TQFT with defects can be organised into higher categories,
with the categorical layers roughly corresponding to the codimension of the defect. A
particular type of defect is provided by a boundary condition5. It allows the partition
function of a TQFT to be well defined on a manifold with constrained boundary,
which is defined as a (part of the) boundary where gluing is not allowed. In [55], 2d
oriented TQFTs with boundary conditions, also known as open/closed theories, are
investigated, and a classification result is provided. In particular, they show that in
this case boundary conditions form a (finite) Calabi-Yau category.
To better understand the rôle of the material contained in the present thesis, we
find useful to illustrate some aspects concerning the state of the art in the higher
categorical approach to Topological Quantum Field Theory:

• Though the formulation of the Cobordism Hypothesis via (∞, n)-categories
in [53] has been really fruitful in providing classification results, often con-
crete cases are presented in the language of low dimensional higher category
and are intrinsically algebraic, which makes them more amenable to compu-
tations.
• Topological defects and boundary conditions have recently become of inter-

est and appeared in the framework of extended TQFTs, though not many
concrete examples are provided. In particular, a description of the extended
3d bicategory of cobordisms with singularities is not yet available.
• The classification of fully extended TQFTs defined on manifolds with addi-

tional tangential structures require a notion of homotopy action of topolog-
ical groups on higher categories, which is still not formalised in general.

3A rigorous construction of Bordfrn is presented in [10].
4Notice that the cobordism category depends on the decoration data.
5We are only treating topological boundary conditions and defects.



4 1. PREFACE

The papers presented in this thesis give substantial contributions in particular to the
topics mentioned above.

1.2. Short summaries of the papers. Here we give a brief summary for each
paper we have included. We will give more details in Section 4.

• In [31] we study topological boundary conditions and surface defects for
extended 3d TQFTs of Reshethikin-Turaev type based on a modular ten-
sor category C. We argue that there are obstructions for the existence of
admissible boundary conditions and defects which are detected by the Witt
group of fusion categories. Moreover, we realize boundary conditions and
defects in terms of module categories over fusion categories, and apply this
description to the case of Abelian Chern-Simons theory, recovering known
results in the Physics literature.
• In [32] we study boundary conditions and surface defects for extended Dijkgraaf-

Witten theory from a geometric point of view. More precisely, we consider
the linearisation of categories of relative bundles on manifolds with bound-
aries, and show that the category of generalized Wilson lines agrees with the
one which can be obtained via the formalism developed in [31].
• In [29] we study symmetries of extended 3d TQFTs in terms of invertible

surface defects. In particular, we identify symmetries as elements of Brauer-
Picard groups. We apply this analysis to the case of extended Abelian
Dijkgraaf-Witten theory with a nontrivial cocyle, and give a complete clas-
sification of its symmetries in terms of gauge theoretic quantities.
• In [21] we introduce the concept of TQFT of moduli level m, and give a

formulation of anomalous extended TQFTs in these terms. In particular, we
show that a fully extended anomalous TQFT produces a boundary condition
for the anomaly field theory. To this aim, we develop a theory of n-characters
for ∞-groups and their homotopy fixed points.
• In [20] we study central extensions of the geometric realisation of the auto-

morphism stack of a manifold (or stack) equipped with a tangential struc-
ture, as appeared in [53]. We show then how to obtain from this general
framework the Z-extensions of surfaces introduced by Segal in [64], which
provide the required anomaly cancellation for Chern-Simons theory.
• In [37] we study actions of topological groups on bicategories, and give a

precise definition of homotopy fixed points of such an action. We then show
that the homotopy fixed points of the trivial action of SO(2) on the bicate-
gory of algebras, bimodules and intertwiners are in bijection with Frobenius
algebras. We use this result to then show that fully extended oriented 2d
TQFTs taking value in 2-Vector spaces are classified by finitely semisimple
Calabi-Yau categories.
• In [38] we show that the Serre automorphism of a symmetric monoidal bi-

category C introduced in [53] has a geometric origin, as expected. More
precisely, it arises from the SO(2)-action obtained by “rotating the fram-
ing” in the framed cobordism bicategory. We study the homotopy fixed
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points of this action, and discuss its relation to 2d oriented fully extend
TQFTs and to invertible field theories.

The results above group around the following topics:

(i) Boundary conditions and defects in extended TQFTs [21,29,31,32].
(ii) Fully extended TQFTs and homotopy theory [20,21].
(iii) Group actions on higher categories [21,37,38].

1.3. Outlook. The results of the papers presented in this thesis, in particu-
lar [21,29,31,32], constitute the beginning of a systematic study of extended TQFTs
with boundary conditions and stratifications, and their symmetries. The observations
contained in these works will hopefully lead to a full construction of extended cobor-
dism categories with stratifications. The results on the study of symmetries in [29,31]
can be applied to orbifolded theories. This allows to understand the topological con-
ditions one must impose on boundaries and defects to be able to “gauge” global
symmetries of extended TQFTs.
The work contained in [21] shows a concrete consequence of the Cobordism Hypothe-
sis with singularities, which we hope will be of relevance in clarifying nonperturbative
aspects of Chern-Simons theory as an anomalous theory.
The results in [37,38] provide a bridge between homotopy theory and algebra. We
show that notions like homotopy coherent actions of topological groups and homo-
topy fixed points provide interesting algebraic results. This convinces us more and
more that the interaction between homotopy theory and algebra, unified in the higher
categorical framework, is a very fruitful one, and worth pursuing.

1.4. Acknowledgements. I want to thank my coworkers D. Fiorenza, J. Fuchs,
J Hesse, J. Priel, U. Schreiber and C. Schweigert for the work we did together. I also
want to thank the University of Hamburg, the Max Planck Institut für Mathematik
in Bonn, and the University of Zürich for providing a great scientific environment. I
want to thank Giovanni, Jonathan, Konstantin, Nima, Santosh and Vincent for the
Maths and much else, and Alberto Cattaneo for scientific support.
Finally, I want to thank all the students I encountered until the present moment:
during all this time, they thought me how to constantly challenge my own securities
and authority, making me comfortable with the idea that Mathematics, after all, is
not the art of being right.

2. Papers included

Here we list the abstracts of the papers which comprise the thesis.

(1) [31] Bicategories for Boundary Conditions and for Surface Defects in 3-d
TFT, with J. Fuchs and C. Schweigert.
We analyze topological boundary conditions and topological surface defects
in three-dimensional topological field theories of Reshetikhin-Turaev type
based on arbitrary modular tensor categories. Boundary conditions are de-
scribed by central functors that lift to trivializations in the Witt group of
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modular tensor categories. The bicategory of boundary conditions can be
described through the bicategory of module categories over any such trivi-
alization. A similar description is obtained for topological surface defects.
Using string diagrams for bicategories we also establish a precise relation
between special symmetric Frobenius algebras and Wilson lines involving
special defects. We compare our results with previous work of Kapustin-
Saulina and of Kitaev-Kong on boundary conditions and surface defects in
abelian Chern-Simons theories and in Turaev-Viro type TFTs, respectively.

(2) [32] A Geometric Approach to Boundaries and Surface Defects in Dijk-
graafWitten Theories, with J. Fuchs and C. Schweigert.
DijkgraafWitten theories are extended three-dimensional topological field
theories of TuraevViro type. They can be constructed geometrically from
categories of bundles via linearization. Boundaries and surface defects or in-
terfaces in quantum field theories are of interest in various applications and
provide structural insight. We perform a geometric study of boundary con-
ditions and surface defects in DijkgraafWitten theories. A crucial tool is the
linearization of categories of relative bundles. We present the categories of
generalized Wilson lines produced by such a linearization procedure. We es-
tablish that they agree with the Wilson line categories that are predicted by
the general formalism for boundary conditions and surface defects in three-
dimensional topological field theories that has been developed in Fuchs et
al. (Commun Math Phys 321:543575, 2013)

(3) [29] On the Brauer Groups of Symmetries of Abelian Dijkgraaf-Witten the-
ories. with J. Fuchs, J. Priel and C. Schweigert.
Symmetries of three-dimensional topological field theories are naturally de-
fined in terms of invertible topological surface defects. Symmetry groups are
thus Brauer-Picard groups. We present a gauge theoretic realization of all
symmetries of abelian Dijkgraaf-Witten theories. The symmetry group for
a Dijkgraaf-Witten theory with gauge group a finite abelian group A, and
with vanishing 3-cocycle, is generated by group automorphisms of A, by au-
tomorphisms of the trivial Chern-Simons 2-gerbe on the stack of A-bundles,
and by partial e-m dualities. We show that transmission functors naturally
extracted from extended topological field theories with surface defects give a
physical realization of the bijection between invertible bimodule categories of
a fusion category and braided auto-equivalences of its Drinfeld center. The
latter provides the labels for bulk Wilson lines; it follows that a symmetry
is completely characterized by its action on bulk Wilson lines.

(4) [21] Boundary Conditions for Topological Quantum Field Theories, Anom-
alies and Projective Modular Functors, with D. Fiorenza.
We study boundary conditions for extended Topological Quantum Field The-
ories (TQFTs) and their relation to topological anomalies. We introduce the
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notion of TQFTs with moduli level m, and describe extended anomalous the-
ories as natural transformations of invertible field theories of this type. We
show how in such a framework anomalous theories give rise naturally to ho-
motopy fixed points for n-characters on ∞-groups. By using dimensional
reduction on manifolds with boundaries, we show how boundary conditions
for n+ 1-dimensional TQFTs produce n-dimensional anomalous field theo-
ries. Finally, we analyse the case of fully extended TQFTs, and show that
any fully extended anomalous theory produces a suitable boundary condi-
tion for the anomaly field theory.

(5) [20] Central Extensions of Mapping Class Groups from Characteristic Classes,
with D. Fiorenza and U. Schreiber.
We characterize, for every higher smooth stack equipped with ”tangential
structure”, the induced higher group extension of the geometric realization
of its higher automorphism stack. We show that when restricted to smooth
manifolds equipped with higher degree topological structures, this produces
higher extensions of homotopy types of diffeomorphism groups. Passing to
the groups of connected components, we obtain abelian extensions of map-
ping class groups and we derive sufficient conditions for these being central.
We show as a special case that this provides an elegant re-construction of
Segal’s approach to Z-extensions of mapping class groups of surfaces that
provides the anomaly cancellation of the modular functor in Chern-Simons
theory. Our construction generalizes Segal’s approach to higher central ex-
tensions of mapping class groups of higher dimensional manifolds with higher
tangential structures, expected to provide the analogous anomaly cancella-
tion for higher dimensional TQFTs.

(6) [37] Frobenius Algebras and Homotopy Fixed Points of Group Actions on
Bicategories, with J. Hesse and C. Schweigert.
We explicitly show that symmetric Frobenius structures on a finite dimen-
sional, semi-simple algebra stand in bijection to homotopy fixed points of
the trivial SO(2)-action on the bicategory of finite dimensional, semi-simple
algebras, bimodules and intertwiners. The results are motivated by the 2-
dimensional Cobordism Hypothesis for oriented manifolds, and can hence be
interpreted in the realm of Topological Quantum Field Theory.

(7) [38] The Serre Automorphism via Homotopy Actions and the Cobordism
Hypothesis for Oriented Manifolds, with J. Hesse.
We explicitely construct an SO(2)-action on a skeletal version of the 2-
dimensional framed bordism bicategory. By the 2-dimensional Cobordism
Hypothesis for framed manifolds, we obtain an SO(2)-action on the core of
fully-dualizable objects of the target bicategory. This action is shown to
coincide with the one given by the Serre automorphism. We give an explicit
description of the bicategory of homotopy fixed points of this action, and
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discuss its relation to the classification of oriented 2-d Topological Quantum
Field Theories.

3. Background

3.1. Higher Algebra. Many aspects of Topological Quantum Field Theory can
be described in a compact and elegant way by using the language of higher algebra.
In the following we will introduce some basic notions which are used throughout the
works presented in the thesis. We will mainly follow [19] in the exposition.

3.1.1. Monoidal categories and their functors. A monoidal category is a quintuple
(C,⊗, a,1, ι) consisting of:

• A category C ,
• A bifunctor ⊗ : C× C→ C, called the tensor product,

• A natural isomorphism a : (−⊗−)⊗− '−→ −⊗(−⊗−), called the associator,
• An object 1 of C, called the unit object,

• An isomorphism ι : 1⊗ 1
'−→ 1,

subject to the following axioms:

a) Pentagon axiom: The following diagram

((W ⊗X)⊗ Y )⊗ Z

(W ⊗ (X ⊗ Y ))⊗ Z (W ⊗X)⊗ (Y ⊗ Z)

W ⊗ ((X ⊗ Y )⊗ Z) W ⊗ (X ⊗ (Y ⊗ Z))

aW,X,Y ⊗idZ

aW⊗X,Y,Z

aW,X⊗Y,Z aW,X,Y⊗Z

idW⊗aX,Y,Z

is commutative for all X,Y,W,Z in C;
b) Unit axiom: The functors

X → X ⊗ 1
X → 1⊗X

are autoequivalences of C.

Remark 3.1. Some authors refer to the pair (1, ι) as the unit object of C.

In general, we will refer to C instead of the quintuple (C,⊗, a,1, ι) in any case where
the rest of the structure is clear. Moreover, a monoidal category C is called strict if
the associator a and the morphism ι are identity isomorphisms.

Example 3.2. The category Sets of sets is a monoidal category, where the tensor
product is given by the cartesian product, the unit object is a one element set, and
the associator a and the morphism ι are the obvious one.

Example 3.3. Let k be a field. The category Vectk of k-vector spaces is a monoidal
category, where the tensor product is given by ⊗k, the unit object is given by the
vector space k, and the associator a is the usual one.
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Example 3.4. Let A be an associative algebra over a field k. The category A-bimod
of bimodules over A is a monoidal category, where the tensor product is given by ⊗A,
the unit object is given by the algebra A itself, and the associator a is the usual one.

Example 3.5. Let n > 0, and consider Cobor(n), the category of n-dimensional
oriented6 cobordisms. Namely, the objects of Cobor(n) are closed n− 1-dimensional
smooth oriented manifolds, and morphisms are oriented n-dimensional cobordisms7

up to diffeomorphisms fixing the boundaries. Then Cobor(n) is a monoidal category,
where the tensor product is given by the disjoint union

∐
of manifolds, the unit

object is given by the empty set ∅ regarded as a n − 1-dimensional manifold, and
where the associator a and the morphism ι are the obvious one.

Example 3.6. Let G be a group, and regard it as a discrete category8 G. Then G is
a monoidal category, where the tensor product is given by group multiplication, the
unit object is the identity e ∈ G, and the associator a and the morphism ι are the
identity morphisms. Moreover, G is a strict monoidal category.

Example 3.7. Let C be a category, and let End(C) denote the category of endofunc-
tors of C. We can regard End(C) as a monoidal category where the tensor product
is given by composition of functors, the unit object is given by the identity functor,
and the associator a and the morphism ι are natural equivalences. Moreover, End(C)
is a strict category.

Let (C,⊗, a,1, ι) and (C̃, ⊗̃, ã, 1̃, ι̃) be monoidal categories. A monoidal functor from

C to C̃ is a pair (F, J), where F : C→ C̃ is a functor, and

J : ⊗̃ ◦ (F × F )
'−→ F ◦ ⊗

is a natural isomorphism, i.e. a collection of isomorphism

JX,Y : F (X)⊗̃F (Y ) ' F (X ⊗ Y )

which are natural in X and Y , such that F (1) is isomorphic to 1̃, and such that the
following diagram

(F (X)⊗̃F (Y ))⊗̃F (Z) F (X)⊗̃(F (Y )⊗̃F (Z))

F (X ⊗ Y )⊗̃F (Z) F (X)⊗̃F (Y ⊗ Z)

F ((X ⊗ Y )⊗ Z) F (X ⊗ (Y ⊗ Z))

JX,Y ⊗̃idZ

ãX,Y,Z

idF (X)⊗̃JY,Z

JX⊗Y,Z JX,Y⊗Z
F (aX,Y,Z)

6Other type of tangential structures, i.e. reductions of the structure group of the tangent bundle,
are usually considered. See section 3.2.1 for more details.

7We consider the cobordisms equipped with collars to be able to compose morphisms by gluing
the cobordisms along their common boundary.

8A discrete category is a category with no morphisms apart from identities.
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commutes for all X,Y, Z in C. The above diagrams can be regarded as a compati-
bility condition between the associators a and ã, and the natural isomorphism J . A
monoidal equivalence is a monoidal functor which is also an equivalence of categories.

Remark 3.8. Notice that a monoidal functor is not just a functor between monoidal
categories, but it requires an additional piece of structure, namely the natural isomor-
phism J , which must satisfy some conditions9. For a given functor between monoidal
categories, there can be more natural isomorphisms J making it into a monoidal
functor, or none at all.

Let (C,⊗, a,1, ι) and (C̃, ⊗̃, ã, 1̃, ι̃) be monoidal categories, and (F, J) and (G,L) be

monoidal functors between C and C̃. A natural transformation η between (F, J) and
(G,L) is a natural transformation η : F → G such that η1 is an isomorphism, and
such the following diagram

F (X)⊗̃F (Y ) F (X ⊗ Y )

G(X)⊗̃G(Y ) G(X ⊗ Y )

JX,Y

ηx⊗̃ηy ηx⊗y

LX,Y

commutes for all X,Y in C.
An important result in the theory of monoidal categories is the following result, known
as “Mac Lane’s strictness theorem”.

Theorem 3.9. Any monoidal category is monoidally equivalent to a strict monoidal
category.

The theorem above guarantees that in working with monoidal categories we do not
have to “worry too much” about the associator and the other structural morphisms.

Remark 3.10. It is important to stress that Mac Lane’s strictness theorem only
guarantees that that a monoidal category is monoidally equivalent to a strict one,
but not in general isomorphic. In other words, we might have to add other objects
to the category to achieve strictness.

3.1.2. Braided categories. Let C be a monoidal category. A braiding on C is a

natural isomorphism c : (−⊗−)
'−→ (−⊗−)◦ τ , where τ is the canonical endofunctor

of C× C which exchanges the factors, such that the following diagrams

X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X

(X ⊗ Y )⊗ Z Y ⊗ (Z ⊗X)

(Y ⊗X)⊗ Z Y ⊗ (X ⊗ Z)

cX,Y⊗Z

aY,Z,XaX,Y,Z

cX,Y ⊗idZ

aY,X,Z

idY ⊗cX,Z

9In other words, monoidality of a functor is a structure, and not a property.
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and

(X ⊗ Y )⊗ Z Z ⊗ (X ⊗ Y )

X ⊗ (Y ⊗ Z) (Z ⊗X)⊗ Y

X ⊗ (Z ⊗ Y ) (X ⊗ Z)⊗ Y

cX⊗Y,Z

a−1
Z,X,Ya−1

X,Y,Z

idX⊗cY,Z

a−1
X,Z,Y

cX,Z⊗idY

commute for all X,Y, Z in C.
A braided monoidal category is a pair consisting of a monoidal category and a braid-
ing.

Remark 3.11. A given monoidal category may admit more braidings.

A braided monoidal category is called symmetric if

cY,X ◦ cX,Y = idX⊗Y

for all X,Y in C.

Example 3.12. The category Sets,Vectk and Cobor(n) are all example of braided
categories with the braiding given by the transposition of factors. Moreover, they are
all symmetric.

Let C and C̃ be braided monoidal categories with braidings c and c̃, respectively. A
monoidal functor (F, J) between C and C̃ is called symmetric if the following diagram

F (X)⊗̃F (Y ) F (Y )⊗̃F (X)

F (X ⊗ Y ) F (Y ⊗X)

JX,Y

c̃X,Y

JY,X

F (cX,Y )

for all X,Y in C.

Remark 3.13. For a monoidal functor, to be braided is a property, and not a struc-
ture.

A braided monoidal functor between symmetric monoidal category is called a sym-
metric monoidal functor.

Example 3.14. Let C be an arbitrary category, and let D be a monoidal category.
Then the category of functors Fun(C,D) between C and D is a monoidal category
with product ? defined objectwise, unit object given by the constant functor to 1D,
and associator obtained from that of D.

Example 3.15. Let C and D be monoidal categories, and consider the category of
monoidal functors Fun⊗(C,D) between C and D. In general, the objectwise product
does not equip Fun⊗(C,D) with a monoidal structure. Neverthless, in the case in
which both C and D are symmetric monoidal, we have that the objectwise product
induces a structure of braided monoidal category on Fun⊗(C,D) which is moreover
symmetric.
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3.1.3. Duality in monoidal categories. Let C be a monoidal category. An object
A∗ in C is said to be a left dual for an object A if there exist morphisms

evA : A∗ ⊗A→ 1
coevA : 1→ A⊗A∗

called the evaluation and coevaluation, respectively, and such that the following com-
positions

A
coevA⊗idA−−−−−−−→ (A⊗A∗)⊗A aA,A∗,A−−−−−→ A⊗ (A∗ ⊗A)

idA⊗evA−−−−−→ A

A∗
idA∗⊗coevA−−−−−−−→ A∗ ⊗ (A⊗A∗)

a−1
A∗,A,A∗−−−−−−→ (A∗ ⊗A)⊗A∗ evA⊗idA∗−−−−−−→ A∗

are the identity morphisms. The evaluation and coevaluation morphisms should be
considered part of the data of a left dual A∗: in other words, the left dual for an
object A is a triple (A∗, evA, coevA).
Similarly, one can define the notion of a right dual object ∗A. In particular, left and
right dualities are compatible, in the sense that

∗(A∗) ' A ' (∗A)∗

Moreover, in any monoidal category the unit object 1 is the left and right dual of
itself.

Remark 3.16. Let C be a category, and consider the monoidal category End(C). A
left (respectively, right) dual for a functor F ∈ End(C) is the same thing as a left
(respectively, left) adjoint to F .

The following result guarantees that, if it exists, we can talk of “the” left (respectively,
right) dual of an object

Theorem 3.17. If A ∈ C has a left (respectively, right) dual object, then it is unique
up to a unique isomorphism.

Remark 3.18. The existence of a left (or right) dual for an object imposes strong
restriction. For instance, the only objects in Vectk admitting a (left or right) dual
are the finite dimensional k-vector spaces.

Let A,B ∈ C be objects adimitting left duals A∗, B∗, and let f : A → B be a
morphism. One can then define the left dual f∗ of f as the composition

B∗
idB∗⊗coevA−−−−−−−−→ B∗⊗(A⊗A∗) ' (B∗⊗A)⊗A∗ (idB∗⊗f)⊗idA∗−−−−−−−−−−→ (B∗⊗B)⊗A∗ evB⊗id∗A−−−−−→ A∗

Similarly, we can define the right dual of a morphism.
An object A ∈ C is said to be rigid if it admits both a left and a right dual. A rigid
monoidal category C is a monoidal category where any object is rigid.

Given a monoidal functor (F, J) between monoidal categories C and D, for any object
A with left dual A∗ we have that F (A∗) is left dual to F (A) in a canonical way. The
following result is relevant

Lemma 3.19. Let C and D be monoidal categories, with C being moreover rigid. Then
Fun⊗(C,D) is a groupoid.
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Finally, if C is a rigid braided monoidal category, for any A ∈ C we have ∗A ' A∗,
hence we can refer to A∗ as the dual object of A.

3.1.4. Modular tensor categories. Modular tensor categories can be regarded as
linear braided categories which are nondegenerate. They have a prominent rôle, since
they appear in the construction of 3d TQFTs and knots invariants, and they encode
information regarding Rational Conformal Field theories. We will briefly introduce
the definition of a modular tensor category, and provide some examples.
Let k be an algebraically closed field. A monoidal category C which is a locally finite10

k-linear abelian and rigid category is called a tensor category (over k) if the tensor
product ⊗ : C × C → C is bilinear on morphisms, and if EndC(1) ' k. A tensor
category which is also finitely semisimple is called a fusion category.

Example 3.20. Let G be a finite group. Then the category Rep(G) of finite di-
mensional G-representations is a tensor category. It is also a fusion category if the
characteristic of k does not divide |G|.

Let C be a rigid monoidal category. A pivotal structure is a monoidal natural equiv-
alence

a : idC
'−→ (−)∗∗

i.e., a family of natural isomorphisms aX : X
'−→ X∗∗ for each X in C such that

aX⊗Y = aX ⊗ aY for X,Y in C.
Given a pivotal structure a, we can define the notion of the dimension dima(X) of
an object X with respect to a as the composition

1
coevX−−−−→ X ⊗X∗ aX⊗idX∗−−−−−−→ X∗∗ ⊗X∗ evX∗−−−→ 1

If dima(X) = dima(X
∗) for all X in C, then a is called a spherical structure, and C is

called a spherical category. Notice that the composition above allows to define a left
quantum trace for any morphism g : X → X∗∗, which we denote with TrL(g). In a
spherical category C we can define a trace for any morphism f : X → X as

Tr(f) := TrL(aX ◦ f)

If C is a spherical fusion category, then Tr(f) ∈ k for any morphism f : X → X.
Let C be a spherical fusion category over an algebraically closed field of characteristic
0, equipped with a braiding c, and let {Xi}i∈I a choice of representatives of simple
objects. Then to C we can associate a matrix S, called the S-matrix defined as

Sij := Tr(cXj ,Xi ◦ cXi,Xj )
A braided spherical fusion category C is called a modular tensor category if its S-
matrix is invertible.

Remark 3.21. A different choice of representatives of simple objects produces similar
S-matrices, hence the property of being a modular tensor category is well defined.

10A k-linear abelian category is called locally finite if every Hom space is finite dimensional, and
any object has finite length.
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Example 3.22. The category Vectk is a modular tensor category. In general a spher-
ical category equipped with a symmetric braiding is never a modular tensor category,
unless it has a single equivalence class of simple objects.

3.1.5. Invertibility in monoidal categories. Let C be a monoidal category. A rigid
object A ∈ C is said to be invertible if evA and coevA are invertible morphisms. For
an invertible object A we have that the following properties hold

i) ∗A ' A∗ and A∗ is invertible.
ii) For B an invertible object, A⊗B is invertible.
iii) Given a monoidal functor F : C→ D, F (A) is an invertible object in D.

Example 3.23. The invertible objects in C = Vectk are exactly the 1-dimensional
k-modules.

Example 3.24. Let C and D be rigid monoidal categories. An invertible object in
Fun⊗(C,D) is the same thing as a monoidal functor F : C→ D such that F (A) and
F (f) are invertible in D, for all objects A and all morphisms f in C.

The Picard groupoid Pic(C) of a symmetric monoidal category is the maximal sub-
groupoid of C having for objects the invertibles in C. It follows from the properties
above that Pic(C) inherits the structure of a symmetric monoidal category, and it
is an example of an abelian 2-group11. It is not difficult to show that the set of
equivalence classes π0(Pic(C)) has the structure of an abelian group.

Remark 3.25. Let R be a commutative ring, and let C = R-Mod, the category of R-
modules equipped with the tensor product provided by ⊗R. In this case π0(Pic(C)) is
known as the Picard group Br(R) of R, and it has an important role in Representation
Theory and Algebraic Geometry.

3.1.6. Module categories. Let C be a monoidal category. A left module category
over C is a category M equipped with an action of C, namely a functor � : C×M→M

and a natural isomorphism

mX,Y,M : (X ⊗ Y )�M '−→ X � (Y �M) X,Y ∈ C,M ∈M

called the associativity constraints, such that the functor M → 1C �M is an auto-
equivalence of M, and the following pentagon diagram is commutative

((X ⊗ Y )⊗ Z)�M

(X ⊗ (Y ⊗ Z))�M (X ⊗ Y )� (Z �M)

X � ((Y ⊗ Z))�M) X � (Y � (Z �M))

aX,Y,Z⊗idM mX⊗Y,Z,M

mX,Y⊗Z,M mX,Y,Z�M

idX⊗mY,Z,M

11A 2-group is a rigid monoidal category where all objects and all morphisms are invertible.
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for any X,Y, Z in C and any M in M.
Similarly, one can define the notion of a right module category over C. By module
category we will mean a left module category.
A different way to define a module category is the following. Let M be a category.
Recall that the category End(M) of endofunctors of M is canonically a monoidal
category. A structure on M of module category over C is then given by a monoidal
functor

F : C→ End(M)

One has the following

Proposition 3.26 ( [19]). There is a bijective correspondence between structures of
C-module category on a category M and monoidal functors C→ End(M).

Remark 3.27. Proposition 3.26 is a categorification of the result that a module over
a monoid is the same thing as a representation.

We can similarly define a (C,D)-bimodule category M as a category with is a left
C-module and a right D-module, such that the structures are compatible. We omit
the compatibility diagrams, since they follow naturally.

Example 3.28. Let C be a monoidal category. Then M = C has a canonical structure
of left module category over C given by tensor product.

Example 3.29. Let G be a group, and H ⊂ G a subgroup. Since the restriction
functor Rep(G)→ Rep(H) is a tensor functor, the category Rep(H) is canonically a
left module category over Rep(G).

Let M and N module categories over C with associativity constraints m and n, re-
spectively12. A C-module functor F from M to N is a functor F : M → N together
with a natural isomorphism

sX,M : F (X �M)
'−→ X � F (M), X ∈ C,M ∈M

such that the following diagrams

F ((X ⊗ Y )�M)

F (X � (Y �M)) (X ⊗ Y )� F (M)

X � F (Y �M) X � (Y � F (M))

F (mX,Y,M ) F (sX⊗Y,M )

sX,Y�M nX,Y�F (M)

idX⊗sY,M

and

F (1C �M) 1C � F (M)

F (M)
F (lM )

s1,M

lF (M)

12We will use the symbol � for both the actions on M and N.
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commute for X,Y in C and M M, and where lM : 1C �M ' M is the unit isomor-
phism.

Let (F, s) and (G, t) be C-module functors between M and N. A module natural
transformation between (F, s) and (G, t) is a natural transformation η : F → G such
that the following diagram

F (X �M) X � F (M)

G(X �M) X �G(M)

sX,M

ηX�M idX⊗ηM
tX,M

commutes for X in C and M in M.
Given M and N two C-module categories, we can then consider the category FunC(M,N)
of C-module functors between M and N.

3.2. Functorial Topological Quantum Field Theory. The axiomatic ap-
proach of Atiyah [1] can be compactly described as follows. Let C be a symmetric
monoidal category. A n-dimensional oriented Topological Quantum Field Theory
(TQFT) with values in C is a symmetric monoidal functor

Z : Cobor(n)→ C

In the case where C = Vectk, the functor above corresponds to the following data

• A finite dimensional vector space VΣ assigned to any oriented closed (n−1)-
dimensional manifold Σ.
• A linear map ϕM : VΣ → VΣ′ for any diffeomorphism class of oriented

cobordism M : Σ→ Σ′, such that for M : Σ→ Σ′ and N : Σ′ → Σ′′ we have
that

ϕN ◦ ϕM = ϕM∪Σ′N

• An isomorphism VΣtΣ′ ' VΣ ⊗ VΣ′ compatible with transposition of factors
for each pair of closed (n− 1)-manifolds.
• An isomorphism V∅ ' k.

Since any closed oriented n-dimensional manifold M can be regarded as a cobordism
from the empty manifold to itself, from the data above we have a linear map

ϕM : k → k

which amounts to an element of k, and it is called the partition function of the TQFT
Z evaluated on M .

Remark 3.30. The fact that the value Z(Σ) is a finite dimensional vector space is a
consequence of the fact that any object in Cobor(n) has a dual, and the fact that Z
is a symmetric monoidal functor.
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Since TQFTs are symmetric monoidal functors between symmetric monoidal cate-
gories, they naturally form a category, namely we can define

TQFTor
C(n) := Fun⊗(Cobor(n),C)

Since any object of Cobor(n) admits a dual, by Lemma 3.19 we have that TQFTor
C(n)

is a groupoid, hence it can be considered as the space13 of oriented Topological Quan-
tum Field Theories in dimension n with values in C.
The functorial approach to Topological Quantum Field Theory is powerful enough
to allow for a complete classification in low dimensions. For instance, in the case
C = VectC, a 1-dimensional oriented TQFT is completely specified by a finite di-
mensional vector space, which is assigned to the oriented point. In dimension 2, a
result by Dijkgraaf shows that any oriented TQFT is determined by a commutative
Frobenius algebra, namely an algebra equipped with a non-degenerate trace. The
classification of oriented 2d TQFTs relies heavily on Morse theory and the classifi-
cation of compact surfaces. This should suggest that the classification of TQFTs in
dimension higher than 2 becomes quickly out of reach. For a recent classification of
3d oriented TQFTs, we refer the reader to [40].

3.2.1. Tangential structures. Let BO(n) be a classifying space for O(n)-bundles.
A n-dimensional tangential structure is a fibration π(n) : X(n) → BO(n). Morever,
denote by S(n)→ X(n) the pullback of the universal vector bundle EO(n)→ BO(n)
along π(n).
Let M be a m-dimensional manifold, with m ≤ n. A X(n)-structure on M is a
(continuous) map f : M → X(n) together with an isomorphism

θ : Rn−m ⊕ TM '−→ f∗S(n)

where Rn−m denotes the trivial real bundle over M of rank n−m.

Example 3.31. Consider X(n) = BSO(n), with π(n) : BSO(n) → BO(n) induced
by the inclusion SO(n) ↪→ O(n). Then a X(n)-structure on a m-manifold M is
the same thing as an orientation of Rn−m ⊕ TM , which is in turn equivalent to an
orientation of M .

Example 3.32. Consider X(n) = EO(n), with π(n) : EO(n) → BO(n) being the
universal principal O(n)-bundle. Then a X(n)-structure on a m-manifold M is the
same thing as an n-framing of M .

Remark 3.33. Not all tangential structures arise from the reduction of the structure
group of the stabilized tangent bundle. Let Γ be a finite group, and consider X(n) =
BO(n) × BΓ, with π(n) : X(n) → BO(n) given by projection on the first factor.
Then a X(n)-structure on a m-manifold M is the datum of a principal Γ-bundle on
P →M .

13By space we mean a homotopy type.
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Given a X(n)-structure on a (n − 1)-dimensional manifold M , we can define the
opposite X(n)-structure on M by considering the isomorphism

θ∗ : R⊕ TM −1⊕idTM−−−−−−→ R⊕ TM θ−→ f∗S(n)

A X(n)-structure on a m-dimensional manifold M induces a X(n)-structure on ∂M
by restriction. Hence, we can define a cobordism between (n− 1)-dimensional closed
manifolds with X(n)-structure (Σ, f, θ) and (Σ′, g, ψ) as an n-dimensional manifold
with X(n)-structure (M,F,Θ) together with an equivalence

(∂M,F |∂M ,Θ|∂M ) ' (Σ, f, θ)q (Σ′, g, ψ∗)

of manifolds with X(n)-structures.

Denote with CobX(n)(n) the category of n-dimensional cobordisms with X(n)-structure,
with symmetric monoidal structure given by disjoint union.
A TQFT with X(n)-structure taking values in C is a symmetric monoidal functor

Z : CobX(n)(n)→ C

Remark 3.34. Any object in CobX(n)(n) admits a dual. Namely, the dual of (Σ, f, θ)
is provided by (Σ, f, θ∗), with evaluation and coevaluation morphisms given by the
incoming and outcoming “bent cylinders”, respectively.

3.2.2. Dijkgraaf-Witten Theories. For any finite group G and any n > 0, one can
produce a n-dimensional TQFT valued in Vectk, with k a field of characteristic not
dividing the order of G. The case for n = 3 was first studied by Dijkgraaf and Witten
in [18], hence the name.
Let Σ be a closed (n − 1)-manifold, and denote with BunG(Σ) the groupoid of G-
bundles over Σ. We have then the following assignment

Σ→ VΣ := k[π0(BunG(Σ))]

Notice that since G is finite and Σ is compact, the vector space VΣ is finite dimen-
sional. Moreover, we have a canonical isomorphism

VΣqΣ′ ' VΣ ⊗ VΣ′

for any Σ,Σ′.
Consider a n-dimensional cobordism M between Σ0 and Σ′1, with ιi : Σi ↪→M, i = 0, 1
denoting the inclusion maps. We can then consider the follow diagram of groupoids

BunG(M)

BunG(Σ0) BunG(Σ1)

ι∗1ι∗0

where the functors ιi are given by restriction of G-bundles. To such a diagram we
can assign a linear map from VΣ0 to VΣ1 defined as

ϕM : VΣ0 → VΣ1

[y]→∑
[x]:[x]=[ι∗0y]

ι∗1[x]

#Aut(x)
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where y ∈ BunG(Σ0), x ∈ BunG(M) and Aut(x) denotes the automorphism group
of the bundle x in BunG(M). By using the fact that G-bundles are “local”, more
precisely that

BunG(M ∪Σ N) ' BunG(M)×BunG(Σ) BunG(N)

we have that

ϕM◦N := ϕN ◦ ϕM
for cobordisms M : Σ0 → Σ1 and N : Σ1 → Σ2. Notice that the construction is
compatible with disjoint union of maniolds.
The above assignments provide then a symmetric monoidal functor

ZG : Cob(n)→ Vectk

which we refer to as Dijkgraaf-Witten theory in dimension n, and it represents one of
the best understood examples of Topological Quantum Field Theories in the functorial
formalism.
For a closed n-dimensional manifold M , it follows that the partition function of ZG

evaluated at M is given by

ZG(M) =
∑

[x]∈BunG(M)

1

#Aut(x)

The expression above can be interpreted as the Feynman integral of the constant func-
tion 1 over the space of fields given by BunG(M), equipped with its gauge invariant
measure.

Remark 3.35. It is straightforward to establish that for n > 1, we have ZG(Sn) = 1.

Remark 3.36. In [18], an oriented 3d TQFT is constructed from a finite group G and
a group 3-cocycle α ∈ Z3(G,C∗). For α = 0 it coincides with ZG once the orientation
is forgotten.

3.2.3. Remarks on Chern-Simons theory. A motivating example for the axiomatic
approach to Topological Quantum Field Theory is provided by Chern-Simons theory,
studied by Witten in [70].
Let G be a connected, simply connected14 Lie group, let g be its Lie algebra, and let
tr be an invariant “trace” on g. For any closed 3-manifold M we have the classical
Chern-Simons functional

SX : A(M)→ R

A→ 1

8π2

∫
tr(A ∧ dA+

2

3
A ∧A ∧A)

where A(M) ' Ω1(M ; g) denotes the space of connections on the trivial G-principal
bundle over M .
Witten’s idea then was to “integrate over” the connection variable, in order to produce

14Lie groups which are not simply connected, e.g. U(1), require a different approach.
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a quantity which only depends on the topology15 of M . More precisely, he suggested
to consider a path-integral quantization, namely to consider the quantity

Zk(M)“=”

∫

A(M)/∼
eikSM (A)DA

where k is an integer, called the level16, and DA is supposed to be a measure on
the space of connections on M modulo gauge transformations. Such a measure is in
general not constructed, hence the expression above remains not defined. There are
several approaches to deal with the quantity Zk(M): the one related to functorial
TQFTs as we have presented them in this thesis amounts to avoid constructing di-
rectly the measure DA, but first to rather axiomatise the formal properties it has, and
then to look for examples of such axioms. For instance, given a compact 3-manifold
M with boundary ∂M we should be able to compute the following quantity

Zk(M)(α)“=”

∫

Aα(M)/∼
eikSM (A)DA

where Aα(M) is the subspace of connections whose restriction on ∂M is gauge equiv-
alent to α. We can then regard Zk(M) as a function on A(∂M), hence as an element
of a vector space. This property is indeed one of the axioms in Atiyah’s formulation of
TQFTs. We can heuristically deduce the other axioms from a similar line of reason-
ing. Notice that though the invariant Zk(M) suffers from the fact that the measure
D(A) remains undefined, the vector space associated to a closed 2-manifold Σ can
be rigorously defined as the geometric quantization of the moduli space of G-local
systems (i.e. flat G-bundles) LocG(Σ) on Σ, as in [2,39].
There are various proposal for a description of Chern-Simons as a TQFT which in-
volve quantum groups, as in the work of Reshetikhin and Turaev [59]. That this
construction does indeed reproduce the results from geometric quantization is dis-
cussed17 in [35].
Another recent approach [14] is to investigate Chern-Simons theory using techniques
from perturbative Quantum Field Theory, and to show that it fits the framework of
functorial TQFTs.

3.2.4. Representations of mapping class groups. Given a n-dimensional oriented
TQFT taking values in Vectk, we obtain a system of representations of the mapping
class group of manifolds which are “related”, in a precise sense. Namely, consider a
symmetric monoidal functor Z : Cobor(n)→ Vectk. Given an orientation preserving
diffeomorphism f : M →M , we can construct its mapping cylinder

Mf := ([0, 1]×M)qM/ ∼

15More precisely, there is a dependence on the smooth structure of M and its orientation.
16The level corresponds to the class of tr in H4(BG;Z) ' Z.
17The following discussion on Mathoverflow is worth a reading

https://mathoverflow.net/questions/86792/why-hasnt-anyone-proved-that-the-two-standard-
approaches-to-quantizing-chern-si .
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where we identify x and f(x). The mapping cylinder can be equipped with a smooth
structure, making it into a cobordism between M and itself. Morever, for a given
diffeomorphism f , Mf satisfies the following properties

i) If f is isotopic to a diffeomorphism g : M → M , then Mf is diffeomorphic
to Mg with a diffeomorphism which preserves the boundary.

ii) Mf is an invertible morphism in Cobor(n).
iii) For f : M → M and g : M → M , we have that Mg◦f is diffeomorphic to

Mg ∪M Mf .

Recall that the mapping class group MCG(M) of a manifold M is defined as

MCG(M) := Diffor(M)/Diffor0 (M)

i.e., it the group of orientation preserving diffeomorphisms of M modulo those which
are isotopic to the identity. The properties of the mapping cylinder guarantee that
for any manifold M we have a group homomorphism

MCG(M) → Aut(Z(M))
[f ] → Z(Mf )

i.e. a representation of MCG(M) on the vector space Z(M).
Such representations are “intertwined”, in the sense that any diffeomorphism f :
M → N induces an intertwiner of the respective representions.
The case for n = 2 is particulartly interesting because it concerns representations of
the mapping class groups of surfaces, which in turn are related to flat bundles on
Teichmuller spaces.
An interesting question is to ask how much information such a system of represen-
tations, also called a modular functor18,contains, namely if it is always possible to
construct a TQFT Z which induces such a family of representations. For n = 2, we
refer to [4] for a discussion of such topics.

3.3. Elements of Higher Category Theory. Higher categories are a gener-
alization of the notion of a category, where we allow objects, morphisms, morphisms
between morphisms, and so on. One way to picture19 this is to consider that we have
a hierarchy of information

•x

•x •y
f

•x •y

...

which must be provided with laws concerning how we compose arrows, identities,
etc. . One of the basic principles of higher category theory is the following: in

18The are several definitions of an (extended) modular functor which are more or less known to
be not equivalent.

19Technically speaking, this uses globes as higher morphisms. Different shapes can be chosen.
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an n-category, any equation between objects, 1-morphisms, 2-morphisms, etc., up
to (n − 1)-morphisms should always be considered to hold only up to invertible 1-
morphisms, 2-morphisms, etc., while for n-morphisms equations must hold on the
nose. Here invertibility of morphisms must be considered in the higher sense, namely
it must be considered as a set of equations holding only up to higher morphisms.
In the following we will give a very brief introduction to higher category, referring
the reader to the literature for details.

3.3.1. Strict n-categories. Strict higher categories can be defined in a recursive
way. More precisely, we declare a strict 0-category to be a set, a strict 1-category to
be an ordinary category20, and for n ≥ 2 a strict n-category to be a category enriched
in Catn−1, the category of strict (n− 1)-categories.
For n = 2, the above definition amounts to the following data

• A collection of objects A,B, . . ..
• For each pair A,B, a category Hom(A,B)
• For each triple A,B,C a functor ◦ : Hom(A,B)×Hom(B,C)→ Hom(A,C),

called horizontal composition
• For each A, an object 1A ∈ Hom(A,A), called the identity 1-morphism.

The data above must satisfy the following conditions

• Horizontal composition is strictly associative, i.e. for any quadrupleA,B,C,D
of object the following diagram of functors

Hom(A,B)×Hom(B,C)×Hom(C,D) Hom(A,B)×Hom(B,D)

Hom(A,C)×Hom(C,D) Hom(A,D)

id×◦

◦×id ◦

◦

commutes strictly.
• For each A, the object 1A is strictly the identity for the horizontal compo-

sition, namely for each A,B the following diagrams of functors

Hom(A,B)× ?

Hom(A,B)×Hom(B,B) Hom(A,B)

id×1B '

◦

?×Hom(A,B)

Hom(A,A)×Hom(A,B) Hom(A,B)

1A×id
'

◦

commute strictly, where ? denotes the category with a single object and a
single morphism.

For each pair of objects A,B of a 2-category, the objects and morphisms of Hom(A,B)
are called 1-morphisms and 2-morphisms, respectively.
Given A and B n-categories, a strict n-functor F : A → B is simply a functor of
Catn−1-enriched categories.

20We consider only small categories to avoid set foundational issues.
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Example 3.37. The 2-category Cat2 has small categories for objects, and for any
two such categories A and B, we define

Hom(A,B) := Fun(A,B)

Horizontal composition is given by composition of functors, and the object 1A is given
by the indentity functor idA.

Example 3.38. Let C be a strict monoidal category. We can consider the 2-category
C given by a single object • and

Hom(•, •) := C

with composition given by the tensor product of C, and 1• := 1C. A strict 2-functor
between C and C is precisely a strict monoidal endofunctor of C.

Remark 3.39. An ordinary category C can be regarded as a 2-category where the
objects are the same objects of C, and for any A,B we define

Hom(A,B) := HomC(A,B)

where the horizontal composition and identities are those provided by C.

3.3.2. Weak n-categories. Differently from their strict versions, weak higher cat-
egories are more difficult to describe. The basic idea of a weak n-category revolves
around weakening the various structural relations which hold for their strict counter-
parts. For instance, we could ask that the associativity of horizontal composition of
1-morphisms only holds up to invertible 2-morphisms, namely that for every compos-
able triple of 1-morphisms f, g, h we provide an associator

αf,g,h : (fg)h
'−→ f(gh)

Similarly, we can provide invertible 2-morphisms witnessing the left and right iden-
tity constraints. In turn, the associator and the identity constraints must satisfy
their own compatibility equations, called “coherence laws”, which can be witnessed
by invertible 3-morphisms, and so on. For n > 2, the task of determining the co-
herence laws which are needed becames quickly daunting. For this reason, different
notions of weak n-categories are available, including tricategories, ω-categories, sim-
plicial ω-categories, etc. Some of this definitions are not “algebraic”, in the sense that
to a pair of morphisms f, g they might assign a space of compositions, rather than a
single composition. We refer the reader to [50] for a tour of the zoo of definitions of
n-categories.
For n = 2, weak 2-categories are also called bicategories. In this case, one explicitely
spells out the coherence laws that must be satisfied by the associator, the identity con-
straints, and the compatiblity of vertical and horizontal composition of 2-morphisms:
they amount to the “pentagon axiom” and to the “triangle identity”.

Example 3.40. Let C be a weak monoidal category. We can then form a bicategory
C with a single object •, and

Hom(•, •) := C
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where the composition of 1-morphisms and the identity are given by the tensor prod-
uct ⊗ and 1C in C, and the associator and left and right identity constraints are given
by those of C.

Example 3.41. Let k be a field. We can consider then the bicategory Alg2, where
the objects are associative k-algebras, and for any A,B

Hom(A,B) :=AModB

where AModB denotes the category of A-B-bimodules and intertwiners, and the com-
position of 1-morphisms given by tensor products of bimodules. This bicategory is
not strict, since associativity of tensor products of bimodules only holds up to an
invertible 2-morphism.

A crucial aspect of weak (resp. strict) n-category theory is that the collection of n-
categories form themselves a weak (resp. strict) (n+ 1)-category. Hence, this means
that to be able to talk about equivalences of n-categories we should know about
(n + 1)-category theory. For instance, the collection of all bicategories form a weak
3-category, called BiCat: natural transformations between 2-functors admit theme-
selves morphisms, called modifications. It can be shown that BiCat is not equivalent
to a strict 3-category21.
A result by Mac Lane ensures that any weak 2-category is equivalent to a strict 2-
category. Neverthless, the equivalence itself will be in general not strict, which has
the consequence that even after a strictification procedure, we have to deal with the
weak 3-category BiCat.
The work presented in the present thesis does not address n-categories for n > 3 and
n 6=∞, so we avoid chosing and presenting in details a definition of weak n-categories.

3.3.3. Interlude: 2-Vector spaces. An important example of higher category is
that of 2-Vector spaces, which are a categorification of the notion of k-modules, where
k is a field. There are several candidates in the literature which could be considered
as an adequate generalization of vector spaces, in the sense that they are symmetric
monoidal bicategories22 C with the property that HomC(1, 1) ' Vectk. We will present
some of them for illustrative purpouses, referring to Appendix A in [6] for a thorough
discussion.
In a certain sense, one of the most general notion of 2-Vector space is provided by
Cauchy complete categories [66]. Recall that a k-linear category is a category such
that the Hom sets are provided with the structure of a k-module, in such a way that
the composition of morphisms is linear23.
A Cauchy complete category is a k-linear category which admits finite direct sums
and where any idempotent splits. We can then consider the bicategory 2Vectk given
by Cauchy complete categories, linear functors and natural transformations. Notice
that 2Vectk is actually a 2-category, since the composition of functors is strictly

21It is though equivalent to a Gray category, which is a certain type of semi-strict 3-category.
22See comment in Section 3.3.6.
23Notice that we do not require the k-modules to be finite dimensional.
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associative.
A different flavour is provided by LinCatk, the 2-category of finite abelian linear
categories, right-exact linear functors, and natural transformations. A finite abelian
linear category C is an abelian linear category where all the Hom k-modules are finite
dimensional, every object has a finite length, C has enough projectives, and finitely
many isomorphism classes of objects.
Finally, we can consider the 2-category KVk of Kapranov-Voevodsky vector spaces
[42], which is the 2-category of abelian finitely semisimple linear categories, right-
exact functors, and natural transformations. Alternatively, KVk is equivalent to the
bicategory where the objects are elements of N, the 1-morphisms are n×m matrices of
finite-dimensional k-vector spaces, and the 2-morphisms are matrices of linear maps.

Remark 3.42. We can consider also the bicategory Alg2 introduced in Example 3.41
as a notion of 2-Vector space. Indeed, HomAlg2

(k, k) is the category of k-bimodules,
hence of k-vector spaces.

3.3.4. ∞-categories. Informally speaking, an∞-category24 is an n-category which
has morphisms up to∞. After Section 3.3.2, it would seem that such a generalization
is bound to be completely untractable. On the contrary, ∞-categories are usually
easier to manage, since many techniques from topology, specifically homotopy theory,
can be used, thus avoiding the whole task of dealing with coherence laws.
One of the reasons to develop a theory of∞-categories is a proposal by Grothendieck
in [33], where he suggested that homotopy theory should be a branch of higher
category theory. Namely, let X be a topological space. We can think of assigning to
X the following higher category Π≤∞(X), called the fundamental ∞-groupoid, which
is informally defined as a higher category where

• Objects are points of X.
• A 1-morphism f : x→ y is a (continuous) path from x to y.
• A 2-morphism between f and g is a homotopy h between the corresponding

paths.
• A 3-morphism between h1 and h2 is a homotopy between homotopies.

...

where composition is given by composition of oriented paths and homotopies. From
the wish list above, one of the desired properties of Π≤∞(X) is a consequence of
the fact that paths and homotopies can be traversed in the opposite direction. Any
(higher) morphism in Π≤∞(X) should then be invertible: we call such a higher cat-
egory a ∞-groupoid, since it generalizes the properties of an ordinary groupoid. Ac-
cording to [33], the whole homotopy type of X should be encoded in Π≤∞(X). Con-
versely, any ∞-groupoid should arise in this way, namely it should be “equivalent”
to the fundamental ∞-groupoid of some topological space. This requirements are
known as the homotopy hypothesis, and form a general principle in higher category

24It has become a custom to denote quasi-categories with the term ∞-categories, in particular
after [52]. We will not follow this convention in the present thesis.
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theory: namely, any reasonable definition of ∞-category should satisfy the homo-
topy hypothesis. More precisely, the homotopy hypothesis states an equivalence of
homotopy theories:

| − | : n-groupoids⇐⇒





Spaces with
πk = 0 for
k > n



 : Π≤n

where |− | and Π≤n are generalizations of the functors given by geometric realisation
and the fundamental groupoid, respectively. Recall that a topological space X with
πk(X) = 0 for k > n is called a homotopy n-type. When n goes to ∞, the homotopy
hypothesis requires then that the homotopy type of a topological space is completely
encoded in its fundamental ∞-groupoid.
An ∞-groupoid is an example of (∞, n)-category, which is an higher category with
morphisms up to ∞, but such that all j-morphisms are invertible for j > n
Just for illustrative purpouses, in the following subsection we briefly illustrate a def-
inition of (∞, n)-categories introduced by Rezk [60], and popularised by Lurie [53].
Other approaches to ∞-categories use simplicial categories, Segal categories, quasi-
categories, operads. We refer the reader to [7,9] for a survey of other definitions of
∞-categories, and how they compare.

3.3.5. Complete n-fold Segal spaces. A 0-fold Segal space is defined to be just a
topological space. This is consistent with the requirements coming from the homotopy
hypothesis, namely that 0-fold Segal spaces should model ∞-groupoids.
A (1-fold) Segal space is a simplicial space X = X• such that for any n,m ≥ 0 the
map

Xm+n → Xm×hX0
Xn

is a weak homotopy equivalence. Notice that ×h denotes the homotopy pullback in
topological spaces.

Remark 3.43. Let C be a topological category, i.e. a category enriched in topological
spaces. Then XC := N(C) is a 1-Segal space.

We can interpret a Segal space X as an (∞, 1)-category as follows: the points of
X0 can be regarded as objects, while the topological space X1 can be regarded as
the (∞, 0)-category of morphisms, i.e. the objects are 1-morphisms, the paths are
2-morphisms, and so on. More generally, the space Xn can be regarded as the (∞, 0)-
category of n-tuples of composable arrows.
To any Segal space X we can associate an ordinary category H(1)(X), called the

homotopy category of X, in the following way: the objects of H(1)(X) are the points
of X0, and for any x, y ∈ X0 we have

HomH(1)(X)(x, y) := π0

(
{x} ×hX0

X1 ×hX0
{y}
)

For any x, y ∈ X0 we have the following canonical map

{x}×X0X1×X0{y} → {x}×hX0
X1×hX0

{y} → π0

(
{x} ×hX0

X1 ×hX0
{y}
)

= HomH(1)(X)(x, y)
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A point of {x} ×X0 X1 ×X0 {y}, which we can regard as a morphism f from x to y,
is called invertible if its image through the map above is an invertible morphism in
H(1)(X).
Denote by Xinv

1 the subset of X1 consisting of invertible elements. Notice that the
degeneracy map X0 → X1 factors through Xinv

1 .
A Segal space is said to be complete if the map X0 → Xinv

1 is a weak equivalence. A
(∞, 1)-category is a complete Segal space.

An n-fold Segal space is an n-fold simplicial space X = X•,...,• such that

i) For every 1 ≤ i ≤ n, and every k1, . . . , ki−1, ki+1, . . . , kn ≥ 0 the simplicial
space

Xk1,...,ki−1,•,ki+1,...,kn

is a Segal space.
ii) For every 1 ≤ i ≤ n and every k1, . . . , ki−1 ≥ 0

Xk1,...,ki−1,0,•,...,•

is essentially constant25.

A n-fold Segal space X is complete if for every 1 ≤ i ≤ n and every k1, . . . , ki−1 ≥ 0
we have that the simplicial space

Xk1,...,ki−1,•,0,...,0

is a complete Segal space.

In the case n = 2, we can show how a complete 2-fold Segal space can be interpreted
essentially as a bicategory. Namely, we can first “fatten” a globular diagram

• •

to a diagram of the type

• •

• •
The vertices are objects, i.e. elements of X0,0, the horizontal arrows are elements
of X1,0, and the vertical arrows are elements of X0,1, which are essentially identities
because of condition ii) in the definition of n-fold Segal spaces. Finally, the arrow
filling the face can be thought of as a 2-morphism, i.e. an element in X1,1.

Example 3.44. An important example of (∞, 1)-category is provided by chain com-
plexes of k-modules Ch(k). Informally speaking, the objects of Ch(k) are chain com-
plexes of k-modules, the 1-morphisms are maps of chain complexes, the 2-morphisms
are chain homotopies between chain maps, and so on.

25An m-fold simplicial space X is essentially constant if there is a weak homotopy equivalence
Y → X, with Y constant.
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Remark 3.45. In the framework of complete n-fold Segal spaces, the fundamental∞-
groupoid Π≤∞(X) can be defined to be the 0-fold Segal space given by the topological
space X itself.

3.3.6. Comments on algebraic structures in higher categories. The notions of
higher algebra discussed in 3.1 generalize to n-categories and to (∞, n)-categories.
In the former case, for n < 3 one can give explicit definitions of a monoidal structure,
etc. by directly mimicing the diagrammatics for ordinary categories; see [61] for de-
tails. For the case of (∞, n)-categories a different approach is required, depending
on the model used; we refer to [54] for details. In the rest of the present work, we
will follow the principle that all the notions in categorical algebra can be appropri-
ately lifted to the context of (weak) n-categories and (∞, n)-categories as long as we
are careful in aknownledging the additional data that equations and commutative
diagrams needs to hold.

3.4. Extended TQFTs. The definition of a (functorial) d-dimensional Topolog-
ical Quantum Field Theory presented in Section 3.2 can be generalized, or extended,
in two possible directions, in order to attach data to manifolds of dimension ≤ d-2
or/and to the moduli space of diffeomorphisms of d-dimensional manifolds. Proposals
for such generalizations have originally appeared in Lawrence [48], Freed [22,23] and
Baez and Dolan [3].

3.4.1. Extending down and up. We can first consider an n-category of oriented
cobordism Coborn (d) which can be informally described as the higher category where

• the objects are closed oriented (d− n)-dimensional manifolds;
• the 1-morphisms are (d − n + 1)-dimensional oriented cobordisms between

closed manifolds;
• the 2-morphisms are (d − n + 2)-dimensional manifolds with corners which

are oriented cobordisms between cobordisms between closed manifolds;
...
• the n-morphisms are d-dimensional manifolds with corners which are ori-

ented cobordisms between cobordisms . . . between cobordisms between closed
manifolds up to diffeomorphisms fixing the orientation and the boundary
data,

and where composition of morphisms is given by gluing cobordisms along the common
boundaries.
To show how higher morphisms in Coborn (d) look like, we can consider the case d =
2, n = 2. The following 2-dimensional manifold26 with corners

26We have omitted to depict orientations for simplicity.
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can be regarded as a 2-morphism between the following 1-dimensional manifolds with
border

which in turn are 1-morphisms between the 0-dimensional manifold

and itself.
Let C be a symmetric monoidal n-category. A n-extended TQFT in dimension d with
values in C is a symmetric monoidal functor

Z : Coborn (d)→ C

In the following, we will denote Coborn (n) as Coborn . In this case, a n-dimensional
TQFT with values in C is called fully extended.

Remark 3.46. As for the ordinary cobordism category, one can consider extended

cobordism categories Cob
X(d)
n (d) with tangential structures.

One of the features of extended n-dimensional TQFTs is that the partition function
of the theory evaluated on a n-dimensional closed manifold M can be computed
by decomposing M in pieces of codimension higher than 1, and hopefully easier to
manage. This can be regarded as a form of locality, and it is the main concept behind
the Corbordism Hypothesis (see Sect. 3.4.2).

Example 3.47. An example of extended 3d TQFT is provided by Dijkgraaf-Witten
theory, as shown in [23], and more recently in [56]. Namely, given a finite group G,
it can be regarded as an extended TQFT valued in 2Vectk which assigns to the circle
Rep(D(k[G])), the category of representations of the Drinfel’d double of k[G], with k
a field of characteristic 0.
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Remark 3.48. Examples of extended 3-dimensional TQFTs include those producing
invariants of the Reshethikhin-Turaev type [59,67] obtained from a modular tensor
category.

As it should be clear from the example above, tracking all the data in Coborn (d) for
higher n and d is a complicated combinatorial problem, which faces the same general
issues as weak higher categories discussed in 3.3.2. Indeed, a direct construction is
only available for n = 2, producing a symmetric monoidal bicategory Cobor2 (d); we
refer to [61] for details on the construction.

As mentioned above, a n-extended TQFT carries information about manifolds of
higher codimension, so one could hope that a complete classification is within reach.
In some cases, this is indeed possible. In [61], a complete classification27 of oriented
2-dimensional fully extended theories with values in Alg2 is given in terms of sym-
metric separable Frobenius algebras (not necessarily commutative). In [5,6] it has
been shown that extended oriented 3-dimensional TQFTs are classified by modular
tensor objects in symmetric monoidal bicategories.

In [53], Lurie introduced a different way of extending the category Cobor(n), given
as follows. We can consider the (∞, 1)-category Cobor,∞(n) defined informally as
follows

• The objects are oriented closed (n-1)-dimensional manifolds.
• The 1-morphisms are n-dimensional oriented cobordisms.
• The 2-morphisms are diffemorphisms of oriented cobordisms preserving the

boundary data.
• The 3-morphisms are isotopies of diffeomorphisms.

...

The effect of using Cobor,∞(n) instead of Cobor(n) is visible when the target cate-
gory is a genuine ∞-category, e.g. Ch(k). This is for instance the case of Topological
Conformal Field Theories, as in [15].
We can combine the two extensions, down and up, in a single (∞, n)-category, which
we will denote with Bordorn . The (∞, n)-category Bordorn (together with some varia-
tions) was introduced by Lurie in [53], where a sketch of its construction was given.
In [10] a fully fledged construction of Bordorn , together with a symmetric monoidal
structure, was given.

3.4.2. The Cobordism Hypothesis. First formulated by Baez and Dolan in [3],

the Cobordism Hypothesis is a statement concerning a presentation of Cobfrn , the

n-category of fully extended framed cobordisms. They conjectured that Cobfrn is
equivalent to the free stable weak n-category with duals on a single object. The key
element behind the Cobordism Hypothesis is the notion of adjointable morphism in
a higher category, which we illustrate in the special case of a bicategory.
Let C be a bicategory. A 1-morphism f : x → y is left adjoint to a 1-morphism

27This is an instance of the Cobordism Hypothesis.
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g : y → x if there exist 2-morphisms e : f ◦ g → idy and c : idx → g ◦ f such that the
compositions

f = f ◦ idx
id×c−−−→ f ◦ g ◦ f e×id−−−→ idy ◦ f = f

and

g = idy ◦ g c×id−−−→ g ◦ f ◦ g id×e−−−→ g ◦ idx = g

are identities. In this case we will say that g is a right adjoint to f , and we will refer
to e and c as the evaluation and coevaluation of the adjunction, respectively.

Example 3.49. Let C be the bicategory with a single object, and with Vectk as
the monoidal category of morphisms. Then a 1-morphism which is adjointable corre-
sponds to a finite dimensional vector space. The definition of an adjointable morphism
is then intimately related to that of a dualizable object in a monoidal category.

Example 3.50. Let F be a 1-morphism in Cat2, the 2-category of small categories.
Then F is a left adjoint as 1-morphism in Cat2 exactly when it admits a right adjoint
functor.

The definition above can be generalized to a n-category, in which case we will require
that the compositions above are identities only up to equivalence. This can be made
precise by considering the bicategory H(k)(C) associated to k-morphisms in an n-
category C where objects are k-morphisms, 1-morphisms are k + 1-morphisms, and
2-morphisms are equivalence classes of k + 2-morphisms. We will then say that a
k-morphism in C is left adjointable if it admits a left adjoint in H(k−1)(C).
We will say that a symmetric monoidal n-category C is k-fully dualizable for 1 ≤ k ≤
n− 1 if every object of C admits a dual object, and if any j-morphism with j ≤ k
admits a left and right adjoint. For k = n− 1, we will say that C is fully dualizable.
Any symmetric monoidal n-category C admits a fully dualizable subcategory, which
we denote by Cfd.

Example 3.51. When C = Vectk the category of fully dualizable objects is given by
the full subcategory of finite dimensional vector spaces.

Example 3.52. For C = Alg2, the bicategory of fully dualizable objects is given by
separable finite dimensional algebras, finite dimensional bimodules, and intertwiners.

Finally, denote with K(C) the maximal subgroupoid of C, which we can obtain by
discarding all non invertible morphisms.
Since symmetric monoidal funtors preserve the property of being fully dualizable, the
Cobordism Hypothesis can be formulated as following:

(Cobordism Hypothesis) There is an equivalence of weak n-categories

Fun⊗(Cobfrn ,C) ' K(Cfd)

for every symmetric monoidal n-category C, induced by the evaluation on the
n-framed point.

In other words, the Cobordism Hypotheses provides a complete classification for fully
extended framed n-dimensional TQFTs in terms of fully dualizable objects of C.
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Moreover, it states that they form a n-groupoid, hence a topological space which is
a homotopy n-type.
The Cobordism Hypothesis in the n-categorical form stated above has eluded a proof
for n > 3, mainly due to the complex diagrammatic behind the definition of a weak
n-category mentioned in 3.3.2.
A recent leap forward in the proof of the Cobordism Hypothesis is due to Lurie, who
reformulated it in term of (∞, n)-categories, and sketched a proof in [53]. Namely,
we have

(Cobordism Hypothesis: ∞-version) There is an equivalence of ∞-groupoids

Fun⊗(Bordfrn ,C) ' K(Cfd)

for every symmetric monoidal (∞, n)-category C, induced by the evaluation on the
n-framed point.

The reformulation in terms of ∞-categories is crucial for the proof of the Cobordism
Hypothesis: the proof involves indeed techniques regarding diffeomorphism groups of
manifolds, and uses an induction argument which is not possible in the n-categorical
setting.

In [53], the case of cobordisms with G-structures is discussed as well. First, it is

argued that the topological group O(n) acts homotopically on Bordfrn : namely, for

k ≤ n, a k-morphism in Bordfrn is a k-manifold W equipped with an n-framing, i.e.
an isomorphism α : Rn−k ⊕ TW ' Rn. For any element g ∈ O(n) we can obtain a
new framing by composing α with the isomorphism Rn → Rn induced by g, which
is referred to as a “framing rotation”. This action finally induces an O(n) action

on Fun⊗(Bordfrn ,C), and by the Cobordism Hypothesis on K(Cfd). In the following,(
K(Cfd)

)hG
denotes the ∞-groupoids of homotopy fixed points of a G-action (see

Section 3.7 for more details).
Consider now a group G, and a homorphism ρ : G → O(n). As discussed in 3.2.1,
this gives rise to a tangential structure with X(n) = BG. We denote with BordGn the
(∞, n)-category of cobordisms equipped with the tangential structure X(n).

(Cobordism Hypothesis: G-structure version) There is an equivalence of
∞-groupoids

Fun⊗(BordGn ,C) '
(
K(Cfd)

)hG

for every symmetric monoidal (∞, n)-category C, induced by the evaluation on the
n-framed point.

Remark 3.53. The homotopy action of O(n) on Bordfrn remains rather mysterious,
in the sense that an explicit description is not available in the literature. This is
due to the fact that the theory of group actions on higher categories is still not well
developed. The works [17,37,38,62] make progress in understanding the O(n)-action
and the Cobordism Hypothesis in low dimensions.



3. BACKGROUND 33

3.5. Boundary conditions and defects. An additional generalization of the
notion of TQFT involves considering manifolds with decorated boundaries and dec-
orated stratifications, which are called boundary conditions and defects. The former
case is known in the literature as an open/closed TQFT. In the following sections,
we discuss some basic aspects of such generalizations, referring the reader to the vast
literature on the topic, as for instance [12,31,45,47,53,55].

3.5.1. Boundary conditions. The category of n-cobordisms Cobor(n) has closed
(n − 1)-manifolds as its object. We can consider a “bigger” cobordism category by
considering also (n−1)-manifolds with boundaries as objects. To this aim, we need an
appropriate notion of a n-dimensional cobordism between oriented (n− 1)-manifolds
with possibly non-empty boundary. See [34] for additional details.
Let Σ1 and Σ2 be oriented (n − 1)-dimensional manifolds. A cobordism with con-
strained boundary between Σ1 and Σ2 is a n-dimensional oriented manifold M such
that

i) ∂M = (∂inM q ∂outM) ∪ ∂cM
ii) We have ∂inM ' Σ1 and ∂outM ' Σ2

iii) (∂inM q ∂outM) ∩ ∂cM = ∂(∂cW ) = ∂(∂inM q ∂outM)

The first condition tells that the boundary of M might have a component which is
not incoming or outcoming, and which we term “constrained”, while the third con-
dition implies that the boundary of the constrained part must lie in the incoming
or outcoming part of the cobordism. Notice that in general M is a manifold with
corners. Morever, we can decorate the connected components of ∂Σ1,∂Σ2 and ∂cM
with a set of labels, and ask that such choices are made in the obvious compatible
way. We avoid making such a choice notationally explicit, implying that such a choice
must be made throughout.
An example of a 2-dimensional cobordism M with constrained boundary is the fol-
lowing

where Σ1 = S1 q I and Σ2 = I, and where the red part is ∂cM . Notice that also the
intervals come equipped with a red decoration at their endpoints. Other examples of
2-dimensional cobordisms with constrained boundaries are the following
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We can now consider the category Cobor,∂(n) of n-dimensional cobordisms with con-
strained boundaries, where objects are compact (n − 1)-dimensional manifolds and
morphisms are diffeomorphisms classes of n-dimensional cobordisms with constrained
boundaries28. Composition is given by gluing cobordism along the part of the bound-
ary which is not constrained. It is a symmetric monoidal category under disjoint
union of manifolds.
A n-dimensional TQFT with boundary conditions Z with values in a symmetric
monoidal category C is a symmetric monoidal functor

Z : Cobor,∂(n)→ C

Since any ordinary cobordism between closed manifolds can be trivially regarded as
a cobordism with constrained boundaries, we have a non-full embedding Cobor(n) ↪→
Cobor,∂(n). Given an ordinary n-dimensional TQFT Z̃ with values in C, we can then
ask when is it possible to extend it to a n-dimensional TQFT with boundaries, namely
when we have a commutative diagram of monoidal functors

Cobor(n) Cobor,∂(n)

C
Z

Z̃

This is in general a hard problem to address: the extensions might be many, or none
at all, in which case we will say that an obstruction is present.
In the case n = 2, TQFTs valued in VectC with boundary conditions have been at
great extent investigated in [47,55]. In particular, in [55] it is argued that the set of of
labels or colors L is equipped with a Calabi-Yau category structure. Namely, assume
that L is a countable set, whose elements we denote with a, b, . . ., and assume we are
given a 2-dimensional TQFTs Z with boundary conditions labelled by L valued in
VectC. For any a, b in L we can then consider the vector space

HomL(a, b) := Oab

where Oab is the vector space that Z assigns to the interval I = [0, 1], where 0 and 1
are decorated by a and b, respectively. The following cobordism

28As mentioned above, we assume a choice of a set of labels or colors L.
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provides then a linear map Oab⊗Obc → Oac, where we have indicated the label a, b and
c with the color green, blue, and red, respectively. The gluing properties of cobordism
with constraints guarantee that we can interpret this linear map as the composition
law for the category having for objects the elements of L, and Hom spaces defined
above. Moreover, for each a, the following cobordism

provides a linear map Oaa → C which is then shown to be nondegenerate, and which
induces a perfect pairing Oab ⊗ Oba → C.
One of the achievements of [55] is also an identification of the category associated to
L with a category of representation theoretic flavour. Namely, it is shown that the
category of boundary conditions for a 2-dimensional TQFT Z which assigns to the
circle a semisimple Frobenius algebra A is equivalent to the category of right modules
over a non-necessarily commutative semisimple Frobenius algebra B equipped with
an algebra isomorphism Z(B) ' A, where Z denotes the center.

Due to the complexity of n-manifolds with n > 2, structural results as in [47, 55]
are hard to achieve. Recently, in [43] Kapustin argued using a physics heuristic that
to a n-dimensional TQFTs with boundary conditions one should be able to assign
a (n − 1)-category of boundary conditions. The work in [31, 32, 45] give major
contributions supporting this proposal in the case of 3-dimensional extended TQFTs.

Remark 3.54. We can consider cobordisms with constrained boundaries equipped
with tangential structures which are more general than orientation. Of course, such
tangential structures have to satisfy compatibility conditions on the corners of the
cobordism at hand.

3.5.2. Defects. Defects, in particular topological ones, have been intensively in-
vestigated as a way to get hindsight in the structure of Quantum Field Theories.
Equivalently, topological defects arise when we consider TQFTs on stratified mani-
folds. Particularly interesting are defects of codimension 1, which provide interfaces
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to connect different TQFTs defined on a single manifold. An example of a codimen-
sion 1 defect for a 2d TQFT is the following

Formally, we consider a category of decorated stratified cobordisms, Cobor,defD (n),
where D denotes the decoration data. A n-dimensional TQFT with defects taking
value in a symmetric monoidal category C is a symmetric monoidal functor

Z : Cobor,defD (n)→ C

In the following, we illustrate briefly the definition of the undecorated stratified cobor-
dism category, referring to [12,13] for the decorated case.
Recall that a closed stratified n-manifold Σ is a manifold equipped with a finite
ascending filtration {Fn} such that

i) Σj := Fj/Fj−1 is a j-manifold, possibly empty, for all 1 ≤ j ≤ m. The
connected components of Σj , denoted by Σα

j , are called the j-strata, and are
equipped with an orientation;

ii) For all Σα
i ,Σ

β
j such that Σα

i ∩ Σ
β
j 6= ∅, we have that Σα

i ⊂ Σ
β
j ;

iii) The total number of strata is finite.

We have also the notion of a morphism between stratified n-manifolds. Namely, it
is a smooth map f : Σ → Σ′ of manifolds such that f(Σj) ⊂ Σ′j , and such that it
preserves the orientation of each strata.
Similarly, we can define stratified manifolds with boundary and their morphisms;
see [12,13]. An example of a stratified manifold with boundary is given by the figure
above: it has a single 2-stratum, two 1-strata, and no 0-straum.
We can then construct a symmetric monoidal category Cobor,def (n) in analogy with
the ordinary category of n-dimensional cobordisms, and define a stratified TQFT as
a functor from Cobor,def (n) to a symmetric monoidal category C.
When the defects, i.e. the strata, are decorated, it is expected that any stratified
TQFT equips the decoration data with the structure of a higher category. Namely,
to each n-dimensional stratified TQFT one should assign a weak n-category where
objects are (the decoration data for) codimension 0 defects, 1-morphisms are codi-
mension 1 defects, and so on. For n ≤ 3 such constructions have been discussed in
the literature, as in [11,12,16] and references therein. In Section 3.8 we will briefly
discuss the relevance of defects in applications to Physics.
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Example 3.55. Given a modular29 tensor category C, the TQFT constructed by
Reshethikin-Turaev in [59,67] cane be regarded as an oriented 3d TQFT with defects
of codimension 2. In this description, the invariant of a knot L in a 3-manifold M is
the partition function of the TQFT evaluated on M equipped with the stratification
arising from the embedding. Notice that the knot is decorated by an object of C.

3.5.3. Interlude: the Cobordism Hypothesis with singularities. In the previous sec-
tions we have discussed two possible extensions of the notion of a TQFT involving
higher category theory. On one side, we can consider extended cobordism categories,
while on the other side we can consider manifolds with additional structures, like deco-
rated boundaries and stratifications. It is then natural to consider the combination of
these two extensions, namely to consider extended cobordism categories of manifolds
with stratifications. At the time of writing the present work, there is no explicit con-
struction of such cobordism categories, even if their relevance is widely aknowledged.
Neverthless, in [53] Lurie proposes the notion of a fully extended cobordism category
of manifolds with singularities. We will not attemp to replicate his definition here,
since it is quite involved, but observe that in [53] it is claimed that it subsumes the
notion of boundary conditions and manifolds with defects30. Moreover, a Cobordism
Hypothesis with singularities is stated: in the case of boundary conditions, Lurie
argues that any symmetric monoidal ∞-functor

Z : Bordfr,∂n → C

is given by the choice of an object A in Cfd and the choice of a morphism 1→ A in
Cfd.
The Cobordism Hypothesis with singularities has been used prevalently in [21] to ob-
tain results concerning TQFTs with anomalies. For an application to Representation
Theory, see [8]

3.6. Invertible TQFTs. A particular class of field theories which has enjoyed
recent attention is that of invertible TQFTs. Invertible TQFTs have been used to
give a geometric description of anomalies [21,24], and they have been proposed as a
tool to describe aspects of Condensed Matter Physics [25,26] (see also Section 3.8).
Let C be a symmetric monoidal category, and let X(n) be a n-dimensional tangential

structure31. A TQFT Z : CobX(n)(n)→ C is said to be invertible if it factors through
the underlying Picard groupoid of C, namely it fits in a commutative diagram

CobX(n)(n) C

Pic(C)

Z

29For simplicity, we will assume that C has no central charge. Otherwise, one has to consider
manifolds equipped with a p1-structure.

30See Section 4.3, Example 4.3.22, 4.3.23 in [53].
31Recall that a tangential structure is actually a fibration X(n)→ BO(n).



38 1. PREFACE

of symmetric monoidal functors.
An invertible TQFT assigns invertible data at each level, i.e. to objects and mor-
phisms.
Functors to groupoids always factor through the groupoid completion, which we now
illustrate. Given a category C, its groupoid completion is a pair (|C|, i), where |C|
is a groupoid, and where i : C → |C| is a functor satisfing the following universal
property: for any groupoid G and any functor f : C→ G there exists a unique functor
f̃ : |C| → G that makes the following diagram

C |C|

G

i

f
f̃

commutes.
One can show that for any category C its groupoid completion does indeed exists:
intuitively, one can construct it by “adding” an inverse to each morphism. Moreover,
one can show that the groupoid completion of a symmetric monoidal category is again
symmetric monoidal.
For any invertible n-dimensional TQFT with tangential structure X(n) we have then
a commutative diagram

CobX(n)(n) C

|CobX(n)(n)| Pic(C)

Z

Z̃

Since CobX(n)(n) has duals for each object, the groupoid completion |CobX(n)(n)| is
itself a Picard groupoid32. The re-writing above is very powerful: indeed, Picard
groupoids can be regarded as spectra, and any symmetric monoidal functor between
Picard groupoids can be regarded as a map of spectra. This allows to lift the powerful
techniques of stable homotopy theory to the realm of Topological Quantum Field
Theories. We will not dwelve into such a connection to stable homotopy theory in
the present thesis: we will content ourselves with providing some suggestive comments
in Section 3.8.

Example 3.56. For n = 2 and any λ ∈ C∗, we can consider the following 2-
dimensional invertible oriented TQFT with values in VectC. To each closed 1-
dimensional manifold S it associates the vector space C, and to any cobordism Σ
it associates the linear map given by multiplying with λχ(Σ)−#, where χ(Σ) denotes
the Euler number of Σ once all the boundary components have been “filled”, and #
denotes the total number of boundary components. The local properties of the Euler
number of surfaces guarantee the compatibility under gluing of cobordisms.

32A dualizable object in a symmetric monoidal groupoid is invertible.
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The notion of an m-extend invertible TQFT is obtained by substituting the category

CobX(n)(n) with its m-extended counterpart Cob
X(n)
m (n). For extended TQFTs, in-

vertibility imposes strong conditions on the TQFT. Indeed, in [63] it is shown that
an extended n-dimensional TQFT taking value in a (∞, 2)-category C is invertible as
soon as the value assigned to the (n− 1)-dimensional torus is invertible in C.

3.7. Group actions on categories. In Section 3.4.2 we have argued that the
Cobordism Hypothesis for TQFTs with G-structures requires studying the homotopy
fixed points of a G-action on a topological space, namely the core of the ∞-groupoid
of fully dualizable objects K(Cfd). Let G be a topological group. Recall that the
space of homotopy fixed points of a G-action on a topological space X is given by

XhG := MapsG(EG,X)

where EG is a33 contractible G-space.
The definition of homotopy fixed points described above requires that we first obtain
a topological space X from K(Cfd) together with a G-action, and then compute the
space of homotopy fixed points XhG. We obtain back an ∞-groupoid by considering
Π≤∞(XhG). We can ask then if there is a way to describe homotopy fixed points
of a group action directly in a categorical formalism. This is discussed in [38] for
bicategories, together with a definition of homotopy actions of topological groups. In
the following, we discuss topological group actions on categories.
Let G be a group. A compact way to describe the action of G on a set X is to consider
a functor

ρX : BG→ Set

where BG is the category with a single object ?, and ρX(?) = X. Unravelling the
definition, we see that ρX provides for each g in G an automorphism ρX(g) of X,
such that ρX(gh) = ρX(g)ρX(h).
The definition above is powerful enough to be easily generalized. Indeed, we can
consider other categories, like Top, for actions on topological spaces.
Given a G-action ρX , we can consider the colimit34 colimρX of the diagram provided
by ρX itself. It is not difficult then to show that

XG ' colim ρX

where XG denotes the ordinary fixed point subset of X.
The definitions above can be naturally generalized to higher categories. Indeed, we
can regard the category BG as a 2-category with only identities 2-morphisms. An
action of a group G on a category C is then a 2-functor

ρC : BG→ Cat

such that ρC(?) = C. Similar we can consider an arbitrary bicategory as a target for
our 2-functor.
Notice that the above definition generalizes two aspect of group actions. On one
side, we are not asking for the 2-functor to be strictly associative: namely, the action

33Notice that XhG is defined only up to homotopy.
34Recall that Set possesses all limits and colimits.
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property holds only coherently, in the sense that for any g, h ∈ G , ρC(gh) will only
be isomorphic to ρC(g)ρC(h), and the isomorphisms satisfy coherence equations. On
the other hand, for any g ∈ G, we ask that ρC(g) is only an equivalence of categories,
and not an isomorphism. In a precise sense, this generalize the notion of a homotopy
coherent action: namely, if we consider the 2-category Toph given by topological
spaces, continuous maps, and equivalence classes of homotopies, then any 2-functor
ρX : BG→ Toph induces a homotopy action35 on X. The converse, though, does not
hold in general.
We have still room for an additional layer of generalization: we can take into account
the topology of G. Namely, we can define a topological G-action on a category as a
2-functor

ρC : BΠ≤1(G)→ Cat

such that ρC(?) = C. Recall that Π≤1(G) denotes the fundamental groupoid of
G: since G is a group, Π≤1(G) is a strict monoidal category. Notice that only the
topological information up to the fundamental group of G is involved in the definition.
Whenever the group involved has a topology, we will consider topological actions.
It is natural at this point to associate to an action ρC the category

colim ρC

obtained as a 2-colimit, i.e. a (weak) colimit in Cat. We will denote such a cate-
gory with ChG, which is referred to as the category of homotopy fixed points of ρC.
For a finite group G, one can prove that the category ρC is equivalent to the G-
equivariantization of C discussed in [19]; see [36] for details.

Remark 3.57. Let X be a topological space which is a 1-type, regarded as an object
in Toph. Then given a homotopy coherent G-action ρX on X the topological space
corresponding to colim ρX is homotopy equivalent to XhG. This is in general not the
case if X is not a 1-type.

3.7.1. To ∞ and beyond. In the previous Section we have considered topological
actions on categories. This is actually an example of topological actions on objects
in ∞-categories. Namely, given a topological group G and an (∞, 1)-category C, a
topological homotopy action of G on an object X in C can be defined as an∞-functor

ρX : BΠ≤∞(G)→ C

such that ρX(?) = X.
By the homotopy hypothesis, we should be able to encapsulate all the homotopy
properties of G. This is indeed the case: namely, if we regard Top as an (∞, 1)-
category, then we have that colim ρX is indeed (homotopy) equivalent to XhG.

Remark 3.58. Topological actions on objects of (∞, 1)-categories as defined above
should induce by truncation the constructions mentioned in the previous Section.
Neverthless, the full details of how this works are not available in the literature at

35A homotopy action of a group G on a topological space X is a homomorphism G →
AutH(Top)(X), where H(Top) denotes the homotopy category of topological spaces.
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the time of writing, since there is a lack of an equivariant homotopy hypothesis for
n-types.

3.8. Applications. In this Section, we will very briefly illustrate how some of
the ideas surrounding TQFTs and homotopy theory have found applications to as-
pects of Condensed Matter theory, more specifically to the description of topological
phases of matter. We refer the reader to [68] for an introduction to such topics, which
we treat here in a very cavalier way.
One source for the appearence of TQFTs and the related categorical machinery is
lattice gauge theory. A quantum lattice gauge theory on a n-manifold M consists
roughly of a triangulation where the (n − 1)-cells are decorated with some labels,
e.g. spin-configurations. A given decoration can be considered as a field state. The
state space H is then the vector space of complex valued functions over the field
states (equipped with some measure). A quantum Hamiltonian is a linear operator
H : H → H. Under the assumption that H is bounded below, we can consider the
space of ground states as the eigenspace associated to the lowest eigenvalue of H. An
example of lattice gauge theory in 2d is given by the toric code, whose Hamiltonian
is given by

H =
∑

f∈faces

Hf +
∑

v∈vertices

Hv

where

Hf =
1

2
(1−

∏

e∈∂f
σxe ) Hv =

1

2
(1−

∏

e:v∈∂e
σze)

where σxi and σzi are Pauli matrices.
It may happen that the space of ground states does not depend on the lattice struc-
ture, and that by varying the manifold M they correspond to the vector spaces a
TQFT ZH would assign to M . The TQFT ZH is then referred to as the low-energy
effective field theory of the system, which is said to be a topological state of matter.
This is indeed the case of the toric code, for instance. The Levin-Wen model [51]
provides another important example. Given a n-dimensional TQFT, we can then
ask if it is the low energy effective field theory for some lattice system in (n − 1)
dimensions: this is often a very complex question.
Another important appearance of TQFTs is in describing aspects of the quantum
Hall liquid, which is a phase of matter obtained by subjecting a two-dimensional sys-
tem of electrons to low temperatures and to a strong magnetic field. In particular,
it is believed that the fractional Quantum Hall liquid is described at low energy by
the Witten-Chern-Simons TQFT. Moreover, physicists have argued that the excita-
tion modes in the fractional Quantum Hall state give rise to emergent quasi-particles
called anyons, whose dynamics turns out to be described by a modular tensor cate-
gory (see [57] for a review).
Recently, techniques from stable homotopy theory have been used in computing in-
variants of topological insulators. In [25], Freed formulated a short-range entangle-
ment hypothesis: namely, he proposed that the low-energy/long-range effective field
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theory describing gapped36 systems with short-range entanglement is a fully extended
TQFT which is moreover invertible37. As we have argued in Section 3.6, invertible
TQFTs can be regarded as maps of spectra. In [26], the authors apply this ansatz
to study, among other things, phases of topological insulators: by an educated guess
on the spectrum describing the Picard ∞-groupoid of the coefficient category, they
are able to recover, for instance, the Kane-Mele invariant [41]. This has spawned a
renewed interested in the application of Topology, and in particular homotopy theory
to Physics.
Finally, we want to mention the relevance of boundary conditions and defects in the
study of topological phases. In [46], the authors study a class of two-dimensional
lattice models which describe phases of matter with boundaries which are gapped,
together with the bulk. They also discuss domain walls, which are “lines” in the
lattice where the system can undergo a transition of phase. In the low energy limit,
these can be interpreted as a stratification, and the system is then described by a
stratified TQFT, as discussed in Section 3.5.

4. Main results

4.1. Paper “Bicategories for Boundary Conditions and for Surface De-
fects in 3d-TFT” [31], with J. Fuchs and C. Schweigert. Given a three-
dimensional manifold with boundaries M , we consider in the bulk the Reshetikhin-
Turaev (RT) TQFT associated to a modular tensor category C. We then investigate
which mathematical structure encodes possible topological boundary conditions, and
which obstructions are present to extend the 3d TQFT from the bulk to the bound-
ary. Similarly, we consider a three-dimensional manifold M equipped with a surface
defect S separating two regions of M where two RT-type TQFTs are defined, whose
modular tensor categories are C1 and C2. We then ask what possible topological
defect conditions are allowed. Following a physical heuristic, we show that the exis-
tence of a topological boundary condition is described by a central functor which lifts
the trivialisation of C in the Witt group of fusion categories. This is equivalent to
providing a fusion category W together with a braided equivalence C ' Z(W), where
Z(W ) denotes the Drinfeld center. The bicategory of boundary conditions can then
be described as the bicategory of module categories over W. Similary, a topological
surface defect is described by a fusion category A together with a braided equivalence
C1�Crev2 ' Z(A). We compare our results with those obtained in [45] and [46]. More
precisely, we show that boundary conditions for abelian toroidal Chern-Simons the-
ory are in bijective correspondence with Lagrangian algebras in the modular tensor
category associated to a distinguished quadratic group (Λ, q) which encodes the data
needed to define the classical theory. This result is due to the fact that equivalence
classes of indecomposable W-modules categories correspond to Lagrangian algebras
in Z(W).

36A quantum system is called gapped if its Hamiltonian is bounded below, and the lowest eigen-
value is an isolated point in the spectrum

37There are additional assumptions, like unitarity, which we prefer to ignore in the present
discussion.
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Given a surface defect S between a TQFT described by a modular tensor category
C and itself, we assign to any Wilson line separting S and the transparent defect
TC a (Morita class of) special symmetric Frobenius algebra in C, recovering the con-
struction in [44]. This can be regarded as a construction of the gluing conditions for
rational CFTs discussed in [30].

4.2. Paper “A Geometric Approach to Boundaries and Surface De-
fects in Dijkgraaf-Witten theories” [32], with J. Fuchs and C. Schweigert.
We consider extended 3d Dijkgraaf-Witten(DW) theory on manifolds with decorated
boundaries and surface defects. Given a manifold M with such a decorated structure,
and given a finite group G, we consider the groupoid of relative (G,H)-bundles over
M , with H ⊂ G a subgroup. We then apply the quantization bifunctor described
in [56] to obtain a category of generalized Wilson lines. In particular, we explicitely
compute the category that corresponds to the interval I, where each of the end points
is decorated with a choice of a subgroup H of G, and a 2-group cocyle θ . We show
that this category is indeed equivalent to the category expected from the general ma-
chinery developed in [31], namely a category of functors between module categories
over the category of ω-twisted G-graded vector spaces VectωG. This constitute a con-
crete and highly non-trivial test for the results in [31], and a first step in the complete
construction of extended 3d DW-TQFT as a stratified Topological Quantum Field
Theory.

4.3. Paper “On the Brauer Groups of Symmetries of Abelian Dijkgraaf-
Witten theories” [29], with J. Fuchs, J. Priel and C. Schweigert. We consider
extended Dijkgraaf-Witten (DW) theory in three-dimensions based on an abelian
group A, and investigate the notion of gauge-theoretic and algebraic symmetries.
Namely, algebraic symmetries correspond to the automorphisms of the modular ten-
sor category that DW-TQFT ZA associates to S1, while gauge-theoretic symmetries
correspond to the automorphisms of the stack of A-bundles equipped with a trivi-
alised 2-gerbe, and to genuine quantum symmetries. The category C := ZA(S1) is
equivalent to D(A)-mod, the category of modules over the Drinfeld double D(A) of
A. Since A is abelian, we have that the equivalence classes of simple objects of C

are in correspondence with elements of A ⊕ A∗. The group of algebraic symmetries
of the theory is then given by EqBr(C), the group of braided autoequivalences of C.
We introduce the notion of a transmission functor, namely the functor a stratified 3d
TQFT assigns to a cilinder with a circle embedded “in the middle”, and decorated
with an invertible defect condition. A transmission functor provides a genuine TQFT
realisation of a symmetry. By using fusion of surface defects, we obtain a group of
equivalence classes of such transmission functors, and we show that such a group
is isomorphic to EqBr(C). Moreover, once we realize EqBr(C) as Oq(A ⊕ A∗), the
group of automorphisms of A⊕ A∗ preserving the quadratic form q associated to C,
we give a presentation of EqBr(C) in terms of generators. We find that any element
in Oq(A ⊕ A∗) can be obtained as the composition of three types of symmetries:
universal kinematic symmetries, corresponding to the automorphisms of the stack of
A-bundles BunA; universal dynamic symmetries, corresponding to automorphisms of
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the trivialised 2-gerbe on BunA; electric-magnetic dualities, which are given by sym-
metries exchanging A and A∗, and which can be interpreted as the groups of electric
and magnetic charges.

4.4. Paper “Boundary Conditions for Topological Quantum Field The-
ories, Anomalies and Projective Modular Functors” [21], with D. Fiorenza.
We consider extended TQFTs in the framework of Lurie, and study boundary con-
ditions and their relation to invertible anomalies. We give a definition of anomalous
TQFT and anomaly field theory, which have appeared in a different guise in the lit-
erature [28, 65]. We define TQFTs with moduli level m as a symmetric monoidal

∞-functors from Bord
X(n)
n to (n+m)-Vect, and we consider in detail the case m = 1,

which describe anomalous theory. We define the anomaly field theory for a fully

extended n-dimensional TQFT as a functor W : Bord
X(n)
n → Pic((n + 1)-Vect), and

show that an anomalous TQFT is given by a (lax) section of the anomaly field theory.
We introduce the notion of n-character for ∞-groups, and show that any (invertible)
anomaly field theory gives rise to a 2-character. We show that the homotopy fixed
points of such a 2-character correspond to anomalous field theories. We then consider
(n+1)-extended TQFTs with boundary, and by using dimensional reduction, we show
how boundary conditions give rise to n-dimensional anomalous theories. By using the
Cobordism Hypothesis with singularities, we argue that the converse is true in the
fully extended case, namely that any n-dimensional fully extended anomalous theory
can be obtained via dimensional reduction by a boundary condition for the anomaly
field theory. This suggestively points towards a description of 3d Chern-Simons the-
ory in its Reshetikhin-Turaev form as a boundary field theory for 4d Crane-Yetter
theory, which is expected to hold. We end the paper with a conjecture on this topic.

4.5. Paper “Central Extensions of Mapping Class Groups from Char-
acteristic Classes” [20], with D. Fiorenza and U. Schreiber. We consider
(X, ξ)-framed manifolds as defined by Lurie in [53], which are a generalizations of
tangential structures, and which we refer to as ρ-structures. We consider smooth
∞-groupoids, which can be regarded as sheaves of Kan complexes over the site of
cartesian spaces. This allows to describe in a very natural way a ρ-structure on an
n-dimensional manifold M as a morphism in the slice topos H∞/BGL(N), where
H∞ denotes an enriched version of the ∞-topos of smooth groupoids, and BGL(N)
denotes the smooth stack of GL(n)-bundles. We show that any characteristic class
gives rise to a ρ-structure by considering its smooth homotopy fiber construction. We
study the automorphism ∞-group of a given ρ-structure on M , from which we can
extract the ∞-group of diffeomorphisms Diffρ(M) of M preserving the ρ-structure,
which is not a subgroup of the diffeomorphisms of M , but rather a pullback construc-
tion. We then prove a theorem classifying the possible extensions of Diffρ(M) along
morphisms of ρ-structures. We show how such extensions give rise extensions of the
mapping classing group of ρ-preserving diffeomorphisms, and that in some cases these
extensions are short exact sequences. We then study the case of orientation, spin,
and in particular p1-structures, where we show that one obtains a Z-central extention
of the oriented mapping class group of a 2-manifold M , which was proposed by Segal
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in [64] as one of the main ingredients in the construction of a projective modular
functor.

4.6. Paper “Frobenius Algebras and Homotopy Fixed Points of Group
Actions on Bicategories” [37], with J. Hesse and C. Schweigert. We consider
the action of a topological group G on a bicategory C by regarding G as a tricategory
via its fundumental 2-groupoid. This allows to incorporate a notion of continuity of
the action, and it is a novelty in our definition of group action. On the other hand,
the fact that the target is a bicategory means that we deal with a homotopy coherent
group action. We construct the bicategory of homotopy fixed points CG as a limit of
the action, which comes naturally equipped with a forgetting bifunctor CG → C. We
also give a direct explicit construction of CG. Motivated by the Cobordism Hypothesis
in 2 dimensions, we specialise to the case G = SO(2). As suggested by Lurie in [53],
for any symmetric monoidal bicategory C there is an SO(2)-action on K(Cfd), the core
of fully dualizable objects of C, which should be generated by the Serre automorphism.
An interesting case is provided by bicategories where the Serre automorphism is

trivialisable, given rise to trivialisable SO(2)-action: this is the case for Algfd2 , the
fully dualizable objects in the bicategory of algebras, bimodules, and intertwiners,
as shown in [17]. We then study trivial SO(2)-actions on arbitrary bicategories,
and show that the bicategory of homotopy fixed point is far from trivial. When we
specialize these results to the case C = Alg2, we obtain that CSO(2) is the bicategory
of semi-simple Frobenius algebras Frob, recovering thus the results in [17,27]. We
also consider the case of the trivial SO(2)-action on C = 2Vect, more precisely KV-

vector spaces: we show in this case that CSO(2) is equivalent to the bicategory of
finitely-semisimple Calabi-Yau categories. By using that the representation bifunctor
Rep : Alg2 → 2Vect is SO(2)-equivariant, we then obtain that Calabi-Yau categories
classify fully extended oriented 2d TQFTs taking value in 2Vect, which had previoulsy
enjoyed the status of a “folk theorem”.

4.7. Paper “The Serre Automorphism via Homotopy Actions and the
Cobordism Hypothesis for Oriented Manifolds” [38], with J. Hesse. We
extend the techniques of [37] to give a geometric description of the Serre automor-
phism on an arbitrary symmetric monoidal bicategory, which was predicted by Lurie
in [53]. We consider a generators and relations presentation of the fully extended bi-
category of two-dimensional framed cobordisms Fcfd developed in [58]. We construct
an SO(2)-action using such a presentation, and show that the induced action on a
symmetric monoidal bicategory C via the Cobordism Hypothesis coincides with the
action generated by the Serre automorphism. We then explicitely construct the bicat-
egory of homotopy SO(2)-fixed points for an arbitrary SO(2)-action on a symmetric
monoidal bicategory C. We show that evaluation on the point induces an equivalence
of bicategories between Fun⊗(Fcfd,C)SO(2) and K(Cfd)SO(2), which can be regarded
as a proof of the Cobordism Hypothesis for 2d oriented TQFTs taking value in C.
We then consider the case of 2d invertible field theories. We show that the Serre au-
tomorphism is monoidal, and that the SO(2)-action it generates on K(Cfd) induces
an action on the Picard 2-groupoid Pic(C). We give sufficient conditions on C for the
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SO(2)-action on Pic(C) to trivialize, and argue that in this case any framed 2d fully
extended TQFT can be lifted to an oriented one. These conditions are satisfied for
Alg2 and 2Vect.
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Abstract: We analyze topological boundary conditions and topological surface defects
in three-dimensional topological field theories of Reshetikhin-Turaev type based on arbi-
trary modular tensor categories. Boundary conditions are described by central functors
that lift to trivializations in the Witt group of modular tensor categories. The bicate-
gory of boundary conditions can be described through the bicategory of module cat-
egories over any such trivialization. A similar description is obtained for topological
surface defects. Using string diagrams for bicategories we also establish a precise rela-
tion between special symmetric Frobenius algebras and Wilson lines involving special
defects. We compare our results with previous work of Kapustin-Saulina and of Kitaev-
Kong on boundary conditions and surface defects in abelian Chern-Simons theories and
in Turaev-Viro type TFTs, respectively.

1. Introduction

An insight gained in recent years in the study of quantum field theories is that inter-
esting effects are captured when allowing for codimension-one defects, i.e. interfaces
between regions on which two different theories are living. Depending on the appli-
cation, it is sensible to impose specific kinds of conditions on such interfaces; for
instance, in integrable field theories, integrable defects, as considered e.g. in [DMS,
BCZ], are naturally of interest. In two-dimensional rational conformal field theories,
the study of totally transmissive defect lines (see e.g. [Wa,PZ,BDDO,FFRS2]) has
produced structural information about non-chiral symmetries and Kramers-Wannier-
type dualities. It has also become apparent that boundaries and defects are close rela-
tives.

In this paper we concentrate on topological quantum field theories in three dimen-
sions (TFTs), specifically on theories that include (compact) Chern-Simons theories.
While for the latter subclass a Lagrangian formulation is available, in the general case
considered here we work within the combinatorial approach of Reshetikhin and Turaev
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[RT] type, which associates a TFT to any semisimple modular tensor category. This
includes TFTs of Turaev-Viro type as well.

In the three-dimensional situation the simplest codimension-one structures are sur-
faces that constitute either a defect surface or a two-dimensional boundary. It is worth
stressing that here the term boundary refers, as in [KS1], to a brim at which ‘the three-
dimensional world ends’. Such brim boundaries must in particular not be confused with
the cut-and-paste boundaries that commonly occur (see e.g. [Tu]) in these theories.
Boundaries of the latter kind arise when a three-manifold is cut into more elementary
three-manifolds with boundaries; accordingly, their function is to account for locality
and to allow for sewing, or cut-and-paste, procedures. Both classes of boundaries are
geometric boundaries of three-manifolds, but cut-and-paste boundaries come with addi-
tional local (chiral) degrees of freedom and can support vector spaces of conformal
blocks. In contrast, brim boundaries need not involve any of those structures. Note that
the distinction between two different kinds of boundaries is not specific to three dimen-
sions. In two dimensions, in the discussion of so-called open-closed theories, such a
distinction is standard; see e.g. [Mo, Sect. 3], where intervals corresponding to in- and
out-going open strings are distinguished from “free boundaries” corresponding to the
ends of an open string “moving along a D-brane.”

Among the Reshetikhin-Turaev type theories there are in particular TFTs constructed
from lattices, which have e.g. been prominent (see, for instance, [FCGK] for a detailed
discussion) in the discussion of universality classes of quantum Hall systems. Thus in
this particular case, our results may have applications to topological interfaces with gap-
ped excitations between two quantum Hall fluids. Our discussion applies, however, to
arbitrary semisimple modular tensor categories and does not rely on any specific aspects
of lattice models.

There is no guarantee that for a given quantum field theory a consistent defect or
boundary condition exists at all. In particular there can be theories that make perfect
sense in the bulk, but cannot be consistently extended to the boundary. On the other
hand, if consistent codimension-one defects, or boundary conditions, do exist, they will
typically not be unique. It is then natural to study interfaces between such lower-dimen-
sional regions as well, i.e. interfaces of codimension two. In our case of three-dimensional
topological field theories, these are generalized Wilson lines. (In other words, the brim
boundaries we consider can contain such Wilson lines. In contrast, this is not possible
for cut-and-paste boundaries. On the other hand, bulk Wilson lines can end on either
kind of boundary – in the case of cut-and-paste boundaries, they end on marked points.)
Again, such generalized Wilson lines need not exist, but again, if they do exist, then they
need not be unique, so that the game can be repeated one step further.

Hereby we arrive at a four-layered structure: At the top level, we associate a topolog-
ical field theory of Reshetikhin-Turaev type to each three-dimensional part of a stratified
three-dimensional manifold. For two-dimensional parts we deal with physical bound-
aries or with two-dimensional defects, for which we must choose a boundary condition,
respectively, in the same spirit, an additional datum that describes the type, or ‘color’
of the defect. Such a datum has been called a surface operator in [KS1]; we prefer
the term surface defect instead. The third layer of structure consists of one-dimen-
sional structures labeled by generalized Wilson lines that separate boundaries or surface
defects. And finally, generalized Wilson lines can fuse and split at point-like defects,
which may be interpreted as local field insertions and constitute the fourth layer of
structure.

The basic questions we are addressing in this paper can thus be posed as follows:
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(1) Given a three-dimensional region with non-empty boundary for which the TFT of
Reshetikhin-Turaev type in the interior is labeled by a modular tensor category C,
what are the data describing the types of topological boundary conditions on the
boundary?

(2) Given two three-dimensional regions separated by a two-dimensional interface, for
which the TFTs of Reshetikhin-Turaev type in the two regions are labeled by modular
tensor categories C1 and C2, respectively, what are the data describing the types of
topological surface defects on the interface?

The key in our analysis of these issues is the following process: a Wilson line in
the three-dimensional bulk can be moved “adiabatically” into the boundary or into a
defect surface. This has already been studied in [KS1, Sect. 5.2], and a similar process
in two dimensions has been considered in [DKR, Sect. 4.1]. A careful analysis of this
process allows us to give a complete answer to both questions, including in particular
a criterion for the existence of non-trivial solutions. The analysis yields in particular a
model-independent generalization of results that have been obtained in [KS1] for abelian
Chern-Simons theories using a Lagrangian description.

Our considerations involve mathematical ingredients that, to the best of our knowl-
edge, have not been applied to Reshetikhin-Turaev type TFTs before. Many of them
come from higher category theory, like aspects of fusion categories [ENO1,ENOM] and
of braided fusion categories [DrGNO], and specifically the notions [DMNO] of central
functors and of the Witt group of non-degenerate fusion categories. This group natu-
rally generalizes the classical Witt group of lattices; it has been originally devised as a
tool in the classification of modular tensor categories. Since some familiarity with such
concepts is required for appreciating our analysis, we collect the pertinent mathematical
background in Sect. 2.

Our results can be summarized as follows.

(1a) For a boundary adjacent to a three-dimensional region that is labeled by a modular
tensor category C, and thus with bulk Wilson lines given by C as well, the central
information about a topological boundary condition a is contained in the process
of moving Wilson lines to the boundary. It is mathematically described by a cen-
tral functor F→a : C→Wa , with Wa the fusion category of Wilson lines in the
boundary with boundary condition a.

(1b) A careful distinction between the three-dimensional physics in the bulk and the
two-dimensional physics in the boundary allows one to argue that the functor F→a

lifts to a (braided) equivalence F̃→a : C �→Z(Wa) between the category C of bulk
Wilson lines and the Drinfeld center of the category Wa of boundary Wilson lines.

(1c) This equivalence implies that a topological boundary condition exists for a TFT
labeled by the modular tensor category C if and only if the class of C in the Witt
group of modular tensor categories is trivial. Put differently, topological boundary
conditions exist if and only if the modular tensor category C is the Drinfeld center
of a fusion category.

(1d) For fixed C, the three-layered structure carried by the boundary conditions and
their higher-codimension substructures is a bicategory. It naturally encodes e.g.
the fusion of (generalized) Wilson lines.
This bicategory can be constructed from any single boundary condition described
by a central functor F→a : C→Wa as the bicategory of module categories over the
fusion category Wa . The 1-morphisms of this bicategory – i.e. module functors
– describe the possible Wilson lines (one-dimensional defects) on the boundary,
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including their fusion. The 2-morphisms describe the possible junctions of Wilson
lines.

(2) A similar analysis can be performed for surface defects separating TFTs that are
labeled by modular tensor categories C1 and C2. There are now two different pro-
cesses of moving bulk Wilson lines from either C1 or C2 into the defect surface
with a fusion category Wd of defect Wilson lines. They yield two central functors,

which can be combined into a braided equivalence C1 � Crev
2
�→Z(Wd). Here Crev

2
is the modular category with reversed braiding as compared to C2, and � is the
Deligne tensor product. Again this equivalence fully captures a surface defect.
Thus topological surface defects exist if and only if C1 and C2 are in the same Witt

class. Again, once one defect is described by an equivalence C1 � Crev
2
�→Z(Wd)

of braided fusion categories, the bicategory of all topological surface defects sep-
arating C1 and C2 is given by the bicategory of Wd -modules.

The description of boundary conditions and surface defects in terms of module cate-
gories that is achieved in this paper allows for a rigorous treatment of related issues. For
instance, we can show that all module functors appearing in our theory admit ambidex-
trous adjunctions, which brings the technology of string diagrams for bicategories to our
disposal. This way we can e.g. provide mathematical foundations for the constructions
in [KS2]; in particular we prove:

(3) To every (special) topological surface defect S separating a TFT labeled by the
modular tensor category C from itself, string diagrams provide, for any Wilson line
separating S and the transparent surface defect, an explicit construction of a special
symmetric Frobenius algebra in C. Different Wilson lines give Morita equivalent
algebras; we realize the Morita context explicitly in terms of string diagrams.

Before proceeding to the main body of the text, a few further remarks seem to be in
order:

A TFT of Reshetikhin-Turaev type based on a Drinfeld center of a fusion category
A is, by the results of [BK,TV], equivalent to a TFT of Turaev-Viro type based on
A. Topological boundary conditions for TFTs of Reshetikhin-Turaev type thus only
exist if the TFT admits a Turaev-Viro type description.
Not surprisingly, the description of boundary conditions and defects in three-dimen-
sional theories is one step higher in the categorical ladder than for two-dimensional
theories, e.g. two-dimensional CFTs, for which boundary conditions and defect lines
form categories of modules and of bimodules, respectively.
In fact one expects a relation of boundary conditions for the TFT based on the mod-
ular tensor category C and C-module categories. And indeed, as we will explain
in Sects. 3 and 4, respectively, the existence of a consistent fusion of bulk and
boundary Wilson lines requires such a relation. However, not every C-module cat-
egory describes a topological boundary condition. Rather, the structure we present
involves more stringent requirements that are fulfilled only by a subclass ofC-module
categories. Analogous comments apply to topological surface defects.
We describe surface defects and boundary conditions as specific objects of a
bicategory, not just as isomorphism classes thereof. This opens up the perspective to
obtain a vast extension of the entire Reshetikhin-Turaev construction to manifolds
with substructures of arbitrary codimension. Here we will not delve into this issue
further, but just mention that a first inspection indeed indicates that one can associ-
ate the appropriate vector spaces of conformal blocks to cut-and-paste boundaries



Bicategories for Boundary Conditions and for Surface Defects in 3-d TFT 547

of such extended manifolds. Any such construction should respect the known rela-
tions between topological field theories of Turaev-Viro and of Reshetikhin-Turaev
type and therefore be compatible with the kind of construction that is sketched in
[KK].
We obtain our results separately for boundary conditions and for surface defects.
A comparison of the results shows that the two situations are related by a ‘fold-
ing’ procedure. We thus find a three-dimensional realization of the ‘folding trick’,
which in two-dimensional conformal field theory is often invoked as a heuristic
tool.
We finally comment on surface defects separating C from itself. For the Delig-
ne product C � Crev of any modular tensor category C there exists canonically a
braided equivalence to the center of a fusion category, namely to the center of C
itself, C � Crev�Z(C). Thus there exist topological surface defects separating the
TFT labeled by C from itself. Among them there is in particular the transparent,
or invisible, surface defect whose presence is equivalent to having no interface
at all. It corresponds to C seen as a module category over itself. The general-
ized Wilson lines on the transparent surface defect are just the ordinary Wilson
lines.

The rest of this paper is organized as follows. We start by providing some mathe-
matical background information in Sect. 2; the reader already familiar with the relevant
aspects of monoidal categories can safely skip this part. Afterwards we present details of
our proposal for boundary conditions (Sect. 3) and surface defects (Sect. 4). In Sect. 5 we
then use the relation between module categories and Lagrangian algebras to show that,
in the specific case of abelian Chern-Simons theories, our analysis gives the same results
as the Lagrangian analysis of [KS1]. We conclude in Sect. 6 with a model-independent
study that extends the results of [KS2] about the relation between Frobenius algebras
in a modular tensor category C and generalized Wilson lines separating the transparent
surface defect for C from an arbitrary surface defect.

2. Mathematical Preliminaries

We start by summarizing some pertinent mathematical background. By (C,⊗C, 1, aC,
lC, rC) we denote a monoidal category with tensor product ⊗C , tensor unit 1, associa-
tivity constraint aC , and left and right unit constraints lC, rC that obey the pentagon and
triangle constraints. In our discussion we will, however, usually suppress the associa-
tivity and unit constraints altogether, as is justified by the coherence theorem. We work
over a fixed ground field k that is algebraically closed and has characteristic zero. For
definiteness we take k to be the field C of complex numbers, which is the case relevant
for typical applications. All categories are required to be k-linear and abelian.

As we are interested in generalizations of the Reshetikhin-Turaev construction, all
categories will be finitely semisimple, i.e. all objects are projective, the number of iso-
morphism classes of simple objects is finite, and the tensor unit is simple. If such a
category is also rigid monoidal and has finite-dimensional morphism spaces, it is called
a fusion category. With some further structure, such categories encode Moore-Seiberg
data of chiral conformal field theories. (Examples can be constructed from even lattices,
see Sect. 5.) We are particularly interested in braided categories, i.e. monoidal categories
C endowed with a natural isomorphism from C to C with the opposite tensor product (i.e.
with a commutativity constraint) satisfying the hexagon axioms.
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Objects U, V of a braided fusion category are said to centralize each other iff the
monodromy cU,V ◦ cV,U is the identity morphism. For D a fusion subcategory of a
braided fusion category C, the centralizer D′ of D is the full subcategory of objects of
C that centralize every object of D. A braided fusion category is called non-degenerate
iff C′ �Vectk [DMNO, Def. 2.1]; a braided fusion category is called premodular iff it
is equipped with a twist (or, equivalently, with a spherical structure). A premodular cat-
egory is modular, i.e. its braiding is maximally non-symmetric, iff it is non-degenerate
[DrGNO, Prop. 3.7].

2.1. Module categories. Categorification of the standard notion of module over a ring
yields the notion of a module category over a monoidal category. Similarly, the notion
of a bimodule category is the categorification of the notion of a bimodule.

Definition 2.1. (i) A (left) module category over a monoidal category (A,⊗A, 1, aA,
lA, rA) or, in short, an A-module, is a quadruple (M,⊗, a, l), where M is
a k-linear abelian category and ⊗: A×M→M is an exact bifunctor, while
a= (aU,V,M )U,V∈A,M∈M and l = (lM )M∈M are natural families of isomorphisms
aU,V,M : (U ⊗A V )⊗M→U ⊗ (V ⊗M) and lM : 1⊗M→M that satisfy pen-
tagon and triangle axioms analogous to those valid for a monoidal category.1

(ii) In the same spirit, for (A1, ⊗A1
, 11, aA1 , lA1 , rA1) and (A2, ⊗A2

, 12, aA2 , lA2 ,

rA2) monoidal categories, a A1-A2-bimodule category, or A1-A2-bimodule, is
a tuple (X ,⊗1, a1, l1,⊗2, a2, r2, b), where X is a k-linear abelian category,

⊗1 : A1×X→X and ⊗2 : X ×A2→X (2.1)

are bifunctors, while a1= (a1;U,V,X )U,V∈A1,X∈X , l1= (l1;X )X∈X and a2=
(a2;X,U,V )U,V∈A2,X∈X , l2= (l2;X )X∈X as well as (bU ;X;V )U∈A1,V∈A2 X∈X are
natural families of isomorphisms a1;U,V,X : (U ⊗A1

V )⊗1 X→U ⊗1 (V ⊗1 X),
l1;X : 11⊗1 X→ X, a2;X,U,V : X ⊗2 (U ⊗A2

V )→ (X ⊗2 U )⊗2 V ), l2;X : X ⊗2 12
→ X and bU ;X;V : (U ⊗1 X)⊗2 V→U ⊗1 (X ⊗2 V ) that satisfy pentagon and
triangle axioms similar to those valid for a monoidal category.2

Remark 2.2. (i) Very much like a ring is a left module over itself, any monoidal cate-
goryA is naturally a module category over itself; we denote this ‘regular’A-module
by AA. Also, via F � A := F(A) every category A is a module over the monoidal
category End(A) of endofunctors of A.

(ii) Module categories over A can be described in terms of algebras in A, i.e. objects
A of A together with a multiplication morphism m : A⊗ A→ A and a unit mor-
phism η : 1→ A that obey associativity and unit axioms. As usual one introduces
a category mod-A of right A-modules in A. One easily verifies that the functor
(U,M) �→U ⊗M endows the category mod-A with the structure of a module cat-
egory over A [Os1, Sect. 3.1]. Conversely, given a module category, algebras can
be constructed in terms of internal Homs.

(iii) Algebras that are not isomorphic can yield equivalent module categories. In fact,
there is a Morita theory generalizing the classical Morita theory of algebras over
commutative rings.

(iv) AnA-moduleM is the same as a monoidal functor fromA to the monoidal category
End(M) of endofunctors of M [Os1, Prop. 2.2].

1 For a complete statement of the axioms see e.g. [Os1, Sect. 2.3].
2 A complete statement of the axioms can e.g. be found in [Gr, Def. 2.10 & Prop. 2.12].
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(v) We recall that for our purposes we assume all categories to be abelian categories
enriched over the category of finite-dimensional complex vector spaces and to be
finitely semisimple.

Along with module categories there come corresponding notions of functors and
natural transformations.

Definition 2.3. (i) A (strong) module functor between two A-modules M and M′ is
an additive functor F :M→M′ together with a natural family b=(bU,M )U∈A,M∈M
of isomorphisms bU,M : F(U ⊗M)→U ⊗ F(M) that satisfy pentagon and trian-
gle axioms analogous to those valid for a monoidal functor.

(ii) A natural transformation between two module functors is a natural transformation
of k-linear additive functors compatible with the module structure.

(iii) The corresponding notions for bimodule categories are defined analogously.

There is also an obvious operation of direct sum of A-modules: M⊕M′ is the
Cartesian product of the categories M and M′ with coordinate-wise additive and mod-
ule structure. An indecomposable A-module is one that is not equivalent (asA-modules,
i.e. via a module functor) to a direct sum of two nontrivial A-modules. Any A-module
can be written as a direct sum of indecomposable ones, uniquely up to equivalence.

2.2. Bicategories and Deligne products. Given a monoidal category A, the collection
of all A-modules has a three-layered structure, consisting of A-modules, module func-
tors, and module natural transformations. This structure cannot be described any longer
in terms of a category; we rather need the notion of a bicategory, which is perva-
sive in this paper. A bicategory has three layers of structure: objects, 1-morphisms and
2-morphisms. The composition of 1-morphisms is not necessarily strictly associative,
but only up to 2-isomorphisms; if it is strictly associative, one calls the bicategory strict
(or a 2-category). For 2-morphisms there are two different concatenations, referred to
as vertical and horizontal compositions. For details about bicategories see e.g. [Ben].

A standard example for a strict bicategory is the one for which objects are small
categories, 1-morphisms are functors and 2-morphisms are natural transformations. An
example for a non-strict bicategory is the one whose objects are associative algebras,
1-morphisms are bimodules and 2-morphisms are bimodule maps. Here we are inter-
ested, for a given monoidal category A, in its bicatgeory A-Mod of modules, having
A-modules as objects, module functors as 1-morphisms and natural transformations
between module functors as 2-morphisms. Similarly, for any pair (A1,A2) of monoidal
categories there is the bicatgeory A1-A2-Bimod.

The universal property of the tensor product of vector spaces allows one to describe
bilinear maps in terms of linear maps out of the tensor product. Similarly, the Deligne
tensor product C1 � C2 [De, Sect. 5] of abelian categories provides a bijection between
bifunctors F : C1× C2→D and functors F̂ : C1 � C2→D. If C1= A1-mod is the cat-
egory of (left, say) modules over a finite-dimensional k-algbera A1 and C2= A2-mod,
then C1 � C2 is equivalent to the category of modules over the k-algebra A1⊗k A2 [De,
Prop. 5.5], and if C1 and C2 are semisimple with simple objects given by Si and Tj ,
respectively, then C1 � C2 is semisimple as well, with simple objects given by Si � Tj .

A significant feature of bimodules over a ring is that they admit a tensor product.
The Deligne product can be used in a similar way. Given, say, rings R1, R2 and R3, the
tensor product provides us with functors

⊗R2 : R1-R2-bimod× R2-R3-bimod→ R1-R3-bimod (2.2)
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describing ‘mixed’ tensor products. The Deligne tensor product categorifies this feature
as well and provides bifunctors between bimodule categories. For details we refer to
[EGNO, Sect. 1.46]. For a commutative ring R, the tensor product of two R-modules
is again an R-module. Braided tensor categories are categorifications of commutative
rings. Indeed, ifC is a braided abelian monoidal category, then the Deligne tensor product
endows the bicategory C-Mod with a monoidal structure.

Next we notice that for any k-algebra A the space EndA(AA) of module endomor-
phisms of A as a module over itself is isomorphic to Homk(k, A) and thus to A. This
suggests to study the properties of the category EndA(AA) of module endofunctors of
A as a module category over itself. Since endofunctors can be composed, EndA(AA)
is a monoidal category. Moreover, we have the following categorified version of the
classical isomorphism EndA(AA)∼= A of algebras:

Proposition 2.4. Let A be a k-linear monoidal category. For any object U ∈A denote
by FU : AA→AA the module endofunctor that acts on objects by tensoring with U
from the left, FU (V ) :=U ⊗ V . Then the functor

FA : A−→ EndC(AA)
U �−→ FU

(2.3)

is an equivalence of monoidal categories.

Proof. We first show that the functor

GA : EndA(AA)−→A
F �−→ F(1) (2.4)

is an essential inverse of FA. Indeed we have the chain of equalities GA ◦ FA(U )=GA
(FU )=FU (1)=U ⊗ 1=U , so that GA ◦ FA= IdA. Conversely, for anyϕ ∈ EndA(AA)
the functor FA ◦GA(ϕ)∈ EndA(AA) acts onU ∈AA as (FA ◦GA(ϕ))(U )=FGA(ϕ)(U )=ϕ(1)⊗U . The unit constraint of the module functor ϕ then provides a natural iso-
morphism to the identity functor.

It remains to obtain tensoriality constraints for the functor FA. The equalities

FA(U⊗V )(W ) = (U ⊗ V )⊗W
α�−→ U ⊗ (V ⊗W ) = FA(U )(FA(V )W ) = (FA(U ) ◦ FA(V ))(W ) (2.5)

show that these are afforded by the associativity constraint aA of A. ��

2.3. Drinfeld center and enveloping category. For algebras over fields, a very useful
invariant of the Morita class of an algebra is the center. In our situation, i.e. for algebras
in a monoidal category A, a similar invariant is at hand which still is an algebra, albeit in
a category different from A, namely in the Drinfeld center Z(A). We recall the defini-
tion of the Drinfeld center: for A a monoidal category, the objects of the category Z(A)
are pairs (U, eU ), where U ∈ C and eU is a ‘half-braiding’, i.e. a functorial isomorphism

eU : U ⊗− �−→−⊗U satisfying appropriate axioms, see e.g. [Ka, Ch. XIII.4]. Z(A)
has a natural structure of a braided monoidal category. The forgetful functor

ϕA : Z(A)→A
(U, eU ) �→U (2.6)

is a tensor functor.
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The reverse category of a braided monoidal category C, denoted by Crev, is the same
category with opposite braiding; if C is even a ribbon category, as in all our applications,
we also endow it with the opposite twist. The Deligne product

Ce := C � Crev (2.7)

is a categorified version of the enveloping algebra Ae= A⊗k Aop of an associative alge-
bra. Accordingly we call Ce the enveloping category of C. And in the same way as the
category of A-bimodules can be described, as an abelian category, in terms of Ae-mod-
ules, the bicategory C1-C2-Bimod is equivalent to the bicategory (C1�Crev

2 )-Mod.
Suppose now that the monoidal category C is already braided itself, with braiding

c. Then the braiding provides a functor, actually a braided tensor functor, from C into
its center Z(C) by U �→ (U, cU,−). We also have a braided tensor functor Crev→Z(C),
which is obtained by the opposite braiding: U �→ (U, c−1

−,U ). Using the universal property
of the Deligne tensor product we combine the two functors into a tensor functor

GC : Ce −→ Z(C)
U � V �−→ (U ⊗ V, eU⊗V ),

(2.8)

where

eU⊗V (W ) : U ⊗ V ⊗W
idU⊗c−1

W,V �� U ⊗W ⊗ V
cU,W⊗idV �� W ⊗U ⊗ V .

(2.9)

The functor GC has a natural structure of a braided tensor functor. A braided monoidal
category is called factorizable iff GC is an equivalence of braided monoidal categories.
Representation categories of finite-dimensional factorizable Hopf algebras in the sense
of [Dr] are factorizable.

It is natural to ask under what condition the functor GC is a braided equivalence. This
is answered by the

Lemma 2.5 [Mü2,ENO1]. For C a semisimple ribbon category, the functor GC (2.8) is
an equivalence between the center Z(C) and the enveloping category Ce if and only if
C is a modular tensor category.

Thus in particular in the context of the Reshetikhin-Turaev construction, which takes
as an input a modular tensor category, the center and enveloping category of C are
equivalent as braided categories, including their spherical structure.

For a braided category C the obvious functor Ce→ C factors through the center of C:
composing the functor GC (2.8) with the forgetful functor, we obtain

Ce → Z(C)→ C. (2.10)

Hereby C becomes a Ce-module, and any C-module is turned into a C-bimodule.
The following assertion shows again that it is appropriate to regard the Drinfeld center

as a categorification of the center of an algebra:

Proposition 2.6 [ENO2, Thm. 3.1, Mü1, Rem. 3.18]. Let A and B be fusion categories.
Their centers Z(A) and Z(B) are braided equivalent iff their bicategories A-Mod and
B-Mod of module categories are equivalent.
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There is a close relation between module categories and the Drinfeld center [ENOM,
Sect. 5.1]. For any indecomposable A-module M over a fusion category A, the cat-
egory EndA(M) of A-module endofunctors of M is a fusion category, and M can
be regarded as a right EndA(M)-module, and thus as an A�EndA(M)rev-module.
The A�EndA(M)rev-module endofunctors of this module category can be identified
[DMNO, Sect. 2.6] with the functors of tensoring with an object of the Drinfeld center
Z(A) from the left, or, alternatively, with the functors of tensoring with an object of
Z(EndA(M)) from the right. Comparing the two descriptions of these functors gives
the following result:

Proposition 2.7 [Sc]. For any module M over a fusion category A there is a canonical
equivalence

Z(A) �−→ Z(EndA(M)) (2.11)

of braided categories.

2.4. Central functors. In this brief subsection, we recall a notion that will enter crucially
into our analysis of boundary conditions and defect surfaces.

Definition 2.8 [Bez, Sect. 2.1]. A structure of a central functor on a monoidal functor
F : C→A from a braided monoidal category C to a monoidal category A is a natural
family of isomorphisms

σU,V : F(U )⊗ V
∼=−→ V ⊗ F(U ) (2.12)

for U in C and V in A, satisfying the following compatibility conditions:

(i) For X, X ′ ∈ C the isomorphism σX,F(X ′) coincides with the composition

F(X)⊗ F(X ′) ∼= F(X ⊗ X ′) ∼= F(X ′ ⊗ X) ∼= F(X ′)⊗ F(X) , (2.13)

where the first and the third isomorphisms are the tensoriality constraints of F,
while the middle isomorphism comes from the braiding on C.

(ii) For Y1,Y2 ∈A and X ∈ C the composition

F(X)⊗ Y1 ⊗ Y2

σX,Y1
⊗Y2

�� Y1 ⊗ F(X)⊗ Y2

Y1⊗σX,Y2 �� Y1 ⊗ Y2 ⊗ F(X)

(2.14)

coincides with the isomorphism σX,Y1⊗Y2 .
(iii) For Y ∈ A and X1, X2 ∈ C the composition

F(X1⊗ X2)⊗ Y ∼= F(X1)⊗ F(X2)⊗Y
F(X1)⊗σX2,Y �� F(X1)⊗ Y ⊗ F(X2)

σX1,Y
⊗F(X2)

�� Y⊗F(X1)⊗F(X2)∼=Y⊗F(X1⊗X2) (2.15)

coincides with σX1⊗X2,Y .

The following result relates central functors into A to the Drinfeld center Z(A):
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Lemma 2.9 [DMNO, Def. 2.4]. A structure of central functor on F : C→A is equiva-
lent to a lift of F to a braided tensor functor F̃ : C→Z(A), i.e. the composition ϕA ◦ F̃
with the forgetful functor (2.6) equals F,

Z(A)
ϕA

��
C

F
��

F̃
���

�
�

�
A

(2.16)

2.5. Lagrangian algebras. In general, for an algebra A in a fusion category A there is
no notion of a center, at least not as an object of A. This is simply because A is not
required to be braided, so that there is no natural concept of commuting factors in a
tensor product. As it turns out, the Drinfeld center Z(A), which is braided, is the right
recipient for a notion of a center. Keeping in mind that, in classical algebra, Morita
equivalent algebras have isomorphic centers, a center should better be associated to a
module category over A rather than to an algebra in A.

Definition 2.10 [DMNO, Defs. 3.1 & 4.6].

(i) An algebra A in a monoidal category is called separable iff the multiplication
morphism splits as a morphism of A-bimodules.

(ii) An algebra in a monoidal category that is also a coalgebra is called special iff it is
separable, with the right-inverse of the product given by a multiple of the coproduct,
and the composition ε ◦ η of the counit and unit is non-zero.

(iii) An étale algebra in a braided k-linear monoidal category C is a separable commu-
tative algebra in C.

(iv) An étale algebra A∈ C is said to be connected (or haploid) iff dimkHom(1, A)= 1.
(v) A Lagrangian algebra in a non-degenerate braided fusion category C is a con-

nected étale algebra L in C for which the category C0
L of local L-modules in C is

equivalent to Vectk as an abelian category.

Remark 2.11. (i) A local (or dyslectic) module (M, ρ) over a commutative algebra A
is an A-module for which the representation morphism ρ satisfies ρ ◦ cA,M ◦ cM,A= ρ [Pa,KO,FFRS1]. The full subcategory of dyslectic modules is a braided mo-
noidal category.

(ii) The defining property C0
L �Vectk of a Lagrangian algebra is equivalent to the

equality (FPdim(L))2=FPdim(C) of Perron-Frobenius dimensions [DMNO,
Cor. 3.32].

Proposition 2.12 [DNO, Cor. 3.8]. For C a non-degenerate braided fusion category,
equivalence classes of indecomposable C-modules are in bijection with isomorphism
classes of triples (A1, A2, �) with A1 and A2 connected étale algebras in C and

� : C0
A1

�−→ C0 rev
A2

a braided equivalence between the category of local A1-modules
and the reverse of the category of local A2-modules.

Remark 2.13. Étale algebras can be obtained from central functors and, conversely, cen-
tral functors from induction along étale functors:
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(i) Given a central functor F : C→A from a braided fusion category C to a fusion
category A, denote by RF its right adjoint functor. The object RF (1A) then has
a canonical structure of connected étale algebra in C [DMNO, Lem. 3.5].

(ii) For C a braided fusion category and A a connected étale algebra in C, the induc-
tion functor IndA : C→ CA that acts as U �→U ⊗ A admits a natural structure of
a central functor [DMNO, Sect. 3.4].

(iii) If in addition C is non-degenerate and A is Lagrangian, then the lift ĨndA : C
→Z(CA) of the induction functor is a braided tensor equivalence [DMNO,
Cor. 4.1(i)].

We are now in a position to relate indecomposable module categories over a fusion
category A and Lagrangian algebras in its center Z(A). Denote by

F : Z(A) �−→ Z(EndA(M))
ϕ−→ EndA(M) (2.17)

the composition of the equivalence (2.11) with the forgetful functor. This is, trivially, a
central functor, and the image AM of the tensor unit of the monoidal category EndA(M)

under the functor RF right adjoint to F is an étale algebra and, as it turns out, even a
Lagrangian algebra.

The following proposition shows that these Lagrangian algebras can be seen as invari-
ants of indecomposable tensor categories.

Proposition 2.14 [DMNO, Prop. 4.8]. For any fusion category A there is a bijection
between the sets of isomorphism classes of Lagrangian algebras in Z(A) and equiva-
lence classes of indecomposable A-modules.

The proof of this statement is based on Proposition 2.6.

2.6. The Witt group. One step in the long-standing problem of classifying rational con-
formal field theories is the classification of modular tensor categories. Recently, the
following algebraic structure was established in the wider context of non-degenerate
braided fusion categories (i.e. without assuming a spherical structure): The quotient of
the monoid (with respect to the Deligne product) of non-degenerate braided fusion cate-
gories by its submonoid of Drinfeld centers forms a group that contains as a subgroup the
group Wpt of the classes of non-degenerate pointed braided fusion categories [DMNO,
Sect. 5.3]. The latter coincides with the classical Witt group [Wi] of metric groups, i.e.
of finite abelian groups equipped with a non-degenerate quadratic form. This motivates
the

Definition 2.15 [DMNO, Defs. 5.1 & 5.5].

(i) Two non-degenerate braided fusion categories C1 and C2 are called Witt equiva-
lent iff there exists a braided equivalence C1 �Z(A1)� C2 �Z(A2) with suitable
fusion categories A1 and A2.

(ii) The Witt group W is the group of Witt equivalence classes of non-degenerate
braided fusion categories.

It is not hard to see [DMNO] that Witt equivalence is indeed an equivalence relation,
and that W is indeed an abelian group, with multiplication induced by the Deligne prod-
uct. The neutral element of W is the class of all Drinfeld centers, and the inverse of the
class of C is the class of its reverse category Crev.
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As we will see below, in our considerations the Witt group W will play an important
role. But we will also be interested in the categories themselves rather than in their
classes in W. Moreover, in our context, the categories whose Witt classes are relevant
are even modular. Accordingly we set:

Definition 2.16. (i) A modular tensor category C is called Witt-trivial iff its class in
the Witt group W is the neutral element of W.

(ii) A Witt-trivialization of a modular tensor category C consists of a fusion category
A and an equivalence

α : C → Z(A) (2.18)

as ribbon categories.

3. Bicategories for Boundary Conditions

We are now ready to formulate our proposal for topological boundary conditions for
Reshetikhin-Turaev type topological field theories. Since a topological field theory
of Turaev-Viro type based on a fusion category A has a natural description as a TFT of
Reshetikhin-Turaev type based on the Drinfeld center Z(A), our results cover TFTs of
Turaev-Viro type as well.

Recall from the Introduction that the boundary conditions we are going to discuss
refer to boundaries at which the three-dimensional world ends, rather than cut-and-paste
boundaries. As we are working in the Reshetikhin-Turaev framework, in which the cat-
egories labeling three-dimensional regions are modular categories and thus in particular
finitely semisimple, we only allow for boundary conditions that correspond to finitely
semisimple categories as well (though not modular and not even braided, in general, as
in two dimensions there is no room for a braiding).

We seize from [KS1, Sect. 5.2] the idea to analyze what happens when Wilson lines
in the bulk approach the boundary. We assume that for a given TFT in the bulk there
exists a topological boundary condition a at the end of the three-dimensional world.
The two-dimensional boundary can contain Wilson lines. These Wilson lines can carry
insertions, and for this reason they are labeled by the objects of a categoryWa . Boundary
Wilson lines can be fused, and accordingly Wa has the structure of a monoidal category,
and moreover, owing to the fact that the Wilson lines are topological, this comes with
dualities. On the other hand, this category is not braided, in general, since there does not
exist a natural way to ‘switch’ two boundary Wilson lines without leaving the boundary
which is two-dimensional.

However, there are Wilson lines in the nearby bulk as well; they are labeled by
some modular tensor category C (the same that labels the bulk region adjacent to
the boundary). The category of bulk Wilson lines is in particular braided, since Wil-
son lines can be switched in the three-dimensional region. Now part of what is to be
meant by a boundary condition is to be able to tell what happens when the boundary
is approached from the bulk. Thus we postulate that for a consistent boundary condi-
tion there should exist a process of adiabatically moving Wilson lines in the bulk to the
boundary, whereby they turn into boundary Wilson lines. Put differently, we postulate
that there is a functor

F→a : C →Wa . (3.1)

Furthermore, the following two processes should yield equivalent results: On the one
hand, first fusing two bulk Wilson lines in the bulk and then bringing the so obtained
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single bulk Wilson line to the boundary; and on the other hand, first moving the two bulk
Wilson lines separately to the boundary and then fusing them as boundary Wilson lines
inside the boundary. Schematically, showing a two-dimensional section perpendicular
to the boundary, the situation looks as follows:

(3.2)

Put differently, the functor (3.1) obeys

F→a(U ⊗ V ) ∼= F→a(U )⊗ F→a(V ) , (3.3)

with coherent isomorphisms, i.e. the functor F→a has the structure of a tensor functor.
From multiple fusion, one concludes the existence of associativity constraints. More-
over, we should get the same result when homotopies are applied to Wilson lines in the
boundary as when they are applied in the bulk. Put differently, the functor F→a should
respect dualities.

The next consideration shows that Fbulk→a has even more structure. Consider again
the situation that a bulk Wilson line U ∈ C is moved to the boundary, resulting in a
boundary Wilson line F→a(U )∈Wa . Assume in addition that nearby on the boundary
there is already another parallel boundary Wilson line M ∈Wa . Since the process of
moving U to the boundary is supposed to be adiabatic, we should get isomorphic results
when we either move U to the left of M and then fuse F→a(U ) with M , or else move U
to the right of M and then fuse F→a(U ) with M , as indicated in the following picture:

(3.4)

Put differently, we expect a natural isomorphism

F→a(U )⊗M
∼=→ M ⊗ F→a(U ). (3.5)

The following argument shows that these isomorphisms endow the functor F→a with
the structure of a central functor in the sense of Definition 2.8. Property (i) of a central
functor is the statement that for a boundary Wilson line that has been obtained by the adi-
abatic process, the interchange with another such Wilson line comes from the braiding
of bulk Wilson lines. Property (ii) of a central functor, which may be called a boundary
Yang-Baxter property, is a consequence of the homotopy equivalence of two different
processes in the bulk: either moving the Wilson line in a single step past two boundary
Wilson lines, or else doing it in two separate steps. Property (iii) is seen similarly, this
time with two bulk Wilson lines involved.
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According to Lemma 2.9 such a structure is, in turn, equivalent to a lift of Fbulk→a
to a braided functor

F̃→a : C → Z(Wa) (3.6)

from C to the Drinfeld center of the fusion category Wa .
The two-dimensional physics of the boundary surface does not provide any natural

reason for such a half-braiding rule to exist. The only possible natural origin of such a
rule is thus that it is related to the half-braiding in the three-dimensional bulk, via the
processes encoded in the functor F→a . Accordingly there should not exist any systematic
rule of moving a boundary Wilson line M to the other side of a neighbouring boundary
Wilson line, except through the fact that M secretly is a bulk Wilson line that has been
brought to the boundary (so that the rule comes from the process of first bringing it again
into the bulk, moving it around there, and then moving it back to the boundary).

A boundary Wilson line is labeled by an object of Wa ; a systematic rule of moving
a boundary Wilson line M to the other side of a neighbouring boundary Wilson line
constitutes a half-braiding cM,− on Wa for the object M . The pair (M, cM,−) is thus just
an object in the Drinfeld center Z(Wa). Put differently, the functor (3.6) is essentially
surjective.

Similarly, no information about the bulk should be lost when a bulk Wilson line is
brought to the boundary, provided one remembers the way the Wilson line can wander
within the bulk to the other side of any other boundary Wilson line. This principle applies
likewise to insertions on the Wilson lines. In the bulk, such insertions are morphisms in
C; for boundary Wilson lines, we can only allow morphisms that are compatible with the
rule to switch the boundary Wilson line with any other boundary Wilson line. In other
words, we only allow those morphisms ofWa that are compatible with the half-braiding,
i.e. we only consider morphisms inZ(Wa). Put differently, the functor F̃→a (3.6) is fully
faithful, and thus, being also essentially surjective, it is a braided equivalence:

F̃→a : C �−→ Z(Wa). (3.7)

From this equivalence, we conclude that boundary conditions of the type we consider
can only exist for a bulk theory that is Witt-trivial in the sense of Definition 2.16. Even
more, the boundary data are given by a Witt-trivialization.

Once one has understood one boundary condition in a physical theory, frequently the
way is open to understand other boundary conditions as well. Thus let us assume that
there exists another boundary condition besides a. At this point we do not, however,
assume that this boundary condition b comes with a central functor F→b as well, but
rather perform an analysis purely within the boundary. Consider a generalized Wilson
line that separates the boundary condition a on the left from b on the right. Such Wilson
lines can carry local field insertions as well; hence we describe them in terms of a cat-
egory Wa,b. We can fuse such a Wilson line with a Wilson line from Wa to the left of
it. This gives again a Wilson line separating the boundary condition a from b and thus
an object in Wa,b. We thus get on the category Wa,b the structure of a module category
over Wa .

By a similar argument, the category Wb of boundary Wilson lines separating the
boundary condition b from itself has to act on the Wilson lines in Wa,b from the right.
Put differently, Wa,b is a right Wb-module. On the other hand, Wa,b is already naturally
a right module category over the category W∗a,b= EndWa (Wa,b) of module endofunc-
tors. We now invoke a principle of naturality and require that this category describes the
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tensor category of generalized boundary Wilson lines for the boundary condition b, i.e.
that Wb�W∗a,b.

The latter postulate can only make sense if the fusion category W∗a,b comes with a
Witt-trivialization of the bulk category C as well, i.e. if we have a canonical equivalence

C � Z(W∗a,b) (3.8)

of braided categories. According to Proposition 2.7 this is indeed the case. This can be
seen as a justification of our naturality principle by which we identified Wilson lines
with module functors.

To obtain another check of our proposal, we next consider a trivalent vertex in a
boundary, with one incoming bulk Wilson line labeled by U ∈ C, one incoming bound-
ary Wilson line labeled by W1 ∈Wa and one outgoing boundary Wilson line W2 ∈Wa .
According to our general picture the three-valent vertex should be labeled by an element
of a vector space obtainable as a morphism space. We can realize this vector space in
terms of morphisms in the category Wa , provided that there is a mixed tensor product

C ×Wa −→Wa, (3.9)

and take the trivalent vertex to be labeled by an element of HomWa (U ⊗W1,W2). Put
differently, we need the structure of a C-module on Wa . To determine what module
category is relevant, we invoke topological invariance of the bulk Wilson line so as to
have it running parallel with the boundary before it enters the vertex. We then apply
the adiabatic process described by the functor F→a to the piece parallel to the surface,
thereby turning the bulk Wilson line with label U ∈ C into a boundary Wilson line with
label F→a(U ). This way we reduce the problem of a trivalent vertex involving a bulk
Wilson line to the one of a trivalent vertex involving only boundary Wilson lines. The
relevant vector space is thus HomWa (F→a(U ) ⊗ W1,W2). Put differently, we use the
C-module structure on Wa that is induced by pullback of the regular module category
along the monoidal functor F→a : C→Wa or, what is the same, along the monoidal
functor

C F̃→a �� Z(Wa)
ϕWa �� Wa (3.10)

from C to Wa .
It is important to note that this way one does not obtain all C-modules; thus our

results lead to a selection principle that singles out an interesting subclass of C-mod-
ules. This can be seen already in simple examples, e.g. when Wa is the category of
finite-dimensional representations of a finite group G, so that Z(A) is the category of
finite-dimensional representations of the double D(G) [Os2, Thm. 3.1]. For instance,
for G=Z2, there are two indecomposable A-modules (called ‘rough’ and ‘smooth’ in
[KK]), but six indecomposable Z(A)-modules.

What we have managed so far is to use one given topological boundary condition to
obtain also other topological boundary conditions. This raises the question of whether
we can obtain all topological boundary conditions this way. Suppose we are given two
different boundary conditions and thus two braided equivalences

C �−→ Z(A1) and C �−→ Z(A2). (3.11)

Then we have a braided equivalence Z(A1) � Z(A2). By the result of [ENO2] on
2-Morita theory that we recalled in Proposition 2.6, this implies that the bicategories of
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A1-modules and of A2-modules are equivalent bicategories. We thus conclude that we
can indeed access every boundary condition from any other boundary condition.

We summarize our proposal: Topological boundary conditions for a topological field
theory of Reshetikhin-Turaev type, based on a modular tensor category C, are described

by Witt-trivializations of C, i.e. by braided equivalences C �→Z(A). Given any such
trivialization, the bicategory of topological boundary conditions can be identified with
the bicategory of A-modules.

One should also appreciate that if a TFT of Turaev-Viro type based on the fusion
category A is described as a Reshetikhin-Turaev theory based on the modular tensor cat-
egory Z(A), then it comes with a trivialization and the category of topological boundary
conditions is naturally identified with the bicategory of A-modules. In the special case
of TFTs of Turaev-Viro type, our results thus reproduce results of [KK] about boundary
conditions in such TFTs.

4. Bicategories for Surface Defects

Next we study what kind of mathematical objects describe topological surface defects,
i.e. the topological surface operators considered for abelian Chern-Simons theories in
[KS1] or the domain walls in [BSW,KK]. We consider a surface defect d separating
two modular tensor categories C1 and C2 and follow the same line of arguments as for
boundary conditions in Sect. 3. The situation to be studied is displayed schematically
in the following picture, which shows a two-dimensional section perpendicular to the
defect surface:

(4.1)

Again we start with a semisimple fusion category Wd of Wilson lines that are con-
tained in the defect surface. We refer to such Wilson lines also as defect Wilson lines.
In complete analogy with the case of boundary conditions, we postulate that there are
adiabatic processes of moving Wilson lines from the bulk on either side of the defect
surface into the defect surface, whereby they yield defect Wilson lines. By the same
arguments as for boundaries this leads to a central functor

F→d : C1 →Wd (4.2)

and, accounting for relative orientations, to another central functor

Fd← : Crev
2 →Wd . (4.3)

According to Lemma 2.9 we thus have two braided functors

F̃→d : C1 −→ Z(Wd) and F̃d← : Crev
2 −→ Z(Wd) (4.4)
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as in (3.7). Since Z(Wd) is braided, the images of these two functors commute. Thus,
with the help of the Deligne tensor product, we combine F̃→d and F̃d← into a single
functor

F̃→d← : C1 � Crev
2 −→ Z(Wd). (4.5)

We again invoke a principle of naturality to assert that the combined functor F̃→d← is
an equivalence of braided categories.

Suppose now that we have a defect Wilson line W ∈Wd together with a rule for
exchanging W with any other defect Wilson line W ′ ∈Wd . The two-dimensional phys-
ics of the defect surface does not provide any natural reason why such a half-braiding
rule should exist. The only possible natural origin of such a rule is that it is related
to the half-braiding in the three-dimensional parts, using the processes encoded in the
two functors F→d and Fd←. This amounts to the assumption that the defect Wilson
line W can be written as a direct sum of fusion products of the form W1⊗W2, where
W1 is a defect Wilson line that has been obtained by the adiabatic process from C1,
i.e. W1= F→d(L1) for some L1 ∈ C1, and similarly W2= Fd←(L2) with L2 ∈ C2. This
shows essential surjectivity of F̃→d←; an argument about point-like insertions on Wilson
lines that is completely analogous to one used for boundary conditions shows that F̃→d←
is fully faithful.

We thus arrive at an equivalence

C1 � Crev
2

�−→ Z(Wd) (4.6)

of braided categories that, together with the fusion category Wd , is part of the data
specifying a surface defect. We immediately conclude that a topological surface defect
joining regions labeled by the modular tensor categories C1 and C2 can only exist if C1
and C2 are in the same Witt class. The existence of such an obstruction should not come
as a surprise. Similar effects are, for instance, known from two dimensions: conformal
line defects (and, a fortiori, topological defects) can only exist if the two conformal
field theories joined by the defect have the same Virasoro central charge. In the situation
at hand the Witt group – a concept that has been introduced for independent reasons,
namely to structure the space of modular tensor categories – turns out to be the right
recipient for the obstruction.

Further, as in the case of boundary conditions, we conclude that other possible labels
of surface defects separatingC1 andC2 are described by module categories over the fusion
categoryWd . This also gives the right bicategorical structure to this collection of surface
defects: the one of Wd -modules. By the same type of argument based on Proposition 2.7
as in the case of boundaries, it follows that the other categories of defect Wilson lines
come with Witt-trivializations of C1 � Crev

2 as well, and that the bicategorical structure
does not depend on the choice of d.

Again we can consider two special cases to compare our results with existing litera-
ture. The first – abelian Chern-Simon theories – will be relegated to Sect. 5. The second
is that the TFT on either side of the defect surface admits a description of Turaev-Viro
type, i.e. that both modular tensor categories are Drinfeld centers of fusion categories,
C1�Z(A1) and C2�Z(A2). Using the identifications

C1 � Crev
2 � Z(A1)� Z(A2)

rev � Z(A1 �A2) , (4.7)

where we identify left and right half-braidings, shows that in this case the bicatego-
ry of C1-C2 surface defects can be identified withthe bicategory of A1-A2-bimodules.
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Thus in the special case of TFTs of Turaev-Viro type our results reproduce those of
[KK].

Let us explore some consequences of our results. First we consider the special case
that the surface defect separates two regions with the same TFT, i.e. that C1= C2=: C.
By the characterization of modular tensor categories given in Definition 2.5, there is
then a distinguished Witt trivialization,

C � Crev �−→ Z(C) , (4.8)

which is obtained by using the braiding of the categories C and of Crev, respectively, to
embed them into Z(C). This specific surface defect can be interpreted as a transparent
defect, very much in the way as a Wilson line labeled by the tensor unit can be seen as a
transparent Wilson line (and is, for this reason, usually invisible in a graphical calculus),
and accordingly we denote it by the symbol TC . Indeed, the defect Wilson lines for this
specific defect are labeled by the objects of C. The central functor

F→TC : C → C (4.9)

describing a specific adiabatic process is, as a functor, just the identity. Its structure of
a central functor is then just given by the braiding of C. In physical terms this means
that in the adiabatic process labels do not change and the braiding is preserved. Similar
statements apply to the functor

FTC← : Crev → C , (4.10)

where the structure of a central functor is now given by the opposite braiding. Thus
defect Wilson lines separating the surface defect TC from itself are naturally identified,
including the braiding, with ordinary Wilson lines in C. Phrased the other way round:
Wilson lines in the three-dimensional chunk labeled by C can be thought of as being
secretly Wilson lines inside a defect surface, namely one labeled by the transparent
defect TC .

We next discuss implications to surface defects separating C from itself of the result
of [DNO], reported in Proposition 2.12, that indecomposable C-modules are in bijection
to pairs (A1, A2) of étale algebras in C together with a braided equivalence between their
full subcategories of local (or dyslectic) modules in C. This has the following physical
interpretation: A generic Wilson line in C cannot pass through a given surface defect. If,
however, a whole package of C-Wilson lines condenses so as to form a local A1-module,
the resulting Wilson line can pass through the surface defect and reappear on the other
side as a condensed package of C-Wilson lines that forms a local A2-module.

This is exactly the type of structure needed in the application of surface operators
in the TFT construction of the correlators of rational conformal field theories [FRS],
following the suggestions of [KS2]. The process then puts the fact [MS, Sect. 4] that the
general structure of the bulk partition function is “automorphism on top of extension”
in the appropriate and complete setting. This picture can be easily extended to heter-
otic theories, for which left- and right-moving degrees are in different module tensor
categories Cl and Cr. In particular, the obstruction to the existence of a heterotic TFT
construction based on a pair (Cl, Cr) of modular tensor categories is again captured by
the Witt group: Cl and Cr must lie in the same Witt class.

The transmission of (bunches of) Wilson lines should be seen as a three-dimensional
analogue of the following process in two dimensions: A topological defect line can
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wrap around bulk insertions in one full conformal field theory to produce a bulk inser-
tion in another theory. This effect associates a map on bulk fields to any topological
defect line. This map has, in turn, been instrumental in obtaining classification results
for defects [FGRS] and in understanding their target space formulation [FSW]. We
expect that the transmission of Wilson lines can be used to a similar effect in the situa-
tion at hand. That the transmission data describe, by Proposition 2.14, the isomorphism
class of a module category, is an encouragement for attempting similar classifications
as in the two-dimensional case. A first example of a classification will be presented in
Sect. 5.

Returning to the case of general pairs (C1, C2) of modular tensor categories, the for-
getful functor ϕWd from the Drinfeld center Z(Wd) to the fusion category Wd provides
us with a tensor functor

C1 � Crev
2

�−→ Z(Wd)
ϕWd−→Wd . (4.11)

Via pullback along this functor, the category Wd of defect Wilson lines comes with a
natural structure of a C1-C2-bimodule category. This bimodule structure arises naturally
when one considers three-valent vertices in the defect surface with two defect Wilson
lines and one bulk Wilson line involved. This structure should also enter in the descrip-
tion of fusion of topological surface defects. We leave a detailed discussion of fusion
to future work and only remark that the transparent defect TC must act as the identity
under fusion.

We conclude with a word of warning: While the structure of a C1-C2-bimodule on
the category Wd of defect Wilson lines can be expected to have a bearing on fusion, the
bicategory C1-C2-Bimod of C1-C2-bimodules cannot provide the proper mathematical
model for the bicategory of surface defects. For instance, taking C1= C2= C, the natural
candidate for the transparent defect is C as a bimodule over itself. Using C1-C2-Bimod
as a model for the surface defects, the Wilson lines separating this transparent defect
from itself would correspond to bimodule endofunctors of C, and the category of these
endofunctors is equivalent toZ(C) and thus, C being modular, to the enveloping category
C � Crev. We would then not recover ordinary Wilson lines as defect Wilson lines in the
transparent defect. As we will see in the next section, taking C1-C2-Bimod as the model
for the bicategory of surface defects would also contradict results of [KS1] for abelian
Chern-Simons theories, and of [KK] on surface defects in TFTs admitting a description
of Turaev-Viro type.

5. Lagrangian Algebras and Abelian Chern-Simons Theories

In this section we describe consequences of our proposal in the special case of abe-
lian Chern-Simons theories and compare our findings with the results of [KS1] for this
subclass of TFTs. As a new ingredient our discussion involves Lagrangian algebras
in the modular tensor category C that labels the TFT. Recall from Proposition 2.14 that
Lagrangian algebras in the Drinfeld center of a fusion categoryA are complete invariants
of equivalence classes of indecomposable A-module categories.

If we are just interested in equivalence classes of indecomposable boundary con-
ditions, Lagrangian algebras can be used as follows. The presence of a topological
boundary condition for a modular tensor category C requires the existence of a Witt-
trivialization C�Z(A) with A a fusion category providing a reference boundary con-
dition. Indecomposable or elementary boundary conditions are then in bijection with
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indecomposable A-modules. The latter, in turn, are in bijection with Lagrangian alge-
bras in the Drinfeld center Z(A), which is just C. We can thus classify elementary
topological boundary conditions by classifying Lagrangian algebras in C. This is of
considerable practical interest, since it acquits us of the task to find an explicit Witt-
trivialization. However, for many explicit constructions it will be important to have the
full bicategorical structure at our disposal, and this requires an explicit Witt-trivializa-
tion.

The situation for topological surface defects separating modular tensor categories
C1 and C2 is analogous: the classification of equivalence classes amounts to classifying
Lagrangian algebras in C1 � Crev

2 . Again, this avoids finding a Witt-trivialization, but
does not give direct access to the full bicategorical structure.

To make contact to the situation studied in [KS1] we first recall some basic facts
about abelian Chern-Simons theories and their relation to finite groups with quadratic
forms. Let	 be a free abelian group of rank n and V :=	⊗ZR the corresponding real
vector space. Denote by T	 the torus V/	. The classical abelian Chern-Simons theory
with structure group T	 is completely determined by the choice of a symmetric bilinear
form K on V whose restriction to the additive subgroup 	 is integer-valued and even.
We call the pair (	, K ) an even lattice of rank n.

Definition 5.1. (i) A bicharacter, with values in C×, on a finite abelian group D is a
bimultiplicative map β : D×D→C×.
A symmetric bicharacter, or symmetric bilinear form, on D is a bicharacter β
satisfying β(x, y)= β(y, x) for all x, y ∈ D.

(ii) A quadratic form on a finite abelian group D is a function q : D→C× such that
q(x)= q(x−1) and such that β(x, y) := q(x ·y)/q(x) q(y) is a symmetric bilinear
form. A quadratic group is a finite abelian group endowed with a quadratic form.

To the lattice (	, K ) we associate a finite group with a quadratic form in the fol-
lowing way. Set 	∗ :=HomZ(	,R), and denote by Im K the image of 	 in 	∗ under
the canonical map K : 	→ 	∗. The finite abelian group D :=	∗/Im K is called the
discriminant group of the lattice (	, K ). Since the symmetric bilinear form K is inte-
ger and even, the group D comes equipped with a quadratic form q : D→C×, with
q(μ)= exp(2π i K (μ,μ)).

Different lattices may give rise to discriminant groups that are isomorphic as qua-
dratic groups. As argued in [BM], many properties of quantum Chern-Simons theory are
encoded in the pair (D, q). The pair (D, q) determines, in turn, an equivalence class of
braided monoidal categories, which we denote by C(D, q). For completeness we briefly
give some details on how this category is constructed (for more details see [JS,KS1]).
First, recall that for any abelian group A there is a bijection

H3
ab(A;C×) �−→ Quad(A) , (5.1)

between the group Quad(A) of quadratic forms on A taking values in C× and the third
abelian cohomology group H3

ab(A;C×) of A [Ma, Thm. 3]. A representative for a class
in H3

ab(A;C×) is given by a pair (ψ,) consisting of a 3-cocyleψ in the ordinary group
cohomology of A and a 2-cochain , satisfying some compatibility conditions (which
imply the validity of the hexagon axioms for the braiding (5.2) below). Given a pair
(ψ,) representing an abelian 3-cocycle, we obtain a quadratic form q on A by setting
q(a) :=(a, a) for a ∈ A. This realizes one direction of the isomorphism (5.1).
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On the other hand, given a quadratic form q on A, we obtain a pre-image (ψ,)
only upon additional choices; one possible choice is an ordered set of generators of the
abelian group A. We will ignore this subtlety in the following and omit the label (ψ,)
from the notation.

Consider now a quadratic group (D, q) and choose an abelian 3-cocycle (ψ,)
representing the quadratic form q in H3

ab(D;C×). As an abelian category, C(D, q) is
the category of finite-dimensional complex D-graded vector spaces and graded linear
maps. The simple objects of this category are complex lines Cx labeled by group ele-
ments x ∈ D. In particular we have Hom(Cx ,Cx )∼=C. We equip the category C(D, q)
with the tensor product of complex vector spaces, but with associator given by the 3-
cocyle ψ . The 2-cochain induces a braiding c on this monoidal category; the braiding
acts on simple objects as

cxy : Cx ⊗ Cy
�−→ Cy ⊗ Cx

v⊗w �−→ (x, y) w⊗ v. (5.2)

The braided pointed fusion category thus obtained depends, up to equivalence of braided
monoidal categories, only on the class [(ψ,)] in abelian cohomology [JS].

Taking the reverse category amounts to replacing the quadratic form q by the quadratic
form q−1 which takes inverse values, i.e. (C(D, q)rev∼= C(D, q−1), while the Deligne
product amounts to taking the direct sums of the groups and of the quadratic forms. In
other words, one has

Lemma 5.2. Let (D1, q1) and (D2, q2) be finite groups with quadratic forms. Then

C(D1, q1)� C(D2, q2)
rev � C(D1⊕D2, q1⊕q−1

2 ) (5.3)

as braided monoidal categories.

A quadratic form (D, q) is said to be non-degenerate iff the associated symmet-
ric bilinear form is non-degenerate in the sense that the associated group homomor-
phism D→Hom(D,C×) is an isomorphism. A basic fact about categories of the type
C(D, q) is

Lemma 5.3 [DMNO, Sect. 5.3.]. The braided monoidal category C(D, q) is modular iff
the quadratic form q is non-degenerate.

In the present context the role of the modular tensor category C(D, q) is as the
category of (bulk) Wilson lines in the Chern-Simons theory corresponding to a lattice
with discriminant group (D, q). We now make our proposal for boundary conditions
and surface defects explicit in this case. To this end we need an explicit description of
Lagrangian algebras.

Definition 5.4 [ENOM, Sect. 2.4].

(i) A metric group is a quadratic group (D; q) for which the quadratic form q is
non-degenerate.

(ii) For U a subgroup of a quadratic group (D, q) with symmetric bilinear form
β : D× D→C×, the orthogonal complement U⊥ of U is the set of all d ∈ D
such that β(d, u)= 1 for all u ∈U.
If q is non-degenerate, U⊥ is isomorphic to D/U, so that |D| = |U | · |U⊥|.



Bicategories for Boundary Conditions and for Surface Defects in 3-d TFT 565

(iii) Let (D, q) be a metric group. A subgroup U of D is said to be isotropic iff q(u)= 1
for all u ∈U.

(iv) For any isotropic subgroup U of a metric group (D, q) there exists an injection
U ↪→ (D/U )∗, so that |U |2≤ |D|. An isotropic subgroup L of D is called Lagrang-
ian iff |L|2= |D|.

The concept of a Lagrangian subgroup is linked to Lagrangian algebras by the fol-
lowing assertion, which is a corollary of the results in [DrGNO, Sect. 2.8].

Theorem 5.5. Let D be a finite abelian group with a nondegenerate quadratic form q.
There is a bijection between Lagrangian subgroups of D and Lagrangian algebras in
C(D, q).

We thus arrive at the following two statements:

(1) Elementary topological boundary conditions for the abelian Chern-Simons theory
based on the modular tensor category C(D; q) are in bijection with Lagrang-
ian algebras in C(D; q) and thus with Lagrangian subgroups of the metric group
(D, q).

(2) Elementary topological surface defects separating the abelian Chern-Simons the-
ories based on the modular tensor categories C(D1; q1) and C(D2; q2) are in bijec-
tion with Lagrangian subgroups of the metric group (D1⊕D2, q1⊕q−1

2 ).

The first of these results was established in [KS1] by an explicit analysis using
Lagrangian field theory. The second result was then deduced from the first by arguments
based on the folding trick.

As a particular case, consider the transparent surface defect TC separating C(D, q)
from itself. It corresponds to the canonical trivialization C(D, q)� C(D, q)rev

�Z(C(D, q)). The Lagrangian algebra corresponding to TC is given by the Cardy
algebra

⊕
X∈Irr(C) X � X∨ and corresponds to the diagonal subgroup in D ⊕ D, in

accordance with the results in [KS1, Sect. 3.3].

6. Relation with Special Symmetric Frobenius Algebras

In this section we explain how in our framework special symmetric Frobenius algebras
can be obtained from certain surface defects S separating a modular tensor category C
from itself and a Wilson line separating S from the transparent defect TC . Our results
provide a rigorous mathematical foundation for the ideas of [KS2]. A central tool in our
study is string diagrams.

6.1. String diagrams. A string diagram is a planar diagram describing morphisms in
a bicategory. Such diagrams are Poincaré dual to another type of diagram frequently
used for bicategories, in which 2-morphisms are attached to 2-dimensional parts of the
diagram. String diagrams are particularly convenient for encoding properties of adjoint-
ness and biadjointness in a graphical calculus. String diagrams apply in particular to the
bicategory of small categories in which 1-morphisms are functors and 2-morphisms are
natural transformations, an example the reader might wish to keep in mind. For more
details see e.g. [La,Kh].

We fix a bicategory; in a first step, we only consider objects and 1-morphisms. They
can be visualized in one-dimensional diagrams, with one-dimensional segments describ-
ing objects and zero-dimensional parts indicating 1-morphisms. In our convention, such
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diagrams are drawn horizontally and are to be read from right to left. Thus for A and B
objects of the bicategory and a 1-morphism F : A→B, we draw the diagram

(6.1)

The composition Fn · · · F1≡ Fn ◦ · · · ◦ F1 : A1→An of 1-morphisms Fi : Ai→Ai+1
is represented by horizontal concatenation

(6.2)

To accommodate also 2-morphisms a second dimension is needed. Objects are now
represented by two-dimensional regions and 1-morphisms by one-dimensional vertical
segments, while zero-dimensional parts indicate 2-morphisms. In our convention, the
vertical direction is to be read from bottom to top. Thus a 2-morphism α : F1⇒ F2
between 1-morphisms F1, F2 from objects A to B is depicted by the diagram

(6.3)

For the moment, we require that the strands always go from bottom to top and do not
allow ‘U-turns’. For the identity 2-morphism α= idF we omit the blob in the diagram.
For the identity 1-morphism IdA we omit any label except for the one referring to the
object A. With these conventions, 2-morphisms α : F⇒IdA and β : IdA⇒ F with F
an endo-1-morphism of the object A are drawn as

(6.4)

respectively, while a natural transformation F2 F1⇒ IdA is represented by

(6.5)
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The 2-morphisms of a bicategory can be composed horizontally and vertically. Hor-
izontal composition is depicted as juxtaposition, as in

(6.6)

Vertical composition is represented as vertical concatenation of diagrams; thus e.g.

(6.7)

In the bicategory of small categories, we have the notion of an adjoint functor. This
notion can be generalized to any 1-morphism in a bicategory. Given two 1-morphisms
F : A→B and G : B→A,G is said to be right adjoint to F , and F left adjoint to G,
iff there exist 2-morphisms

η : IdA ⇒ G F and ε : FG ⇒ IdB (6.8)

satisfying

(idF ⊗ η) ◦ (ε⊗ idF ) = idF and (η⊗ idG) ◦ (idG ⊗ ε) = idG . (6.9)

The 2-morphisms η and ε, if they exist, are not unique. For any number λ∈C× we can
replace η by λ η and ε by λ−1ε to get another pair of morphisms. For each such pair, η
is called a unit and ε a counit of the adjoint pair (F,G).

In the diagrammatic description, special notation is introduced for the unit and counit
of an adjoint pair of functors: we depict them as

(6.10)
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The equalities (6.9) amount to the identifications

(6.11)

of diagrams.
In general, the existence of a left adjoint functor does not imply the existence of

a right adjoint functor. Even if both adjoints exist, they need not coincide. The same
statements hold for left and right adjoints of a 1-morphism in an arbitrary bicategory. It
therefore makes sense to give the

Definition 6.1. A 1-morphism F in a bicategory is called biadjoint to a 1-morphism G
iff it is both a left and a right adjoint of G. Since then G is both left and right adjoint to
F as well, such a pair (F,G) of 1-morphisms is called a biadjoint pair. The adjunction
(F,G) is then called ambidextrous.

For a biadjoint pair (F,G), we thus have, apart from the 2-morphisms η and ε intro-
duced in formula (6.9), additional 2-morphisms

η̃ : IdB ⇒ FG and ε̃ : G F ⇒ IdA (6.12)

satisfying zigzag identities analogous to the identities (6.11) for η and ε.
Once we restrict ourselves to string diagrams in which all lines are labeled by 1-mor-

phisms admitting an ambidextruous adjoint, and having fixed adjunction 2-morphisms,
we can allow for lines with U-turns in string diagrams with the appropriate one of the
four adjunction 2-morphisms at the cups and caps, because the relations we have just
presented allow us to consistently apply isotopies to all lines. We thus obtain complete
isotopy invariance.

For a biadjoint pair (F,G) one can in particular form the composition ε̃ ◦ η, which is
an endomorphism of the identity functor IdA, as well as ε ◦ η̃which is an endomorphism
of IdB. Graphically,

(6.13)
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It should be appreciated that if the adjunction 2-morphisms are rescaled, the endomor-
phisms of IdA and IdB which appear here get rescaled by reciprocal factors.

6.2. Frobenius algebras from string diagrams. So far our discussion concerned general
bicategories. We now turn to the bicategory of surface operators separating modular
tensor categories. As was argued in [KS2], from a surface defect S separating a modular
tensor category C from itself, we expect to be able to construct a symmetric special
Frobenius algebra in C for each Wilson line separating S and the transparent defect TC .
Different Wilson lines should yield Morita equivalent Frobenius algebras. We now give
a proof of this fact that is based on our description of surface defects.

We thus consider a C-module S. Recall that a Wilson line M ∈Hom(S, TC) is
described by a C-module functor M : S→ CC .

Lemma 6.2. Let C be a modular tensor category, S an object in C-Mod and M ∈
HomC(S, TC). Then the functor M has a biadjoint as a module functor.

Proof. M is an additive functor between semisimpleC-linear categories. Now as an abe-
lian category, a finitely semisimple C-linear category is equivalent to (VectC)�n with
n= |Irr(C)| the (finite) number of isomorphism classes of simple objects. Moreover, any
additive endofunctor F of VectC is given by tensoring with the vector space V = F(C),
and it is ambidextrous, the adjoint being given by tensoring with the dual vector space
V ∗. It follows that the functor M is equivalent to a functor M̃ : (VectC)�n→ (VectC)�m

for some integers n and m and is completely specified by an n×m-matrix of C-vector
spaces. Further, both the left and the right adjoint functor to M̃ are then given by the
‘adjoint’ matrix, and hence M̃ is ambidextrous. As a consequence, M is ambidextrous
as a functor. Using arguments from [ENO1], the bi-adjoint of M has two structures of
a module functor, from being a left adjoint and right adjoint, respectively. These two
structures coincide. ��

Since all adjunctions involved are ambidextruous, we can from now on freely use
isotopies in the manipulations of string diagrams. We next consider the following con-
struction for any module functor M ∈HomC(S, TC). Denote by M̄ the module functor
biadjoint to M and set AM :=M ◦ M̄ . Then AM ∈Hom(TC, TC), which by Proposition
2.4 is equivalent to C as a monoidal category. We proceed to equip the object AM ∈ C with
the structure of a Frobenius algebra in C. For the product, we introduce the morphism
m AM : AM ⊗ AM→ AM as

(6.14)
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in terms of string diagrams. Similarly, we introduce the coproduct�AM : AM→ AM ⊗ AM

as

(6.15)

The morphisms for counit εAM and unit η
AM are given by

(6.16)

It should be appreciated that rescaling the adjunction morphisms rescales product and
coproduct, and unit and counit, by inverse factors.

Proposition 6.3. Let S be an object in C-Mod corresponding to an exact module cat-
egory. Then for any M ∈Hom(S, CC) the morphisms m AM , ηAM ,�AM and εAM just

introduced endow the object AM with the structure of a symmetric Frobenius algebra
in C.

Proof. The equality

(6.17)

which follows from the properties of string diagrams, shows that the product is associa-
tive. Coassociativity of �AM is seen in an analogous manner. The equalities
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(6.18)

prove the Frobenius property.
Finally, C is rigid, and left and right duals coincide. It is not difficult to see that by

construction the algebra AM is equal to its dual. The compositions

εAM ◦ m AM : AM ⊗ AM → 1 and �AM ◦ ηAM : 1→ AM ⊗ AM (6.19)

give the duality morphisms. ��
There exists a particularly interesting subclass of surface defects for which the Frobe-

nius algebra AM obtained from any Wilson line has additional properties. We need first
the

Definition 6.4. A surface defect S in C-Mod is said to be special iff

2-Hom(IdS, IdS) � C. (6.20)

The transparent Wilson line inside a special surface defect S can only have multiples
of the identity as insertions. Put differently, there are no non-trivial local excitations on
a surface defect of type S other than those related to Wilson lines and their junctions.

As an application of this definition, we consider the following situation in a special
surface defect: there is a hole punched out, i.e. the surface contains a disk labeled by the
transparent defect TC ; the label for the boundary of the disk is a Wilson line M . Since
there are no local excitations, we can replace the punched-out hole by the surface defect
S, provided that we multiply every expression obtained with this replacement by a scalar
factor depending on the Wilson line M . For the moment we cannot yet tell whether this
scalar factor is non-zero.

Wilson lines separating special defects from the transparent defect should yield Frobe-
nius algebras with a particular property. Recall from Sect. 2 that a special algebra A in a
monoidal category C is an object which is both an algebra and a coalgebra and satisfies

ε ◦ η = β1 id1 and m ◦� = βA idA (6.21)

with non-zero complex numbers β1 and βA.

Proposition 6.5. Let S be a special surface defect described by a semisimple module
category S over a modular tensor category C. Then for any Wilson line M ∈Hom(S, CC)
the corresponding symmetric Frobenius algebra AM in C is a special algebra.

Proof. For the algebra AM , the composition m ◦� of product and coproduct is described
by a string diagram with a hole in the surface defect S whose boundary is labeled by M .
Since S is special, there are no local excitations and thus the diagram can be replaced,
up to a scalar factor βAM , by a diagram without hole. On the other hand, since the tensor
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unit of the modular tensor category C is simple, the composition ε ◦ η of counit and unit
of AM is a multiple β1 of the identity morphism id1.

Both β1 and βAM depend on the choices of adjunction and coadjunction 2-morphisms
for M̄ . However, computing the quantum dimension of AM using the duality morphisms
(6.19), we obtain

dim(AM ) = β1 βAM , (6.22)

so that the product of the two scalars is independent of the choices of adjunction 2-mor-
phisms. Since the object AM has been constructed as a composition of a non-vanishing
module functor and its adjoint, AM is not the zero object. As the only object of a modular
tensor category having vanishing quantum dimension is the zero object, we conclude
that both scalars β1 and βAM are non-zero. Hence the algebra AM is special. ��

We next investigate how the Frobenius algebras AM for a fixed surface defect S
depends on the choice of Wilson line M .

Proposition 6.6. Let S be a surface defect in C-Mod and let M,M ′ ∈HomC(S, CC) be
Wilson lines separating S from the transparent defect TC . Then the symmetric Frobenius
algebras AM and AM ′ are Morita equivalent.

Proof. We explicitly construct a Morita context. Consider the objects

B := M ◦ M̄ ′ and B̃ := M ′ ◦ M̄ (6.23)

in EndC(CC)� C. The counit of the adjunction for M provides a morphism

M ◦ M̄ ◦ M ◦ M̄ ′ → M ◦ M̄ ′ , i.e. AM ⊗ B → B. (6.24)

With the help of the isotopy invariance of string diagrams, one quickly checks that this
morphism obeys the axiom for a left action of AM on B. This type of argument can be
repeated to show that B has a natural structure of an AM -AM ′ -bimodule, and that B̃ has
the structure of an AM ′ -AM -bimodule.

We next must procure an isomorphism B⊗AM ′ B̃→ AM of bimodules. This is achieved
by showing that the morphism

M ◦ M̄ ′ ◦ M ′ ◦ M̄ → M ◦ M̄ , i.e. B ⊗ B̃ → AM (6.25)

that is provided by the counit of the adjunction (which is obviously a morphism of bi-
modules) has the universal property of a cokernel. To this end we select any morphism
ϕ : B⊗ AM ′ ⊗ B̃ → X , with X any object of C, such that

(6.26)
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We are looking for a morphism ϕ̃ : B→ X such that ϕ̃ ◦ (idM ⊗ εM ′ ⊗ idM̄ )=ϕ. Com-
posing this equality with the morphism idM ⊗ ηM ′ ⊗ idM̄ yields

(6.27)

The left hand side of this equality equals βAM ′ ϕ̃. This shows that the morphism ϕ̃ is
uniquely determined. To establish that AM is indeed a cokernel, we have to show that
the morphism β−1

AM ′ ϕ ◦ [ idM ⊗ (ηM ′ ◦ εM ′)⊗ idM̄ ], which is the composition of ϕ̃ with
the cokernel morphism, equals ϕ. This is established by

(6.28)

Here in the first equality a right action of AM ′ composed with ϕ is replaced by a left
action, as in (6.26). The second equality uses the fact that the defect S is special, so as
to remove the bubble at the expense of a factor of βAM ′ . A similar argument shows that

B̃⊗AM B ∼= AM ′ . This completes the proof. ��
We can summarize the findings of this section in the

Theorem 6.7. Consider the three-dimensional topological field theory corresponding
to a modular tensor category. To any surface defect separating the TFT from itself there
is associated a Morita equivalence class of special symmetric Frobenius algebras.
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Abstract: Dijkgraaf–Witten theories are extended three-dimensional topological field
theories of Turaev–Viro type. They can be constructed geometrically from categories of
bundles via linearization. Boundaries and surface defects or interfaces in quantum field
theories are of interest in various applications and provide structural insight. We perform
a geometric study of boundary conditions and surface defects in Dijkgraaf–Witten the-
ories. A crucial tool is the linearization of categories of relative bundles. We present the
categories of generalized Wilson lines produced by such a linearization procedure. We
establish that they agree with the Wilson line categories that are predicted by the general
formalism for boundary conditions and surface defects in three-dimensional topological
field theories that has been developed in Fuchs et al. (Commun Math Phys 321:543–575,
2013)

1. Introduction

For more than two decades, Dijkgraaf–Witten theories have provided a laboratory for
new ideas in mathematical physics. They form a particularly tractable subclass of three-
dimensional topological field theories. Since they have a Lagrangian description in which
path integrals reduce to counting measures, they also serve as toy models for more
complicated classes of topological field theories like Chern–Simons theories.

The defining data of a Dijkgraaf–Witten theory are a finite group G and a 3-cocycle
ω∈ Z3(G,C×). Given these data, a clear geometric construction [Fr,Mor] describes the
theory in terms of a linearization of categories of spans of G-bundles. In the present paper
we extend this approach by a geometric study of Dijkgraaf–Witten theories on manifolds
with boundaries and defects. More specifically, we consider the class of boundary condi-
tions and defects for three-dimensional topological field theories that was investigated in
[FSV]. Besides providing new structural insight, such boundary conditions and surface
defects are relevant to various applications, ranging from a geometric visualization of
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the TFT approach to RCFT correlators to universality classes of gapped boundaries and
defects in condensed matter systems that are of interest in many areas.

A crucial input in our construction are the concepts of relative manifolds and relative
bundles. Via the linearization of relative bundles we obtain categories of generalized
Wilson lines for Dijkgraaf–Witten theories with boundaries and defects. Our results per-
fectly match the general analysis of [FSV], combined with Ostrik’s explicit description
[Os2] of module categories over the categories of G-graded vector spaces.

The rest of this paper is organized as follows. In Sect. 2 we collect pertinent back-
ground information. We start in Sect. 2.1 with a summary of the geometric construction
of Dijkgraaf–Witten theories, with emphasis on the implementation of locality, which
naturally leads to the use of bicategories. We then present some facts about relative
bundles (Sect. 2.3), about groupoid cohomology (Sect. 2.4), and about module cate-
gories over the monoidal category G-vectω of G-graded vector spaces with associativity
constraint twisted by the cocycle ω (Sect. 2.5).

Section 3 contains our results for categories of generalized Wilson lines in Dijkgraaf–
Witten theories with defects and boundaries. These categories are associated to one-
dimensional manifolds with additional data. In the present paper, we restrict our atten-
tion to one-dimensional manifolds, leaving the case of two-dimensional manifolds with
boundaries and of three-dimensional manifolds with corners to future work. (The results
for two- and three-dimensional manifolds will allow us to make statements about gen-
eralized partition functions.) In Sect. 3.1 we discuss the relevant concepts of decorated
one-dimensional manifolds and of categories of generalized bundles and use them to
obtain the groupoids for the geometric situations of our interest. Afterwards we intro-
duce in Sect. 3.2 the additional data from groupoid cohomology that are needed for the
linearization process. From the perspective of Lagrangian field theory, these data are a
topological bulk Lagrangian and compatible boundary terms; accordingly we refer to
them as Lagrangian data. In Sect. 3.3 we explain how to get 2-cocycles for the groupoids
obtained in Sect. 3.1 from Lagrangian data assigned to intervals and circles.

Invoking fusion of defects, all one-dimensional manifolds arising from boundaries
and defects can be reduced to two building blocks: the interval without interior marked
points, and the circle with a single marked point. The linearization of the groupoids
for these two basic situations is described in detail in Sect. 3.5 and 3.7, respectively. A
convenient tool in these calculations is a graphical calculus for groupoid cocycles which
is inspired by Willerton’s work [Wi]. It is introduced in Sect. 3.4. Another input is a
concrete description of the transparent surface defect; this is obtained in Sect. 3.6, based
crucially on the invariance of the graphical calculus under Pachner moves.

In the considerations in Sects. 3.5 and 3.7 we concentrate on the situation that the
relevant group homomorphisms are subgroup embeddings; these lead to indecomposable
module categories over G-vectω. Without this restriction, one obtains decomposable
module categories; this is discussed in the Appendix.

2. Background Material

In this section we summarize some background material on the geometric construction
of Dijkgraaf–Witten theories and on boundaries and surface defects in three-dimensional
topological field theories, and on some aspects of relative bundles.

We fix the following conventions. By vectk we denote the category of finite-dimensional
vector spaces over a field k; In the present paper we only consider the case of complex
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vector spaces, k=C. A group is assumed to be finite. Manifolds, including manifolds
with boundaries and manifolds with corners, are smooth.

For a finite group G and a smooth manifold X of any dimension, we denote by
BunG(X) the category of smooth G-principal bundles, which has maps covering the
identity as morphisms. We adopt the convention that the G-action on the fiber of a
principal G-bundle is a right action. In particular, a G-bundle over a point is just a right
G-torsor. Morphisms of the category BunG(X) are morphisms of G-bundles covering the
identity. They are all invertible, i.e. BunG(X) is a groupoid. Diffeomorphisms f : X → Y
relate the groupoids by pullback functors, f ∗ : BunG(Y )→ BunG(X). We note that with
respect to e.g. surjective submersions, BunG becomes a stack on the category of smooth
manifolds; we will not use the language of stacks in this paper, though.

2.1. The geometric construction of Dijkgraaf–Witten theories. A classic definition by
Atiyah characterizes d-dimensional topological field theories as symmetric monoidal
functors from a geometric category, the symmetric monoidal category cobordd,d−1 of
d-dimensional cobordisms, to some linear category, e.g. to the symmetric monoidal
category vectC. A classic result states that for d = 2 the functor given by

tft �−→ tft(S1) (2.1)

is an equivalence between the category of topological field theories and the category of
complex commutative Frobenius algebras.

Dijkgraaf–Witten theories are three-dimensional topological field theories. The
Dijkgraaf–Witten theory

tftG : cobord3,2 → vectC (2.2)

based on a finite group G can be characterized as follows. The functor tftG associates
to a closed oriented surface � the vector space tftG(�) freely generated by the set of
isomorphism classes of principal G-bundles on �. To a cobordism

M

�

��������
�′

��������

(2.3)

it associates a linear map tftG(�)→ tftG(�
′) whose matrix element for principal G-

bundles P on � and P ′ on �′ is the number |BunG(M, P, P ′)|. Here BunG(M, P, P ′)
is the groupoid of G-bundles on M that restrict to a given G-bundle P on � and to P ′
on �′, and for any groupoid � we denote by |�| the groupoid cardinality, which is the
rational number

|�| :=
∑

γ∈π0(�)

1

|Aut(γ )| (2.4)

obtained by summing over the set π0(�) of isomorphism classes of objects of �.
The introduction of d−1-dimensional manifolds can be seen as a first step towards

implementing locality in topological field theories: These submanifolds can be used to
cut the d-dimensional manifold into smaller and simpler pieces, which are manifolds
with boundary. The boundaries of cobordisms are thus to be thought of as “cut-and-paste
boundaries”. They must not be mixed up with physical boundaries to be discussed in
Sect. 2.2.

Our analysis uses a framework which goes one step further in the implementation of
locality and naturally leads to the use of bicategories. We need the following concepts:
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Definition 2.1. (i) The bicategory 2-vectC of complex 2-vector spaces is the bicategory
of C-linear finitely semisimple abelian categories. The Deligne product of C-linear
categories endows this bicategory with the structure of a symmetric monoidal bicat-
egory.

(ii) The symmetric monoidal category cobord3,2,1 has as objects compact oriented
smooth one-dimensional manifolds. 1-morphisms are two-dimensional manifolds
with boundary; 2-morphisms are three-manifolds with corners, up to diffeomor-
phisms preserving the orientation and the boundary. (For brevity we suppress collars
in our discussion.)

(iii) An extended three-dimensional topological field theory is a symmetric monoidal
functor

tft : cobord3,2,1 → 2-vectC. (2.5)

We note that, as a consequence of the axioms,

tft(S � S′) ∼= tft(S)� tft(S′) (2.6)

for any pair (S, S′) of one-dimensional manifolds, and tft(∅)= vectC, where ∅ is con-
sidered as a one-dimensional manifold and monoidal unit of cobord3,2,1.

The Dijkgraaf–Witten theory based on a finite group G is in fact an extended topo-
logical field theory [Fr,Mor]. It assigns to a one-dimensional manifold S the category

tftG(S) := [BunG(S), vectC]. (2.7)

Here by [ C1, C2 ] we denote the category of functors between two (essentially small)
categories C1 and C2.

This formula already gives a hint on the general construction of the theory: In a first
step, one uses the functor BunG that associates to a smooth manifold the groupoid of
G-bundles to construct a bifunctor

cobord3,2,1
B̃unG �� SpanGrp (2.8)

to a bicategory of spans of groupoids. In a second step one linearizes by taking functor
categories with values in vectC,

tftG : cobord3,2,1
B̃unG �� SpanGrp

[−,vectC] �� 2-vectC. (2.9)

The non-extended topological field theory can be obtained from this extended topological
field theory by restricting to the endomorphism categories of the monoidal units of
cobord3,2,1 and 2-vectC, since Endcobord3,2,1(∅)∼= cobord3,2 and End2-vectC(vectC)∼=
vectC.

The fact that tftG involves pure counting measures amounts to considering vanish-
ing Lagrangians. Dijkgraaf and Witten [DW] introduced the following generalization,
in which the linearization is only projective. Select a cocycle ω representing a class
[ω] ∈ H3(G,C×) in group cohomology. One may think about this class as a 2-gerbe [Wi]
on the classifying space BG of G-bundles, which we represent by the action groupoid
∗ \\G of G acting on a single object ∗. A G-bundle on a 3-manifold M corresponds to
a map into this classifying space. Pulling back the 2-gerbe along this map to M we get
a 2-gerbe on M , which for dimensional reasons is trivial. It therefore gives rise to a 3-
manifold holonomy, which should be seen as the value of a topological Lagrangian. For
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this reason, we refer to the cocycle ω (and later on to similar quantities) as a Lagrangian
datum.

The second step of the construction of Dijkgraaf–Witten models consists of a lin-
earization of the groupoids obtained in the first step. In general, such a linearization
is only projective. The relevant 2-cocycle on the groupoids must be derived from the
Lagrangian data. In the case at hand, the 3-cocycle ω can be transgressed [Wi] to a
cocycle τ(ω) representing a class in H2(G \\G,C×), the groupoid cohomology for the
action groupoid G \\ad G with G acting on itself by the adjoint action.

Direct calculation now yields [Mor] tftG(S1)=Dω(G)-mod, i.e. the category asso-
ciated to the circle is the modular tensor category of modules over the twisted Drinfeld
double [DPR] of the category of G-graded vector spaces – or, equivalently, of complex
representations of the finite group G. This category is the category of bulk Wilson lines.
The goal of the present paper is to generalize this construction to more general cobordism
categories and to consistently obtain categories of generalized Wilson lines: both bulk
and boundary Wilson lines. Our construction requires the use of more general categories
of bundles on smooth manifolds.

2.2. Boundaries and defects in three-dimensional TFT. The structure of boundary con-
ditions in two-dimensional topological field theories is well understood [LaP,MoS] in the
framework of open/closed topological field theories. In this setting one considers a larger
cobordism category cobordop/cl

2,1 . Its objects are one-dimensional smooth manifolds with
boundary, with a suitable boundary condition fixed for each connected component of the
(physical) boundary. Morphisms are now cobordisms with boundary, with each bound-
ary component partitioned into segments each of which is either a physical boundary or
a cut-and-paste boundary. An open/closed topological field theory is then a symmetric
monoidal functor cobordop/cl

2,1 → vectC. It turns out that a boundary condition a gives rise
to a (not necessarily commutative) Frobenius algebra Wa whose center is the commuta-
tive Frobenius algebra tft(S1). Explicitly, a boundary condition is thus a pair consisting
of a Frobenius algebra Wa and an isomorphism

tft(S1)
∼=−→ Z(Wa) (2.10)

of commutative associative algebras. Once such a Frobenius algebra Wa has been deter-
mined, the category of boundary conditions can be described as the category Wa-mod.

We pause for two comments. First, we allow for point-like insertions on boundaries
that separate possibly different boundary conditions. As a consequence, boundary con-
ditions form a category rather than a set: The space HomWa-mod(Mc,Md) of morphisms
between two boundary conditions Mc,Md ∈ Wa-mod is the vector space of labels for
insertions that separate the boundary condition Mc from the boundary condition Md .
Second, distinguishing one boundary condition in the discussion could be avoided, but at
the price of using a higher-categorical language: the one of module categories over vectC.
For the three-dimensional topological field theories we are interested in, a Morita invari-
ant treatment would amount to working with three-categories; we prefer an approach
that avoids this. For a more detailed analysis of two-dimensional open/closed topological
field theories we refer to the literature, in particular to [LaP].

Once one allows for manifolds with boundary, codimension-one defects that partition
a manifold into cells supporting possibly different topological field theories are a natural
extension of the picture described above. For two-dimensional theories such defects
provide a lot of additional insight, in particular about symmetries and dualities [FFRS].
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In three-dimensional topological field theories, boundary conditions and defects
have been studied only recently. In this case, codimension-one defects are surface
defects. Boundaries and surface defects in three-dimensional topological field theories of
Reshetikhin–Turaev type appear in a geometric interpretation [KaS] of the TFT approach
[SFR] to RCFT correlators and as models for universality classes of gapped boundaries
and gapped interfaces for topological phases (see e.g. [KK,WW,Le,BJQ,Ka]), which
arise for instance in the study of 2+1-dimensional electron fluids, including certain frac-
tional quantum Hall states.

A model-independent study of boundary conditions and surface defects in such the-
ories [FSV] yields the following results, which can be regarded as a categorified version
of the results in two dimensions described above. To any boundary condition a there is
associated a fusion category Wa . It describes boundary Wilson lines, i.e. Wilson lines
that are confined to the boundary with boundary condition a. Let us recall that, depend-
ing on the chosen formalism, Wilson lines are embedded ribbons or tubes with a marked
line at the boundary of the tube. In a similar spirit, boundary Wilson lines should be
described by half-tubes extending into the three-dimensional bulk, as illustrated by the
following picture:

(2.11)

Here the figure on the right shows a boundary Wilson line in the form of a half-tube
separating two (possibly different) boundary conditions a and a′ and at which two surface
defects d and d ′ end, while the left figure shows a bulk Wilson line in the form of a tube
at which four surface defects end.

Since boundary Wilson lines are objects in a two-dimensional theory, the category
Wa is not braided. A boundary condition can now be defined as a pair consisting of a
fusion category Wa and a braided equivalence

C = tft(S1)

−→ Z(Wa), (2.12)

where Z denotes the Drinfeld center of the fusion category Wa , which is a braided
monoidal category. We refer to an equivalence of the type (2.12) as a Witt trivialization
of C. One should note that not any braided category is equivalent to a Drinfeld center.
In general three-dimensional topological field theories this is a source of obstructions.
But in the case of Dijkgraaf–Witten theories the relevant modular tensor category C
indeed is a Drinfeld double, namely the Drinfeld double of the fusion category G-vectω

of G-graded vector spaces with associator twisted by ω (see Sect. 2.5)

C = Z(G-vectω). (2.13)

As a consequence, in the case of our interest the existence of boundary conditions is not
obstructed.
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The collection of all boundary conditions now has the structure of a bicategory: the
bicategory of all module categories over the fusion category Wa . (Module categories
over a fusion category are a categorification of the notion of a module over a ring;
we refer to [Os1] for details.) The category of boundary Wilson lines separating two
boundary conditions c and d that are given by two Wa-module categories Mc and Md ,
respectively, is the abelian C-linear category

FunWa-mod(Mc,Md) (2.14)

of Wa-module functors.
A similar analysis can be carried out for surface defects that separate two topological

field theories of Reshetikhin–Turaev type, which are labeled by modular tensor categories
C1 and C2. The category of Wilson lines in a surface defect of type d is now a fusion
category Wd together with a braided equivalence

C1 � Crev
2


−→ Z(Wd). (2.15)

Since the modular categories relevant for Dijkgraaf–Witten theories are already Drinfeld
centers themselves, the existence of surface defects between any two Dijkgraaf–Witten
theories is not obstructed. The category of Wilson lines separating surface defects that are
given by two Wd -module categories Mc and Md , respectively, is the abelian C-linear
category

FunWa-mod(Mc,Md) (2.16)

of Wd -module functors.
In the special case of defects separating a modular tensor category C from itself, we

can work with the canonical Witt trivialization

can : C � Crev 
−→ Z(C). (2.17)

This functor maps the object U � V ∈ C � Crev to the object U ⊗ V ∈ C endowed with a
half braiding eU⊗V given by [ENO, Eq. (4.2)]

eU⊗V (X) : U ⊗ V ⊗ X
c−1−→ U ⊗ X ⊗ V

c−→ X ⊗ U ⊗ V . (2.18)

With respect to the canonical Witt trivialization (2.17), we describe a defect separating
C from itself by a C-module category. Now C has a natural structure of module category
over itself. This specific C-module category describes a particularly important surface
defect, the transparent (or invisible) surface defect. In fact, one expects a notion of a
fusion product of defects, so that the bicategory of surface defects is even a monoidal
bicategory. The transparent defect is then the tensor unit of the monoidal bicategory of
defects. (At one step lower in the categorical ladder, the tensor unit of the monoidal
category of endofunctors of any given defect category describes a Wilson line that is
invisible inside the surface. The category of endofunctors of C describes Wilson lines
inside the transparent defect; these are ordinary bulk Wilson lines. In particular, the
tensor unit of this monoidal category is the invisible bulk Wilson line.)

Our goal in this paper is to achieve a concrete geometric, Lagrangian construction
of some of the categories describing Wilson lines in the presence of boundaries and
surface defects in Dijkgraaf–Witten theories in the spirit of [Fr,Mor]. To this end, we
need the appropriate geometric objects that form categories whose linearizations enter
in the topological field theory.
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2.3. Relative bundles. In this section we review the notion of a relative bundle. We
restrict our attention to finite groups, which is sufficient for our construction.

Definition 2.2. Let G and H be finite groups, ι : H → G a morphism of finite groups,
and X a smooth manifold, Then the functor

Indι : BunH (X) → BunG(X) (2.19)

is the one that acts on objects as PH �→ PH ×H G.

Remark 2.3. (i) If the group homomorphism ι injective, then the functor Indι is injective
on morphisms.
Indeed, suppose f1, f2 : PH → P ′

H are two different morphisms of H -bundles on X .
Then there exist points x ∈ X and p in the fiber of PH over x such that f1(p) �= f2(p).
Since both f1(p) and f2(p) are in the fiber of P ′

H over x , we have a unique h ∈ H \ {e}
such that f1(p)= f2(p).h. Suppose that after induction [ f1(p), g] = [ f2(p), g] for
some g ∈ G. Then

[ f1(p), g] = [ f2(p), g] = [ f1(p).h, g] = [ f1(p), ι(h) · g]. (2.20)

Equality of the left and right hand sides implies ι(h) · g = g, i.e. ι(h)= e. If ι is
injective, this is impossible for h �= e.

(ii) Induction commutes with pullback: if f : X1 → X2 is a morphism of smooth mani-
folds and if P(2)H is a H -bundle on X2, then

Indι f ∗ P(2)H = f ∗ IndιP
(2)
H . (2.21)

More abstractly, for any finite group G we have the stack BunG(−) of G-bundles on
the category of smooth manifolds with topology given by surjective submersions.
Induction is also compatible with descent. Thus Indι gives a morphism Indι : BunH →
BunG of stacks.

A crucial ingredient for our construction is the notion of relative smooth manifolds
and relative bundles. This is as follows, see e.g. [St].

Definition 2.4. (i) A relative (smooth) manifold Y
j→ X consists of a pair Y, X of smooth

manifolds and a morphism j : Y → X of smooth manifolds.

A morphism (Y1
j1→X1)−→ (Y2

j2→X2) of relative smooth manifolds is a commuting
diagram

Y1

j1
��

fY �� Y2

j2
��

X1 fX

�� X2

(2.22)

in the category of smooth manifolds.
(ii) Let ι : H → G be a homomorphism of finite groups. A relative (G, H)-bundle on the

relative manifold Y
j→ X is a triple consisting of a G-bundle PG on X, an H-bundle

PH on Y , and an isomorphism

α : Indι(PH )

−→ j∗(PG) (2.23)

of G-bundles on Y .



A Geometric Approach to Boundaries and Surface Defects 989

(iii) A morphism (PG , PH , α)→ (P ′
G , P ′

H , α
′) of relative (G, H)-bundles on a relative

smooth manifold Y
j→ X consists of a morphism

ϕG : PG → P ′
G (2.24)

of G-bundles on X and of a morphism

ϕH : PH → P ′
H (2.25)

of H-bundles on Y such that the diagram

Indι(PH )
α ��

IndιϕH

��

j∗ PG

j∗ϕG

��
Indι(P ′

H )
α′

�� j∗ P ′
G

(2.26)

of morphisms of G-bundles on Y commutes.
The category of relative (G, H)-bundles on (X,Y ) is denoted by Bun(G,H)(Y→X).

Remark 2.5. (i) The category Bun(G,H)(Y→X) depends the group homomorphism
ι : H → G. The notation Bun(G,H)(Y→X) suppresses this dependence and is thus
slightly inappropriate.

(ii) The category Bun(G,H)(Y→X) inherits from the category of principal bundles the
property of being a groupoid: all morphisms of relative bundles are invertible.

(iii) For the special case that j = idX is the identity on X = Y , we obtain the notion of a
reduction of a G-bundle to an H -bundle along the group homomorphism ι.

(iv) As an object, a relative bundle is thus a G-bundle PG on X together with a reduction
of its pullback j∗ PG to an H -bundle along the group homomorphism ι. One should
note, however, that the morphisms in BunG,H (X, Y ) are not simply morphisms of
reductions, which would only involve a morphism of G-bundles on the manifold Y .
Rather, also a G-morphism on the manifold X is required. (Later on, Y will typically
be a submanifold of X ; hence we require a morphism on a larger manifold in that
case.) In gauge theory terminology, the morphisms are thus gauge transformations
on Y and on X , respectively.

(v) If the group homomorphism ι is injective, then by Remark 2.3(i) the morphism ϕH
of H -bundles is determined uniquely by ϕG , provided it exists. It is thus not an extra
datum. The morphisms of relative (G, H)-bundles are in this situation morphisms
of G-bundles that are compatible with the reductions.

(vi) Fix a homomorphism ι : H → G of finite groups and consider a relative bundle

(P2
G , P2

H , α
2) on the relative manifold Y2

j2→ X2. We define a pullback of relative
bundles along the morphism

Y1

j1
��

fY �� Y2

j2
��

X1 fX

�� X2

(2.27)

of relative manifolds. Since induction and pullback commute by Remark 2.3(ii), we
have a canonical isomorphism
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Indι( f ∗
Y P2

H )
∼= f ∗

Y IndιP
2
H (2.28)

of bundles. Noting that fX ◦ j1 = j2 ◦ fY , we also have another isomorphism

j∗1 f ∗
X P2

G
∼= f ∗

Y j∗2 P2
G (2.29)

of G-bundles, and thus an isomorphism

f ∗
Y (α) : Indι( f ∗

Y P2
H ) → f ∗

Y IndιP
2
H → f ∗

Y f ∗
2 P2

G → j∗1 f ∗
X P2

G (2.30)

of G-bundles on Y1. Hence ( f ∗
X P2

G , f ∗
Y P2

H , f ∗
Y (α)) is a relative (G, H)-bundle on

(X1,Y1).
We have thus a bifunctor Bunι: H→G from the category opposite to the category of
relative manifolds to the bicategory of groupoids, i.e. a prestack Bun(G,H) on the
category of relative manifolds.

It should be appreciated that we do not require the group homomorphism ι : H → G
to be injective. For later use, we will consider two examples.

Example 2.6. Consider the case that X = Y is a point. Bundles are then torsors H and G,
respectively, which are unique up to isomorphism. The additional datum characterizing
a relative bundle is then an isomorphism

α : H ×H G
∼=−→ G (2.31)

of torsors. If we fix base points ∗H ∈ H and ∗G ∈ G, then α is determined by the group
element γα ∈ G such that α([∗H , e])= ∗G .γα .

Morphisms (G, H , α)→ (G ′, H ′, α′) are pairs of morphisms ϕH : H → H ′ and
ϕG : G → G ′ of torsors. Using the base points ∗H and ∗′

H of H and H ′, respectively,
and similarly base points of the G-torsors, morphisms are described by group elements
g ∈ G and h ∈ H such that

ϕH (∗H ) = ∗′
H . h and ϕG(∗G) = ∗′

G . g. (2.32)

The commuting diagram (2.26) requires that

ϕG(α[∗H , e]) = ϕG(∗G .γα) = ∗′
G . (gγα) (2.33)

equals

α′(IndιϕH ([∗H , e]) = α′([∗′
H h, e]) = α′([∗′

H , ι(h)]) = ∗′
G . (γα′ ι(h)). (2.34)

We thus find the condition
g γα = γα′ ι(h) (2.35)

on the pair (g, h) of group elements. As expected, for ι injective, this determines h in
terms of g. Moreover, given any two relative bundles, we can always find group elements
g and h such that this relation holds. So there is a single isomorphism class of objects.
In particular, we can restrict our attention to just one H -torsor H and one G-torsor G.
Then we get a category with objects labeled by γα ∈ G and morphisms being pairs (g, h)
such that gγα = γα′ ι(h), or put differently, the action groupoid

G \\G \\ι− H. (2.36)

Here the notation is as follows. We deal with left actions for both G and H . The left
action of the group G is simply left multiplication, while the left action of H is right
multiplication after applying the group homomorphism ι and taking the inverse, i.e.
(g, h).γ = g · γ · ι(h)−1.
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Example 2.7. Take for X a closed interval and for Y the subset consisting of its two
end points, which we label by 1, 2. Since the interval is contractible and G is finite,
the category of G-bundles on X is canonically equivalent to the category of G-torsors.
Similarly we have H1- and H2-torsors, one over each end point. We fix one such torsor
for each end point and for the interval itself from now on. We also fix base points ∗H1

,
∗H2

and ∗G for these torsors. Objects in the category are then pairs (γα,1, γα,2)∈ G × G
which describe the morphisms of torsors as

α1([∗H1
, e]) = ∗G .γα,1 and α2([∗H2

, e]) = ∗G .γα,2. (2.37)

The morphisms are described by triples (h1, h2, g)∈ H1 × H2 × G satisfying

ϕH1
(∗H1) = ∗H1 . h1, ϕH2

(∗H2) = ∗H2 . h2 and ϕG(∗G) = ∗G . g. (2.38)

Based on the commuting diagram (2.26), we check when a triple (h1, h2, g) gives a
morphism (γα,1, γα,2)→ (γ ′

α,1, γ
′
α,2). As before we compute

ϕG(αi [∗Hi , e]) = ϕG(∗Gγα,i ) = ∗G . (gγα,i ) (2.39)

and

α′
i (IndιϕH ([∗Hi , e]) = α′

i ([∗Hi hi , e]) = α′([∗Hi , ι(hi )]) = ∗G . (γ
′
α,i .ι(hi )). (2.40)

We thus arrive at the equalities

g γα,i = γ ′
α,i ι(hi ) (2.41)

for i = 1, 2. Hence the action groupoid is

G \\ G × G \\ι−1 ×ι−2 H1 × H2, (2.42)

where the G-action is the diagonal one.

2.4. Groupoid cohomology and gerbes on groupoids. The definition of a Dijkgraaf–
Witten theory on a three-manifold requires, as an additional datum besides a finite group
G, the choice of a 3-cocycle ω∈ Z(G,C×). This cocycle enters in the linearization. We
now describe how this 3-cocycle can be seen geometrically as a 2-gerbe on the groupoid
∗ \\G.

We first give a brief outline of groupoid cohomology. Given a finite groupoid � =
(�0, �1), consider its nerve, which is a simplicial set

(
· · ·

∂0 ������
∂3

�� �2

∂0 ����
∂2

�� �1
∂0 ��
∂1

�� �0

)
=: �•, (2.43)

where for i ≥ 1, �i consists of i-tuples of composable morphisms of �. Applying the
functor Map(−,C×) and taking alternating combinations of the face maps yields a
complex

Map(�0,C×) → Map(�1,C×) → Map(�2,C×) → Map(�3,C×) → · · · (2.44)

of groups. A group G gives rise to the groupoid ∗ \\G with a single object. In this case
the complex (2.44) reduces to the standard bar complex.

It is useful to think about cochains in this complex in a geometric way.
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Definition 2.8. An n-gerbe on the groupoid � is an (n+1)-cocycle

ω ∈ Zn+1(�,C×). (2.45)

Using standard facts about complexes in small abelian categories one deduces that
n-gerbes on a groupoid � form an n+1-category:

• A (−1)-gerbe is an object in degree 0, i.e. an element of the set of objects of �.
• A 0-gerbe consists of a 1-cocycle ω∈ Z1(�). The morphism sets are

Hom(ω, ω′) = {η∈�0 | dη = ω′ − ω}. (2.46)

We thus get a category of 0-gerbes, which we also call line bundles on �. Its isomor-
phism classes are classified by the cohomology group H1(�,C×).

• 1-gerbes form a bicategory. Its objects are 2-cocycles, and the set of 1-morphisms
between two 2-cocycles ω and ω′ is {η∈�1 | dη=ω′ −ω}. Given two 1-morphisms
η, η′ : ω→ω′, a 2-morphism : η⇒ η′ is an element∈�0 satisfying d= η′ − η.
The isomorphism classes of this bicategory of gerbes are classified by the cohomol-
ogy group H2(�,C×).
For Dijkgraaf–Witten theories based on a finite group G, 2-gerbes on the groupoid

∗ \\G are relevant. As we already have pointed out, they should be thought of as a finite
version of a Chern–Simons 2-gerbe.

2.5. Module categories over the fusion category G-vectω. We next discuss category-
theoretic and algebraic realizations of group 3-cocycles. A closed 3-cocycleω on a finite
group G allows one to endow the abelian category G-vect of G-graded vector spaces
with a non-trivial associativity constraint, defined on simple objects by

aVg1 ,Vg2 ,Vg3
: (

Vg1 ⊗ Vg2

) ⊗ Vg3 → Vg1 ⊗ (
Vg2 ⊗ Vg3

)

v1 ⊗ v2 ⊗ v3 �→ ω(g1, g2, g3) v1 ⊗ v2 ⊗ v3.
(2.47)

This yields a fusion category, which is denoted by G-vectω (the pentagon axiom is ful-
filled becauseω is closed). Cohomologous 3-cocycles give rise to monoidally equivalent
fusion categories.

The modular tensor category relevant for the Dijkgraaf–Witten theory based on (G, ω)
is the Drinfeld center Z(G-vectω). (This has been discussed in [DPR]; a helpful more
recent exposition is given in [Wi].) It is thus a topological field theory of Reshetikhin–
Turaev type. This allows us to compare our geometric results with those obtained in the
model independent approach to defects and boundary conditions in [FSV].

The indecomposable module categories over the monoidal category G-vectω have
been classified [Os2, Example 2.1]: Consider a subgroup H ≤ G and a 2-cochain θ on
H such that dθ =ω|H . Note that this requires the restriction of ω to the subgroup H
to be exact and thus imposes in general restrictions on the subgroup. Rephrased in the
language of Sect. 2.4, θ is a 1-morphism from the trivial 2-gerbe on ∗//H to the pullback
2-gerbe ι∗ω.

The twisted group algebra AH,θ :=Cθ [H ] is then a (haploid special symmetric)
Frobenius algebra in G-vectω. For any 1-cochain χ on H the algebras AH,θ and AH,θ+dχ
are isomorphic. Thus, given a subgroup H the isomorphism classes of algebras form a
torsor over H2(H,C×). Indecomposable module categories over G-vectω are given by
Morita classes of twisted group algebras. They are thus in bijection with equivalence
classes of pairs (H, θ); we denote them by MH,θ .
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Actually, any pair consisting of a group homomorphism ι : H → G and a 2-cochain
θ on H such that ι∗ω= dθ defines a module category, albeit not an indecomposable
one unless ι is injective. For the case that both ω and θ vanish, this is discussed in the
Appendix.

3. Categories of Generalized Wilson Lines in Dijkgraaf–Witten Theories

We are now ready to discuss Dijkgraaf–Witten theories with boundaries and defects. Our
ultimate goal is to consider such a theory as a 1–2–3-extended topological field theory.
Concretely this means:

• To a decorated smooth oriented one-dimensional manifold, we have to assign a
finitely semisimple C-linear category.
This category will have the interpretation of a category of (generalized) Wilson
lines. The one-dimensional manifold is allowed to have boundaries, corresponding
to physical boundaries of the three-dimensional theories, and to have marked points,
corresponding to surface defects.

• To a decorated smooth oriented two-dimensional manifold we have to assign a C-
linear functor. A two-dimensional manifold can have physical boundaries and lines
corresponding to surface defects. Moreover, it can have cut-and-paste boundaries
which are one-dimensional manifolds of the type described in the first item. These
cut-and-paste boundaries determine the categories which are the source and target
for the functor associated to the two-manifold.

• To a decorated three-manifold with corners, we have to associate a natural transfor-
mation.

3.1. Decorated one-manifolds and categories of generalized bundles. In the present
paper we concentrate on examples and restrict our attention to one-dimensional mani-
folds. We should also keep in mind that cut-and-paste boundaries have been introduced
to implement locality. Accordingly we impose the condition that a cutting is transver-
sal to any additional decoration data such as surface defects or generalized Wilson
lines.

This leaves us with two types of connected one-manifolds only:

• An interval which is partitioned by finitely many distinct points in its interior.
• A circle that is partitioned by finitely many distinct points.

For the situations shown in (2.11) above, the cutting leading to such one-manifolds
is indicated in the following picture:

(3.1)
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Every subinterval of such a one-manifold is decorated by a Dijkgraaf–Witten theory.
The decoration datum for each subinterval is thus a finite group G together with a 3-
cocycle ω∈ Z3(G,C×). The locality of the geometric construction of Dijkgraaf–Witten
theories [Fr,Mor] then suggests that G-bundles on these intervals should appear in our
construction.

However, we also must assign data to the end points of a subinterval. Recall from
Sect. 2.1 that the general construction of Dijkgraaf–Witten theories consists of two steps:
first finding an appropriate stack of bundles, leading to spans of groupoids, which then
have to be linearized with the help of Lagrangian data. In the situation at hand, the rele-
vant categories are variants of relative bundles which have been introduced in Sect. 2.3.
In the case of an interval without marked points in the interior, the morphism defining
the relative manifold is the embedding of the end points.

One might thus pick a group homomorphism ι : H → G and assign H -bundles to the
two end points. This is, however, not the most general situation one can consider—for
complying with locality we must allow for the possibility to assign different local con-
ditions to the two end points of the interval. Thus we select possibly different groups Hi ,
i = 1, 2, and group homomorphism ιi : Hi → G separately for each end point p1, p2 and
consider the following category: an object consists of a G-bundle PG over the interval,
an H1-bundle PH1 over p1, a morphism Indι1 PH1 → (PG)|p1

of G-bundles on p1, an
H2-bundle PH2 over p2, and a morphism Indι2 PH2 → (PG)|p2

of G-bundles on p2.
This leads to the following assignment of kinematical data. At the level of groups, we

associate to an end point of an interval that is labeled by a group G a group homomor-
phism ι : H → G, with H some finite group. This prescription still needs to be comple-
mented by group cohomological Lagrangian data; these will be introduced in Sect. 3.2.

Example 2.7 allows us to determine directly a finite action groupoid that is rele-
vant for an interval without any marked interior points, labeled by a group G, and
with end points labeled by groups H1, H2 and group homomorphisms ι1 : H1 → G and
ι2 : H2 → G respectively: it is given by

G \\G × G \\ι−1 ×ι−2 H1 × H2. (3.2)

Here G acts from the left as the diagonal subgroup, while H1 is mapped via ι1 to the first
copy of G and acts by right multiplication after taking the inverse; the action of H2 is
analogous, the only difference being that it is mapped by ι2 into the second copy of G.

Let us describe the structure of this groupoid: its set of objects is given by a Cartesian
product of groups, one factor for each pair consisting of a marked point and a neighbour-
ing interval. The group is determined by the interval, since it comes from the morphism of
bundles in the corresponding relative bundle. The morphisms in the groupoid are gauge
transformations: the G-action describes gauge transformations of the G-bundle on the
interval and acts by multiplication from the left. The Hi -actions are by multiplication
from the right after having taken the inverse; their origin are Hi -gauge transformations
of the Hi -bundles on the respective marked point.

This picture generalizes to marked points in the interior, either of an interval or
of a circle. To any such point two intervals are adjacent, which are labeled by gauge
groups G l and Gr, respectively. To describe the resulting relative manifold, consider as
an example the closed interval [0, 1] with a marked interior point p1 := 1

2 . Take for X
the disjoint union X := [0, 1

2 ] � [ 1
2 , 1]. One should appreciate that in X the point p1 is

“doubled”. By locality, the category of bundles is now defined with separate data for
each of the marked points p0 = 0, p1 = 1

2 and p2 = 1. For p0 and p2 we select again
group homomorphisms ι0 : H0 → G l and ι2 : H2 → Gr. At p1 we take as a datum a finite
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group H1 and a group homomorphism ι : H1 → G l × Gr or, equivalently, a pair of group
homomorphisms ιl : H1 → G l and ιr : H2 → Gr.

We consider thus for a given one-manifold S the following geometric category: an
object is the assignment of a G-bundle to each subinterval labeled by a finite group G
and of H -bundles to marked points in the interior or end points. The final datum are
compatible morphisms from induced bundles to restrictions of bundles at all marked
points. We denote this geometric category by Bun(S).

Definition 3.1. (i) A one-dimensional pre-DW manifold is a smooth one-dimensional
manifold S, possibly with boundary, together with the following data:

• A finite set PS of points of S, containing all boundary points of S.
We refer to the elements of PS as marked points, and to a connected component
of S\PS as a subinterval of S. We choose an orientation for each subinterval.

• To each subinterval of S we associate a finite group.
• To a marked point p ∈ PS that is a boundary point and is thus adjacent to a single

subinterval I with associated group G, we select a finite group H and a group
homomorphism ι : H → G.
To a marked point p ∈ PS that is not a boundary point of S and is thus adjacent to
two subintervals I1 and I2, labeled by finite groups G1 and G2, respectively, we
select a finite group H and a pair of group homomorphisms ιi : H → Gi .

(ii) To a one-dimensional pre-DW manifold S, we associate the category Bun(S) of
bundles described above. This is an essentially finite groupoid.

(iii) Each subinterval of a one-dimensional pre-DW manifold S is endowed with an ori-
entation. Thereby any marked point p ∈ PS is either a start point or an end point
for any interval I adjacent to p. In the first case, we set ε(p, I ) := +1, in the latter
ε(p, I ) := −1.

To make contact with the results in [FSV] which use the theory of module categories,
we need to find finite groupoids that are equivalent to groupoids Bun(S) of relative
bundles of pre-DW manifolds. This is the goal of the remaining part of this subsection.

As a first example, consider a circle with one marked point, which corresponds to a
surface defect. If we associate to the interval the group G, then we have to associate to
the defect a group homomorphism ι : H → G × G, and the resulting action groupoid is

G \\G × G \\ι− H. (3.3)

Of particular interest is the case that the group homomorphism ι is the embedding
homomorphism of the diagonal subgroup G ≤ G × G. We denote by G \\ad G the action
groupoid for the left adjoint action of G on itself. The functor

F : G \\G × G \\G → G \\ad G (3.4)

that acts on objects as F(γ1, γ2)= γ1γ
−1
2 and on morphisms as

F

(
(γ1, γ2)

(h1,h2)−→ (h1γ1h−1
2 , h1γ2h−1

2 )

)
=

(
γ1γ

−1
2

h1−→ h1γ1γ
−1
2 h−1

1

)
(3.5)

is an equivalence of categories. We will see that the linearization of the adjoint action
groupoid together with the relevant cocycle (see formula (3.46)) produces the appropri-
ate category associated to the circle without marked points, i.e. the category of ordinary
bulk Wilson lines.
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As a more involved example, let us discuss a circle with two marked points. We
describe the circle as S1 = {z ∈C | |z| = 1} and take the marked points to be ±i ∈ S1.
For the two intervals that consist of points with positive and negative real parts, respec-
tively, we choose groups G> and G<, respectively. At the points ±i, we choose group
homomorphisms

ι+ : H+ → G> × G< and ι− : H− → G<× G> . (3.6)

The relevant action groupoid is then

G>× G< \\G> × G<× G<× G> \\ι−+ ×ι−− H+ × H−, (3.7)

where the action of G> and G< is again diagonal and the left action of H± is again by
right multiplication preceded by applying the relevant group homomorphism and taking
inverses. This description generalizes in an obvious manner to circles with an arbitrary
finite number of marked points. The generalization to intervals with an arbitrary finite
number of marked points is easy as well. We have thus succeeded in describing for
a specific type of one-dimensional pre-DW manifold the category Bun(S) by a finite
action groupoid.

We discuss again a specific case: suppose that G> = G<=:G and that H+∼=G
d→ G × G

is the diagonal subgroup, while ι− = ι : H → G × G is an arbitrary group homomor-
phism. Then the relevant action groupoid is

G × G \\G × G × G × G \\d−×ι− G × H (3.8)

with the first copy of G in the gauge group G × G acting on the first and forth copies
of G in G × G × G × G by left multiplication and the second copy of G acting on the
second and third copies. The left action of G on the right is as a subgroup of the first
and second copy of G. The action groupoid (3.8) is equivalent to the action groupoid

G \\G × G \\ι− H (3.9)

via the functor F that acts on objects as

F(γ1, γ2, γ3, γ4) := (γ1γ
−1
2 γ3, γ4) (3.10)

and maps the morphism

(γ1, γ2, γ3, γ4)
(g1,g2,g,h) �� (g1γ1g−1, g2γ2g−1, g2γ3h−1, g1γ4h−1) (3.11)

in the groupoid (3.8) to the morphism

(γ1γ
−1
2 γ3, γ4)

(g1,h) �� (g1γ1γ
−1
2 γ3h−1, g1γ4h−1) (3.12)

in (3.9). It is straightforward to check that this functor is surjective and a bijection on
morphism spaces and is thus an equivalence of groupoids.

3.2. Lagrangian data and linearization of groupoids. We now proceed to the lineariza-
tion process. This requires additional data which come from the cohomology of the
groupoids that have to be linearized. These data have the physical interpretation of
(topological) Lagrangians and appropriate boundary terms.
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We introduce such additional data as follows. To an end point of an interval that is
adjacent to a subinterval labeled by a finite group G and 3-cocycle ω we associate a
group homomorphism ι : H → G and a 2-cochain θ ∈ C2(H,C×) such that dθ = ι∗ω.
It is appropriate to think about θ as a morphism triv → ι∗ω of 2-gerbes on the groupoid
∗ \\H . The situation can be regarded as a higher categorical analogue of the role played
by gerbe modules in the description of boundary conditions in two-dimensional theories
with non-trivial Wess-Zumino terms (see e.g. [FNSW, Sect. 6] for an exposition using
gerbes and gerbe modules). In the two-dimensional situation, one has a gerbe module on a
submanifold ι : �→ M , which amounts to a 1-morphism Iω → ι∗G of gerbes on� from
a trivial gerbe Iω to the restriction of the gerbe G on M . In the present situation we have
a module of a 2-gerbe; technical simplifications come from the fact that the groups we
deal with are finite and that thus any infinitesimal data related to connections are trivial.

In the case of two intervals adjacent to one another, labeled by (G1, ω1) and (G2, ω2),
respectively, we choose a group homomorphism ι= (ι1, ι2) : H → G1 × G2 and a
2-cochain θ on H such that dθ = (ι∗2ω2) · (ι∗1ω1)

−1. Again the situation has an ana-
logue in two dimensions: defects in backgrounds with non-trivial Wess-Zumino term are
described by gerbe bimodules and bibranes, see [FSW] and [FNSW, Sect. 7] for a review.

We summarize these prescriptions in the following

Definition 3.2. A one-dimensional DW manifold is a one-dimensional pre-DW manifold
S together with the following choice of Lagrangian data:

• To each subinterval of S with finite group G, we associate a closed 3-cochain on G.
• To a marked boundary point p ∈ PS ∩ ∂S adjacent to a subinterval with group G and

3-cocycle ω∈ Z3(G,C×) and labeled with a group homomorphism ι : H → G, we
assign a 2-cochain θ ∈ C2(H,C×) such that

dθ = ι∗ωε(p,I ), (3.13)

with ε(p, I ) as defined in Definition 3.1(iii).
• To a marked interior point p ∈ PS\∂S adjacent to subintervals I1 and I2 with group

homomorphisms ιi : H → Gi we assign a cochain θ ∈ C2(H,C×) such that

dθ = ι∗1ω
ε(p,I1)
1 · ι∗2ωε(p,I2)

2 . (3.14)

We now use the data of a DW manifold to define twisted linearizations of the groupoids
that we constructed in the previous subsection. Let us describe the general idea of a
twisted linearization of a finite groupoid H \\G given by a left action of a group H on
a set G. The ordinary linearization is the functor category [H \\G, vectC]. An object of
this category is given by

• A finite-dimensional vector space Vγ for each element γ ∈ G.
• For each γ ∈ G and h ∈ H a linear map ρh : Vγ → Vh.γ such that the diagram

Vh2.γ
ρh1

����
��

��
��

�

Vγ

ρh2

����������

ρh1h2

�� Vh1h2.γ

(3.15)

commutes for all γ ∈ G and h1, h2 ∈ H .

Morphisms in the functor category are natural transformations; explicitly, they are
G-homogeneous maps commuting with the H -action.
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The additional input datum for a twisted linearization is a 2-cocycle τ on the groupoid
H \\G. This gives rise to the following twisted version of the functor category [H \\G,
vectC] (see also [Mor, Sect. 5.4]):

Definition 3.3. The τ -twisted linearization of the groupoid H \\G, denoted by
[H \\G, vectC]τ , is the following category. An object of [H \\G, vectC]τ consists of

• A finite-dimensional vector space Vγ for each γ ∈ G.
• For each h ∈ H a linear map ρh : Vγ → Vh.γ such that the composition law of the

H-action is realized projectively, i.e. up to the scalar factor τ(h1, h2; γ )∈C×. Dia-
grammatically,

(3.16)

As a formula,
ρh1h2

= τ(h1, h2; γ ) ρh1
ρh2
. (3.17)

Morphisms of [H \\G, vectC]τ are G-homogeneous maps commuting with the H-action.

3.3. 2-cocycles from Lagrangian data. Our next task is thus to use the Lagrangian data
that are part of the data of a one-dimensional DW-manifold. We have assigned them in
Definition 3.2 to intervals and circles with marked points to produce 2-cocycles for the
groupoids discussed in Sect. 3.1. For brevity we consider in this subsection Lagrangian
data for boundaries only; the discussion for surface defects is similar.

Any homomorphism ι : H → G of finite groups provides a morphism ι : B H → BG
of the corresponding classifying spaces. Assume now that we are given a 3-cocycle
ω∈ Z3(BG,C×) and a 2-cochain θ ∈ C2(B H,C×) such that

i∗ω = dθ. (3.18)

We recall that a G-bundle on a manifold M can be described by a map from M to the
classifying space BG. Morphisms of bundles can be described by homotopies between
such maps. Thus for � an oriented one-dimensional manifold with boundary, a relative
bundle on the relative manifold (�, ∂�) leads to the following data (up to homotopy):

• A map f ∈ Map(�, BG) describing a G-bundle on �.
• A map g ∈ Map(∂�, B H) describing an H -bundle on ∂�.
• A homotopy describing the morphism of bundles, i.e. a map h ∈ Map([0, 1],Map
(∂�, BG)), with [0, 1] the standard interval.

We will later need the subset X◦ consisting of such triples ( f, g, h) subject to the
condition that h is a homotopy relating the maps f |∂� and ι ◦ g from ∂� to BG,

X◦ := { ( f, g, h) | f
∣∣
∂�


h i ◦ g }. (3.19)

Each point of X◦ describes a relative bundle, i.e. an object of Bun(G,H)(∂�→�). Iso-
morphism classes of relative bundles are in bijection with the set π0(X◦) of connected
components of X◦.
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From the cohomological data ω and θ we now build a 2-cocycle in Z2(X◦,C×). To
this end we use the evaluation map

ev : � × Map(�, BG) → BG (3.20)

to define a cochain τ�(ω)∈ C2(Map(�, BG),C×) by

τ�(ω) :=
∫

�

ev∗ω, (3.21)

where
∫
�

denotes the pushforward along the fibration p2 : �× Map
(�, BG)→ Map(�, BG). As � can have a non-empty boundary, there is, in general,
no reason that the cochain τ�(ω) should be closed.

By the same procedure we obtain a 2-cochain τ∂�(θ)∈ C2(Map(∂�, B H)),C×),
as well as a 2-cochain τ[0,1](τ∂�(ω))∈ C2(Map([0, 1],Map(∂�, BG)),C×). We then
consider the product space

X := Map(�, BG)× Map(∂�, B H)× Map([0, 1],Map(∂�, BG)). (3.22)

The pullbacks along the canonical projections pi to the three factors of (3.22) supply us
with a 2-cochain on X :

ϕ := p∗
1τ�(ω)− p∗

2τ∂�(θ)− p∗
3τ[0,1](τ∂�(ω)). (3.23)

The space X◦ introduced in (3.19) to describe relative bundles is by definition a
subspace of X (3.22). The central insight is now that the 2-cochain that is obtained by
restricting ϕ to the subspace X◦ of X is closed,

dϕ|X◦ = 0. (3.24)

In other words, we have obtained a 2-cocycle ϕ|X◦ ∈ Z2(X◦,C×) on the space X◦
describing relative bundles.

To see that (3.24) holds, we work for the moment with differential forms and con-
sider an arbitrary manifold U . Consider α ∈�3

cl(�× U,R) and β ∈�2(∂�× U ),R)
obeying α|∂�×U = dβ. Taking into account that � has a boundary, we have

d(
∫

�

α) =
∫

�

dα +
∫

∂�

α
∣∣
∂�×U =

∫

�

dα +
∫

∂�

dβ =
∫

∂�

dβ. (3.25)

This means that the form

φ :=
∫

�

α −
∫

∂�

β ∈ �2(U,R) (3.26)

is closed, dφ= 0. The same argument applies to elements in Z3(�× U,C×)where slant
products are used as the analogue of integration along the fiber.

The argument can now be applied to the situation of our interest: The role of
∫
�
α is

then played by p∗
1τ�(ω)|X◦ and the role of

∫
∂�
β by (p∗

2τ∂�(ϕ)+ p∗
3τ[0,1](τ∂�(ω)))|X◦ .

Their difference is precisely the combination ϕ introduced in (3.23). From the relation
α|∂�×U = dβ we thus obtain the desired equality (3.24).

3.4. Graphical calculus for groupoid cocycles. Generalizing the approach of [Wi], we
can achieve a more combinatorial description of the 2-cocycles on the groupoids derived
in Sect. 3.1. We formulate it with the help of an algorithm which is based on three-
dimensional diagrams and their decomposition into simplices. The diagrams are obtained
from a graphical representation of the groupoids involved.
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We start with a one-dimensional diagram, drawn vertically, which represents a one-
dimensional pre-DW manifold to which we wish to associate a category by linearization.
These manifolds are circles or intervals with finitely many marked points, including
boundary points in the case of intervals. Each subinterval is marked by a finite group
Gi and a 3-cocycle ωi ∈ Z3(Gi ,C×). For each marked point we have a group Hj and
group homomorphisms to the groups associated with the adjacent intervals. The data
characterizing an object in the associated groupoid described in Sect. 3.1 are then ele-
ments in the groups Gi associated to the subinterval, one for each point adjacent to the
subinterval.

Our convention is now to draw an empty circle for a marked point and to replace
the original subintervals by filled circles. Between these circles we draw edges which
are labeled by elements of the groups Gi that are part of the data describing a relative
bundle. An example is depicted in the following picture:

(3.27)

The figure on the left hand side of (3.27) shows the pre-DW-manifold S which is an
interval with two interior marked points, together with the relevant groups and group
homomorphisms. The labels in the figure on the right hand side are group elements
γ1, γ2 ∈ G1, γ3, γ4 ∈ G2 and γ5, γ6 ∈ G3i that specify an object in Bun(S).

A morphism in the groupoid consists of elements of the groups Hj and Gi describ-
ing gauge transformations of the involved bundles. We represent such morphisms by
two-dimensional diagrams with oriented edges as follows:

(3.28)

Here horizontal edges connecting empty circles are labeled by elements of the groups
Hj , while horizontal edges connecting filled circles are labeled by elements of the
groups Gi . For each square in the diagram there is a consistency condition relat-
ing the labels of its edges. To formulate this condition, we adopt the convention that
orientation reversal amounts to inversion of the group element that labels the
edge:
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(3.29)

With this convention the product of all group elements (possibly after applying an appro-
priate group homomorphism Hj → Gi ) along a closed curve equals the neutral element;
we refer to this relation as the holonomy condition. For instance, the holonomy condition
for the top square in (3.28) is the equality

γ ′
1 · ι1(h1) = g1 · γ1 (3.30)

in G1. This determines the element γ ′
1 of G1, or alternatively γ1 or g1, as a function

of the three other group elements. Also, in case the homomorphism ι1 is injective it
alternatively fixes h1 ∈ H1 in terms of the three other elements.,

We wish to obtain a 2-cocycle on the groupoid we have just described. For a general
groupoid � = (�0, �1) with sets �0 of objects and �1 of morphisms we define the 2-
cocycle by its values τ(g1, g′

1; γ ) for an object γ ∈�0 and two compatible morphisms
g1, g′

1 ∈�1. We depict these values graphically as triangles,

(3.31)

(Again the holonomy condition is in effect: we have (g′
1g1)

−1g′
1g1 = e.)

Now in the situation of our interest, in which we represent objects and morphisms
of the groupoid by one-dimensional and two-dimensional graphical elements, respec-
tively, we obtain a graphical representation of the 2-cocycle by a piecewise-linear three-
manifold. In the case of an interval considered in (3.28)—but now, for simplicity, with
only a single interior marked point—this three-manifold looks as follows:

(3.32)

Here the labeling of all lines for which the labels are not indicated explicitly is fixed as
a function of the displayed labels by the holonomy condition.

Following the strategy in [Wi], our goal is now to cut the so obtained three-manifolds
into standard pieces to which we can naturally assign values in C×. The value of the
groupoid 2-cocycle is then given by the product of the numbers associated with the
various standard pieces into which the three-manifold is decomposed. In our situation,
in which also physical boundaries and surface defects are present, there are two types
of standard pieces:
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• First, a 3-simplex whose edges are all labeled by elements g1, g2, g3, . . . of a group
G with 3-cocycle ω∈ Z3(G,C×), subject to the holonomy condition. To such a
3-simplex

(3.33)

we associate the number

ω̃(g1, g2, g3) := ω(g−1
1 , g−1

2 , g−1
3 ) ∈ C×. (3.34)

• Second, a horizontal triangle whose edges are correspondingly labeled by elements
of a group H with 2-cochain θ . To such a triangle

(3.35)

we associate the number

θ̃ (h1, h2) := [ θ(h−1
1 , h−1

2 ) ]−1 ∈ C×. (3.36)

We require that any horizontal triangle having only empty circles as vertices that is
contained in a three-dimensional diagram of our interest must be taken as a face of the
simplicial decomposition. The symmetric groups S4 and S3 which consist of permuta-
tions of the vertices in (3.33) and (3.35), respectively, are realized on ω̃ and θ̃ by a sign
that depends on the relative orientations of the two bases involved, i.e. we have equalities
such as

ω̃(g1, g2, g3) = ω̃(g−1
1 g−1

2 g−1
3 , g1, g2)

−1 = ω̃(g−1
3 , g−1

2 , g−1
1 ) (3.37)

and

θ̃ (h1, h2) = θ̃ (h−1
1 h−1

2 , h1) = θ̃ (h−1
2 , h−1

1 ) (3.38)

etc. We require that ω̃ and θ̃ are normalized, i.e.

ω̃(e, g, g′) = 1 and θ̃ (e, h) = 1. (3.39)

We will freely use the identities (3.37) – (3.39) below.
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A simplicial decomposition obtained this way is not unique. We therefore must still
verify that the value of the 2-cocycle on the groupoid that is obtained by our prescription
is well-defined. When no boundaries or defects (and thus no triangular standard pieces)
are involved, there are two situations to be dealt with: First, a gone with 5 vertices, 8
edges, 4 triangles and 1 quadrangle. This gone can be decomposed into tetrahedra in
two different ways; the first is a decomposition

(3.40)

into two tetrahedra that share a face (shaded in the picture). The other is a decomposition
is into three tetrahedra according to

(3.41)

i.e. the three tetrahedra share an edge (the one labeled by g3g2) which intersects transver-
sally the shaded face in (3.40) and pairwise share one of three faces which have the shared
edge as a boundary segment.

The two decompositions are related by a 3-2 Pachner move. As is well known, invari-
ance under this move is guaranteed by the closedness of ω. Indeed we have

Lemma 3.4. The groupoid cocycles obtained from the two decompositions (3.40) and
(3.41) coincide.

Proof. The decomposition (3.40) gives the number

τ1 := ω̃(g1, g2, g4g3) · ω̃(g2g1, g3, g4), (3.42)

while the decomposition (3.41) yields

τ2 := ω̃(g1, g2, g3) · ω̃(g2, g3, g4) · ω̃(g1, g3g2, g4), (3.43)

with the three factors being the contributions from the lower, the front, and the back
tetrahedron, respectively. Equality of τ1 and τ2 amounts to

ω(g−1
1 , g−1

2 , g−1
3 g−1

4 ) · ω(g−1
1 g−1

2 , g−1
3 , g−1

4 )

= ω(g−1
1 , g−1

2 , g−1
3 ) · ω(g−1

2 , g−1
3 , g−1

4 ) · ω(g−1
1 , g−1

2 g−1
3 , g−1

4 ). (3.44)

This is nothing but the statement that ω is closed, and is thus indeed satisfied. ��
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The second situation to be analyzed corresponds to a 4-1 Pachner move. It can be
treated in an analogous manner as the 3-2 move; we leave the details to the reader.

Let us briefly comment on the particular case of the circle without insertions. Accord-
ing to Sect. 3.1, in this case the action groupoid is G \\ad G with the adjoint action. This
situation is described by the simplex

(3.45)

where we indicate the adjoint left action by a superscript, gγ = gγ g−1. This yields the
cocycle

τ(g1, g2; γ ) = ω̃(g1, g2,
g2g1γ ) ω̃(g1,

g2γ, g2)
−1 ω̃(γ, g1, g2). (3.46)

This way we precisely recover the argument given in [Wi] that leads to the 2-cochain
found in [DPR, (3.2.5)]. Our formalism thus produces the correct category of bulk Wilson
lines.

We next consider the case of an interval with no marked interior points. The interior is
labeled by a finite group G andω ∈ Z3(G;C×), while the end points are labeled by group
homomorphisms ι : Hi → G and by 2-cochains θi ∈ C2(Hi ,C×) such that dθi = ι∗i ω.

Again there is the issue of non-uniqueness of simplicial decomposition, with the new
aspect that the boundary of the interval leads to the presence of triangles of the form
(3.35) in the decompositions. Thus we must consider tetragons

(3.47)

Such a boundary tetragon can be decomposed into triangles in two different ways: as

(3.48)

We compare these two decompositions by continuing the situation to the interior of the
interval. This leads to the two simplicial decompositions
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(3.49)

respectively, each consisting of six tetrahedra and of two triangles at the top.

Proposition 3.5. The complex numbers obtained from the two decompositions in (3.49)
coincide.

Proof. Of the six tetrahedra appearing in the two simplices (3.49), only two are different:
the ones attached to the top. The simplex on the right hand side of (3.49) gives factors
θ̃ (h1, h2) and θ̃ (h2h1, h3) from the triangles at the top and

ω̃(γ, ι(h1), ι(h2)) · ω̃(γ, ι(h2h1), ι(h3)). (3.50)

from the two tetrahedra attached to the top triangle, while for the simplex on the left
hand side we get θ̃ (h2, h3) θ̃(h1, h3h2) from the top triangles and

ω̃(γ, ι(h1), ι(h3h2)) · ω̃(ι(h1)γ, ι(h2), ι(h3)) (3.51)

from the attached tetrahedra. Equality of the two expressions yields, after implementing
the closedness (3.44) of ω,

θ̃ (h1, h2) θ̃(h2h1, h3) = θ̃ (h2, h3) θ̃(h1, h3h2) ω̃(ι(h1), ι(h2), ι(h3)), (3.52)

or, what is the same

dθ(h−1
1 , h−1

2 , h−1
3 ) = ω(ι(h−1

1 ), ι(h−1
2 ), ι(h−1

3 )). (3.53)

This indeed holds true, owing to dθ = ι∗ω. ��

3.5. Wilson line categories for the interval. As already pointed out, by invoking fusion
of defects (and of defects to boundaries), among the one-dimensional manifolds there
are two fundamental building blocks, the interval without interior marked points and
the circle with a single marked point. We now turn to the computation of the categories
for these building blocks and then compare them to the model-independent results of
[FSV]. In the present subsection we consider an interval without interior marked points.
The interior is labeled by (G, ω) with G a finite group and ω a 3-cocycle. For the two
boundary points we have group homomorphisms ιi : Hi → G and 2-cochains θi on Hi
such that ι∗i ω= dθi for i = 1, 2.

Before computing the linearization, we outline what the general formalism of [FSV]
predicts for the situation at hand: The data associated to a boundary leads to mod-
ule categories Mi over the fusion category G-vectω. Such a module category can be
decomposed into indecomposable module categories. As described in Sect. 2.5, an inde-
composable module category over G-vectω can, in turn, be concretely described [Os1]
as the category of modules over an algebra in G-vectω. Thus for the description of Mi
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it suffices to know such an algebra AH,θ for any subgroup H ≤ G and 2-cochain θ on
H satisfying dθ =ω|H . As seen in Sect. 2.5. such algebras can be described as follows.
Isomorphism classes of simple objects in G-vectω are in bijection with elements g ∈ G;
we fix a set of representatives (Ug)g∈G . Then AH,θ is the object

⊕
h∈H Uh endowed

with the multiplication morphism that is furnished by the cochain θ . This multiplication
is associative, due to the relation dθ = ι∗ω. Then the category MH,θ := AH,θ -mod is a
right module category over G-vectω.

By the results of [FSV], such a module category corresponds to an indecomposable
boundary condition of the Dijkgraaf–Witten theory based on (G, ω). Given two such
boundary conditions, consider the abelian category

F := FunG-vectω(AH2,θ2 -mod, AH1,θ1 -mod) (3.54)

of module functors. It has the following physical interpretation: Objects of F label
boundary Wilson lines separating the boundary condition MH1,θ1 from MH2,θ2 . Mor-
phisms of F label point-like insertions on such Wilson lines. F can be described as the
category of AH1,θ1 -AH2,θ2 -bimodules in G-vectω.

The objects M = ⊕
g∈G Mg of the category of AH1,θ1 -AH2,θ2 -bimodules have been

described explicitly in [Os2, Prop. 3.2]: Taking into account that the tensor product on
G-vectω realizes the group law strictly, i.e. Uh ⊗ Ug = Uhg , the restriction of the left
action of AH1,θ1 on M to Uh1 ⊗ Ug leads to an endomorphism of Uh1g which is a multi-
ple ρ(h1, g)∈C of the identity. Analogously the right action of AH2,θ2 gives us scalars
ρ(g, h2)∈C. These scalars obey the following conditions.

• That we have a left AH1,θ1 -action amounts to the relation

ρ(h′
1h1, g) = θ1(h

′
1, h1)

−1 ω(h′
1, h1, g) ρ(h1, g) ρ(h′

1, h1g) (3.55)

for all g ∈ G and all h1, h′
1 ∈ H1.

• Similarly the right AH2,θ2 -action gives

ρ(g, h2h′
2) = θ2(h2, h′

2)
−1 ω(g, h2, h′

2)
−1 ρ(g, h2) ρ(gh2, h′

2) (3.56)

for all g ∈ G and all h2, h′
2 ∈ H2.

• The condition that left and right actions commute amounts to

ρ(h1, g) ρ(h1g, h2) = ω(h1, g, h2) ρ(g, h2) ρ(h1, gh2) (3.57)

for all g ∈ G, h1 ∈ H1 and h2 ∈ H2.
• Finally the unitality of the actions implies the two constraints

ρ(e, g) = 1 = ρ(g, e) (3.58)

for all g ∈ G.

(Note that θ1 and θ2 are normalized because the algebras are strictly unital; (3.58)
corresponds to ω being normalized as well.) The objects in the category F of AH1,θ1 -
AH2,θ2 -bimodules are thus G-graded vector spaces together with two functions ρ and
ρthat obey the constraints (3.55)–(3.58). Morphisms of F are G-homogeneous maps,

commuting with the actions.
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We may also consider, for given γ ∈ G, the group

Hγ := {(h1, h2)∈ H1 × H2 | h1γ = γ h2}. (3.59)

We can identify Hγ with a subgroup of H1, which in turn is a subgroup of G. Then
h ∈ Hγ acts on the homogeneous component Mγ of M as a scalar multiple

�γ (h) := ρ(h, γ ) ρ(γ, γ−1hγ )−1 (3.60)

of the identity. In view of (3.55)–(3.57) this gives rise to a 2-cocycle ϑγ on Hγ , given by

ϑγ (h, h′) := �γ (hh′)−1 �γ (h) �γ (h
′)

= ρ(hh′, γ )−1ρ(h, γ )sρ(h′, γ ) ρ(γ, γ−1hh′γ ) ρ(γ, γ−1hγ )−1 ρ(γ, γ−1h′γ )−1

= θ1(h, h′)θ2(γ−1hγ, γ−1h′γ )−1 ω(h, h′, γ )−1 ω−1(γ, γ−1hγ, γ−1h′γ )

ρ(h, γ ) ρ(h, h′γ )−1 ρ(γ, γ−1h′γ )−1 ρ(hγ, γ−1h′γ )

= θ1(h, h′) θ2(γ−1h′−1γ, γ−1h−1γ )

ω(h, h′, γ )−1 ω(γ, γ−1hγ, γ−1h′γ )−1 ω(h, γ, γ−1h′γ ) (3.61)

(compare formula (3.1) of [Os2]). Here in the third equality we invoke (3.55) and (3.56),
while the last equality uses (3.57).

We now show that the prescription (3.2) indeed produces the expected result:

Proposition 3.6. Consider the groupoid �= G \\G × G \\ι−1 ×ι−2 H1×H2 that according
to formula (3.2) is assigned to the interval without interior marked points. If the group
homomorphisms ιi : Hi → G are subgroup embeddings, then the category that is obtained
by the projective linearization of � for the Lagrangian data θ1, θ2 and ω is equivalent,
as a C-linear abelian category, to the category of AH1,θ1 -AH2,θ2 -bimodules,

[ G \\G × G \\ι−1 ×ι−2 H1×H2, vectC ]θ1,θ2,ω 
 AH1,θ1 -AH2,θ2 -BimodG-vectω . (3.62)

Proof. The objects of the groupoid in question are pairs (γ1, γ2) of elements of G; they
label the vertical edges in the following figure:

(3.63)

Morphisms are gauge transformations in H1, H2 and in G – labeling horizontal edges
that connect empty circles and filled circles in (3.63), respectively. Again we consider a
pair of compatible morphisms leading to horizontal edges forming the shape of a triangle



1008 J. Fuchs, C. Schweigert, A. Valentino

to get the relevant 2-cocycle on the groupoid�. In the sequel we suppress the embedding
homomorphisms ι1 and ι2.

Observe that the functor

G \\G × G \\ι−1 ×ι−2 H1 × H2 −→ H1 ι1
\\G \\ι−2 H2 (3.64)

that is defined on objects by (γ1, γ2) �→ γ−1
1 γ2 is actually an equivalence of groupoids.

Accordingly we set γ := γ−1
1 γ2 and obtain from (3.63) a number τ(γ ; h1, h′

1; h2, h′
2)

that can be read off from the following slice of pie:

(3.65)

where γ ∈ G, h1, h1 ∈ H1 and h2, h′
2 ∈ H2. There are many equivalent ways to express

the so defined numbers in terms of the 2-cocycles θi and the 3-cocycleω; they are related
by the various properties of θi andω. Let us choose one such expression that corresponds
to the decomposition

(3.66)

of the slice (3.65) into three tetrahedra. This yields

τ(γ ; h1, h′
1; h2, h′

2) = θ̃1(h1, h′
1) θ̃2(h2, h′

2) ω̃(h1, h′
1, h′

2h2γ
−1h−1

1 h′
1
−1)

ω̃(h2, h′
2, h1γ h−1

2 h′
2
−1) ω̃(γ, h1, h′

2h2γ
−1h−1

1 ).
(3.67)

To make contact to the relations (3.55)–(3.57) for the category of AH1,θ1 -AH2,θ2 -
bimodules, we consider three special cases of τ(γ ; h1, h′

1; h2, h′
2).

• First we set h2 = e = h′
2; then (3.67) reduces to

τ(γ ; h1, h′
1; e, e) = θ̃1(h

′
1
−1, h−1

1 ) ω̃(h1, h′
1, γ

−1h−1
1 h′

1
−1) ω̃(γ, h1, γ

−1h−1
1 )

= θ̃1(h
′
1
−1, h−1

1 ) ω̃(h′
1
−1, h−1

1 , γ−1)

= θ1(h
′
1, h1)

−1 ω(h′
1, h1, γ ). (3.68)

This reproduces the factor in the relation (3.55) for the left action of H1, with g = γ .
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• Next consider the case h1 = e = h′
1; then we get

τ(γ ; e, e; h2, h′
2) = θ̃2(h2, h′

2) ω̃(h2, h′
2, γ h−1

2 h′
2
−1)

= θ̃2(h2, h′
2)ω̃(γ

−1, h2, h′
2)

−1

= θ2(h
−1
2 , h′

2
−1)−1ω(γ, h−1

2 , h′
2
−1)−1. (3.69)

This is the factor in (3.56), provided we replace the group elements h2 and h′
2 in

(3.56) by their inverses, which is precisely what is needed to turn the right action of
H2 in (3.56) to the left action considered here.

• Finally take h′
1 = e = h′

2. This results in

τ(γ ; h1, e, h2, e) = ω̃(γ, h1, h2γ
−1h−1

1 ) = ω̃(h−1
1 , γ−1, h2) = ω(h1, γ, h−1

2 ),

(3.70)
thus reproducing the factor appearing in the bimodule relation (3.57) (again upon
putting g = γ and inverting h2). ��
Notice that the number ω̃(h′

1
−1, h−1

1 , γ−1) appearing in the expression (3.68) cor-
responds to a tetrahedron that can be viewed as the degeneration of the slice (3.65)
that results from the degeneration of its bottom triangle to a single point. Similarly,
ω̃(γ−1, h2, h′

2)
−1 in (3.69) corresponds to the degeneration of the top triangle of (3.65) to

a point. And the tetrahedron corresponding to ω̃(h−1
1 , γ−1, h2) in (3.70) can be obtained

by gluing together two quadrangles along their edges which are obtained from the slice
(3.65) by degenerating both the top and the bottom triangle to a single edge.

3.6. The transparent defect. We now address aspects of categories associated to DW
manifolds with the topology of a circle. Recall that one expects that surface defects can
be fused and should thus form a monoidal bicategory. We refer to the monoidal unit of
this monoidal bicategory as the transparent, or invisible surface defect. We have already
mentioned in Sect. 2.2 that in the framework of [FSV] the transparent surface defect
should correspond to the canonical Witt trivialization (2.17). In the present subsection
we are interested in the Lagrangian realization of this distinguished surface defect.

To understand what group homomorphism and 2-cocycle furnish the transparent
defect, we consider a circle with any number n of surface defects, one of which is trans-
parent. By fusing all other surface defects to a single one, we can reduce the situation
to the case n = 2. This situation has already been studied in Sect. 3.1; it leads to the
groupoid (3.7). To realize the transparent defect for one of the two marked points we
must moreover set G>= G<=: G and take the same 3-cocycle ω on either side. Now
we claim that the group homomorphism for the transparent defect is the diagonal sub-
group embedding, i.e. we have to set H+ = G with ι+ = d : G → G × G the diagonal
embedding. This way we arrive at the action groupoid

�1 := G × G \\G × G × G × G \\d−×ι− G × H (3.71)

which we already considered in (3.8). We further claim that the relevant 2-cochain on
H = G is the constant 2-cochain θd ≡ 1. Note that this is a valid cochain, as it satisfies
dθd = 1 =ω ·ω−1.

To see that the defect defined by ι= d and θ = 1 indeed has the relevant properties
of the transparent defect, recall first that in (3.10) we have obtained an equivalence

F : �1

→�2 between �1 and the action groupoid

�2 := G \\G × G \\ι− H (3.72)
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introduced in (3.9), and that the latter groupoid is precisely the one relevant for the circle
with a single surface defect of arbitrary type. Our prescription also yields 2-cocycles τ1 on
�1 and τ2 on �2. We need to show that we still get an equivalence after linearization with
respect to Lagrangian data. To this end, describe the second defect by (H, θ)with group
homomorphisms ιi : H → G and a 2-cochain θ on H satisfying dθ = (ι∗1ω) (ι∗2ω)−1. We
then have

Proposition 3.7. The pullback along the functor F : �1 →�2 described in (3.10) yields
an equivalence

F∗ : [�2, vect]τ2

−→ [�1, vect]τ1

ϕ �−→ ϕ ◦ F
(3.73)

of C-linear abelian categories.

Proof. Morphisms in the groupoid �1 have the form (3.11). Pick two such morphisms
(g1, g2, g, h) and (g′

1, g′
2, g′, h′). Their images under F are morphisms (g1, h) and

(g′
1, h′) in �2, of the form (3.12). We must show that

τ1(γ1, γ2, γ3, γ4; g1, g2, g, h; g′
1, g′

2, g′, h′) = τ2(γ1γ
−1
2 γ3, γ4; g1, h; g′

1, h′) (3.74)

for all quadruples (γ1, γ2, γ3, γ4) of elements of G. Both sides of (3.74) are obtained by
evaluating appropriate diagrams of the form of slices of pie with top and bottom faces
identified. The diagram relevant to �1 is similar to the one of figure (3.32), but now with
identified top and bottom, so that h1 = h2 =: h and h′

1 = h′
2 =: h′, as well as with h12 = g

and h′
12 = g′ being now elements of G; this diagram is shown on the left hand side of

the picture (3.75) below. In the case of �2 there is, besides the identified top and bottom
faces, only one horizontal face, with edges labeled by elements g1 and g′

1 of G; this
diagram is shown on the right hand side of the picture:

(3.75)

It should be appreciated that the two diagrams only differ in a part that is of the same
topology and only involves edges labeled by G. It is easily seen that there is a sequence
of Pachner moves relating the decompositions of the two diagrams in (3.75). And as
discussed in Sect. 3.4, invariance under Pachner moves holds (as a direct consequence
of the axioms of group cohomology) for the decomposition of simplices into tetrahedra.
Together it follows that indeed the 2-cocycles on the left and right hand sides of (3.74)
have the same value. ��
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To summarize our findings: The surface defect labeled by ι= d and θ = 1 can be
omitted without changing the category that our linearization procedure associates to the
circle. In other words, it has the characteristic property of the monoidal unit for the
fusion of surface defects, and thus of the transparent defect.

3.7. Wilson line categories for the circle. A one-dimensional DW manifold with the
topology of a circle can contain finitely many marked points, corresponding to surface
defects. Invoking fusion of defects, the situation with any number of marked points can
be reduced to the one with a single marked point, which thereby constitutes one of the
two fundamental building blocks. In this subsection we finally compute the category of
generalized Wilson lines corresponding to this building block and compare it with the
results of [FSV] for defects in topological field theories of Reshetikhin–Turaev type.

Let, as before, the subinterval be labeled by (G, ω) and the defect by a group homo-
morphism ι : H → G × G and a 2-cochain θ on H satisfying dθ = (ι∗1ω) (ι∗2ω)−1. We can
restrict our attention to indecomposable defects and therefore assume that ι is injective.
For this situation our formalism yields in a straightforward manner the groupoid

G \\G × G \\ι− H (3.76)

that we already encountered in (3.9). Its (projective) linearization, which we denote by
WH,θ , is the abelian category of G × G-graded vector spaces with two commuting left
actions (which are, in general, projective): a left action of G such that g. Vγ1γ2

⊆ Vgγ1,gγ2
and a left H -action such that h. Vγ1γ2

⊆ Vγ1ι1(h)
−1,gγ2ι2(h)

−1 .
The category WH,θ has the interpretation of the category of generalized Wilson lines

separating the defect labeled by ι and θ from the transparent defect that we studied in
the previous subsection. Pictorially, fusion of surface defects replaces the configuration
depicted on the right hand side of figure (3.1), in which four surface defects meet in a
generalized Wilson line, by the configuration shown in the following picture, in which
the single non-trivial defect is on the right and the transparent defect on the left:

(3.77)

We claim that the category produced by our geometric prescription is the same as the
Wilson line category that is obtained in the formalism of [FSV]. Let us thus compute
the latter. According to formula (2.12), in the framework of [FSV] a surface defect is
described by a Witt trivialization. Now in the case of Dijkgraaf–Witten theories already
the modular tensor category C of bulk Wilson lines is, by definition, Witt trivial. Indeed,
C =Z(A), where for the theory based on (G, ω), A is the fusion category of finite-
dimensional G-graded vector spaces with associativity constraint given byω as in (2.47).
It is not difficult to verify that the Witt trivialization of C implies the Witt trivialization

C � Crev 
−→ Z(A�Aop), (3.78)

where Aop is the fusion category A with opposite tensor product.
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Indecomposable surface defects separating the modular tensor category C =Z(A)
from itself correspond [FSV] to indecomposable module categories over
A�Aop which is, as an abelian category, the category of G × G-graded vector spaces.
According to the results reported in Sect. 2.5, such a module category is described
by a subgroup H ≤ G × G and a 2-cochain θ on H . This category can be realized
as MH,θ = AH,θ -mod, with the algebra AH,θ as introduced in Sect. 2.5. The category
MH,θ of AH,θ -modules, seen as a module category over A�Aop, describes the non-
transparent surface defect in the situation we are considering.

The analogous algebra in A�Aop that is relevant for the transparent defect can be
deduced from the discussion in Sect. 3.6: it is the algebra Ad for the diagonal subgroup
G ≤ G × G with trivial 2-cocycle θ = 1. The category of Wilson lines described by the
linearization of the groupoid (3.76) should therefore be matched to the category

HomA�Aop(A,MH,θ ) (3.79)

of module functors or, equivalently, to the category of Ad -AH,θ -bimodules in A�Aop.
But the latter is nothing else than the category of G × G-graded vector spaces together
with projective actions of H and G.

This concludes the match of the categories that are obtained, for the case of the circle,
in the present geometric approach and in [FSV].
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A. Module Categories for Non-injective Group Homomorphisms

As described in Sect. 2.5, indecomposable module categories over the fusion category
G-vect are given by subgroups H ≤ G and group cochains. On the other hand, in the
definition of relative bundles a group homomorphism ι : H → G enters. In the geomet-
ric context, it is not natural, and for many purposes, e.g. for the discussion of fusion
of surface defects, not appropriate, to require ι to be injective. This raises the ques-
tion how corresponding module categories decompose into indecomposable ones if the
group homomorphism ι is not injective. We discuss this issue in the simplest setting, in
particular dropping Lagrangian data.

We consider a morphism ι : H → G of finite groups and the action groupoid G \\ι− H
with left action h.γ = γ ι(h)−1. The functor category M := [G \\ι− H, vect] is a module
category over the monoidal category G-vect as follows. Objects in M are G-graded
vector spaces V = ⊕

g∈G Vg endowed with a left action of H such that

h.Vg ⊂ Vg·ι(h)−1 . (A.1)

The simple object Wγ of G-vect acts on such an object of M by shifting the degrees of
the homogeneous components by left multiplication by γ and keeping the action of H :

(Wγ ⊗ V )g = Vγ ·g. (A.2)

Any module category over G-vect can be decomposed into indecomposable mod-
ule categories. Let us see how this works for the module categories arising in the way
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considered here. To this end we consider the normal subgroup K := ker ι ≤ H and the
exact sequence

1 → K → H
π→ J → 1 (A.3)

of groups. This sequence is, in general, not split, and H is thus not a semidirect product.
Still, we can choose a set-theoretic section s : J → H of π , which for convenience we
require to respect neutral elements, s(eJ )= eH . We keep the section s fixed from now
on. For each j ∈ J consider the group automorphism

α j := ads( j)|K ∈ Aut(K ). (A.4)

The automorphismα j is not necessarily inner; its class [α j ] ∈ Out(K ) = Aut(K )/Inn(K )
does not depend on the choice of s. Moreover, introduce group elements

ci, j := s(i) s( j) s(i j)−1 ∈ K (A.5)

for each pair i, j ∈ J . Then one has the relation

α j ◦ α j ′ = adc j, j ′ ◦ α j j ′ (A.6)

and obvious coherence conditions on the elements ci j ∈ K ; thus (α j , ci, j ) defines a weak
action of the group J on the group K .

We use this observation to rewrite the group H in a convenient way. The map

ψ : J × K → H
( j, k) �→ k · s( j) (A.7)

has the inverse
ψ−1 : H → J × K

h �→ (π(h), h · (sπ(h))−1).
(A.8)

Define on the set J × K a composition map

(i, k) · ( j, k′) := (i j, kαi (k
′)ci j ). (A.9)

A direct calculation shows that the map ψ is compatible with the product (A.9) and
with the product on H . Thus (A.9) endows the set J × K with the structure of a finite
group isomorphic to H . We denote this group structure by J ×α K , suppressing the group
elements c in the notation. We will identify J ∼= G/K with a subgroup of G in the sequel.

Thus we now replace H by the isomorphic group J ×α K . Then the left J ×α K -
action on V = ⊕

g∈G Vg satisfies

( j, k)(Vg) ⊂ Vg. j−1 . (A.10)

Moreover, each homogeneous component Vg has a natural structure of a K -module from
the action of elements of the form (eJ , k)∈ J ×α K .

It is crucial to note that the so obtained K -module structures on different homoge-
neous components Vg are in general not isomorphic. They are related by the action
of elements of the form ( j, k) that are twisted intertwiners rather than morphisms
of K -modules. Comparing the group elements (e, k) · ( j, k′)= ( j, kk′) and ( j, k′)
(e, k′′)= ( j, k′α j (k′′)) we deduce that

(e, k) · ( j, k′) = ( j, k′)(e, k′′) with k′′ = α−1
j ((k′)−1kk′). (A.11)
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Thus the action by ( j, k′) is a twisted intertwiner relating a K -module in the isomor-
phism class [Vg] to a K -module in the class [Vg. j ] =α−1

j [Vg]. These two isomorphism
classes are different if α j is outer.

To find the simple objects of the category [G \\ι− H, vect], fix representatives
(γ1, γ2, . . . , γr ) for the orbits of the right action of J on G. Then the isomorphism classes
of simple objects are in bijection with pairs (γi , χ) with χ ∈ K̂ a simple character of K .

The action of G-vect on the set of isomorphism classes of simple objects (γi , χ)

of the category [G \\ι− H, vect] and thus its decomposition as a module category over
G-vect can now be computed explicitly.

An instructive example is the group homomorphism ι : H = S3 →Z2 = G, with S3 the
symmetric group on three letters, that is given by the sign function. The exact sequence
(A.3) of groups is then

1 −→ A3 ∼= Z3 −→ S3
sign−→ Z2 −→ 1. (A.12)

The simple objects of the resulting linearization [Z2 \\S3, vect] are labeled by the single
orbit of the right action of Z2 on itself and by one of the three irreducible characters
{1, ζ, ζ∨} of Z3. Since S3 is a semidirect product, any section s : Z2 → S3, e.g. the
one mapping the generator of Z2 to the permutation τ12 ∈ S3, gives a genuine action of
Z2 on Z3, rather than only a weak action. Here the generator of Z2 acts as the outer
automorphism of Z3 which exchanges the non-trivial irreducible characters ζ and ζ∨.

This fixes the Z3-representation on the homogeneous component V1 in terms of the
Z2-representation on V0 as shown in the following table:

rep. on V0 rep. on V1

1 1
ζ ζ∨
ζ∨ ζ

(A.13)

We conclude that the abelian category [Z2 \\S3, vect] has three isomorphism classes of
simple objects, corresponding to the three lines of the table.

To determine the structure of [Z2 \\S3, vect] as a module category over Z2-vect we
note that the action of the simple object Xg in a non-trivial homogeneous component
exchanges the two homogeneous components V0 and V1. It therefore preserves the iso-
morphism class of simple [Z2 \\S3, vect]-objects in the first line of (A.13) and exchanges
the two classes in the other two lines. Thus the first line of (A.13) gives us one indecom-
posable module category over Z2-vect with a single simple object, which corresponds
to Z2 seen as a subgroup of itself. From the second and third lines of (A.13) we get
another indecomposable module category having two simple objects, corresponding to
the trivial subgroup {e} of Z2.
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Abstract: Symmetries of three-dimensional topological field theories are naturally
defined in terms of invertible topological surface defects. Symmetry groups are thus
Brauer–Picard groups. We present a gauge theoretic realization of all symmetries of
abelian Dijkgraaf–Witten theories. The symmetry group for a Dijkgraaf–Witten theory
with gauge group a finite abelian group A, and with vanishing 3-cocycle, is generated
by group automorphisms of A, by automorphisms of the trivial Chern–Simons 2-gerbe
on the stack of A-bundles, and by partial e-m dualities. We show that transmission func-
tors naturally extracted from extended topological field theories with surface defects
give a physical realization of the bijection between invertible bimodule categories of
a fusion category A and braided auto-equivalences of its Drinfeld center Z(A). The
latter provides the labels for bulk Wilson lines; it follows that a symmetry is completely
characterized by its action on bulk Wilson lines.

1. Symmetries of Abelian Dijkgraaf–Witten Theories

Dijkgraaf–Witten theories are extended topological field theories that have a mathemat-
ically precise gauge theoretic formulation with finite gauge group. In that setting, the
fields of the Dijkgraaf–Witten theory with gauge group G are obtained by first consider-
ing G-bundles, to which, in a second step, a linearization procedure is applied (see [Mo]
for a recent description). In the present note we investigate the notion of symmetries of
three-dimensional Dijkgraaf–Witten theories, regarded as extended 1-2-3-dimensional
topological field theories. To keep the presentation simple, we restrict ourselves to the
case in which the gauge group is an abelian group, which we denote by A.

Braided auto-equivalences of bulk Wilson lines. The task of understanding symme-
tries in Dijkgraaf–Witten theories can be approached from two different angles, either
algebraically or gauge theoretically. From a purely algebraic point of view, one would
consider the modular category of bulkWilson lines, which is the representation category
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D(A)-mod of the Drinfeld double of A. Symmetries should then in particular induce
braided auto-equivalences of D(A)-mod.

The group of braided auto-equivalences (up to monoidal natural equivalence) can be
described as follows. Denote by A∗ the group of complex characters of A. The group
A ⊕ A∗ comeswith a natural quadratic form q : A ⊕ A∗ → C

×, given by q(g+χ)= χ(g)

for g +χ ∈ A ⊕ A∗. The automorphism group of A ⊕ A∗ then has a subgroup, denoted
by Oq(A⊕A∗), consisting of those group automorphisms ϕ that preserve this form, i.e.,
satisfy q(ϕ(z))= q(z) for all z ∈ A ⊕ A∗. Now the group of braided auto-equivalences is
isomorphic to this group Oq(A⊕A∗) [ENOM]. Simple objects of D(A)-mod, and thus
simple labels for bulk Wilson lines of the Dijkgraaf–Witten theory with gauge group A,
are in bijection with elements of A ⊕ A∗; a braided auto-equivalence induces the natural
action of the corresponding element of Oq(A⊕A∗) on the group A ⊕ A∗.

In this approach the auto-equivalences of D(A)-mod are not intrinsically realized in
the Dijkgraaf–Witten theory as a gauge theory. It is therefore not clear whether every
braided auto-equivalence of the category of bulk Wilson lines preserves all aspects of
the three-dimensional topological field theory so that it can indeed be regarded as a full-
fledged symmetry of the theory. It is not clear either whether a braided auto-equivalence
would then describe a symmetry uniquely. There might be several different realizations,
or also none at all, of the auto-equivalences on other field theoretic quantities, such as
boundary conditions.

Universal kinematical symmetries. It is thus important to find a field theoretic realiza-
tion of the auto-equivalences, relating to the fact that Dijkgraaf–Witten theories can be
formulated as gauge theories. At the same time we then get additional insight into the
structure of the group Oq(A⊕A∗). From a gauge theoretic point of view it is natural
to expect that the symmetries of the stack Bun(G) of G-bundles are symmetries of
both classical and quantum Dijkgraaf–Witten theories.1 One might call these symme-
tries universal kinematical symmetries—kinematical, because they are symmetries of
the kinematical setting, i.e., G-bundles; and universal, because the manifold on which
the G-bundles are defined does not enter.

The symmetries ofBun(G) form the 2-groupAUT(G), i.e. the categorywhose objects
are group automorphisms ϕ : G → G and whosemorphisms ϕ1 → ϕ2 are given by group
elements h ∈ G that satisfy ϕ2(g)= h ϕ1(g) h−1 for all g ∈ G. Since in the case of our
interest the group A is abelian, we can safely ignore the morphisms in the category
AUT(A) and work with the ordinary automorphism group Aut(A) of the group A.

The group Aut(A) of symmetries of Bun(A) can be identified in a natural way
with a subgroup of the group Oq(A⊕A∗) of braided auto-equivalences. Indeed, for any
α ∈Aut(A), the automorphism α ⊕ (α−1)∗ of A ⊕ A∗ belongs to Oq(A⊕A∗), where
(α)∗ ∈Aut(A∗) is defined by [α∗χ ](a) := χ(α(a)) for all χ ∈ A∗ and all a ∈ A. But
this argument is purely group theoretical, and it is not clear at this point whether the
embedding has any physical relevance and relates symmetries of bundles to braided
auto-equivalences of bulk Wilson lines.

Universal dynamical symmetries. The realization ofDijkgraaf–Witten theories as gauge
theories leads to even more symmetries. Apart from a finite group G, a three-cocycle
ω ∈ Z3(G, U (1)) is another ingredient of a Dijkgraaf–Witten theory. Geometrically this

1 Actually, a general Dijkgraaf–Witten theory involves a 3-cocycleω ∈ Z3(G,C×). Here we only consider
the case of trivial ω, and hence do not expect any compatibility relations between the automorphism and ω.
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cocycle is interpreted [Wi] as a (Chern-Simons) 2-gerbe on the stack Bun(G) of G-
bundles, and we may think of ω heuristically as a topological Lagrangian. In the present
note we restrict ourselves to the case of vanishing cocycle ω, corresponding to a trivial
2-gerbe. Still, the automorphism group of the trivial 2-gerbe is a non-trivial 3-group:
it is the 3-group of 1-gerbes on G. It is thus again natural to expect that this 3-group
provides us with symmetries of the Dijkgraaf–Witten theory with gauge group G. We
call these symmetries dynamical universal symmetries, as they involve symmetries of
the topological Lagrangian.

By the results of [Wi], the objects of the 3-group of 1-gerbes on G are 2-cocycles on
G; isomorphismclasses are described by elements of the group cohomology H2(G, C

×).
The group generated by classical kinematical and dynamical symmetries has the struc-
ture of a semi-direct product, H2(G, C

×) �Aut(G). By [NR, Prop. 4.1] this group is
isomorphic to the automorphism group of the fusion category G-vect of G-graded vec-
tor spaces. Indeed, this fusion category enters in the construction of Dijkgraaf–Witten
theories as topological field theories of Turaev–Viro type.

If G = A is abelian, cohomology classes in H2(A, C
×) are in bijection with alter-

nating bicharacters. (An alternating bicharacter is a map β : A × A → C
× that is a

group homomorphism in each argument and satisfies β(a, a)= 1 for all a ∈ A, and
thus β(a1, a2)= β(a2, a1)−1 for all a1, a2 ∈ A.) Again, there is a natural embedding
H2(A, C

×) ↪→Oq(A⊕A∗) of finite groups: to a class in H2(A, C
×) described by

an alternating bicharacter β, we associate a map φβ : A ⊕ A∗ → A ⊕ A∗ defined by
φβ(a +χ) := (a +β(a,−)+χ(−)). One immediately verifies that φβ is an element of
Oq(A⊕A∗). Again it remains to be shown, though, that this embedding is of physical
relevance in the sense that it relates symmetries of the topological Lagrangian to braided
auto-equivalences.

Electric-magnetic dualities. The universal kinematical and dynamical symmetries can-
not, however, exhaust the symmetries of Dijkgraaf–Witten models—the subgroup of
Oq(A⊕A∗) generated by them is a proper subgroup. As an illustration, consider the
case that A is the cyclic group Z2. This group does not admit any non-trivial automor-
phisms, i.e. Aut(A)= 1. It does not admit any non-trivial alternating bicharacter either,
and hence the group generated by the universal dynamical and kinematical symmetries
is trivial. On the other hand, the group Aut(A ⊕ A∗) is the symmetric group S3 that per-
mutes the three order-two elements of A ⊕ A∗. Its subgroup Oq(A⊕A∗) is the subgroup
S2 ∼= Z2 of S3 whose non-trivial element exchanges the generator of A with the one of
A∗; in physics terminology, a transformation of this type is called an electric-magnetic
duality, or e-m duality. The presence of such electric-magnetic dualities is a central
feature of gauge theories in various dimensions (see e.g. [KaW,KaBSS] for a general
discussion). Electric-magnetic dualities have a particularly explicit description in the-
ories that can be realized as lattice models, compare [DW,Ki,BuCKA] and references
therein.

Topological surface defects and bimodule categories. A proper understanding of the
situation, including a physical realization of the subgroups described above, calls for a
unified field theoretic perspective. In this note we explain that in the present situation, for
which no rigorous definition of symmetry for an extended topological field theory has
been fully tested out so far, topological surface defects provide such a perspective. In fact,
the relation between symmetries and classes of invertible topological codimension-one
defects has been established long ago [FFRS1,FFRS2] for the case of two-dimensional
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field theories. But the mechanism that implements symmetries via topological defects
is not restricted to the two-dimensional case. One of the virtues of realizing symmetries
in terms of topological defects of codimension one is that this realization immediately
determines how the symmetries act on all kinds of aspects of the field theory, including
in particular labels of boundaries and defects.

Topological surface defects in 3d TFTs have recently attracted increasing interest, see
[Bo,KK,KaS,BaMS,EKRS,KhTH,GGP,FSV1] for a selection of recent contributions.
The case of three-dimensional topological field theories of Turaev–Viro type is particu-
larly well understood. In particular, it is by nowwell-established that topological surface
defects in Dijkgraaf–Witten theories with gauge group A correspond to bimodule cate-
gories over the fusion categoryA= A-vect of finite-dimensional A-gradedvector spaces.
Those defects that describe symmetries correspond to invertible bimodule categories;
accordingly, we call them invertible defects. Their fusion product with the opposite
defect is the monoidal unit for fusion, which is also called the invisible or transparent
defect. Invertible defects can alternatively be characterized by the fact that the only bulk
Wilson lines that ‘condense’ on them are the invisible bulk Wilson lines.

The group of (equivalence classes of) invertible bimodule categories, the so-called
Brauer–Picard group of A, has been described in [NN,ENOM,DaN]. In particular, a
bijection has been established [ENOM, Thm1.1] between invertible bimodule cate-
gories of a fusion category—in our case A-vect—and braided auto-equivalences of its
center—in our case the category D(A)-mod of bulk Wilson lines. As a consequence,
also (equivalence classes of) invertible bimodule categories are described by the group
Oq(A⊕A∗).

The transmission functor. The results of [ENOM] are of purely representation theoretic
nature. The purpose of the present note is to investigate their consequences and counter-
parts in Dijkgraaf–Witten theories as gauge theories. The bijection between equivalence
classes of invertible bimodule categories and braided auto-equivalences in [ENOM]
leads us to consider braided auto-equivalences Fd of D(A)-mod labeled by invertible
bimodule categories d overD(A)-mod. Thus to any invertible topological surface defect
d we have to associate such a braided auto-equivalence.

Now in an extended three-dimensional topological field theory, functors are obtained
from surfaces with boundaries, and there is indeed a natural candidate for the relevant
two-dimensional cobordism with defect. Namely, to yield an endofunctor of the cate-
gory of bulk Wilson lines, the cobordism should have one ingoing and one outgoing
boundary; and it should not induce any additional topological information; hence we
have to consider a cylinder. The cylinder can be thought of as coming from a cut-and-
paste boundary in a three-dimensional topological field theory. Such boundaries have to
intersect surface defects transversally. Hence a surface defect results in a line embedded
in the cobordism. We are thus lead to consider a cylinder Z = S1 ×[−1, 1]with a defect
line along the circle D = S1 × {0} ⊂ Z , as shown in the following picture:

d

− 101
(1.1)
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In the sequel we regard the circle S1 ×{−1} ⊂ Z as incoming and the circle S1 ×{1} ⊂ Z
as outgoing. We denote the functor described by the cobordism (1.1) by Fd and call it
the transmission functor for the defect d. We will show in Sect. 2.3 that for an invertible
defect in a general three-dimensional extended topological field theory, the transmission
functor Fd is a braided auto-equivalence of the category of bulk Wilson lines. The
transmission functor describes what happens to the type of a bulk Wilson line when it
passes through the surface defect d.

We note that in some physical applications Wilson lines can be interpreted as world
lines of quasi-particles, with the type of the quasi-particle specified by the type ofWilson
line. When such a quasi-particle crosses an invertible topological surface defect of type
d, the type of quasi-particle is changed according to the transmission functor Fd . In field-
theoretic terms, this change is brought about by a so-called Alice string [Sc,ABCMW,
DB]. Let us illustrate this interpretation with the situation that the surface defect is a
half-planeRx≥0 × R in three-dimensional spaceR

3 ∼= R
2 × R. The boundary of the half-

plane consists of a Wilson line that separates the surface defect d from the transparent
defect (such Wilson lines always exist). The intersection of the defect d with a plane
R
2 × {t0} of fixed time is a half-line labeled by d; this half-line constitutes the Alice

string. Since the surface defect is topological, the precise position of the half-line does
not matter. Whenever a quasi-particle crosses the world surface swept out by the Alice
string, i.e., crosses the topological surface defect, it changes its type according to the
transmission functor.

In the case of Dijkgraaf–Witten theories, transmission functors are explicitly acces-
sible: there is a gauge theoretic realization of topological surface defects in Dijkgraaf–
Witten theories based on relative bundles [FSV2]. As a consequence, topological
defects are classified by a subgroup H ≤ A ⊕ A, together with a cohomology class in
H2(H, C

×). The formalism developed in [Mo] then allows one to compute the trans-
mission functor.

In this note we provide a set of generators for the group Oq(A⊕A∗) of braided
auto-equivalences, which implies that universal kinematical and dynamical symmetries
together with electric-magnetic dualities generate all symmetries. We then give, for
each of these generators of Oq(A⊕A∗), a topological defect, compute the resulting
transmission functor and show that it acts on simple labels for bulk Wilson lines by
the natural action of Oq(A⊕A∗) on A ⊕ A∗. This provides a field theoretic realization
in terms of topological surface defects for all braided auto-equivalences. At the same
time it establishes that the embeddings of the subgroups of dynamical and kinematical
universal symmetries described above are indeed physical. When combined with the
results of [ENOM], it also follows that the braided equivalences of bulk Wilson lines
are in bijection with field-theoretic symmetries.2 Hereby we realize all elements of the
Brauer–Picard group as gauge-theoretic dualities.

Plan of the paper. The rest of this note is organized as follows. Section 2 collects some
background about topological surface defects in Dijkgraaf–Witten theories and provides
information about transmission functors arising from invertible defects. In Sect. 3 we
construct these defects explicitly for various classes of generators and compute their
transmission functors. Finally we show in Sect. 4 that the group of invertible defects
is generated by kinematical and dynamical symmetries together with e-m dualities.

2 This is reminiscent of the situation in two-dimensional rational conformal field theories, where the action
of topological line defects on bulk fields characterizes isomorphism classes of defects, so that the action of
topological line defects on bulk fields has been used in the classification of defects.
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Technically, this is proven as the group-theoretical statement that a certain set of elements
of the group Oq(A⊕A∗) generates this group.

2. Surface Defects in DW Theories and the Transmission Functor

2.1. Surface defects in Dijkgraaf–Witten theories. A model independent analysis of
topological surface defects between topological field theories of Reshetikin–Turaev
type has been presented in [FSV1]. We summarize the pertinent aspects of that analy-
sis: For C and C′ modular tensor categories, a topological surface defect separating the
Reshetikhin–Turaev theories with bulkWilson lines labeled by C and by C′, respectively,
exists if and only if the modular category C � (C′)rev is braided equivalent to the Drin-
feld center of some fusion category A;3 here (C′)rev is the same monoidal category as
C′, but with opposite braiding. We call the corresponding braided equivalence functor

C � (C′)rev �−→Z(A) a trivialization of C � (C′)rev. If such a trivialization exists, then
the bicategory of defects is equivalent to the bicategory of module categories over the
fusion category A.

In the present paper we are interested in the case of defects that separate a Dijkgraaf–
Witten theory based on the abelian group A from itself. Thus the category of bulk
Wilson lines is already a Drinfeld center, C = C′ =Z(A-vect), and accordingly there is
a distinguished trivialization

C � (C′)rev �−→ Z(A⊕A-vect). (2.1)

The defects of our interest are thus classified by module categories over the category of
A ⊕ A-graded vector spaces.

Indecomposable A⊕A-vect-module categories have been classified in [Os]: they
correspond to subgroups H ≤ A ⊕ A, together with a two-cocycle on H . That they
describe surface defects of Dijkgraaf–Witten theories has been explicitly demonstrated
in [FSV2].

2.2. The transmission functor. Wewant to determine the transmission functor Fd : C → C
for an invertible topological surface defect d described by an indecomposable module
category over C. The physical interpretation of the transmission functor Fd for an invert-
ible defect is as follows. When a bulk Wilson line labeled by an object U ∈ C passes
through the surface defect d, its label changes to Fd(U )∈ C. (Recall that no bulkWilson
lines condense on the defect.)

We now explain why the transmission functor for an invertible surface defect in an
extended three-dimensional topological field theory has a natural structure of a braided
auto-equivalence. First of all, by composing the transmission functor Fd for a surface
defect d with the transmission functor Fd for the opposite defect d and invoking fusion
of defects, we conclude that Fd ◦ Fd = IdC = Fd ◦ Fd , so that Fd is indeed an auto-
equivalence. To proceed, it will be convenient to draw the cylinder (1.1) as an annulus
with an embedded defect line, according to

3 Then the classes of C and C′ in the Witt group [DaMNO] of modular tensor categories coincide.
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d

−1 0 1

(2.2)

To discuss monoidality we then have to compare the functors corresponding to the two
‘trinion’ surfaces shown in the following picture:

d d d

(2.3)

For a general defect, the functors associated to these two trinions are not isomorphic and
the transmission functor is not monoidal; one rather obtains monoidal functors between
categories of local modules over braided-commutative algebras in C. But if the defect is
invertible, then the functors corresponding to the two trinions are isomorphic. In fact, a
natural isomorphism

⊗ ◦ (Fd × Fd) �⇒ Fd ◦ ⊗ (2.4)

of functors C × C→ C is furnished by the following three-manifold with corners and
defects:

(2.5)

Such a three-manifold with corners is to be read as a span of manifolds from the bottom
lid to the top lid. To show that this natural transformation provides a monoidal structure
on the functor Fd , one needs to check an identity of natural transformations. This identity
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follows from the fact that the following two three-manifolds with corners and defects
are related by a homotopy relative to the boundary:

(2.6)

(This homotopy, restricted to the surface defect, looks like the homotopy used in two-
dimensional topological field theories to show associativity of the algebras assigned to
circles, but its role is rather different.) In a similar manner the property that the monoidal
structure on Fd is braided can be deduced from the fact that the following two three-
manifolds with corners and defects are homotopic as well:

(2.7)
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Remark 2.1. In passing, we mention another physical application: According to [KaS],
surface defects provide an interpretation of the so-called TFT construction (see [SFR] for
a review) of correlators of two-dimensional rational conformal field theories associated
with the category C. Thereby a surface defect d in particular determines a modular
invariant torus partition function Zd of the conformal field theory. For an invertible defect
d with transmission functor Fd , the resulting torus partition function is of automorphism
type; its coefficient matrix reads

Zd
i j = δ[Ui ],[Fd (U∨

j )] , (2.8)

where {Ui } is a set of representatives of the isomorphism classes of simple objects of C.

2.3. Transmission functors for Dijkgraaf–Witten theories. In the case of our interest the
modular tensor category C is the representation category of the (untwisted) Drinfeld
double D(A) of a finite abelian group A, and a topological surface defect is described
by a subgroup H of A ⊕ A and a two-cocycle on H . To obtain the relevant groupoids of
bundles we follow the prescription of [FSV2] to find the appropriate relative bundles:
For a defect associated to the subgroup H ≤ A ⊕ A with two-cocycle θ ∈ Z2(H, C

×),
the objects of the category of relative bundles consist of an A-bundle P±

A on each of the
two cylinders Z− : S1 ×[−1, 0] and Z+ := S1 ×[0, 1], an H -bundle PH on D and an
isomorphism

α : IndA⊕A
H PH

�−→ (P+
A)

∣
∣

D × (P−
A )

∣
∣

D (2.9)

of A⊕A-bundles on D. Using that the cylinders Z± are homotopic to the circle D, one
can describe all bundles appearing in (2.9) by bundles on a circle. And since α is an
isomorphism, one can work with an equivalent groupoid in which only the H -bundles
appear as data. As a consequence the category of relative bundles can be replaced by the
action groupoid H \\ad H for the adjoint action of H on itself. The objects of this groupoid
are group elements h ∈ H , which can be thought of as holonomies of the H -bundle on
the defect circle with respect to some fixed base point; the morphisms of the groupoid
correspond to gauge transformations.

According to the general picture of Dijkgraaf–Witten theories [Mo], for the cylinder
we thus get a span of groupoids. For each boundary circle, we have the category of A-
bundles on S1, which we replace by the equivalent action groupoid A \\ad A. The relevant
functor is restriction of bundles to the boundary components. To describe it, consider
the group homomorphisms obtained from the canonical projections p1,2 for A ⊕ A to
its two summands,

πi : H ↪→ A ⊕ A
pi−→ A. (2.10)

These give rise to functors
π̂i : H \\ad H → A \\ad A (2.11)

on action groupoids, acting both on objects and morphisms like πi . We thus can replace
the span of groupoids of categories of bundles and relative bundles by the equivalent
span

H \\ad H
π̂2

�����������
π̂1

�����������

A \\ad A A \\ad A

(2.12)
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of finite groupoids. Next we linearize, i.e. for each groupoid consider the category of
functors from the groupoid to vect. This gives us two pullbacks

π̂∗
i : [A \\ad A, vect] → [H \\ad H, vect] , (2.13)

as well as pushforwards

π̂i ∗ : [H \\ad H, vect] → [A \\ad A, vect] (2.14)

as their two-sided adjoints. Note that the category [A \\ad A, vect] ∼=D(A)-mod∼= C is the
category of labels for bulk Wilson lines of the Dijkgraaf–Witten theory.

We finally construct a functor [H \\ad H, vect] → [H \\ad H, vect] from the two-cocycle
θ , following [Mo, Sect. 5.4]. To this end we first transgress θ ∈ Z2(H, C

×) to ωθ ∈ Z1

(H \\ad H, C
×), a one-cocycle for the loop groupoid H \\ad H ∼= [∗ \\Z, ∗ \\G]. According

to [Wi, Thm.3] this is the commutator

ωθ(h1; h2) = θ(h1, h2)

θ(h2, h1)
, (2.15)

which is an alternating bicharacter on the abelian group A. (As is well known, alter-
nating bicharacters for an abelian group A are in bijection with the group cohomol-
ogy H2(A, C

×).) The groupoid algebra C[H \\ad H ] has as a basis the morphisms

bγ ;h : γ
h−→ γ in H \\ad H ; its product is composition of morphisms, wherever this is

defined, and zero else. We can canonically identify

C[H \\ad H ]-mod � [H \\ad H, vect]. (2.16)

The two-cocycle ωθ gives an algebra automorphism

ϕθ : C[H \\ad H ] → C[H \\ad H ] ,

bγ ;h �→ ωθ(γ ; h) bγ ;h ,
(2.17)

which in turn provides us with the desired functor

ϕ∗
θ : C[H \\ad H ]-mod → C[H \\ad H ]-mod. (2.18)

The transmission functor FH,θ is now obtained [Mo, Sect. 5.4] by pre- and post-
composing this functor with the pullback and pushforward functors obtained above:

FH,θ : [A \\ad A, vect] π̂∗
1−−→ [H \\ad H, vect] ϕ∗

θ−−→ [H \\ad H, vect] (π̂2)∗−−−→ [A \\ad A, vect].
(2.19)

In particular the transmission functor is explicitly computable. Thus for any given invert-
ible surface defect (H ≤ A⊕A, θ) of the Dijkgraaf–Witten theory with gauge group A
we can find the corresponding braided equivalence FH,θ explicitly. From these explicit
expressions, it is clear that the transmission functor only depends on the cohomology
class of θ .
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2.4. Action of the transmission functor on simple objects. Let us determine the action of
the transmission functor on the isomorphism classes of simple objects. For the double of
a general finite group G these classes are in bijection with pairs consisting of a conjugacy
class c of G and an irreducible representation χ of the centralizer of a representative of
c. If G = A is abelian, this reduces to pairs (a, χ) consisting of a group element a ∈ A
and an irreducible character χ ∈ A∗; thus the isomorphism classes of simple objects are

π0([A \\ad A, vect]) ∼= A ⊕ A∗. (2.20)

The group structure on π0([A \\ad A, vect]) coming from the monoidal structure on the
category [A \\ad A, vect] coincides with the natural group structure on A ⊕ A∗.

It is straightforward to determine the action of each of the three functors (2.13), (2.14)
and (2.18) on such pairs. First, for the pullback along π̂1 maps we find

[π̂∗
1 ] : π0([A \\ad A, vect]) → π0([H \\ad H, vect]) ,

(a , χ) �→
⊕

h∈p−1
1 (a)

(h , p∗
1χ) (2.21)

with p∗
1 defined by [p∗

1χ ](h) := χ(p1(h)). Second, the functor ϕ∗
θ acts as

[ϕ∗
θ ] : π0([H \\ad H, vect]) → π0([H \\ad H, vect]) ,

(h , ψ) �→ (h , ψ+ωθ(h;−))
(2.22)

with ωθ as in (2.15). And third, the pushforward along π̂2

[(π̂2)∗] : π0([H \\ad H, vect]) → π0([A \\ad A, vect]) ,

(h , ψ) �→
⊕

χ2∈A∗
(p2(h) , χ2) δp∗

2χ2,ψ
. (2.23)

3. Realizing the Symmetries

Various aspects of the group Oq(A⊕A∗) have been described in [DaN, Sect. 5C]. Here
we present a set of generators of this group: As discussed in detail in Sect. 4, the group
Oq(A⊕A∗) is generated by the following elements:

1. The kinematical universal symmetries, which come from automorphisms of the
stackof A-bundles.They are givenby the subgroup Skin := {

α ⊕ α−1 ∗ | α ∈Aut(A)
}

,
which is isomorphic to Aut(A).

2. The dynamical universal symmetries, which can be identified with the group of
(equivalence classes of) 1-gerbes on the stack of A-bundles. They are given by the
group of alternating bicharacters on A. In the terminology of quantum field theory
[SW], the connection on a 1-gerbe is called a B-field. Accordingly we refer to the
subgroup of alternating bicharacters as B-fields and denote it by SB.

3. Partial electric-magnetic (or e-m, for short) dualities. Such a symmetry is given by
the exchange, in A ⊕ A∗, of a cyclic summand C of A with its character group C∗.
More explicitly, for A written in the form A = A′ ⊕ C with C a cyclic subgroup, it
acts on A ⊕ A∗ = A′ ⊕ C⊕(A′)∗ ⊕ C∗ as idA′ ⊕ δ ⊕ id(A′)∗ ⊕ δ−1, with δ : C → C∗
any isomorphism from C to C∗.
If one fixes a decomposition of A into a direct sum of cyclic groups Ci , together
with an isomorphism δi : Ci → C∗

i for each cyclic summand, then the corresponding
partial e-m dualities generate a subgroup of Oq(A⊕A∗), which we denote by Se-m.
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For each type of generator, wewill now specify the subgroup H of A ⊕ A and cocycle
θ that label the corresponding invertible surface defect.

Remark 3.1. In principle, for any element of the group Oq(A⊕A∗) the subgroup H ≤ A
⊕ A and the cocycle θ can be computed from the results in [ENOM,Sect. 10.2].However,
Theorem 1.1. of [ENOM] ensures that there is a bijection between equivalence classes of
invertible topological surface defects and equivalence classes of braided equivalences.
Hence it is sufficient to verify that a given defect described by a pair (H, θ) reproduces
the correct braided equivalence.

We will make use of the following fact (see Corollary 3.6.3 of [Da] and Proposition
5.2 of [NR]):

Corollary 3.2. The A-vect-bimodule category associated with the pair (H, θ) is invert-
ible iff

H · (A ⊕ {0}) = A ⊕ A = (A ⊕ {0}) · H (3.1)

and the restriction of the commutator cocycle ωθ (2.15) to

H∩ := (

H ∩ (A ⊕ {0})) × (

(A ⊕ {0}) ∩ H
)

(3.2)

is non-degenerate.

3.1. Kinematical symmetries: group automorphisms. The automorphisms in Skin are the
symmetries of the stack Bun(A) and are thus symmetries of the classical configurations.

A group automorphism α : A → A induces a group automorphism α∗ : A∗ → A∗
acting on χ ∈ A∗ as

[α∗χ ](a) := χ(α(a)) (3.3)

for all a ∈ A. The combined group automorphism α̃ := α ⊕ (α−1)∗ : A ⊕ A∗ → A ⊕ A∗
satisfies

q
(

α̃(a+χ)
) = q

(

α(a)+α−1∗
(χ))

= [α−1∗
(χ)](α(a)) = χ(α−1α(a)) = χ(a) = q(a+χ) ,

(3.4)

i.e. preserves the quadratic form q and is thus an element of Oq(A⊕A∗).
We claim that the surface defect whose transmission functor corresponds to the auto-

morphism α̃ is the following: For the subgroup, we take the graph of α, i.e.

Hα := {(a, α(a)) | a ∈ A} < A ⊕ A , (3.5)

and for two-cocycle on Hα the trivial two-cocycle θ◦. (We could actually take any
exact two-cocycle; for the transmission functor only the cohomology class matters.) For
instance, for α = id, H is the diagonal subgroup of A ⊕ A, which describes the invisible
defect, while for the ‘charge conjugation’ a �→ a−1 it is the antidiagonal subgroup.

Let us first check that the pair (Hα, θ◦) defines an invertible surface defect. We have

Hα · (A ⊕ {0}) = {(ab , α(a) | a, b ∈ A} = A ⊕ A (3.6)

and analogously (A ⊕ {0}) · Hα = A ⊕ A. Moreover,
(

Hα ∩ (A ⊕ {0})) = {0} = (

(A ⊕ {0}) ∩ Hα

)

, (3.7)
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so that trivially the restriction ofωθ◦ to (Hα)∩ is non-degenerate. Thus both conditions in
Corollary 3.2 are satisfied, and hence the defect labeled by (Hα, θ◦) is indeed invertible.

Next we compute the action of the transmission functor FHα,θ◦ on isomorphism
classes of simple objects. The functor ϕ∗

θ◦ is the identity, so that the transmission functor
is the composition

(a;χ) �
[π̂∗

1 ]−−−→ (a, α(a); χ̃ ) �
[π̂2∗]−−−→ (α(a), α−1∗

(χ)) (3.8)

where χ̃ ∈ H∗
α is defined by χ̃ (a, α(a))= χ(a). Thus indeed FHα,θ◦ acts on isomorphism

classes of simple objects by α̃ ∈Oq(A⊕A∗).

3.2. Dynamical symmetries: B-fields. These symmetries come from automorphisms of
the trivial 2-gerbe on Bun(A). They are thus symmetries of the classical action.

A dynamical symmetry is described by an alternating bicharacter β : A × A → C
×.

To such a bicharacter β we associate the group homomorphism ξβ : A → A∗ that acts
as [ξβ(a)](b)= β(a, b) for a, b ∈ A. The automorphism β̃ for a dynamical symmetry
is then given by

β̃(a+χ) = a + ξβ(a) + χ. (3.9)

This is an automorphism because ξβ is a group homomorphism, and it is in Oq(A⊕A∗)
because β is in addition antisymmetric:

[ξβ(a)](a) = β(a, a) = 1 (3.10)

for all a ∈ A, which implies β(a, b)= (β(b, a))−1 for a, b ∈ A.
We claim that the surface defect whose transmission functor reproduces β̃ ∈

Oq(A⊕A∗) looks as follows: The relevant subgroup is the diagonal subgroup Adiag ≤
A ⊕ A (independently of the particular choice of β), and the relevant two-cocycle θβ on
Adiag ∼= A is characterized by the fact that its commutator cocycle ωθβ is β. (Recall that
for the transmission functor only the cohomology class of the two-cocycle matters; the
alternating bicharacters are in bijection to these classes.)

Now notice that we have Adiag = Hα=id with Hα as in (3.5), so that as a special case
of (3.6) and of (3.7) we see that

Adiag · (A ⊕ {0}) = A ⊕ A = (A ⊕ {0}) · Adiag (3.11)

and
(

Adiag ∩ (A ⊕ {0})) = {0} = (

(A ⊕ {0}) ∩ Adiag
)

, (3.12)

respectively. Thus precisely as in Sect. 3.1we can conclude that the surface defect labeled
by the pair (Adiag, θβ) is invertible.

The action of the transmission functor FAdiag,θβ on isomorphism classes of simple
objects is obtained as follows:

(a;χ) �
[π̂∗

1 ]−−−→ (a, a; χ̃ ) �

[ϕ∗
θ
δ
]

−−−→ (

a, a; χ̃+ξβ(a)
)

�
[π̂2∗]−−−→ (

a;χ+ξβ(a)
) = β̃(a+χ) ,

(3.13)
where χ̃ ∈ Adiag is defined by χ̃ (a, a)= χ(a). Thus FAdiag,θβ acts on isomorphism classes
precisely by β̃ ∈Oq(A⊕A∗).
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3.3. Partial e-m dualities. The partial e-m dualities appear as symmetries of quantized
Dijkgraaf–Witten theories. Every partial e-m duality can be obtained in the following
manner. Suppose that A is written as a direct sum A ∼= A′ ⊕ C with C a cyclic subgroup
(allowing for the case that A′ is the trivial subgroup). This induces a similar decom-
position of the character group A∗: denoting by C∗ the subgroup of A∗ of characters
that vanish on A′, and by (A′)∗ the subgroup of characters vanishing on C , we have
A∗ ∼= (A′)∗ ⊕ C∗.

As abstract groups, C and C∗ are isomorphic. Fix an isomorphism δC : C → C∗ and
define the automorphism δ of the group A ⊕ A∗ ∼= A′ ⊕ C ⊕ (A′)∗ ⊕ C∗ as follows: δ is
the identity on the summands A′ and (A′)∗, while on C ⊕ C∗ it acts as

( c , ψ ) �−→ (

δ−1
C (ψ) , δC (c)

)

. (3.14)

That δ preserves the quadratic form is seen by calculating

q
(

δ(a′+c+χ ′+ψ)
) = q

(

a′ + δ−1
C (ψ) + χ ′ + δC (c)

)

= χ ′(a′) · [δC (c)](δ−1
C (ψ)) = χ ′(a′) · ψ(c) = q(a′+c+χ ′+ψ).

(3.15)
We claim that the surface defect whose transmission functor corresponds to δ ∈

Oq(A⊕A∗) is as follows: The relevant subgroup of A ⊕ A is the group Hδ := A′
diag

⊕ C ⊕ C , where A′
diag is embedded diagonally into the summand A′ ⊕ A′ of A ⊕ A,

while the cocycle θδ on Hδ is characterized by its commutator cocycle, which is defined
to act as

ωθδ
((a′, c1, c2), (ã

′, c̃1, c̃2)) := [δC (c1)](c̃2) · ([δC (c2)](c̃1))−1 (3.16)

(this is obviously an alternating bicharacter on Hδ). For determining the transmission
functor, it again suffices to know this bicharacter.

To verify invertibility, note that

A′
diag · (A′ ⊕ {0}) = {(a′b′, b′) | a′, b′ ∈ A′} = A′ ⊕ A′ (3.17)

and analogously (A′ ⊕ {0}) · A′
diag = A′ ⊕ A′, which implies that (A ⊕ {0}) · Hδ = A ⊕

A = Hδ · (A′ ⊕ {0}). Moreover, we have

A′
diag ∩ (A′ ⊕ {0}) = {0} = (A′ ⊕ {0}) ∩ A′

diag , (3.18)

which implies that (Hδ)∩ = (C ⊕ C)× (C ⊕ C). To see that ωθδ
restricted to (Hδ)∩ is

non-degenerate, we fix a generator a ofC and denote byψ ∈ C∗ the character with value
ψ(a)= e2π i/N , with N = |C |. Then δC (a)= ψ l with l such that (l, N )= 1, and we find

ωθδ
(a p1; aq1 , a p2 , aq2) = e2π il(p1q2−q1 p2)/N . (3.19)

Now e2π il/N is a primitive N -th root of unity, so that for any pair (p1, q1) we can find
(p2, q2)∈ Z× Z such that p1q2 − q1 p2 �= 0 mod N . Hence ωθδ

is non-degenerate. We
can thus again invoke Corollary 3.2 to conclude that the defect labeled by (Hδ, θδ) is
invertible.

To compute the action of the transmission functor on simple objects, we note that the
problem splits into a part involving only the subgroup A′ and another part involving only
the cyclic group C . The first problem reduces to the computation of the transmission
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functor for the defect associated with the identity automorphism, which was treated in
Sect. 3.1. Thus we can restrict ourselves to the case that A = C is cyclic.

In this case the action of the pullback functor on the simple object (c, χ) with b ∈ C
and χ ∈ C∗ reads

(c;χ) �
[π̂∗

1 ]−−−→
⊕

c̃∈C

(

c, c̃;χ [1]) (3.20)

with the character χ [1] ∈ (C ⊕ C)∗ taking the values χ [1](d, d̃)= χ(d) for d, d̃ ∈ C .
Next we note that the functor ϕ∗

θδ
acts on simple objects of D(C⊕C)-mod as

(c, c̃, χ [1]) �

[ϕ∗
θ
δ
]

−−−→ (c, c̃, χ [2]) (3.21)

with the character χ [2] ∈ (C ⊕ C)∗ taking the values χ [2](d, d̃)= χ(d) [δC (c)](d̃)/

[δC (c̃)](d) for d, d̃ ∈ C . This is, in turn, mapped by the pushforward functor [π̂2∗]
to those characters χ [3] ∈ C∗ for which p∗

2χ
[3] = χ [2]. This condition amounts to the

identity

χ [3](d̃) = χ [2](d, d̃) = χ(d)
[δC (c)](d̃)

[δC (c̃)](d)
(3.22)

for alld, d̃ ∈ C . Considering the dependence of both sides of this equality on d̃ determines
χ [3] = δC (c), while the fact that the dependence on d on the right hand sidemust be trivial
shows that we need χ(d)= [δC (c̃)](d) for all d ∈ C . This means that in the summation
over c̃ in (3.20) only the term with δC (c̃)= χ survives the pushforward. We conclude
that the composition of the three functorsmaps the simple object (c, χ) to a single simple
object, as befits an equivalence. Concretely,

(c, χ) �−→ (δ−1
C (χ), δC (c)) , (3.23)

and thus the defect realizes an e-m duality.

4. Generators of Oq(A⊕A∗)

It remains to be shown that the three types of group elements discussed in the preced-
ing section—corresponding to kinematical and dynamical classical symmetries and to
partial e-m dualities—indeed constitute a set of generators for the Brauer–Picard group
Oq(A⊕A∗). To this end we have to show that an arbitrary element of Oq(A⊕A∗) can
be expressed as a product of elements in a suitable explicitly specified set of generators.
This description turns out to be similar to the description of symplectic or orthogonal
groups over the integers (see e.g. [HuR,SW]) and the proof involves a variant of the
Euclidean algorithm similar as in the proof of Bruhat decompositions (see e.g. [Re]).
Technical complications arise from the need to respect the divisibility properties of the
orders of the generators.

We start by introducing pertinent notation. Any finite abelian group A can be pre-
sented as A = ⊕

p A(p) with the sum being over all primes and A(p) a direct sum of
cyclic groups of order a power of p. To analyze the group A we present it in terms of
some arbitrary, but fixed, ordered family (ai | i = 1, 2, . . . , r) of generators such that
(writing the group product additively)

A(p) =
r

⊕

i=1

〈ai | p�i ai = 0〉 =
r

⊕

i=1

Z
p�i

=
⊕

s

(

Zps

)⊕ns (4.1)
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with non-negative integers ns , r = ∑

s ns and �i . It will be convenient to order the
generators such that the powers of p appear in ascending order, i.e. �i ≤ � j for i < j . It
is easy to see that

Aut(A) = ×p prime Aut(A(p)) as well as Oq(A⊕A∗) = ×p prime Oq(A(p)⊕A(p) ∗).
(4.2)

As a consequence we can, and will, restrict our attention to a single prime p. By a slight
abuse of notation, in the sequel we will just write A for A(p).

In terms of the generators, a general group element is a linear combination
∑r

i=1 γ̄i ai

with γ̄i ∈ Z mod p�i . In the sequel we freely replace such classes γ̄i by representatives
γi ∈ Z; also, we denote by γ −1

i ∈ Z a representative of the inverse of γi modulo p�i . For
the character group A∗ we choose generators xi in such a way that xi (ai ) is a primitive
p�i th root of unity while xi (a j )= 1 for i �= j , so that the quadratic form q is given by

q
(∑r

i=1(γi ai + ζi xi )
) = exp

(

2π i
r

∑

i=1

p−�i γi ζi
)

, (4.3)

and in particular ord(xi )= ord(ai ). With these conventions, an element g of Oq(A⊕A∗)
(or, for that matter, of End(A ⊕ A∗)) is determined by the expressions

g(ai ) =
r

∑

j=1

(

α
g
i, j a j + ξ

g
i, j x j

)

and g(xi ) =
r

∑

j=1

(

β
g
i, j a j + η

g
i, j x j

)

(4.4)

for i = 1, 2, . . . , r , with suitable constraints on the coefficients α
g
i, j , ξ

g
i, j , β

g
i, j , η

g
i, j ∈ Z

which, however, we do not need to spell out.
We introduce three subgroups of Aut(A ⊕ A∗):

Skin := {

α ⊕ α−1 ∗ | α ∈Aut(A)
} ∼= Aut(A) ,

SB := 〈

bi, j | 1≤ i < j ≤ r
〉

and Se-m := ⊕r
i=1Di ∼= Z

⊕r
2 .

(4.5)

Here Di ∼= Z2 is generated by the automorphism di that exchanges ai and xi and
leaves all other generators fixed, while bi, j is given by

bi, j :

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

ai �→ ai + x j ,

a j �→ a j − xi ,

ak �→ ak for k �∈ {i, j} ,

xk �→ xk .

(4.6)

It is not hard to check that the groups (4.5) are actually subgroups of Oq(A⊕A∗)<

Aut(A ⊕ A∗). The groups (4.5) describe kinematical universal symmetries (Skin),
dynamical symmetries or B-fields (SB), and partial e-m-dualities associated to the direct
sum decomposition (4.1) of A (Se-m), respectively.

We will also be interested in two particular types of elements of Skin: for i �= j
satisfying ord(ai )= ord(a j ) we set

ti, j :

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

a j �→ a j − ai ,

ak �→ ak for k �= j ,

xi �→ xi + x j ,

xk �→ xk for k �= i ,

(4.7)
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and for γ �= 0 mod p and any j

ω j;γ :

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

a j �→ γ −1 a j ,

ak �→ ak for k �= j ,

x j �→ γ x j ,

xk �→ xk for k �= j.

(4.8)

We further introduce a separate notation for those elements of Skin that act as a
transposition on pairs of generators of some fixed order and leave all other generators
fixed, according to

τi, j :

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

ai ↔ a j ,

ak �→ ak for k �∈ {i, j} ,

xi ↔ x j ,

xk �→ xk for k �∈ {i, j}
(4.9)

with ord(a j )= ord(ai ). These generate a subgroup S= ⊕

s Sns ≤ Skin consisting of
elements that permute pairs (ai , xi ) of generators of the same order. Below, for conve-
niencewe allow for i = j in (4.9), i.e. for any i , τi,i is just the unit element of Oq(A⊕A∗).

We now establish the following

Fact 4.1. Oq(A⊕A∗) is generated by the subgroups (4.5).

Proof. Step 1 : Given g ∈Oq(A⊕A∗)we show that multiplying g with suitable elements
of the subgroups (4.5) yields a group element that leaves the last generator xr invariant.

Step 1a : Describe g as in (4.4). We first consider the case that ord(ηg
r,i xi )< ord(xr )

for all i . Then, since g must preserve the order of xr , there exists at least one value of
i such that ord(βg

r,i ai )= ord(xr ). Take one such value (say, the largest one satisfying
the equality) and denote it by k(r) or, for brevity, just by k. Then the group element
g′ := dk ◦ g acts as

g′(xr ) ≡ dk(g(xr )) = g(xr ) + (β
g
r,k − η

g
r,k) (xr − ar ) , (4.10)

so that in particular ord(ηg′
r,k xk)= ord(βg′

r,k xk)= ord(xr ).

Step 1b : By step 1a we can assume that g satisfies ord(ηg
r,k xk)= ord(xr ), i.e. ord(xk)=

ord(xr ) and η
g
r,k �= 0 mod p. It follows that τk,r ∈S≤ Skin and that there exists a γ ∈ Z

such that γ η
g
r,k = 1 mod p. Then the group element g′ := ωr;γ ◦ τr,k ◦ g acts as in (4.4)

with η
g′
r,r = 1.

Step 1c : Invoking step 1b we assume from now on that g satisfies η
g
r,r = 1. Further, for

i �= r the element g′ := (bi,r )
β

g
r,i satisfies β

g′
r,i = β

g
r,i −β

g
r,i = 0. Hence by composing g

successively, for all i = 1, 2, . . . , r−1, with the group element bi,r raised to the power
β

g
r,i one obtains a group element g̃ satisfying

g̃(xr ) = β
g
r,r ar + xr +

r−1
∑

i=1

ξ
g
r,i xr . (4.11)
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Nowby construction, g̃ ∈Oq(A⊕A∗), while on the other hand q(g̃(xr ))= exp(2π i p−�r

β
g
r,r ). Thus in fact we must have β

g
r,r = 0 mod p�r .

Step 1d : By step 1cwe can assume that g satisfies β
g
r,i = 0 for all i = 1, 2, . . . , r . Further,

for i �= r the element g′ := (tr,i )
η

g
r,i satisfies η

g′
r,i = η

g
r,i − η

g
r,i = 0. Hence by composing

g successively, for all i = 1, 2, . . . , r−1, with the group element tr,i raised to the power
η

g
r,i one obtains a group element g̃ satisfying g̃(xr )= xr .

Step 2 : By step 1 we can assume that g(xr )= xr . Now consider the image g(xr−1) of
the group element xr−1. We manipulate it in full analogy with what we did with g(xr ) in
step 1, just replacing r �→ r−1 everywhere, but with the following amendment: In case
that in the analogue of step 1a the label k = k(r−1) should turn out to take the value r ,
before proceeding to replacing g �→ dk ◦ g we consider instead of g the group element

g′ := tr−1,r ◦ g. (4.12)

After this replacement we can assume that k ≤ r−1. As a consequence, afterwards one
never will have to compose with elements from (4.5) of the form ωr;γ or br, j ◦ dr which
would potentially alter the input relation g(xr )= xr . Thus by further proceeding along
the lines of step 1 we end up with a group element g̃ satisfying both g̃(xr )= xr and
g̃(xr−1)= xr−1.

Steps 3, 4, . . . , r : Proceed iteratively for g(xr− j ) for j = 2, 3, . . . , r−1, where in the
j th iteration the role of tr−1,r in (4.12) is taken over by tr− j,r−l for suitable l < j .
The result is a group element g̃ satisfying g̃(xi )= xi for all i = 1, 2, . . . , r .

Step r+1 : By step r we can assume that g(xi )= xi for all i = 1, 2, . . . , r . We show

that this in fact implies that g(ai )= ai +
∑r

j=1 ξ
g
i, j x j for all i = 1, 2, . . . , r . Indeed,

from [HiR] we know that in order for g to belong to Aut(A ⊕ A∗), the matrix

M(g)=
(

αg ξ g

βg ηg

)

with block matrices αg, ξ g, βg, ηg consisting of the coefficients

in (4.4), must satisfy det(M(g) mod p) �= 0.
Now for g of the form considered here we have ηg = 11r×r and βg = 0; this implies in
particular that 0 �= det(M(g) mod p)= det(αg mod p), and thus that αg ∈Aut(A). As
a consequence, together with g also the product g′ := g ◦ (

(αg)−1⊕(αg)∗
)

is an element
of Oq(A⊕A∗). On the other hand, we have explicitly

g′(ai ) = ai +
∑

j

ξ
g′
i, j x j and g′(xi ) =

∑

j

η
g′
i, j x j . (4.13)

Hence the fact that g′ belongs to Oq(A⊕A∗) amounts in particular to the following
restrictions, which together are also sufficient:

q(g′(ai )) = q(ai ) �⇒ ξ
g′
i,i = 0 ,

q(g′(ai+a j )) = q(ai+a j ) �⇒ ξ
g′
i, j + ξ

g′
j,i = 0 for i �= j ,

q(g′(ai+xi )) = q(ai+xi ) �⇒ η
g′
i,i = 1 ,

q(g′(a j+xi )) = q(a j+xi ) �⇒ η
g′
i, j = 0 for i �= j.

(4.14)
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Together, these restrictions just say that g′ ∈ SB.

This concludes the proof. ��
In the following example we illustrate how the result follows from an explicit analysis

in a particularly simple case.

Example 4.2. A = Zp.

It is not hard to see that in order for (4.4) to be in Oq(A⊕A∗), it is necessary and
sufficient that the numbers α, β, ξ, η satisfy αξ = 0= βη and αη +βξ = 1 modulo p.
These constraints are solved by

ξ = 0 = β , η = α−1 and by α = 0 = η , β = ξ−1. (4.15)

Among the solutions of the second type is in particular the case ξ = β = 1, which gives
the (unique) e-m duality, while all other solutions of this type are obtained from one of
the first type by composing with the e-m duality. In short, we have

Oq(Zp⊕Z
∗
p) = Skin � Se-m (4.16)

with

Skin = Aut(Zp) = GL1(Fp) = F
×
p

∼= Zp−1 and Se-m = Z2. (4.17)

In particular, |Oq(Zp⊕Z
∗
p)| = 2(p−1).

The transmission functor for the automorphism given by α ∈ F
×
p is

Zp ⊕ Z
∗
p → Zp ⊕ Z

∗
p ,

(a, χ) �→ (αa, χ(α−1·)) (4.18)

and the transmission functor corresponding to the single non-trivial e-m duality is given
by

Zp ⊕ Z
∗
p → Zp ⊕ Z

∗
p ,

(a, χ) �→ (δ(χ)−1, δ(a)).
(4.19)

Example 4.3. A = Z
2
p .

As another example consider the non-cyclic group A = Zp ⊕ Zp. In this case the second
cohomology group H2(A, C

×) is non-trivial. A choice (e1, e2) of generators of A allows
us to describe the subgroups generating the symmetry group Oq(Z2

p ⊕ Z
∗2
p ) explicitly:

Skin = Aut(Z2
p)

∼= GL2(Fp) , Se-m ∼= Z
2
2 , SB ∼= Zp. (4.20)

Transmission functors for the kinematical symmetries and e-m dualities are similar to
the previous example. An alternating bicharacter β can be described by

β�(ei , ei ) = 1 and β�(e1, e2) = β�(e2, e1)
−1 = e2π i�/p (4.21)

with�∈{0, 1, . . . , p−1}. This yields amapb� : Zp → Z
∗
p withb(a)(b)= exp(2π i�ab/p).

We then have the following transmission functor:

Z
2
p ⊕ Z

∗2
p → Z

2
p ⊕ Z

∗2
p ,

(a1, a2, χ1, χ2) �→ (a1, a2, χ1+b(a2), χ2−b(a1)).
(4.22)
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Abstract: We study boundary conditions for extended topological quantum field the-
ories (TQFTs) and their relation to topological anomalies. We introduce the notion of
TQFTs with moduli levelm, and describe extended anomalous theories as natural trans-
formations of invertible field theories of this type. We show how in such a framework
anomalous theories give rise naturally to homotopy fixed points for n-characters on ∞-
groups. By using dimensional reduction on manifolds with boundaries, we show how
boundary conditions for n + 1-dimensional TQFTs produce n-dimensional anomalous
field theories. Finally, we analyse the case of fully extended TQFTs, and show that any
fully extended anomalous theory produces a suitable boundary condition for the anomaly
field theory.
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1. Introduction

In recent years, the study of boundary conditions for topological quantum field theories
(TQFTs) has attracted much interest, both in the physics and mathematics literature; see
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for instance [10,15,22,23,25–28,39,49], amongothers.Namely, given ann-dimensional
TQFT, from the mathematical point of view it is a sensible question to ask when does
such a theory produce genuine numerical invariants of an n-dimensional manifold with
boundary, rather than vectors in a state space associated to it. This is possible if we can re-
gard the boundary not as arising froma “cut-and-paste” procedure implementing locality,
but rather as a “constrained” part of the manifold. In general, there will be obstructions
in extending a TQFT to manifolds with boundaries: the case of Reshetikhin–Turaev and
Turaev–Viro TQFTs has been recently investigated in [22]. Both Reshetikhin–Turaev
[40] and Turaev–Viro [47] TQFTs are extended topological field theories, namely these
theories assign data also to manifolds of codimension 2. In the present work, we focus
our attention on TQFTs that are extended down to codimension k, and at the same time,
most importantly, extended up to infinity to include diffeomorphisms, and their isotopies.
This is the framework pioneered in [35], which makes extensive use of the language of
∞-categories, and which we find particularly suitable for our aims. Indeed, by regarding
n-categories as ∞-categories, we can introduce the notion of a TQFT with moduli level
m: these are topological field theories that also detect information about the homotopy
type of the diffeomorphisms group of manifolds up to a certain level m.

Our main motivation to introduce and study such field theories is due to the fact
that they provide a very natural and elegant description of anomalous TQFTs. It is well
known, for instance, that the Reshetikhin–Turaev construction produces from a mod-
ular tensor category C a TQFT that is defined on a central extension of the extended
3-dimensional cobordism category [48]: namely, it gives rise only to a projective rep-
resentation of the 2-tier extended cobordism category Cob2(3) taking values in 2-Vect,
and the anomaly, in this context, is represented via a 2-cocycle on the modular groupoid
[2,3,5,46]. In a more modern approach, (topological) anomalies are themselves field
theories in higher dimensions, and of a special kind, namely they are invertible; anom-
alous TQFTs are then realised as truncated morphisms from the trivial theory 1 to the
given anomaly. We refer the reader to very recent works [16,17] detailing this point
of view. In the present work, we realise the anomaly theory as an invertible TQFT of
moduli level 1 of the same dimension as the anomalous TQFT. Namely, taking the higher
morphisms into account there is no need for the involved TQFTs to be truncations of
TQFTs defined in one dimension higher; rather, truncated TQFTs are a very particular
example of moduli level 1 TQFTs. This provides a unified language to describe anom-
alous theories extended down to codimension k, and their category: given an anomaly
theory W , it is the (∞, k − 1)-category of natural transformations between the trivial
theory and W . Moreover, this description allows for more general anomaly theories,
as explained in the text, and it has a strong representation theoretic flavour: anomalous
n-dimensional TQFTs extended down to codimension k give rise to homotopy fixed
points for k + 1-characters, a suitable and natural generalisation of group characters to
the setting of ∞-groups. In codimension 1, these provide projective representations of
the mapping class group of n − 1-closed manifolds.

Anomalous TQFTs and boundary conditions are expected to intertwine in a subtle
relationship. The most striking example is provided by Chern–Simons theory, which
should best be regarded as a field theory living on the boundary of a 4-dimensional TQFT
[20,48,50]. Similarly, the Reshetikhin–Turaev theory arising from a modular tensor
category C is induced by a 4-dimensional Crane–Yetter theory [11,48]. By basically
using a dimensional reduction procedure, we show that from a boundary condition of
an (invertible) n + 1-dimensional theory Z one can obtain an anomalous TQFT, where
the anomaly is induced by Z itself. One sensible question to ask concerns the converse
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statement, i.e., the possibility of producing a boundary condition for an n+1-dimensional
theory from the datum of an anomalous TQFT. In general, we do not expect this to hold:
indeed, an anomalousTQFTwith anomalyW contains too little information to determine
a boundary condition Z̃ . Nevertheless, when Z is a fully extended theory the situation
is much more amenable to treatment: via the cobordism hypothesis for manifolds with
singularities, we show that anomalous TQFTs with anomaly given by a fully extended
TQFT Z do indeed produce boundary conditions for Z . In other words, in the fully
extended situation, “truncated morphisms” of TQFTs are just a shadow of something
richer, namelyTQFTswith genuine boundary conditions. This is particularly clear thanks
to the formalism used to describe anomalies, namely as morphisms of TQFTs of moduli
level 1.

The present work is organised as follows.
In Sect. 2 we present a very gentle introduction to the language of ∞-categories, in

the amount necessary to allow the reader acquainted with category theory to follow the
rest of the paper. We also include some results we were not able to retrieve from the
literature.

InSect. 3wegive somebasic notions concerning cobordismcategories,with emphasis
on properties available once we consider extension “up to infinity”.

In Sect. 4 we introduce the notion of an extended TQFT with moduli level m, and
provide some examples; we show also how we recover ordinary extended TQFTs. The
fully extended case is discussed as well in this section.

In Sect. 5, we introduce anomalies and anomalous TQFTs via the language developed
in Sect. 4. For consistency, we also discuss invertible theories, and some properties of
the Picard groupoid of n-vector spaces.

In Sect. 6 we take a little detour to introduce n-characters and their homotopy fixed
points, which is a subject in its own.We present the basic definitions and results needed to
provide a description of anomalous TQFTs as homotopy fixed points, and we show how
anomalousn-dimensionalTQFTs in codimension1give rise to projective representations
of the mapping class group of closed n − 1-dimensional manifolds, hence to projective
modular functors.

In Sect. 7 we finally introduce boundary condition for TQFTs, providing examples
in the simplest situations, and comparisons with the existing literature when needed.

In Sect. 8 we show how boundary conditions for invertible TQFTs give rise to anom-
alous theories.Moreover, we show that in the fully extended case also the contrary holds.
We conclude with some remarks on recent results on 4-dimensional field theories arising
from modular tensor categories.

Not to burden the present workwith technicalities ofHigher Category theory, we have
in several places appealed to intuition, and hence have preferred to give “sketches” of
definitions, rather than full blown ones.We do feel the need then to be clearer concerning
which aspects of our results should be regarded as rigorously established, andwhich ones
still require a solid foundation, or at least technical details to be filled in. In the following
we try to concisely state which tools we require: most of them are contained in [35],
which, though lacking some amount of rigor in certain points, has had a wide influence
in the study of TQFTs, in particular concerning their classification. See, for instance,
[20].

First, for any nonnegative integer n and any group homomorphism G → O(n)

we assume there exists a symmetric monoidal (∞, n)-category Bord(n)G of G-framed
cobordism. Next, for any nonnegative integer n, we assume there exists a notion of a
symmetric monoidal n-category n-Vect of n-vector spaces over a field K, which, for
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n = 1, reproduces the usual monoidal category of vector spaces over K. Moreover, we
require a natural equivalence of symmetricmonoidal (∞, n−1)-categoriesΩ(n-Vect) ∼=
(n − 1)-Vect. In the last part of the present work, we assume also the cobordism hy-
pothesis to hold, namely that a symmetric monoidal functor Z : Bord(n)G → n-Vect is
completely determined by its value on the G-framed point, and that this value can be
any G-invariant fully dualizable object of n-Vect. Finally, we assume a robust notion of
lax natural transformations between strong monoidal ∞-functors between symmetric
(∞, n)-categories. All the other results in the article are mathematically derived by these
assumptions, and so they should be considered as mathematically established as soon as
one is confident in assuming that in any rigorous foundation of the theory of symmetric
monoidal (∞, n)-categories, all of the above assumptions will have to be true. This is
widely expected to be so in the extended TQFTs/Higher Categories communities.

Nevertheless, for n ≤ 2 all the constructions we present here can be entirely refor-
mulated using the language of ordinary categories, or the well established language of
2-categories and bicategories (see, e.g., [9]). Indeed, the reader who is uncomfortable
with the theory of∞-category tout court can safely substitute k andm in the paperwith 1,
and only have to deal with bicategories for the (n ≤ 2)-version of the results presented
here. In particular, the main results of this article, i.e., the construction of projective
representations of the mapping class groups of manifolds from anomalous TQFTs, and
that boundary conditions for extended (invertible) TQFTs do produce anomalous topo-
logical theories can be both entirely expressed within a bicategorical language. On the
other hand, we have preferred to use the language of ∞-category because the naturality
of the ideas contained in the present work become visibly clearer. Moreover, it allows
us to “see far” in the landscape of topological quantum field theories, and permits in-
deed interesting speculations, like the conjectural relation between Reshetikhin–Turaev
anomalous 3d TQFT, and the 4-category Braid⊗ we present in the final part of the article.
These could certainly be seen as additional motivations to pursue the consolidation of
the foundation of ∞-category theory in all its aspects.

2. Preliminary Notions on Higher Category Theory

In this section we will collect relevant results concerning higher category theory, and
in particular ∞-categories, which we will use in the paper, mainly following [6,35], to
which we direct the reader for details. The experienced reader, instead, can skip this
section altogether.

An n-category can be informally thought of as a mathematical structure generalizing
the notion of a category: we not only have objects and morphisms, but also morphisms
between morphisms, morphisms between morphisms between morphisms, and so on,
up to n. In the case n = 2, a precise definition can be given (see, e.g., [9,42]), where the
crucial difference arises between strict andweak 2-category. Once we notice that a strict
2-category is equivalent to a category enriched in Cat, we can give a recursive definition
for strict n-categories as follows: for n ≥ 2, a strict n-category is a category enriched in
Catn−1, the category of strict n−1-categories. The problem arises when we try to extend
the above definition to obtain weak n-categories, i.e. an n-category where associativity
for k-morphisms, etc. is only preserved up to k + 1-morphisms, for 1 ≤ k ≤ n, which
obey the necessary coherence diagrams. A rigorous definition of weak n-category can
nevertheless be given, and there are even different equivalent ways of formalizing this
notion. Basic references are [7,8]. It goes without saying that weak n-categories are
those of relevance in the mathematical world.
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Example 1. An important example of (weak) n-category is that of n-vector spaces over
a fixed characteristic 0 base field K. For n = 0, the 0-category (i.e., the set) 0-Vect is
the field K; for n = 1 the 1-category (i.e., the ordinary category) 1-Vect is the category
of (finite dimensional) vector spaces over K. For n = 2, the 2-category 2-Vect comes
in various flavours: by 2-Vect one can mean the 2-category of Kapranov–Voevodsky 2-
vector spaces [29], or the 2-category of (finite) K-linear categories with linear functors
as morphisms and K-linear natural transformations as 2-morphisms, or the 2-category
of (finite dimensional) K-algebras (to be thought as placeholders for their categories
of right modules), with (finite dimensional) bimodules as 1-morphisms and morphisms
of bimodules as 2-morphisms, as in [43].1 This latter incarnation of 2-Vect suggests
an iterative definition of n-Vect, see [20]. For instance one can define 3-Vect as the
3-category whose objects are tensor categories over K, whose morphisms are bimodule
categories, and so on. In any of its incarnations, n-Vect is an example of symmetric
monoidal n-category. For instance, for n = 2 the symmetric monoidal structure on the
2-category of finite K-linear categories is induced by Deligne’s tensor product [12].

When one has k-morphisms for any k up to infinity, one speaks of an ∞-category. Just
to settle the notation, we give the following

Definition 1. For n ≥ 0, a (∞, n)-category is a∞-category inwhich every k-morphisms
is invertible for k > n.

Details, and a rigorous definitionof an (∞, n)-category as ann-fold completeSegal space
can be found in [7]; see also [8,35,41]. Notice that in the “definition” above, invertibility
of k-morphisms must be understood recursively in the higher categorical sense, i.e. up
to invertible k + 1-morphisms. In particular, any n-category can be extended to an n-
discrete (∞, n)-category, i.e., an (∞, n)-category in which all k-morphisms for k > n
are identities. We will often pass tacitly from n-categories to n-discrete ∞ categories
in what follows. Moreover, given an (∞, n)-category and objects x, y ∈ C, there is a
(∞, n − 1)-category MorC(x, y) of 1-morphisms.

Example 2. The prototypical example of ∞-category arises from homotopy theory. In-
deed, let X be a topological space. Then there is an ∞-category π≤∞(X), with objects
given by the points of X , 1-morphisms given by continuous paths in X , 2-morphisms
given by homotopies of paths with fixed end-points, 3-morphisms given by homotopies
between homotopies, and so on. Since the composition of paths is only associative up to
homotopy, i.e. up to a 2-morphism, π≤∞(X) is necessarily a weak ∞-category. Never-
theless, the 2-morphism above, which is part of the data, is invertible up to 3-morphisms.
Indeed, all k-morphisms in π≤∞(X) are invertible, hence it is a (∞, 0)-category, which
is usually called a ∞-groupoid. The guiding principle behind ∞-categories is that also
the converse should be true, i.e. any∞-groupoid arises as π≤∞(X) for some topological
space, hence the theory of (∞, 0)-categories can be defined via homotopy theory.

Example 3. A genuine example of an (∞, n)-category with n > 0 is given by Bord(n),
the ∞-category of cobordisms, which can be informally described as consisting of hav-
ing points as objects, 1-dimensional bordisms as 1-morphisms, 2-dimensional bordisms
between bordisms as 2-morphisms, and so on until we arrive at n-dimensional bor-
disms as n-morphisms, from where higher morphisms are given by diffeomorphisms

1 The 2-category of Kapranov–Voevodsky 2-vector spaces can be seen as the full subcategory of the 2-
category of K-algebras and bimodules on the K-algebras of the form K

⊕m , for m ∈ N.
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and isotopies: more precisely, the (n +1)-morphisms are diffeomorphisms which fix the
boundaries, (n+2)-morphisms are isotopies of diffeomorphisms, (n+3)-morphisms are
isotopies of isotopies, and so on. This is an example of a (∞, n)-symmetricmonoidal cat-
egory, see [35]. A rigorous and detailed construction of Bord(n) as an (∞, n)-symmetric
monoidal category can be found in [41].

Remark 1. The (∞, n)-category Bord(n) comes also in other “flavours”, depending on
the additional structures we equip the manifolds with: for instance orientation and n-
framing give (∞, n)-categories Bord(n)or and Bord(n) f r , respectively. More precisely,
let G → GL(n; R) be a group homomorphism. For any k ≤ n, a k-manifold M is
naturally equipped with the GL(n; R)-bundle T M ⊕ R

n−k , and a G-framing for M is
the datum of a reduction of the structure group of T M ⊕ R

n−k from GL(n; R) to G.
Just as in the non-framed case, G-framed k-manifolds with k ≤ n are the k-morphisms
for a symmetric monoidal (∞, n)-category Bord(n)G , called the (∞, n)-category of G-
cobordism. Notice that one can consider an equivalent category ofG-cobordisms, where
our manifolds are equipped with a O(n)-structure on the stable tangent bundle, and its
G-reductions. The equivalence comes from the fact that O(n) is a retract of GL(n; R).
We will implicitly make this identification later on.

In particular, when G is the trivial group, one writes Bord(n) f r for Bord(n){e}, and
calls it the (∞, n)-category of framed cobordism, while when G is SO(n) one writes
Bord(n)or for Bord(n)SO(n), and calls it the (∞, n)-category of oriented cobordism. The
unoriented case Bord(n) is obtained when G is O(n). We will use Bord(n) generically
to indicate one of these G-framed versions, unless explicitly specified.

As for any mathematical structure, there is a notion of morphisms between ∞-
category, which are given by∞-functors. Informally speaking, an∞–functor F between
two ∞–categories C and D is a rule assigning to each k-morphism in C a k-morphism
inD in a way respecting sources, targets and (higher) compositions. For instance, if one
adopts the simplicial model for (∞, 1)-categories, i.e., if one looks at (∞, 1)-categories
as simplicial sets with internal horn-filling conditions (with k-morphisms corresponding
to k-simplices), then an ∞-functor between (∞, 1)-categories is precisely a morphism
of simplicial sets. See [36, Chapter 1] and [35] for details. In particular, given two ∞-
categories C andD, we have an ∞-category Fun(C,D). It is immediate to see that, ifD
is n-discrete, then also Fun(C,D) is n-discrete (or, more precisely, it is equivalent to an
n-discrete ∞-category).

Given an (∞, n)-category C we can obtain an ordinary category π≤1C, called the
homotopy category of C, with objects given by the objects of C, and morphisms given
by equivalence classes of 1-morphisms up to invertible 2-morphisms in C, where in-
vertibility is understood in the ∞ setting. Similarly, for k ≥ 2 we can associate to C
a k-category π≤kC, called the homotopy k-category of C, with objects and morphisms
up to k − 1-morphisms given by those of C, and k-morphisms given by equivalence
classes of k-morphisms up to invertible k + 1-morphisms. By the usual identification of
k-categories with k-discrete ∞-categories, we have then the following

Lemma 1. The formation of the homotopy n-category is the adjoint ∞-functor to the
inclusion of n-discrete categories into (∞, n)-categories, i.e., if C and D are (∞, n)-
categories, with D discrete, then one has a natural equivalence of ∞-categories

Fun(C,D) ∼= Fun(π≤nC,D). (1)

In more colloquial terms, this is just the statement that if D is n-discrete then an ∞-
functor C → D naturally factors as C → π≤nC → D.
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For any (∞, n)-category C and an object x ∈ C, we have that EndC(x) = HomC(x, x)
is a monoidal (∞, n − 1)-category. In particular, to a monoidal (∞, n)-category C we
can canonically assign a monoidal (∞, n − 1)-category ΩC := EndC(1C), where 1C
denotes the monoidal unit of C. We will refer to ΩC as the (based) loop space of C. It
can be seen as the homotopy pullback

ΩC�
��

��

1

��
1 �� C

(2)

where 1 is the trivial monoidal category, and 1 → C is the unique monoidal functor
from 1 to C. We can reiterate the construction to obtain a monoidal (∞, n− k)-category,
which we denote with ΩkC. If C is also symmetric, then ΩkC is symmetric as well. We
will denote with Fun⊗(C,D) the (∞, n)-category of monoidal ∞-functors between C
and D. Any monoidal ∞-functor F from C to D induces a monoidal ∞-functor Ωk F
from ΩkC to ΩkD.

Example 4. OnehasΩ(n-Vect) 
 (n−1)-Vect for any n ≥ 1. For instance, themonoidal
unit of the category 1-Vect is the field K seen as a vector space over itself, hence

Ω(1-Vect) = End1-Vect(K) = K = 0-Vect. (3)

Similarly, the monoidal unit of the 2-category 2-Vect is the category Vect, while its
category of endomorphisms is the category of linear functors from Vect to Vect, which
can be canonically identified with Vect itself.

Lemma 2. Let C be a symmetric monoidal (∞, n)-category, and let D be a symmetric
monoidal (∞, n + 1)-category. Then

EndFun⊗(C,D)(1D) 
 Fun⊗(C,ΩD) (4)

where 1D : C → D denotes the trivial monoidal functor, mapping all objects of C to the
monoidal unit 1D of D, and all morphisms in C to identities.

Proof. The trivial monoidal functor 1D is the composition C → 1 → D. It follows from
this description that EndFun⊗(C,D)(1D) is the ∞-category of homotopy commutative
diagrams

C ��

��

1

��
1 �� D

�� ��
����

(5)

By the universal property of the homotopy pullback, this is equivalent to Fun⊗(C,ΩD).

On the other hand, given a monoidal (∞, n)-category C we can obtain an (∞, n + 1)-
category BC with a single object, and C as the ∞-category of morphisms. We will refer
to BC as the classifying space of C. The relationship between B and Ω is given by the
following

Lemma 3. Let C be a symmetric monoidal (∞, n)-category, and let D be a symmetric
monoidal (∞, n + 1)-category. Then

Fun⊗(BC,D) 
 Fun⊗(C,ΩD) (6)
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Proof. Let F ∈ Fun⊗(BC,D). Since BC is an ∞-category with a single object �, and
F is a monoidal functor, then necessarily F(�) = 1D. Hence, to any k-morphism in
BC, corresponding to a (k − 1)-morphism in C, is assigned by F a k-morphism from
1D to 1D in D, i.e., a (k − 1)-morphism in the symmetric monoidal (∞, n)-category
ΩD = EndD(1D).

3. Cobordism (∞, k)-Categories

In this section we will recall some basic properties concerning ∞-categories of cobor-
disms. We will mainly refer to oriented cobordisms, unless otherwise stated. Via the
mapping cylinder construction, we obtain a monoidal embedding

i : Bord(n) ↪→ Bord(n + 1) (7)

Let us briefly recall how this works. Given a (orientation preserving) diffeomorphism
f : Σ1 → Σ2 between closed n-dimensional oriented manifolds, the mapping cylinder
of f is the oriented manifold M f with boundary obtained as

M f := (([0, 1] × Σ1) � Σ2)/ ∼ (8)

where ∼ is the equivalence relation generated by (0, x) ∼ f (x),∀x ∈ Σ1. In particular,
we have that ∂M f = Σ1 � Σ2, where Σ2 denotes the manifold Σ2 endowed with
the opposite orientation, so that M f represents a (oriented) cobordism between Σ1 and
Σ2. This means that f → M f maps an (n + 1)-morphism in Bord(n) to an (n + 1)-
morphism in Bord(n + 1). Moreover, the mapping cylinder construction is compatible
with composition of diffeomorphisms in the following sense: if g : Σ1 → Σ2 and
f : Σ2 → Σ3 are diffeomorphisms between closed oriented n-dimensional manifolds,
then we have a canonical diffeomorphism

M fg 
 M f ◦ Mg. (9)

In other words, f → M f behaves functorially with respect to the composition of
(n + 1)-morphism. Moreover, the mapping cylinder is compatible with isotopies of
diffeomorphisms.Namely, an isotopyh betweenorientation preserving diffeomorphisms
f, g : Σ1 → Σ2 induces a orientation preserving diffeomorphism

h∗ : M f

−→ Mg. (10)

Hence the mapping cylinder construction maps an (n + 2)-morphism in Bord(n) to an
(n + 2)-morphism in Bord(n + 1), and also in this case one can verify the compatibility
with composition. Similarly, isotopies between isotopies of diffeomorphisms produce
correspondent isotopies of diffeomorphisms of the mapping cylinders. One has natural
generalisations to unoriented and toG-framed cobordism, and so on, so that themapping
cylinder construction actually gives an ∞-functor Bord(n) → Bord(n + 1), which is
immediately seen to be compatible with disjoint unions, i.e., with the monoidal structure
of cobordism categories. Details on the properties of the functor i can be found in [35]:
interestingly, the proof of the fact that i is actually a (not full) embedding of∞-categories
is at the core of the Cobordism Hypothesis.

Remark 2. One has natural generalisations of (7) to unoriented, and to G-framed cobor-
disms.
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Applying the iterated loop space construction to the symmetric monoidal (∞, n)-
category Bord(n) we obtain the following important

Definition 2. For any 0 ≤ k ≤ n, the (∞, k)-symmetric monoidal category Cob∞
k (n) is

defined as
Cob∞

k (n) := Ωn−kBord(n) (11)

It will be called the (∞, k)-category of n-dimensional cobordism extended down to
codimension k.

In a similar way, one can define G-framed cobordism categories Cob∞,G
k (n).

Note that Bord(n) = Cob∞
n (n), the (∞, n)-category of n-dimensional cobordism

extended down to codimension n. We will refer to Bord(n) as the fully extended n-
dimensional cobordism category.

Notice that if F : C → D is a monoidal functor, then also Ω(F) : ΩC → ΩD
is monoidal. This in particular implies that the monoidal embedding i : Bord(n) ↪→
Bord(n + 1) induces monoidal embeddings

Cob∞
k (n) ↪→ Cob∞

k+1(n + 1) (12)

for any k ≥ 0.

Remark 3. The homotopy category π≤1Cob∞
1 (n) is the usual category of n-dimensional

cobordism: it has (n − 1)-closed manifolds as objects and diffeomorphism classes of
n-dimensional cobordisms as morphisms. In the following, we will refer to this category
simply as Cob(n)

Remark 4. The (∞, 0)-category Cob∞
0 (n) is the∞-groupoid having closed n-manifolds

as objects, diffeomorphisms between them as 1-morphisms, isotopies between diffeo-
morphisms as 2-morphisms and so on.

Let Σ be a closed n-dimensional manifold. By slight abuse of notation, we will
denote by BΓ ∞(Σ) the connected component of Σ in Cob∞

0 (n). The homotopy cat-
egory π≤1Cob∞

0 (n) is the groupoid usually denoted Γn , see [5], while π≤1BΓ ∞(Σ)

is the (one-object groupoid associated with the) mapping class group Γ (Σ) of Σ . To
emphasise the G-framing, we will occasionally write Γ G(Σ) for the mapping class
group of a G-framed manifold Σ . For instance, if Σ is a closed oriented surface, then
Γ SO(2)(Σ) is the mapping class group of isotopy classes of oriented diffeomorphisms
one encounters in Teichmüller theory. If Σ is a closed oriented surface endowed with
a spin structure, i.e., with a lift of the structure group SO(2) of the tangent bundle to

the double cover SO(2)
2:1−→ SO(2), then Γ Spin(Σ) is the spin-framed mapping class

group of Σ considered in [31].

4. Topological Quantum Field Theories

In this section we introduce the notion of a topological quantum field theory with moduli
level m.

4.1. TQFTs with moduli level. Since both Cob∞
k (n) and r -Vect are symmetric monoidal

∞-categories, it is meaningful to consider symmetric monoidal functors between them.
This leads us to the main definition in the present work.
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Definition 3. An n-dimensional TQFT extended down to codimension k with moduli
level m is a symmetric monoidal functor

Z : Cob∞
k (n) → (m + k)-Vect. (13)

Remark 5. One main feature of r -Vect, whichever realisation of r -vector spaces one
considers, is that Ω(r -Vect) ∼= (r − 1)-Vect. This, together with the equivalence
ΩCob∞

k (n) ∼= Cob∞
k−1(n), implies that by looping an n-dimensional TQFT extended

down to codimension k we obtain an n-dimensional TQFT extended down to codimen-
sion k − 1 with the same moduli level:

ΩZ : Cob∞
k−1(n) → (m + k − 1)-Vect. (14)

On the other hand, pulling back along the inclusion Cob∞
k−1(n − 1) ↪→ Cob∞

k (n) one
can restrict an n-dimensional TQFT extended down to codimension k with moduli level
m to a (n − 1)-dimensional TQFT extended down to codimension k − 1 with moduli
level m + 1,

Z
∣
∣
k−1 : Cob∞

k−1(n − 1) → (m + k)-Vect. (15)

We will refer to Z
∣
∣
k−1 as the (n − 1)-dimensional truncation of Z .

The terminology used in Definition 3 is due to the fact that a TQFT of moduli level
greater than 0 produces in general more refined manifold invariants than an ordinary
TQFT, namely it can detect the moduli space of diffeomorphisms. As we will illustrate
in the following examples, from a TQFT of moduli level k we can obtain in specific
situations the notion of ordinary and extended TQFTs.

Example 5. An n-dimensional TQFT extended down to codimension 1withmoduli level
0 is a TQFT in the sense of Atiyah and Segal [4,44]. Namely, since 1-Vect is 1-discrete,
a symmetric monoidal functor Z : Cob∞

1 (n) → 1-Vect factors through the category
Cob(n) of n-dimensional cobordism π≤1Cob∞

1 (n); see Remark 3. It is interesting to
notice that, even if one does not a priori imposes any finite dimensionality condition on
the objects in 1-Vect, i.e., if one takes 1-Vect to be the category of all vector spaces over
some fixed field K, then, as an almost immediate corollary of the definition, the vector
space Z(M) that an Atiyah n-dimensional TQFT assigns to a closed n − 1-manifold M
must be finite dimensional, see [5,30].

Example 6. Similarly, an n-dimensional TQFT extended down to codimension 2 with
moduli level 0 is equivalently a symmetric monoidal 2-functor

Z : Cob2(n) → 2-Vect (16)

where Cob2(n) = π≤2Cob∞
2 (n) is the so-called 2-category of extended cobordism.

Its objects are (n − 2)-dimensional closed manifolds, its 1-morphisms are (n − 1)-
dimensional cobordisms, and its 2-morphisms are diffeomorphism classes of
n-dimensional cobordisms. Such a monoidal functor is sometimes called a (2-tier) ex-
tended n-dimensional TQFT, see [24,38]. Notice that applying the loop construction
to an extended TQFT one obtains an n-dimensional TQFT in the sense of Atiyah and
Segal.

Remark 6. 2-tier extended TQFTs have been the subject of great investigation, in par-
ticular in 3-dimension. Indeed, historically it was 3-dimensional Chern–Simons theory
which motivated the notion of an extended field theory. Particularly relevant are the ex-
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tended 3d TQFTs known as of Reshetikhin–Turaev type [40] obtained by the algebraic
data encoded in a modular tensor category, and those of Turaev–Viro type [47], which
are constructed from a spherical fusion category.2

Example 7. The categorified field theories in [13] are an example of topological quantum
field theories extended down to codimension 2 with moduli level 1.

4.2. Fully extended TQFTs. It is easy to see that a 1-dimensional TQFT in the sense of
Atiyah and Segal [4,44] is completely determined by the vector space V + it assigns to
the oriented point pt+. Moreover, the category of 1-dimensional Atiyah-Segal TQFTs,
i.e. the category

Fun⊗(Cob∞
1 (1), 1-Vect) (17)

turns out to be equivalent to the groupoid obtained from the category of finite dimensional
vector spaces by discarding all the noninvertible morphisms. This can be seen as fol-
lows. Given amonoidal natural transformationϕ : Z1 → Z2 between two 1-dimensional
Atiyah-Segal TQFTs, then we have a linear morphism ϕ(pt+) : V +

1 → V +
2 . The compat-

ibility of ϕ with the evaluation and coevaluation morphisms forces V +
1 and V +

2 to have
the same dimension, and ϕ(pt+) to be a linear isomorphism. By the same argument one
can show that n-dimensional Atiyah-Segal TQFTs as well form a groupoid. See [18] for
details.

The rigidity of the 1-dimensional example illustrated above comes from the fact that
the involved TQFT is amoduli level 0 fully extended TQFT. Indeed, these TQFTs encode
so much information that they can be completely classified. This is indeed the content
of the cobordism hypothesis, which can be stated as follows.3

Theorem 1 (Lurie–Hopkins). A moduli level 0 fully extended n-dimensional framed
TQFT is completely determined by a fully dualizable n-vector space. More precisely,
let (n-Vect)fd be the full subcategory of n-Vect of fully dualizable objects, and let
(n-Vect)(∞,0)

fd be the underlying (∞, 0)-groupoid, i.e., the (∞, 0)-groupoid obtained
from (n-Vect)fd by discarding all the non-invertible morphisms. Then there is an equiv-
alence of ∞-categories

Fun⊗(Bord f r (n), n-Vect) 
 (n-Vect)(∞,0)
fd (18)

induced by the evaluation functor Z → Z(pt+). More generally, if G → O(n) is a
reduction of structure group for n-dimensional manifolds, then there is a natural action
of G on (n-Vect)fd and Z → Z(pt+) induces an equivalence

Fun⊗(BordG(n), n-Vect) 
 (n-Vect)G (∞,0)
fd (19)

where (n-Vect)Gfd denotes the full subcategory on the homotopy fixed points for the
induced G-action on (n-Vect)fd.

2 In general, the Turaev–Viro construction produces oriented theories, while Reshetikhin–Turaev theories
require a framing to be defined.

3 Here we are formulating the cobordism hypothesis for TQFTs with target higher vector spaces; one can
give a more general formulation with target an arbitrary (∞, n)-symmetric monoidal category, see [35].
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Remark 7. The G-action on (n-Vect)(∞,0)
fd in Theorem 1 is obtained as follows. First,

notice that O(n) acts on the n-framings of a k-dimensional manifold M , and hence it
gives an action on Bord f r (n). Consequently, O(n) acts on Fun⊗(Bord f r (n), n-Vect).
By the equivalence in Eq. (18), we obtain an induced action of O(n) on (n-Vect)(∞,0)

fd
and so, for any homomorphism G → O(n), we have a corresponding G-action on
(n-Vect)(∞,0)

fd . The equivalence in Eq. (19) is then obtained as a consequence of the
equivalence between Fun⊗(Bord f r (n), n-Vect)G and Fun⊗(BordG(n), n-Vect).

Example 8. A fully extended 2-dimensional oriented TQFT Z is the datum of a semisim-
ple Frobenius algebra A. To the oriented point pt+ it is assigned the linear categoryModA
of finite dimensional right A-modules, while the closed oriented 1-manifold S1 is sent to
the center of A, which is a commutative Frobenius algebra. See [42] for details. This is
consistent with what one should have expected: the looped TQFTΩZ is a 2-dimensional
Atiyah-Segal TQFT, and these are equivalent to the category of commutative Frobenius
algebras; see [30]. Note, however, that not every 2-dimensional Atiyah-Segal TQFT
is obtained a the looping of a fully extended 2-dimensional TQFT, as a commutative
Frobenius algebra need not to be semisimple.

Example 9. As a particular case of Example 8, one can show that to any finite group G is
associated an extended 2-dimensional TQFT ZG , mapping pt+ to the category of finite
dimensional representations of G, and S1 to the algebra K[G//G] of class functions on
G. For a review, see [34].

The cobordism hypothesis tells us that the ∞-category of fully extended n-dimensional
TQFTs of moduli level 0 constitutes an ∞-groupoid. This is in general no longer true
when the moduli level is higher than 0. In particular, this means that if Z1 and Z2 are
two TQFTs with moduli level greater than 0, it is possible to have nontrivial (i.e., non-
invertible) morphisms between Z1 and Z2, as in Example 10 below. This possibility will
be particularly relevant in the forthcoming sections.

Remark 8. A useful mechanism to produce fully extended n-dimensional TQFTs of
moduli level 1 is to start from a fully extended (n + 1)-dimensional TQFT of moduli
level 0 and consider a truncation, as in Remark 5. If Z1 and Z2 are moduli level 0 fully
extended (n + 1)-dimensional TQFTs and

η : Z1
∣
∣
n → Z2

∣
∣
n (20)

is a morphism between their n-dimensional truncations, then, due to the cobordism
hypothesis, η will not in general lift to a morphism between Z1 and Z2. At the level
of fully extended (n + 1)-dimensional TQFTs, the morphism η can be considered as a
codimension 1 defect, also known as a domain wall.

Example 10. Let 1 : Bordor (2) → 2-Vect be the trivial extended 2-dimensional oriented
TQFT,which assigns to the oriented point the linear category of finite dimensional vector
spaces, to S1 the vector space K, and to closed 2-manifolds the element 1 in K. Let ZG
be the 2-tier extended 2-dimensional oriented TQFT associated with a finite group G,
see Example 9. Then, a morphism ρ : 1∣∣1 → ZG

∣
∣
1 is the datum of a finite dimensional

representation ρ of G, and in the fully extended 2-dimensional TQFT “with defects”
lifting it, the representation ρ becomes a domain wall and the cylinder
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1 ρ G

corresponds to the character of ρ. The cylinder equipped with a circle defect depicted
above appears in the literature with the name of transmission functor, and plays an
important role in the study of symmetries of topological quantum field theories [21].

Since from the literaturewe are not aware of the any characterization of fully extended
TQFTs with moduli level greater than 0, we conclude this section with a conjecture.

Conjecture 1 (Cobordism hypothesis for TQFTs with moduli level m). For any m ≥ 0
there is an equivalence of ∞-categories

Fun⊗(BordG(n), (m + n)-Vect) 
 ((m + n)-Vect)G (∞,m)
fd (21)

induced by the evaluation functor Z → Z(pt+).

In the above conjecture ((m+n)-Vect)G (∞,m)
fd denotes the (∞,m) groupoid obtained

from ((m + n)-Vect)Gfd by discarding all non-invertible k-morphisms with k > m.

Example 11. As a supporting evidence for the above conjecture, let us expand Example
10 above. In the same notations as in Example 10, we have seen that any finite dimen-
sional representation ρ of G gives rise to a 1-morphism Fρ between the moduli level 1
1-dimensional TQFTs 1

∣
∣
1 and ZG

∣
∣
1. From conjecture, we should expect that amorphism

of representations f : ρ1 → ρ2 induces a 2-morphism Fρ1 → Fρ2 if and only if f is an
isomorphism. This is actually true: looking at the data associated with the 1-dimensional
manifold S1, we see that Fρ1 → Fρ2 induces a morphism inK[G//G] between the char-
acter of ρ1 and the character of ρ2. But since the only morphisms in the vector space
K[G//G] (seen as a 0-category) are identities, this means that the representations ρ1
and ρ2 have the same character, and therefore they are isomorphic.

5. Anomalies in Topological Quantum Field Theories

We consider now a particular type of TQFT, called invertible, which will be relevant in
the description of anomalies we present later.

5.1. Invertible TQFTs. To be able to define invertible TQFTs, we first need to introduce
the following

Definition 4. The Picard ∞-groupoid Pic(n-Vect) is defined as the ∞-category with
objects given by the invertible objects in n-Vect, and k-morphisms given by the invertible
k-morphisms for any k.

Notice that thePicard∞-groupoidPic(n-Vect) is a symmetricmonoidal (∞, n)-subcategory
of n-Vect. Moreover, Definition 4 can be extended to any symmetric monoidal (∞, n)-
category C.
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Example 12. The Picard groupoid Pic(0-Vect) is the group K
∗ of invertible elements of

the fieldK, and identities asmorphisms. The Picard groupoid Pic(1-Vect) is the groupoid
with objects given by complex vector spaces of dimension 1, 1-morphisms given by in-
vertible linear maps, and identities for k-morphisms, for k > 1. The Picard 2-groupoid
Pic(2-Vect) can be realized as the 2-groupoid with objects given by Vect-module cate-
gories of rank 1, 1-morphisms given by invertible module functors, 2-morphisms given
by invertible module natural transformation, and identities for higher k-morphisms. See
[14].

An invertible TQFT is essentially an ∞-functor assigning objects to invertible objects,
and morphisms to invertible morphisms. More precisely

Definition 5. An n-dimensional Topological Quantum Field Theory extended to codi-
mension k and with moduli level m

Z : Cob∞
k (n) → (m + k)-Vect (22)

is said to be invertible iff it factors as

Cob∞
k (n)

��������������
Z �� (m + k)-Vect

Pic((m + k)-Vect)

�� (23)

From every symmetric monoidal (∞, n)-category C one obtains a symmetric monoidal
(∞, n + 1)-category BC by taking the ∞-category with a single object, and with C
as the ∞-category of morphisms. It is immediate to see that BPic(n-Vect) is naturally
identified with the full subcategory of Pic((n+1)-Vect) on the tensor unit of (n+1)-Vect.
This gives a natural embedding

BPic(n-Vect) ↪→ Pic((n + 1)-Vect). (24)

This observation leads us to the following

Definition 6. An invertible TQFT with moduli level m

Z : Cob∞
k (n) → Pic((m + k)-Vect) ↪→ (m + k)-Vect (25)

is said to be semitrivialized if it is given a factorization of Z through BPic((m + k −
1)-Vect).

Remark 9. Form + k = 1, 2 the inclusion BPic((m + k−1)-Vect) ↪→ Pic((m + k)-Vect)
is an equivalence of (m +k)-groupoids. Therefore, an invertible TQFT with moduli level
m can always be (non canonically) semitrivialized as soon as m + k ≤ 2. It is presently
not clear whether this result holds true for m + k > 2.

Remark 10. An important aspect of invertible TQFTs is that they can be described as
maps of spectra. Namely, an invertible TQFT factorizes through the “groupoid ∞-
completion” |Cob∞

k (n)|, which can be proven to be a spectrum in low dimensions. See
[16,17] for details.

We will not push in this direction in the present article.
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5.2. Anomalies. Invertible TQFTs of moduli level 1 will be particularly relevant to the
present work: they will indeed describe anomalies.

Definition 7. An n-dimensional anomaly is an invertible TQFT of moduli level 1

W : Cob∞
k (n) → Pic((k + 1)-Vect) ↪→ (k + 1)-Vect. (26)

Remark 11. A natural way of producing an n-dimensional anomaly is by truncating a
(n + 1)-dimensional TQFT with moduli level 0, i.e., by considering the composition

Cob∞
k (n) ↪→ Cob∞

k+1(n + 1) → Pic((k + 1)-Vect) ↪→ (k + 1)-Vect. (27)

Example 13. Let us make explicit the data of a semitirivialized n-dimensional anomaly
for k = 1. By definition, this is a symmetric monoidal functor

W : Cob∞
1 (n) → BPic(1-Vect) ↪→ Pic(2-Vect) ↪→ 2-Vect. (28)

Therefore, to each n-dimensional cobordism M a complex lineWM is assigned, together
with an isomorphismWM◦M ′ 
 WM⊗WM ′ , wheneverM◦M ′ exists. This isomorphism,
which we denote with ψMM ′ , is part of the structure of W , and hence has to obey the
natural coherence conditions. In particular, to the trivial cobordismΣ×[0, 1] is assigned
the complex vector space C.

Remark 12. Recall from Remark 4 that BΓ ∞(Σ) denotes the ∞-groupoid associated
to Diff(Σ),4 namely BΓ ∞(Σ) is the connected component of Σ in Cob∞

0 (n − 1). Let
W be as in Example 13. By the mapping cylinder construction, we have the ∞-functor

BΓ ∞(Σ) ↪→ Cob∞
0 (n − 1) ↪→ Cob∞

1 (n) −→ BPic(1-Vect) (29)

where the last arrow is given by the factorisation of W through BPic(1-Vect). In the
terminology of Sect. 6, W gives rise to a 2-character for Γ ∞(Σ).

We can now introduce the definition of anomalous TQFTs with given anomalyW . These
are called W -twisted field theories in [45] and relative field theories in [24].

Definition 8. LetW : Cob∞
k (n) → Pic((k+1)-Vect) ↪→ (k+1)-Vect be ann-dimensional

anomaly. An anomalous n-dimensional extended TQFT with anomalyW is a morphism
of n-dimensional TQFTs with moduli level 1

ZW : 1 → W, (30)

where 1 : Cob∞
k (n) → (k + 1)-Vect is the trivial TQFT mapping all objects to the

monoidal unit and all morphisms to identities.

Lemma 4. Let W be the trivial n-dimensional anomaly, i.e., let W = 1. Then an n-
dimensional extended anomalous TQFT with anomaly W is equivalent to an ordinary
n-dimensional extended TQFT.

Proof. Immediate from Lemma 2.

4 Here we are omitting the explicit reference to the framing G → O(n): the manifold Σ here is (as always
in this article) endowed with a G-framing of its stabilised tangent bundle, and Diff(Σ) denotes the group of
G-framing preserving diffeomorphisms of Σ .
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Remark 13. Strictly speaking, we have defined above a TQFT with incoming anomaly,
and one could also consider outgoing anomalies by taking morphismsW → 1, see, e.g.,
[24]. Although this distinction is relevant, e.g., for oriented theories, where one can also
have both kinds of anomalies at the same time, we will not elaborate on this here.

To get the flavour of these TQFTs with anomaly, let us spell out the data of an n-
dimensional TQFT with semitrivialized anomaly in the k = 1 case. As expected, we
obtain a structure resembling an n-dimensional TQFT a lá Atiyah-Segal, but with a
“twisting” coming from the anomaly W . Namely, if

W : Cob∞
1 (n) → BPic(1-Vect) ↪→ Pic(2-Vect) ↪→ 2-Vect (31)

is a semitrivialized anomaly, then a morphism ZW : 1 → W consists of the following
collection of data:

(a) To each closed (n − 1)-dimensional manifold Σ it is assigned a vector space VΣ ,
with V∅ 
 K and with functorial isomorphisms VΣ�Σ ′ 
 VΣ ⊗ VΣ ′ ;

(b) To each cobordism M between Σ and Σ ′ it is assigned a linear map ϕM : WM ⊗
VΣ → VΣ ′ ; for M the trivial cobordism, the corresponding linear map is the natural
isomorphism ϕΣ×[0,1] : K ⊗ VΣ → VΣ .

Moreover, these data satisfy the following compatibilities:

(i) Let fMM ′ : M → M ′ be a diffeomorphism fixing the boundaries between two
cobordisms M and M ′ between Σ and Σ ′. Then the following diagram commutes:

WM ⊗ VΣ

ϕM ��

fMM ′∗⊗id
��

VΣ ′

WM ′ ⊗ VΣ

ϕM ′

������������

(32)

where fMM ′∗ : WM → WM ′ denotes the isomorphism induced by fMM ′ .
(ii) For any cobordismM betweenΣ andΣ ′, andM ′ betweenΣ ′ andΣ ′′, the following

diagram commutes

WM ′ ⊗ WM ⊗ VΣ
id⊗ϕM ��

�ψM ′M⊗id
��

WM ′ ⊗ VΣ ′

ϕM ′
��

WM ′◦M ⊗ VΣ

ϕM ′◦M �� VΣ ′′

(33)

In general, an anomalous TQFT as defined above will give rise to projective rep-
resentations of diffeomorphsims of closed manifolds. In order to give a precise
statement, in the following section we will take a detour into projective representa-
tions of ∞-groups as homotopy fixed points of higher characters.

6. n-Characters and Projective Representations

In this section we will introduce the notion of an n-character for an ∞-group (e.g., the
Poincaré ∞-groupoid π≤∞(G top) of a topological group G top), and its homotopy fixed
points. This is a natural higher generalisation of the notion of a C

∗-group character.
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Hence, as a warm up, we will first discuss the case of a discrete group G, and show how
this recovers the category of (finite dimensional) projective representations of G. This
is well known in geometric representation theory, but since we are not able to point the
reader to a specific treatment in the literature, we will provide the necessary amount of
detail here.

6.1. Discrete groups. Let G be a (discrete) group, and let BG denote the 1-object
groupoid with G as group of morphisms, regarded as an ∞-groupoid with only identity
k-morphisms for k > 1.

Definition 9. A 2-character for G with values in Vect is a 2-functor

ρ : BG → BPic(Vect) (34)

Explicitly, a 2-character ρ consists of a family of complex linesW ρ
g , one for each g ∈ G,

and isomorphisms

ψ
ρ
g,h : W ρ

g ⊗ W ρ
h


−→ W ρ
gh (35)

satisfying the associativity condition

ψ
ρ
gh, j ◦ (ψ

ρ
g,h ⊗ id) = ψ

ρ
g,h j ◦ (id ⊗ ψ

ρ
h, j ) (36)

for any g, h, j ∈ G. When no confusion is possible we will simply write Wg for W ρ
g

and ψg,h for ψ
ρ
g,h .

For a given group G, 2-characters form a category, given by the groupoid [BG,

BPic(Vect)] of functors between BG and BPic(Vect), and their natural transforma-
tions. Explicitly, a morphism ρ → ρ̃ is a collection of isomorphisms of complex lines
ξg : Wg

∼−→ W̃g such that

ψg,h ◦ (ξg ⊗ ξh) = ξgh ◦ ψg,h,

for any g, h ∈ G.
The assignment W → W ⊗ (−) induces an equivalence of groupoids

Pic(Vect) 
 Aut(Vect), (37)

where Aut(Vect) denotes the groupoid of linear auto-equivalences of Vect, i.e. of linear
invertible functors from Vect to itself. As a consequence, a 2-character defines an action
of G by functors on the linear category Vect. As for any action of a group, we can
investigate the structure of its fixed points. Since we are in a categorical setting, though,
we can ask that points are fixed at most up to isomorphisms. This motivates the following

Definition 10. Let ρ = {Wg;ψg,h} be a 2-character for a (discrete) group G. A ho-
motopy fixed point for ρ is given by an object V ∈ Vect and a family {ϕg}g∈G of
isomorphisms

ϕg : Wg ⊗ V

−→ V (38)

satisfying the compatibility condition

ϕgh ◦ (ψg,h ⊗ id) = ϕg ◦ (id ⊗ ϕh) (39)
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Remark 14. A convenient way to encapsulate the data in Definition 10 is the following.
By using the equivalence (37), a 2-character ρ induces a 2-functor W : BG → 2-Vect,
which assigns to the single object in BG the category Vect.5 If we denote by 1 the trivial
2-functor from BG to 2-Vect, we have then that a homotopy fixed point is equivalently
a morphism, i.e. a natural transformation of 2-functors, 1 → W .

Remark 15. Homotopy fixed points for a given 2-character ρ form a category in a natural
way, which we denote with Vectρ . It is immediate to see that, up to equivalence, Vectρ

depends only on the isomorphism class of ρ.

In the following, we will show that 2-characters for a group G are related to group
2-cocyles forG, and that homotopy fixed points are related to projective representations.

Recall that to a groupG we can assign its groupoid of group 2-cocycles with values in
K

∗, which we denote by Z2
grp(G; K

∗). This is, essentially by definition, the 2-groupoid
[BG, B2

K
∗] of 2-functors from BG to B2

K
∗. Since B2

K
∗ is the simplicial set with

a single 0-simplex, a single 1-simplex, 2-simplices indexed by elements in K
∗, and

3-simplices corresponding to those configurations of 2-simplices the indices of whose
boundary faces satisfy the 2-cocycle condition, a 2-functor F : BG → B2

K
∗ is precisely

a group 2-cocycle on G with coefficients in K
∗.

The equivalence BK
∗ 
−→ Pic(1-Vect) induces an equivalence B2

K
∗ 
−→ BPic(1-Vect),

and so an equivalence

T : Z2
grp(G; K

∗) 
−→ [BG, B(Pic(1-Vect))] (40)

for any finite group G. In particular, every 2-cocycle α naturally induces (and is actually
equivalent to) a 2-character T (α). Note thatWT (α)

g = K for any g ∈ G. The morphisms

ψ
T (α)
g,h : WT (α)

g ⊗ WT (α)
h


−→ WT (α)
gh are given by

WT (α)
g ⊗ WT (α)

h = K ⊗ K ∼= K
α(g,h)−−−→ K = WT (α)

gh . (41)

Recall that a projective representation for a group G with 2-cocycle α is given by a
vector space V , and a family of isomorphisms

ϕα
g : V 
−→ V, ∀g ∈ G (42)

satisfying the condition

ϕα
gh = α(g, h) ϕα

g ◦ ϕα
h , ∀g, h ∈ G (43)

Projective representations for a given 2-cocycle α form naturally a category, which we
denote with Repα(G).

Given any projective representation (V, ϕα) with 2-cocycle α, the vector space V is
naturally a homotopy fixed point for T (α): consider the family of isomorphisms

ϕT (α)
g : WT (α)

g ⊗ V = K ⊗ V ∼= V
ϕα
g−→ V, ∀g ∈ G. (44)

Then condition (43) assures that the family of isomorphisms {ϕT (α)
g } realises V as a

homotopyfixedpoint for T (α). It is immediate to check that this construction is functorial
and therefore defines a “realisation as homotopy fixed point” functor Hα : Repα(G) →
VectT (α), for any 2-cocycle α.

5 In other words, W is a 2-representation of G of rank 1.
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Lemma 5. The functor Hα : Repα(G) → VectT (α) is an equivalence of categories.

Proof. It is immediate to see that Hα is faithful and full. To see that it is essentially
surjective, take a homotopy fixed point (V, ϕ) for T (α), and define ϕα as

ϕα
g : V ∼= K ⊗ V = WT (α)

g ⊗ V
ϕg−→ V . (45)

Then the compatibility condition (39) ensures then that (V, ϕα) is a projective represen-
tation with 2-cocycle α, with Hα(V, ϕα) 
 (V, ϕ).

6.2. 2-characters for ∞-groups. In this subsection we will see how the notion of a 2-
character for a finite group immediately generalises to the notion of (n + 1)-character
for an ∞-group (i.e., for a monoidal ∞-groupoid whose objects are invertible for the
monoidal structure) G, for any n ≥ 0.

Since an ∞-group G is in particular a monoidal ∞-category, it has a classifying
monoidal ∞-category BG. The fact that G is not just any monoidal ∞-category but an
∞-group can then be expressed by saying that BG is a one-object ∞-groupoid. The
∞-group structure on G induces a (discrete) group structure on the set π0(G) of the
isomorphism classes of objects of G, and one has a natural equivalence of groupoids
Bπ0(G) ∼= π≤1BG.

Example 14. The basic example of an ∞-group is the fundamental ∞-groupoid of a
topological group G top. Namely, since G top is a group, the ∞-groupoid π≤∞(G top)

has a natural monoidal structure for which all the objects are invertible, given by the
product in G top. Moreover, one has π0(π≤∞(G top)) = π0(G top), the (discrete) group of
(path-)connected components of the topological group G top.

Example 15. A second fundamental example of an ∞-group is the ∞-group Γ ∞(Σ)

of diffeomorphisms of a smooth manifold Σ . Here the objects are the diffeomorphisms
of Σ , 1-morphisms are isotopies between diffeomorphism, 2-morphism are isotopies
between isotopies, and so on. For oriented manifolds one can analogously consider the
∞-group of oriented diffeomorphisms, and more generally for G-framed manifolds
one can consider the ∞-group of G-framed diffeomorphisms. The π0 of the ∞-group
Γ ∞(Σ) is the mapping class group Γ (Σ) of the (G-framed) manifold Σ .

Definition 11. Let G be an ∞-group. A n + 1-character for G is a ∞-functor

ρ : BG → B(Pic(n-Vect)) (46)

The definition given above is very flexible and compact, and can be easily generalised
by taking an arbitrary symmetric monoidal (∞, n)-category in place of n-Vect.

Remark 16. A 2-character for an ∞-group contains (in general) more information than
a 2-character for a discrete group (which can be seen as a very particular case of an
∞-group). Namely, for G an ∞-group, a 2-character ρ is given by an assignment to
each object g ∈ G of a complex line Wg , of a family ψg,h of isomorphisms

ψg,h : Wg ⊗ Wh
∼−→ Wgh, ∀g, h ∈ G (47)

and of isomorphisms
ψ f : Wg → Wh (48)
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for any path (i.e., 1-morphism) f connecting g to h. The above isomorphisms must
obey coherence conditions which encode the fact that ρ is an ∞-functor. In particular,
the isomorphism ψ f depends only on the isomorphism class of the 1-morphism f . In
the particular case of a discrete group, the only paths in G are the identities and one is
reduced to Definition 9.

Example 16. LetGLie be a Lie group, and let L be amultiplicative line bundle overGLie,
equipped with a compatible flat connection ∇. From L one obtains a 2-character ρ for
π≤∞(GLie) as follows: to each g in GLie, one assigns the vector space given by the fiber
Lg , and for each path γ connecting g and h one takes the isomorphism ψγ : Lg → Lh
induced by the connection via parallel transport (this depends only the homotopy class
of γ , since ∇ is flat). Finally, the fact that L is multiplicative and the compatibility of ∇
with the multiplicative structure imply that this assignment does define a 2-character.

For any n, the (n + 1)-group Pic(n-Vect) acts (n + 1)-linearly on n-Vect. This means
that any (n+1)-character ρ : BG → BPic(n-Vect) can naturally be seen as an∞-functor
W : BG → (n + 1)-Vect, mapping the unique object of BG to n-Vect. We will denote
by 1 : BG → (n + 1)-Vect the trivial ∞-functor, mapping the unique object of BG to
the monoidal unit of (n+1)-Vect (i.e., to n-Vect), and all morphisms in BG to identities.

Having introduced this notation, we can give the following definition of homotopy
fixed point for an (n +1)-character, generalizing the definition of homotopy fixed points
for a 2-character of a discrete group seen above.

Definition 12. Let ρ be an (n + 1)-character for an ∞-group G, and let W : BG →
(n+1)-Vect be the corresponding∞-functor. A homotopy fixed point forρ is amorphism
of ∞-functors 1 → W .

Homotopy fixed points for a (n +1)-character ρ form naturally an n-category, which we
denote by n-Vectρ .

Remark 17. Since a 2-character for a ∞-group contains more information than a 2-
character for a discrete group (see Remark 16), being a homotopy fixed point is a more
restrictive condition (in general) in the ∞-group case. Namely, with respect to the com-
patibility conditions in Definition 10, one has in addition that the following diagram

Wg ⊗ V
ϕg ��

ψ f ⊗id ������������ V

Wh ⊗ V

ϕh

�� (49)

has to commute, for any two objects g and h in G and any 1-morphism f : g → h
between them.

Remark 18. Homotopy fixed points for a 2-character for a topological group are a special
case of the following construction. Let X be a ∞-groupoid, and let L be a ∞-functor
from X to B(Pic(1-Vect)). Amodule for L is given by an∞-functor E : X → Vect, and
isomorphisms L f ⊗ Ex 
 Ey for any 1-morphism f : x → y, where L f is the complex
line assigned to f , and Ex is the vector space assigned to x by E . Higher morphisms
must also be taken into account, and together with the above family of isomorphisms
they must obey natural coherence conditions. The case of a homotopy fixed point for a
2-character for a topological group G corresponds to X = BG. Another geometrically



Boundary TQFTs and Projective Modular Functors 1063

interesting case iswhen X is the groupoidY [2] ⇒ Y for a surjective submersionY → M :
in this case an∞-functor L : X → B(Pic(1-Vect)) is given by a bundle gerbe with a flat
connection over X , while a module E over L is given by a (flat) gerbe module over L .

IfG is a (discrete) group andρ is a 1-character, i.e., a group homomorphismG → K
∗,

a homotopy fixed point is then nothing but a fixed point for the natural linear action of
G on K via ρ. Notice how the existence of a nonzero fixed point imposes a very strong
constraint on the character ρ in this case: if there exists a nonzero fixed point, then ρ is
the trivial character.

An analogous phenomenon happens for (n + 1)-characters of ∞-groups, for any
n ≥ 0. Here we will investigate in detail the case of 2-characters, due to its relevance to
anomalous TQFTs. To do this, it is convenient to introduce the following terminology:
we say that a 2-character ρ : BG → BPic(1-Vect) has trivial holonomy if it factors
through the natural projection BG → Bπ0(G). The origin of this terminology is clear
from Example 16. There, the 2-character ρ factors through Bπ≤∞(GLie) → Bπ0(GLie)

precisely when the connection ∇ has trivial holonomy. We have then the following

Lemma 6. Let V be a non-zero homotopy fixed point for a 2-character ρ. Then ρ has
trivial holonomy.

Proof. Since V is a homotopy fixed point for ρ, by Remark 17 we have the commutative
diagram (49) for any 2-morphism f : g → h in BG (i.e., for any 1-morphism f : g → h
in G). Since ϕg and ϕh are isomorphisms, we have

ψ f ⊗ id = ϕ−1
h ◦ ϕg, (50)

and so ψ f ⊗ id is independent of f . Since V is nonzero, this implies that ψ f is actu-
ally independent of f . This means that all the complex lines Wg with g ranging over
a connected component (i.e., an isomorphism class of objects) of G are canonically
isomorphic to each other, and so ρ factors through Bπ0(G).

Summing up the results in this section, we have the following

Proposition 1. Let ρ be a 2-character on an ∞-group G, and let V be a nontrivial
homotopy fixed point for ρ. Then there exist a 2-cocycle αρ on π0(G), unique up to
equivalence, such that V is isomorphic to (the homotopy fixed point realisation of) a
projective representation of π0(G) with 2-cocycle αρ .

Proof. Since ρ has a nontrivial homotopy fixed point, ρ has trivial holonomy by Lemma
6. Therefore, by definition of trivial holonomy, ρ is (equivalent to) a 2-character on the
discrete group π0(G). The statement then follows from Equation (40) and Lemma 5.

6.3. Projective representations from TQFTs. We can finally apply the results on (k +1)-
characters to anomalous TQFTs. Indeed, consider a semitrivialized anomaly W : Cob∞

k
(n) → BPic(k-Vect) ↪→ (k + 1)-Vect, and let ZW be an n-dimensional anomalous
TQFT extended down to codimension k, with anomaly W . Reasoning as in Remark
12, the anomaly W induces, for any closed (oriented) (n − k)-dimensional manifold
Σ , a 2-character ρΣ for the ∞-group of (oriented) diffeomorphisms Γ ∞(Σ), as in the
following diagram
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BΓ ∞(Σ)

ρΣ

		
� � �� Cob∞

0 (n − k) � � �� Cob∞
k (n) ��

W




BPic(k-Vect) �� (k + 1)-Vect

(51)
The k-vector space ZW (Σ) associated by the anomalous TQFT ZW to the (oriented)
(n − k)-dimensional manifold Σ is, by definition, a homotopy fixed point for ρΣ . In
particular, for k = 1, by Proposition 1, the vector space ZW (Σ) associated to an (n−1)-
dimensional manifoldΣ is a projective representation of the mapping class group Γ (Σ)

as soon as ZW (Σ) is nonzero. In other words, for any (n − 1)-dimensional manifold Σ

we obtain a central extension

1 → K
∗ → Γ̃ (Σ) → Γ (Σ) → 1

and a linear representation Γ̃ (Σ) → Aut(ZW (Σ)). This can be neatly described by
noticing that for k = 1 the data for an anomalous TQFTwith anomalyW are a homotopy
commutative diagram of the form

Cob∞
1 (n) ��

W
��

1

��
BPic(Vect) �� 2-Vect

ZW
�� ��

����

.

Such a diagram can be interpreted as the datum of a section ZW of the 2-line bundle L
over Cob∞

1 (n) associated withW . The “graph” of this section is a∞-category C̃ob
∞
1 (n)

over Cob∞
1 (n) whose objects are pairs consisting of an (n − 1)-dimensional manifold

Σ together with the choice of an object in the fibre LΣ . The mapping class group for
such a pair is the K

∗-central extension of Γ (Σ) described above. Notice the striking
similarity with Segal’s description of projective modular functors via central extensions
of the cobordism category [44], with the remarkable difference that anomalies in the
sense of the present article induce K

∗-central extensions whereas in Segal’s extended
cobordism one deals with Z-central extensions.

Remark 19. As we have seen above, having a semitrivialized anomaly W produces pro-
jective representations of the mapping class groups of all closed (n − k)-dimensional
manifolds at once. If one is interested in a single (n − k)-dimensional manifold Σ ,
though, there is no need for a semitrivialization of the anomaly: indeed, one can pro-
duce a projective representation of Γ (Σ) from any anomalous TQFT ZW , as soon as
the invertible (k + 1)-vector space W (Σ) is equivalent to the “trivial” (k + 1)-vector
space k-Vect. As already observed in Remark 9, this is always possible, although non
canonically, for any invertible (k + 1)-vector space, with k = 0, 1. Namely, choosing
an equivalence between W (Σ) and k-Vect amounts to give a homotopy commutative
diagram

BAut(W (Σ))
W (Σ) ��

��

(k + 1)-Vect

BPic(k-Vect)

��������������

Ψ
�
��

�
��

�
,
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where the top horizontal arrow picks the (k +1)-vector spaceW (Σ), while the diagonal
arrows is the canonical embedding of BPic(k-Vect) into (k+1)-Vect, which picks the (k+
1)-vector space k-Vect. The construction of the projective representation of the mapping
class group ofΣ follows from the very same arguments as above: indeed, just notice that
in diagram (51) it is inessential to have the arrow Cob∞

k (n) → BPic(k-Vect) if we are
interested in a single manifold Σ , while at the same time the morphism BΓ ∞(Σ) →
(k + 1)-Vect naturally factors through BAut(W (Σ)). We therefore obtain the following
variant of diagram (51), which induces the same considerations as above:

BΓ∞(Σ)

ρΣ

Cob∞
0 (n − k) Cob∞

k (n)

1

W (k + 1)-Vect

BAut(W (Σ))

W (Σ)

BPic(k-Vect)

Ψ

ZW

∼

(52)

7. Boundary Conditions for TQFTs

7.1. Boundary conditions. The n-dimensional TQFTs defined in Sect. 4 assign diffeo-
morphism invariants to closed n-manifolds. Nevertheless, n-manifolds with boundaries
have also invariants, usually obtained via relative constructions. One possibility to in-
corporate invariants of manifolds with boundaries is to enlarge the cobordism category
with morphisms represented bymanifolds with constrained boundaries. The guiding ex-
ample is given by 2-dimensional open/closed topological field theory [32,33,37], where
the authors enlarge the category Cob1(2) = π≤1Cob∞

1 (2) of 2-dimensional cobordism
by adding to it 1- and 2-dimensional manifolds with part of the boundary declared to
be constrained, meaning that it is not possible to glue along. If we denote by Cob∂

1(2)
this enlarged category, we will have the following 1-manifolds (and disjoint union of)
as objects

and the following 2-manifolds as some of the morphisms
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wherewe denote the constrained boundarywith a dashed red line. Notice that, differently
from [37], we are here using only one type of constrained boundary, whichwe label/color
red. The general case will be discussed in Remark 24 below.

Inspired by the description of Cob∂ (2) sketched above, let us define iteratively a
constrained bordism between two constrained d-dimensional manifolds Σ0 and Σ1
as a (d + 1)-dimensional manifold6 M whose boundary ∂M can be decomposed as
Σ0 ∪ Σ1 ∪ ∂const M , where ∂const M is a cobordism from ∂constΣ0 to ∂constΣ1. Con-
strained cobordisms come with smooth collars around the part of the boundary which is
unconstrained, in order to be able to glue them. With this premise, we can give the fol-
lowing informal definition, a rigorous version of which can be found in [35, Section 4.3].

Definition 13. The symmetric monoidal (∞, n)-category Bord∂ (n) has points as ob-
jects, 1-dimensional constrained bordisms as 1-morphisms, 2-dimensional constrained
bordisms between constrained bordisms as 2-morphisms, and so on until we arrive at
n-dimensional constrained bordisms as n-morphisms, fromwhere higher morphisms are
given by diffeomorphisms fixing the unconstrained boundaries and isotopies between
these (and isotopies between isotopies, and so on).

Remark 20. Exactly asBord(n), alsoBord∂ (n) comes in different flavours corresponding
to the various possibleG-framings of the cobordisms. In this sectionwewill be interested
in the general features of TQFTs with boundary conditions, and in their relation to
anomalous field theories. Hence in what follows, we will always leave the G-marking
unspecified, unless stated otherwise.

Example 17. The following 1-dimensional constrained cobordisms are examples of 1-
morphisms in Bord∂,or (n), for any n ≥ 1.

The one on the left represents a 1-morphism ∅ → pt+, which cannot be realized in
Bord(n). Similarly, the morphism on the right represents a 1-morphism pt+ → ∅, which
is also not present in Bord(n).

In analogy with the notation used in the unconstrained case, we will set

Cob∂,∞
k (n) = Ωn−kBord∂ (n). (53)

With this notation, we have that the category of 2-dimensional constrained cobordism
mentioned above is given by Cob∂

1(2) = π≤1Cob
∂,∞
1 (2). There is a canonical (non full)

embedding Bord(n) ↪→ Bord∂ (n), hence for any k ≥ 0 we have a natural (non full)
embeddings

i : Cob∞
k (n) ↪→ Cob∂,∞

k (n). (54)

This allows us to give the following

6 Here manifold more precisely means “manifold with corners”.
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Definition 14. Let Z : Cob∞
k (n) → (k +m)-Vect be an n-dimensional TQFT with mod-

uli level m. A boundary condition for Z is a symmetric monoidal extension

Cob∂,∞
k (n)

Z̃ �� (k + m)-Vect

Cob∞
k (n)

Z

		������������
i

��
(55)

Remark 21. It is important to notice that boundary conditions for an invertible TQFT
are not required to be invertible. This is reminiscent of the definition of an anomalous
TQFT, where the morphism 1 → W is not required to be an isomorphism.We will come
back to this in Sect. 8.

Example 18. The definition above can be made completely explicit for an Atiyah-Segal
1-dimensional TQFT, i.e., for Z : Cob∞

1 (1) → Vect. Indeed, in the same way as Z

factors through Cob1(1), Z̃ will factor through Cob∂
1(1) = π≤1Cob

∂,∞
1 (1). The objects

of Cob∂ (1) are oriented points, and the morphisms are given by those in Cob(1), and in
addition the following constrained morphisms

and their duals. Therefore, if the 1-dimensionalTQFT Z is givenby thefinite-dimensional
vector space V , then a boundary condition Z̃ for Z is the datum of a pair (v, ϕ), where
v is a vector in V and ϕ is an element in the dual space V ∗. We will call these a left and
a right boundary condition, respectively. In the unoriented situation the two morphisms
above are identified, and a boundary condition reduces to the datum of the vector v,
which also plays the role of a linear functional on V via the symmetric nondegenerate
inner product on V .

What makes the description of the boundary conditions so simple in the example above
is the fact that we are dealing with a fully extended theory. Indeed, one has the following
extension of the cobordism hypothesis to cobordisms with constrained boundaries [35].

Theorem 2 (Lurie–Hopkins). Let Z : Bord f r (n) → n-Vect be a fully extended TQFT
with moduli level 0. Then there is an equivalence

{(Left) boundary conditions for Z} ∼= Homn-Vect((n − 1)-Vect, Z(pt+)) ∼= Z(pt+)
(56)

induced by the evaluation of Z̃ on the decorated interval on the left in Example 17.

This description of (left) boundary conditions is strongly reminiscent of an anomalous
TQFT as in Definition 8. In the following we will see how a TQFT with (left) boundary
conditions naturally induces an anomalous TQFT.

Remark 22. For TQFTswith values in an arbitrary symmetricmonoidal (∞, n)-category
C, one still has that the (∞, n − 1)-category of boundary conditions is equivalent to the
hom-space HomC(1C, Z(pt+)), where 1C is the monoidal unit of C. However in general
this hom-space is not equivalent to Z(pt+).



1068 D. Fiorenza, A. Valentino

Remark 23. An analogue statement is likely to hold for cobordisms with a reduction
G → O(n) of the structure group of n-dimensional manifolds, by suitably taking into
account the homotopy O(n)-action on the homotopyG-fixed point Z(pt+). For instance,
in the oriented situation one has O(n)/SO(n) = Z/2Z, and the full boundary conditions
data consist of a left boundary condition (n − 1)-Vect → Z(pt+) and a right boundary
condition Z(pt+) → (n − 1)-Vect. Yet, for n ≥ 2, every n-vector space V realized as
a linear (n − 1)-category comes naturally equipped with a distinguished inner product
given by the Hom bifunctor

Hom : V op � V → (n − 1)-Vect (57)

With this choice of inner product, left boundary conditions automatically determine right
boundary conditions as in the unoriented case.

Remark 24. One can consider more than a single boundary condition at once, by re-
placing Bord∂ (n) by the larger symmetric monoidal (∞, n)-category Bord∂J (n), where
constrained boundaries are labelled by indices from a set J of colours. An extension Z̃ of
a TQFT Z to Cob∂J ,∞

k (n) is then the assignment of a boundary condition to each colour
j ∈ J , in such a way that the constraints imposed by requiring Z̃ to be a monoidal
symmetric functor are satisfied. One can in particular make the tautological choice
J = objects(BZ ), where BZ denotes the category of boundary conditions for Z . In this
way we recover the open/closed field theory framework as in [32,33,37]. Namely, we
recall from Example 8 that an extended 2-dimensional oriented TQFT Z is the datum of
a semisimple Frobenius algebra A, to be seen as a placeholder for its category of finite
dimensional right modules. Using the Hom functor as an inner product on AMod reduces
boundary conditions to left boundary conditions (see Remark 23). Therefore one has
constrained boundaries decorated by right A-modules, and the boundary condition Z̃
associates with the oriented segment with constrained boundaries

a

b

decorated by the A-modules Ra and Rb the vector space Oab = HomA(Ra, Rb). See
[1] for a treatment of open/closes 2d nonoriented TQFTs.

Remark 25. As an intermediate symmetricmonoidal (∞, k)-category betweenCob∞
k (n)

andCob∂,∞
k (n), one can consider the closed sector Cob∂,∞

k,cl (n), defined as the full (∞, k)-

subcategory generated by Cob∞
k (n) inside Cob∂,∞

k (n). Namely, objects in Cob∂,∞
k,cl (n)

are closed k-manifolds, as in Cob∞
k (n). Notice that in Cob∂,∞

k (n) we allow for more
objects, since one can consider k-manifolds with completely constrained boundary. For
instance, of the two objects in Cob∂,∞

1 (2) depicted at the beginning of this section, only
S1 is an object in the closed sector.

One can therefore also consider closed sector boundary conditions, i.e., extensions
of a TQFT to the closed sector
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Cob∂,∞
k,cl (n)

Z̃cl �� (k + m)-Vect

Cob∞
k (n)

Z

		������������
i

��
(58)

These are expected to be particularly simple in the k = n − 1 case. Indeed, since S1

is the only closed 1-dimensional manifold up to cobordisms, closed sector boundary
conditions for a TQFT Z : Cob∞

n−1(n) → (n−1)-Vect should reduce to a (n−1)-linear
morphism (n − 2)-Vect → Z(S1), i.e., to an object in Z(S1). This is in agreement
with the findings in the literature on extended 3-dimensional TQFTs, where boundary
decorations for a 2-dimensional surface Σ with boundary components are objects in the
modular tensor category the TQFT associates to S1 [5].

8. From Boundary Conditions to Anomalous TQFTs

As mentioned in the previous section, there is a close relation between boundary condi-
tions for invertible TQFTs and anomalous TQFTs. In the present section we will exploit
this relation in detail.

Let Z̃ be a boundary condition for an (n+1)-dimensional invertible TQFT Z extended
up to codimension k + 1 with moduli level 0. In other words, we have the following
commutative diagram

Cob∂,∞
k+1 (n + 1)

Z̃ �� (k + 1)-Vect

Cob∞
k+1(n + 1) Z ��

i

��

Pic((k + 1)-Vect)

�� (59)

As mentioned in Remark 11, the restriction of Z to Cobk(n) ↪→ Cobk+1(n + 1) is an
n-dimensional anomaly, which we will denote WZ .

Let [0, 1] denote the oriented interval [0, 1] with {0} being a constrained component
of the boundary, as in the figure in Example 17, on the left. Then for any m-morphism
Σ in Cobk(n), with k ≥ 0, i.e. for any (n − k + m)-dimensional manifold Σ , possibly
with boundary, the product manifoldΣ ×[0, 1] can be seen as a (m +1)-morphism from
∅ to Σ in Cob∂,∞

k+1 (n + 1):

∅ Σ×[0,1]−−−−−→ Σ, (60)

We can graphically depict the morphism above as follows

Σ × 0

Σ × 1
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Moreover, given an (n − k +m + 1)-cobordism M between Σ and Σ ′, we have that the
coloured manifold M ×[0, 1] induces a cobordism between Σ ×[0, 1] and Σ ′ × [0, 1].

Evaluating Z̃ on Σ ×[0, 1] gives us a (m +1)-morphism in (k +1)-Vect between the
unit (in the correct degree) and Z̃(Σ) = Z(Σ) = WZ (Σ).

Recall that a (k + 1)-morphism in Cobk(n) is a diffeomorphism ϕ : Σ1 → Σ2 of
n-dimensional manifolds fixing the boundaries. By combining it with the identity of
[0, 1], one gets a diffeomorphism of (n + 1)-dimensional manifolds, which realizes a
(k + 2)-morphism in Cob∂,∞

k+1 (n + 1) between the empty set and the mapping cylinder
of ϕ. Applying Z̃ we get a morphism from the unit to Z̃(Mϕ) = Z(Mϕ) = WZ (ϕ).
This pattern continues with no changes to isotopies between diffeomorphisms, isotopies
between isotopies, etc. Hence we have that

Z̃W Z := Z̃(− × [0, 1]) (61)

defines amorphism Z̃W Z : 1 → WZ , i.e. an anomalousTQFT in the senseofDefinition 8.
We can assemble the argument above in the following

Proposition 2. Let Z be a (n + 1)-dimensional invertible TQFT extended down to codi-
mension k + 1 with moduli level 0, and let W Z denote the n + 1-dimensional anomaly
induced by Z. Then any boundary condition Z̃ for Z induces an n-dimensional anom-
alous TQFT Z̃W Z with anomaly W Z .

The above argument shows that we have a “forgetful map”

{boundary conditions on invertible TQFTs} � {anomalous TQFTs} (62)

In general, we do not expect the converse to hold. Namely, an anomalous TQFT with
anomaly W contains too little information to determine a boundary condition Z̃ . Nev-
ertheless, in the case of fully extended TQFTs the situation is rather different.

Remark 26. The procedure of taking “cartesian products” with the constrained inter-
val can be seen as a form of dimensional reduction for manifolds with boundaries. It
is completely analogous to dimensional reduction over S1, which allows to obtain a
n − 1-dimensional extended TQFT from an n-dimensional one, preserving the tiers of
extension.

8.1. Boundary conditions for fully extended TQFTs. For simplicity, in the following we
will consider the framed case. Let Z be a (n + 1)-dimensional fully extended invertible
TQFT, namely an ∞-functor Z : Bord f r (n + 1) → (n + 1)-Vect which factors through
Pic((n + 1)-Vect). As mentioned in Remark 11, from Z we obtain an n-character WZ .
Let ZW Z be an anomalous TQFT with anomaly WZ , namely a morphism 1 → WZ ,
which contains in particular the datum of a 1-morphism

n-Vect → WZ (pt+) = Z(pt+) (63)

By Theorem 2, we have then that ZW induces a boundary condition Z̃ of Z , and an
equivalence

ZW Z 
 Z̃W Z (64)

of 1-morphisms 1 → WZ , where Z̃W Z is the anomalous TQFT as from Proposition 2.
This argument can be assembled in the following
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Theorem 3. Let Z be a fully extended invertible (n + 1)-dimensional TQFT. Any n-
dimensional anomalous TQFT ZW Z with respect to W Z gives rise to a boundary con-
dition Z̃ of Z.

Hence in the fully extended case, an anomalous TQFT with respect to an anomaly
obtained by restriction of a higher dimensional TQFT Z contains enough information
to allow Z to be extended on manifolds with boundaries.

We conclude this section with an observation we find intriguing. In [20] a 4-category
with duals Braid⊗ of braided tensor categories has been introduced, as follows:

– objects are given by braided tensor categories C;
– 1-morphisms between C and D are pairs (A, q), with A a fusion category, and q a

braided functor Cop � D → Z(A), where Z(A) is the Drinfel’d centre of A;
– 2-morphisms are A-B bimodules M ;
– 3-morphisms are bimodule functors;
– 4-morphisms are bimodule natural transformations;

Recently [19], the invertible objects inBraid⊗ have been investigated: they are exactly the
modular tensor categories. They are also fully dualizable. Let then C be a modular tensor
category, and consider the invertible fully extended 4-dimensional TQFT Z induced by
C. Also, let (A, q) be a 1-morphism from Vect (i.e., from the monoidal unit of Braid⊗)
to C, i.e., let q be a braided functor C ∼= Vectop � C → Z(A) for some fusion category
A. By the results above7, to (A, q) there corresponds a boundary condition Z̃ of Z , and
consequently a fully extended 3-dimensional anomalous theory with respect toWZ with
values inΩBraid⊗. We will denote with Z (A,q) this anomalous theory. Notice that if we
apply the loop operator to the morphism Z (A,q) we obtain a 3-dimensional anomalous
TQFT extended up to codimension 2 with values in Ω2Braid⊗ 
 2-Vect.

On the other hand, given a modular tensor category C, the Reshetikhin–Turaev con-
struction also produces an anomalous 3-dimensional TQFT extended up to codimension
2, which we denote by ZRT

C . It is very tempting then to state the following

Conjecture 2. Let C be a modular tensor category. Then, any isomorphism (A, q) be-
tween Vect and C in Braid⊗, i.e., any equivalence q : C → Z(A), induces a natural
equivalence

ZRT
C 
 Ω(Z (A,q)). (65)

The conjecture above is compatible with findings in [22], which studies obstructions to
the existence of boundary conditions for Reshetikhin–Turaev TQFTs.

Remark 27. In Conjecture 2, Reshetikhin–Turaev TQFT is regarded as an anomalous
theory with respect to the 4-dimensional Crane–Yetter theory, i.e. a natural transfor-
mation of (higher) functors, rather than a functor on a central extension of Cobor2 (3).
In other words, we trade the additional structures on 1-, 2-, and 3-manifolds needed to

7 In the main body of the paper we have been considering only n-Vect as a target for a TQFT. The
constructions presented there generalise to an arbitrary symmetric monoidal (∞, n)-category with duals C as
a target, see [35]. More precisely, when C takes the role of n-Vect, then ΩC takes the role of (n− 1)-Vect, and
so on, down to ΩnC taking the role of the base field K. In particular, it is meaningful to have the symmetric
monoidal 4-category Braid⊗ as a target, as we are doing here.
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define Reshetikhin–Turaev TQFT as functors, as for instance in [46,48], with looking
at them as natural transformations.

8.2. Further applications and outlook. An interesting playground to test and apply the
language and results developed in this article is provided by the quantisation of classi-
cal Lagrangian field theories, as in [20,38,39]. In this case the TQFT is obtained via
a linearisation of the (higher) stack of classical fields over ∞-categories of groupoid
correspondences: we expect therefore the anomalous theory to retain some “classical”
properties concerning the anomaly.A particularly amenable situation is given by (higher)
Dijkgraaf–Witten theories: indeed, in this case we expect to reproduce the results ob-
tained in [23] in 3-dimensions, which would provide a purely quantum field theoretic
support to the ansatz therein proposed.

On a closely related topic, we remark that there is a version of the cobordism hypoth-
esis to incorporate defects between fully extended TQFTs. Indeed, a boundary condition
for Z as presented in this article can be regarded as a defect between the trivial the-
ory and Z . One can then investigate morphisms between two arbitrary n-dimensional
TQFTs of moduli level m, with m > 0: we expect the structure involved in this case to
be richer than the case m = 0, where the (∞, n − 1)-category of morphisms forms a
groupoid.
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CENTRAL EXTENSIONS OF MAPPING CLASS GROUPS FROM CHARACTERISTIC

CLASSES
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Abstract. We consider higher extensions of diffeomorphism groups and show how these naturally arise as
the group stacks of automorphisms of manifolds that are equipped with higher degree topological structures,
such as those appearing in topological field theories. Passing to the groups of connected components, we
obtain abelian extensions of mapping class groups and investigate when they are central. As a special case,
we obtain in a natural way the Z-central extension needed for the anomaly cancellation of 3d Chern-Simons
theory.
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1. Introduction

In higher (stacky) geometry, there is a general and fundamental class of higher (stacky) group exten-
sions:The authors would like to thank Oscar Randal-Williams and Chris Schommer-Pries for useful com-
ments” for ψ : Y → B any morphism between higher stacks, the automorphism group stack of Y over B
extends the automorphisms of Y itself by the loop object of the mapping stack [Y,B] based at ψ. This is
not hard to prove [Sc13], but as a general abstract fact it has many non-trivial incarnations. In [FRS13] it
is shown how for B a universal moduli stack for ordinary differential cohomology, these extensions general-
ize the Heisenberg-Kirillov-Kostant-Souriau-extension from prequantum line bundles to higher “prequantum
gerbes” which appear in the local (or “extended”) geometric quantization of higher dimensional field theories.
Here we consider a class of examples at the other extreme: we consider the case in which B is geometrically
discrete (i.e., it is a locally constant ∞-stack), and particularly the case that B is the homotopy type of the
classifying space of the general linear group. In this special case, due to the fact that geometric realization of
smooth ∞-stacks happens to preserve homotopy fibers over geometrically discrete objects [Sc13], the general
extension theorem essentially passes along geometric realization. Hence, where the internal extension theo-
rem gives extensions of smooth diffeomorphism groups by higher homotopy types, after geometric realization
we obtain higher extensions of the homotopy type of diffeomorphism groups, and in particular of mapping
class groups.

A key application where extensions of the mapping class group traditionally play a role is anomaly
cancellation in 3-dimensional topological field theories, e.g., in 3d Chern-Simons theory, see, e.g., [Wi89].
The results presented here naturally generalize this to higher extensions relevant for higher dimensional
topological quantum field theories (TQFTs). More precisely, by functoriality, a 3d TQFT associates to any
connected oriented surface Σ a vector space VΣ which is a linear representation of the oriented mapping
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class group Γor(Σ) of Σ. However, if the 3d theory has an “anomaly”, then the vector space VΣ fails to be a
genuine representation of Γor(Σ), and it rather is only a projective representation. One way to think of this
phenomenon is to look at anomalous theories as relative theories, that intertwine between the trivial theory
and an invertible theory, namely the anomaly. See, e.g. [FT12, FV14]. In particular, for an anomalous
TQFT of the type obtained from modular tensor categories with nontrivial central charge [Tu94, BK01], the
vector space VΣ can be naturally realised as a genuine representation of a Z-central extension

(1) 0 → Z → Γ̂(Σ) → Γ(Σ) → 1

of the mapping class group Γ(Σ). As suggested in Segal’s celebrated paper on conformal field theory [Se04],
these data admit an interpretation as a genuine functor where one replaces 2-dimensional and 3-dimensional
manifolds by suitable “enriched” counterparts, in such a way that the automorphism group of an enriched
connected surface is the relevant Z-central extension of the mapping class group of the underlying surface.
Moreover, the set of (equivalence classes of) extensions of a 3-manifold with prescribed (connected) boundary
behaviour is naturally a Z-torsor. In [Se04] the extension consists in a “rigging” of the 3-manifold, a solution
which is not particularly simple, and which is actually quite ad hoc for the 3-dimensional case. Namely,
riggings are based on the contractibility of Teichmüller spaces, and depend on the properties of the η-invariant
for Riemannian metrics on 3-manifolds with boundary. On the other hand, in [Se04] it is suggested that
simpler variants of this construction should exist, the leitmotiv being that of associating functorially to any
connected surface a space with fundamental group Z. Indeed, there is a well known realization of extended
surfaces as surfaces equipped with a choice of a Lagrangian subspace in their first real cohomology group.
This is the point of view adopted, e.g., in [BK01]. The main problem with this approach is the question of
how to define a corresponding notion for an extended 3-manifold.

In the present work we show how a natural way of defining enrichments of 2-and-3-manifolds, which
are topological (or better homotopical) in nature, and in particular do not rely on special features of the
dimensions 2 and 3. Moreover, they have the advantage of being immediately adapted to a general TQFT
framework. Namely, we consider enriched manifolds as (X, ξ)-framed manifolds in the sense of [Lu09]. In this
way, we in particular recover the fact that the simple and natural notion of p1-structure, i.e. a trivialization
of the first Pontryagin class, provides a very simple realization of Segal’s prescription by showing how it
naturally drops out as a special case of the “higher modularity” encoded in the (∞, n)-category of framed
cobordisms.
Finally, if one is interested in higher dimensional Chern-Simons theories, the notable next case being 7-
dimensional Chern-Simons theory [FSaS12], then the above discussion gives general means for determining
and constructing the relevant higher extensions of diffeomorphism groups of higher dimensional manifolds.
More on this is going to be discussed elsewhere.

The present paper is organised as follows. In section 2 we discuss the ambient homotopy theory H∞

of smooth higher stacks, and we discuss how smooth manifolds and homotopy actions of ∞-groups can be
naturally regarded as objects in its slice ∞-category over the homotopy type BGL(n;R) of the mapping
stack BGL(n;R) of principal GL(n;R)-bundles.
In section 3 we introduce the notion of a ρ-framing (or ρ-structure) over a smooth manifold, and study
extensions of their automorphism ∞-group. We postpone the proof of the extension result to the Appendix.
In section 4 we discuss the particular but important case of ρ-structures arising from the homotopy fibers of
morphisms of ∞-stacks, which leads to Proposition 4.1, the main result of the present paper. In this section
we also consider the case of a manifold with boundaries.
In section 5, we apply the abstract machinery developed in the previous sections to the concrete case of the
mapping class group usually encountered in relation to topological quantum field theories.
The Appendix contains a proof of the extension result in section 4.

Acknowledgements. The authors would like to thank Oscar Randal-Williams and Chris Schommer-Pries
for useful discussions.

2



2. Framed manifolds

2.1. From framed cobordism to (X, ξ)-manifolds. The principal player in Lurie’s formalization and
proof of the cobordism hypothesis [Lu09] are the (∞, n)-categories of framed cobordisms. These framings
come in various flavours, from literal n-framings, i.e., trivialisations of the (stabilized) tangent bundle to
more general and exotic framings, which Lurie calls (X, ξ)-structures. Presumably to keep the note at the
lowest possible technical level, Lurie avoids to say explicitly that he is working in a slice. However, this is
what he is secretely doing, and the slice over BGL(n;R) is the unifying principle governing all the framings in
[Lu09]. Here we make the role played by BGL(n;R) more explicit. This will allow us not only to see Lurie’s
framings from a unified perspective, but also to consider apparently more exotic (but actually completely
natural) framings given by characteristic classes for the orthogonal group.

2.1.1. Homotopies, homotopies, homotopies everywhere. The natural ambient category where all the con-
structions presented in this note take place is an alternative enrichment H∞ of the ∞-topos H of smooth
higher stacks1. We will not go into the technicalities of higher toposes or higher smooth stacks in the present
work: at any point where one might be unsure on what is precisely going on, mumbling several times the
mantra “BG is a smooth stack” will make everything appear suddenly clear. The reader who is skeptical
of the effectiveness of these transcendental methods will find a complete and fully rigorous treatment of
the theory of higher smooth stacks in [Sc13]. Also the first sections of [FScS12] can serve as a friendly
introduction to the subject. Also, a rigorous construction of H∞ is beyond the aims of this note, and will be
presented in detail elsewhere: here, we will content ourself with an informal description, which will suffice
to motivate and justify the construction.
The reason we need to refine H is that H itself is too rigid (or, in other words, the homotopy type of its
hom-spaces is too simple) for our aims. For instance, given two smooth manifolds Σ1 and Σ2, the ∞-groupoid
H(Σ1,Σ2) is 0-truncated, i.e., it is just a set. Namely, H(Σ1,Σ2) is the set of smooth maps from Σ1 and
Σ2 and there are no nontrivial morphisms between smooth maps in H(Σ1,Σ2). In other words, two smooth
maps between Σ1 and Σ2 either are equal or they are different: in this hom-space there’s no such thing as “a
smooth map can be smoothly deformed into another smooth map”, which however is a kind of relation that
geometry naturally suggests. To take it into account, we make the topology (or, even better, the smooth
structure) of Σ1 and Σ2 come into play, and we use it to informally define H∞(Σ1,Σ2) as the ∞-groupoid
whose objects are smooth maps between Σ1 and Σ2, much as for H(Σ1,Σ2), but whose 1-morphism are the
smooth homotopies between smooth maps, and we also have 2-morphisms given by homotopies between ho-
motopies, 3-morphisms given by homotopies between homotopies between homotopies, and so on. A formal
definition is

(2) H∞(Σ1,Σ2) := Π([Σ1,Σ2])

where [ , ] denotes the internal-hom in H and ΠX is the smooth Poincaré ∞-groupoid of X . Similarly we
write Aut∞(Σ) for the sub-object of invertible objects in H∞(Σ,Σ).
Here is another example. For G a Lie group, we will write BG for the smooth stack of principal G-bundles.
This means that for Σ a smooth manifold, a morphism f : Σ → BG is precisely a G-principal bundle over
Σ. So, in particular, BGL(n;R) is the smooth stack of principal GL(n;R)-bundles. Identifying a principal
GL(n;R)-bundle with its associated rank n real vector bundle, BGL(n;R) is equivalently the smooth stack
of rank n real vector bundles and their isomorphisms. In particular, a map Σ → BGL(n;R) is precisely
the datum of a rank n vector bundle on the smooth manifold Σ. Again, for a given smooth manifold
Σ, the homotopy type of H(Σ,BG) is too rigid for our aims: the ∞-groupoid H(Σ,BG) is actually a
1-groupoid. This means that we have objects, which are the principal G-bundles over Σ, and 1-morphism
between these objects, which are isomorphisms of principal G-bundles, and then nothing else: we do not have
nontrivial morphisms between the morphisms, and there’s no such a thing like “a morphism can be smoothly
deformed into another morphism”, which again is something very natural to consider from a geometric point
of view. Making the smooth structure of the group G come into play we get the following description of
the ∞-groupoid H∞(Σ,BG): its objects are the principal G-bundles over Σ and its 1-morphism are the

1The construction presented here is possible since H is cohesive as an ∞-topos: this guarantees that the ∞-functor Π from
H to ∞-groupoids does indeed exist, and preserves products. Notice that the ordinary enrichment of H is instead given by
H(Σ1,Σ2) = ♭([Σ1,Σ2]), where ♭ is the right adjoint to Π. See [Sc13] for details.
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isomorphisms of principal G-bundles, much as for H(Σ,BG), but then we have also 2-morphisms given by
isotopies between isomorphisms, 3-morphisms given by isotopies between isotopies, and so on. Notice that
we have a canonical ∞-functor2

(3) H(Σ,BG) −→ H∞(Σ,BG).

This is nothing but saying that for j ≥ 2, the j-morphisms in H(Σ,BG) are indeed very special j-morphisms
in H∞(Σ,BG), namely the identities. Moreover, when G happens to be a discrete group, this embedding is
actually an equivalence of ∞-groupoids.

2.2. Geometrically discrete ∞-stacks and the homotopy type BGL(n). The following notion will
be of great relevance for the results of this note. We have an inclusion

(4) LConst : ∞Grpd → H

given by regarding an ∞-groupoid G as a constant presheaf over Cartesian spaces. We will say that an
object in H is a geometrically discrete ∞-stack if it belongs to the essential image of LConst. An example
of a geometrically discrete object in H is given by the 1-stack BG, with G a discrete group. More generally,
for A an abelian discrete group the (higher) stacks BnA of principal A-n-bundles are geometrically discrete.
The importance of considering geometrically discrete ∞-stacks is that the functor Π introduced before is left
adjoint to LConst. In particular we have a canonical counit morphism

(5) idH → LConst ◦Π
which is the canonical morphism from a smooth stack to its homotopy type (and which corresponds to
looking at points of a smooth manifold Σ as constant paths into Σ). In particular, for G a group, we will
write BG for the homotopy type of BG, i.e., we set BG := LConst(Π(BG)). (Notice that since LConst is
a fully faithful inclusion, there is no harm in suppressing it notationally, which we will freely do.) This is
equivalently the traditional classifying space for the group G (or rather of its principal bundles). The counit
then becomes a canonical morphism

(6) BG→ BG,

which is an equivalence for a discrete group G. This tells us in particular that any object overBG is naturally
also an object over BG. For instance (and this example will be the most relevant for what follows), a choice
of a rank n vector bundle over a smooth manifold Σ realises Σ as an object over BGL(n;R).
Notice how we have a canonical morphism

(7) H∞(Σ,BG) −→ H∞(Σ,BG)

obtained by composing the canonical morphism H(Σ,BG) → H∞(Σ,BG) mentioned in the previous section
with the push forward morphism H∞(Σ,BG) → H∞(Σ,BG), The main reason to focus on geometrically
discrete stacks is that, though Π preserves finite products, it does not in general preserve homotopy pullbacks.
Neverthless, Π does indeed preserve homotopy pullbacks of diagrams whose tip is a geometrically discrete
object in H [Sc13].

2.2.1. Working in the slice. Let now n be a fixed nonnegative integer and let 0 ≤ k ≤ n. Any k-dimensional
smooth manifold Mk comes canonically equipped with a rank n real vector bundle given by the stabilized
tangent bundle T stMk = TMk ⊕Rn−kMk

, where Rn−kMk
denotes the trivial rank (n− k) real vector bundle over

Mk. We can think of the stabilised tangent bundle3 as a morphism

(8) Mk
T st

−−→ BGL(n)

where GL(n), as in the following, denotes GL(n;R).
Namely, we can regard any smooth manifold of dimension at most n as an object over BGL(n). This
suggests that a natural setting to work in is the slice topos H∞

/BGL(n), which in the following we will refer

2In terms of cohesion this is a component of the canonical points-to-pieces-transform ♭[Σ,BG] → [Σ,BG] → Π[Σ,BG].
3To be precise, T st is the map of stacks induced by the frame bundle of the stabilised tangent bundle to Mk.
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to simply as “the slice”: in other words, all objects involved will be equipped with morphisms to BGL(n),

and a morphism between X
ϕ−→ BGL(n) and Y

ψ−→ BGL(n) will be a homotopy commutative diagram

(9) X

ϕ $$❍
❍❍

❍❍
❍❍

❍❍
f // Y

ψ{{✈✈
✈✈
✈✈
✈✈
✈

BGL(n)

η{� ⑧⑧
⑧⑧⑧⑧

.

More explicitly, if we denote by Eϕ and Eψ the rank n real vector bundles over X and Y corresponding to

the morphisms ϕ and ψ, respectively, then we see that a morphism in the slice between X
ϕ−→ BGL(n) and

Y
ψ−→ BGL(n) is precisely the datum of a morphism f : X → Y together with an isomorphism of vector

bundles over X ,

(10) η : f∗Eψ
≃−→ Eϕ.

Notice that these are precisely the same objects and morphisms as if we were working in the slice over
BGL(n) in H. Neverthless, as we will see in the following sections, where the use of H∞ makes a difference
is precisely in allowing nontrivial higher morphisms. Also, the use of the homotopy type BGL(n) in place of
the smooth stack BGL(n) will allow us to make all constructions work “up to homotopy”, and to identify,
for instance, BGL(n) with BO(n).

Example 2.1. The inclusion of the trivial group into GL(n) induces a natural morphism ∗ → BGL(n),
corresponding to the choice of the trivial bundle. If Mk is a k-dimensional manifold, then a morphism

(11) Mk

T st $$■■
■■

■■
■■

■
// ∗

{{✇✇
✇✇
✇✇
✇✇
✇

BGL(n)

η{� ⑧⑧
⑧⑧⑧⑧

is precisely a trivialisation of the stabilised tangent bundle of Mk, i.e., an n-framing of M .

Example 2.2. Let X be a smooth manifold, and let ζ be a rank n real vector bundle over X , which we can
think of as a morphism ρζ : X → BGL(n). Then a morphism

(12) Mk

T st $$■■
■■

■■
■■

■
f // X

ρζ{{✈✈
✈✈
✈✈
✈✈
✈

BGL(n)

η{� ⑧⑧
⑧⑧⑧⑧

is precisely the datum of a smooth map f : Mk → X and of an isomorphism η : f∗ζ → TM ⊕ Rn−kMk
. These

are the data endowing Mk with a (X, ζ)-structure in the terminology of [Lu09].

The examples above suggest to allow X to be not only a smooth manifold, but a smooth ∞-stack.
While choosing such a general target (X, ζ) could at first seem like a major abstraction, this is actually
what one commonly encounters in everyday mathematics. For instance a lift through BO(n) → BGL(n)
is precisely a (n-stable) Riemannian structure. Generally, for G →֒ GL(n) any inclusion of Lie groups, or
even more generally for G → GL(n) any morphism of Lie groups, then a lift through BG → BGL(n) is
a (n-stable) G-structure, e.g., an almost symplectic structure, an almost complex structure, etc. (one may
also phrase integrable G-structures in terms of slicing, using more of the axioms of cohesion than we need
here). For instance, the inclusion of the connected component of the identity GL+(n) →֒ GL(n) corresponds
to a morphism of higher stacks ι : BGL+(n) → BGL(n), and a morphism in the slice from (Mk, T

st) to
(BGL+(n), ι) is precisely the choice of a (stabilised) orientation on Mk. For G a higher connected cover of
O(n) then lifts through BG→ BO(n) → BGL(n) correspond to spin structures, string structures, etc.
On the other hand, since BO(n) → BGL(n) is an equivalence, a lift through BO(n) → BGL(n) is no
additional structure on a smooth manifold Mk, and the stabilized tangent bundle of Mk can be equally
seen as a morphism to BO(n). Similarly, for G → GL(n) any morphism of Lie groups, lifts of T st through
BG→ BGL(n) correspond to (n-stable) topological G-structures.
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2.3. From homotopy group actions to objects in the slice. We will mainly be interested in objects
of H∞

/BGL(n) obtained as a homotopy group action of a smooth (higher) group G on some stack X , when G

is equipped with a ∞-group morphism to GL(n). We consider then the following

Definition 2.3. A homotopy action of a smooth ∞-group G on X is the datum of a smooth ∞-stack X//hG
together with a morphism ρ : X//hG→ BG satisfying the following homotopy pullback diagram

(13) X

��

// X//hG

ρ

��
∗ // BG

Unwinding the definition, one sees that a homotopy action of G is nothing but an action of the homotopy
type of G and that X//hG is realised as the stack quotient X//Π(G). See [NSS12a] for details. Since G is
equipped with a smooth group morphism to GL(n), and since this induces a morphism of smooth stacks
BG→ BGL(n), the stackX//hG is naturally an object over BGL(n). In particular, when X is a deloopable
object, i.e., when there exists a stack Y such that ΩY ∼= X , then one obtains a homotopy G-action out of any
morphism c : BG→ Y . Indeed, in this situation one can define X//hG→ BG by the homotopy pullback

(14) X//hG

ρc

��

// ∗

��
BG

c // Y

By using the pasting law for homotopy pullbacks, we can see that X , X//hG, and the morphism ρc fit in a
homotopy pullback diagram as in (13).

Example 2.4. Let c be a degree d + 1 characteristic class for the group SO(n). Then c can be seen as
the datum of a morphism of stacks c : BSO(n) → Bd+1Z ∼= Bd+1Z, where Bd+1Z is the smooth stack
associated by the Dold-Kan correspondence to the chain complex with Z concentrated in degree d+ 1, i.e.,
the stack (homotopically) representing degree d+1 integral cohomology. Notice how the discreteness of the
abelian group Z came into play to give the equivalence Bd+1Z ∼= Bd+1Z. Since we have ΩBd+1Z ∼= BdZ,
the characteristic class c defines a homotopy action

(15) ρc : B
dZ//hSO(n) → BSO(n)

and so it realises BdZ//hSO(n) as an object in the slice H∞
/BGL(n). For instance, the first Pontryagin class

p1 induces a homotopy action

(16) ρp1 : B
3Z//hSO(n) → BSO(n).

3. ρ-framed manifolds and their automorphisms ∞-group

We can now introduce the main definition in the present work.

Definition 3.1. Let M be a k-dimensional manifold, and let ρ : X → BGL(n) be a morphisms of smooth
∞-stacks, with k ≤ n. Then a ρ-framing (or ρ-structure) on M is a lift of the stabilised tangent bundle seen
as a morphism T st : M → BGL(n) to a morphism σ : M → X, namely a homotopy commutative diagram
of the form

(17) M

T st $$❍
❍❍

❍❍
❍❍

❍❍
σ // X

ρzz✈✈
✈✈
✈✈
✈✈
✈

BGL(n)

η{� ⑧⑧
⑧⑧⑧⑧

By abuse of notation, we will often say that the morphism σ is the ρ-framing, omitting the explicit
reference to the homotopy η, which is, however, always part of the data of a ρ-framing.
Since the morphism ρ : X → BGL(n) is an object in the slice H∞

/BGL(n)
, we can consider the slice over ρ:
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(H∞
/BGL(n)

)/ρ . Although this double slice may seem insanely abstract at first, it is something very natural.

Its objects are homotopy commutative diagrams, namely 2-simplices

(18) Y

ρ̃ ##❍
❍❍

❍❍
❍❍

❍❍
a // X

ρzz✈✈
✈✈
✈✈
✈✈
✈

BGL(n)

η{� ⑧⑧
⑧⑧⑧⑧

while its morphisms are homotopy commutative 3-simplices

(19) Y

Z

X

BGL(n)

PPP
PPP

P

((

❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

44❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜
11

✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂

��✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

��
✪✪
✪✪
✪✪
✪✪
✪

��

ρ

ρ̃
ρ̂

a

b

f

where for readability we have omitted the homotopies decorating the faces and the interior of the 3-simplex,
and similarly, additional data must be provided for higher morphisms.
In particular we see that a ρ-framing σ on M is naturally an object in the double slice (H/BGL(n)

)/ρ .
Moreover, the collection of all k-dimensional ρ-framed manifolds has a natural ∞-groupoid structure which
is compatible with the forgetting of the framing, and with the fact that any ρ-framed manifold is in particular
an object in the double slice (H∞

/BGL(n)
)/ρ . More precisely, let Mk denote the ∞-groupoid whose objects are

k-dimensional smooth manifolds, whose 1-morphisms are diffeomorphisms of k-dimensional manifolds whose
2-morphisms are isotopies of diffeomorphisms, and so on4. There is then an ∞-groupoid M ρ

k of ρ-framed
k-dimensional manifolds which is a ∞-subcategory of (H∞

/BGL(n)
)/ρ , and comes equipped with a forgetful

∞-functor

(20) M ρ
k → Mk.

Namely, since the differential of a diffeomorphism between k-dimensional manifolds M and N can naturally
be seen as an invertible 1-morphism between M and N as objects over BGL(n), we have a natural (not full)
embedding

(21) Mk →֒ H∞
/BGL(n).

Consider then the forgetful functor

(22) (H∞
/BGL(n)

)/ρ → H∞
/BGL(n)

We have then the following important

Definition 3.2. Let ρ : X → BGL(n) be an object in H∞
/BGL(n)

. The ∞-groupoid M ρ
k is then defined as the

homotopy pullback diagram

(23) M ρ
k

//

��

(H∞
/BGL(n)

)/ρ

��
Mk

// H∞
/BGL(n)

4The ∞-groupoid Mk can be rigorously defined as Ω(Cobt(k)), where Cobt(k) is the (∞, 1)-category defined in [Lu09] in
the context of topological field theory.
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Given two ρ-framed k-dimensional manifolds (M,σ, η) and (N, τ, ϑ), the∞-groupoidM ρ
k ((M,σ, η), (N, τ, ϑ))

is the homotopy pullback

(24) M ρ
k ((M,σ, η), (N, τ, ϑ)) //

��

(H∞
/BGL(n)

)/ρ(σ, τ)

��
Mk(M,N) // H∞

/BGL(n)(T
st
M , T

st
N )

In particular, if we denote with Diff(M) the ∞-groupoid of diffeomorphisms ofM , namely the automorphism
∞-group of M as an object in Mk, and we accordingly write Diffρ(M,σ) for the automorphisms ∞-group
of (M,σ) as an object in M ρ

k , then we have a homotopy pullback

(25) Diffρ(M,σ, η) //

��

Aut∞/ρ(σ)

��
Diff(M) // Aut∞/BGL(n)(T

st
M )

where Aut∞(−)(−) denotes the homotopy type of the relevant H-internal automorphisms ∞-group. In par-

ticular, to abbreviate the notation, we will denote with Aut∞ρ (σ) the automorphism ∞-group of σ in
(H∞

/BGL(n)
)/ρ .

More explicitly, an element in Diffρ(M,σ, η) is a diffeomorphism ϕ : M →M together with an isomorphism

α : ϕ∗σ
≃−→ σ, and a filler β for the 3-simplex

(26) M

M

X

BGL(n)

❱❱❱❱❱
❱❱❱❱❱

++

❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

44❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜
00

✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂

��❁❁
❁❁

❁❁
❁❁

❁❁
❁❁

❁❁
❁❁

❁❁

��
✪✪
✪✪
✪✪
✪✪
✪

��

ρ

T st
T st

dϕ⇒
σ

α

⇒

σ
η⇒

ϕ

3.1. Functoriality and homotopy invariance of M ρ
k . In this section we will explore some of the prop-

erties of M ρ
k , which will be useful in the following.

It immediately follows from the definition that the forgetful functor M ρ
k → Mk is a equivalence for

ρ : X → BGL(n) an equivalence in H∞(X,BGL(n)). In particular, if ρ is the identity morphism of BGL(n)

and we write M
GL(n)
k for M

idBGL(n)

k then we have M
GL(n)
k

∼= Mk. Less trivially, if X = BO(n), and ρ is
the natural morphism

(27) ιO(n) : BO(n) → BGL(n)

induced by the inclusion of O(n) in GL(n), then ρ is again an equivalence, and we get M
O(n)
k

∼= Mk, where

we have denoted M
ιO(n)

k with M
O(n)
k .

More generally, if ρ and ρ̃ are equivalent objects in the slice H∞
/BGL(n), then we have equivalent ∞-groupoids

M ρ
k and M ρ̃

k . For instance, the inclusion of SO(n) into GL(n)+ induces an equivalence between BSO(n) and

BGL(n)+ over BGL(n), and so we have a natural equivalence M
SO(n)
k

∼= M
GL(n)+

k . Since the objects in the

∞-groupoid M
GL(n)+

k are k-dimensional manifolds whose stabilised tangent bundle is equipped with a lift to

an SO(n)-bundle, the objects of M
GL(n)+

k are oriented k-manifolds. Moreover the pullback defining M
GL(n)+

k

precisely picks up oriented diffeomorphisms, hence the forgetful morphism M
GL(n)+

k → Mk induces an

equivalence between M
GL(n)+

k and the∞-groupoid M or
k of oriented k-dimensional manifolds with orientation

preserving diffeomorphisms between them. As a consequence, one has a natural equivalence

(28) M
SO(n)
k

∼= M or
k

8



Let ψ : ρ → ρ̃ be a morphism in the slice H∞
/BGL(n) between ρ : X → BGL(n) and ρ̃ : Y → BGL(n). Then

one has an induced push-forward morphism

(29) ψ∗ : M ρ
k → M ρ̃

k ,

which (by (24), and using the pasting law) fits into the homotopy pullback diagram

(30) M ρ
k

//

ψ∗
��

(H∞
/BGL(n)

)/ρ

Ψ∗

��
M ρ̃

k
// (H∞

/BGL(n)
)/ρ̃

where Ψ∗ denotes the base changing ∞-functor on the slice topos.
The homotopy equivalences illustrated above are particular cases of this functoriality: indeed, when ψ is
invertible, then ψ∗ is invertible as well (up to coherent homotopies, clearly).
Recall from Example 2.4 that for any characteristic class c of SO(n) we obtain an object ρc in the slice

H∞
/BGL(n). In this way we obtain natural morphisms M ρc

k → M
SO(n)
k . In particular, by considering the

first Pontryagin class p1 : BSO(n) → B4Z, we obtain a canonical morphism

(31) M
ρp1
k → M or

k .

3.2. Extensions of ρ-diffeomorphism groups. We are now ready for the extension theorem, which is the
main result of this note. Not to break the flow of the exposition, we will postpone the details of the proof
to the Appendix.
Let

(32) X

ρ $$❍
❍❍

❍❍
❍❍

❍❍
ψ // Y

ρ̃{{✈✈
✈✈
✈✈
✈✈
✈

BGL(n)

Ψ{� ⑧
⑧⑧⑧⑧⑧

be a morphism in the slice over BGL(n), as at the end of the previous section, and let

(33) M

T st
M $$❍

❍❍
❍❍

❍❍
❍❍

τ // Y

ρ̃{{✈✈
✈✈
✈✈
✈✈
✈

BGL(n)

T{� ⑧
⑧⑧⑧⑧⑧

be a ρ̃-structure on M . Then, arguing as in Section 3, associated to any lift

(34) M

Y

X

BGL(n)

❱❱❱❱
❱❱❱❱❱

❱

++ ❥❥❥❥
❥❥❥❥

❥❥❥❥
❥❥❥

tt

❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜
00

✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂

��❁❁
❁❁

❁❁
❁❁

❁❁
❁❁

❁❁
❁❁

❁❁

��
✪✪
✪✪
✪✪
✪✪
✪

��

ρ

T st

ρ̃

T⇒

σ

α ⇒

ψ

Ψ⇒

τ

(where we are not displaying the label Σ on the back face, nor the filler β of the 3-simplex) of T to a
ρ-structure Σ on M , we have a homotopy pullback diagram

(35) Diffρ(M,Σ) //

ψ∗
��

Aut∞/ρ(Σ)

ψ∗

��
Diff ρ̃(M,T ) // Aut∞/ρ̃(T )
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By the pasting law for homotopy pullbacks and from the pasting of homotopy pullback diagrams we have
the following homotopy diagram (see Appendix for the proof)

(36) Ωβ(H
∞
/BGL(n))/ρ̃(T,Ψ) //

��

ΩΣH
∞
/BGL(n)(T

st
M , ρ)

//

��

Aut∞/ρ(Σ)

ψ∗

��
∗ // ΩTH∞

/BGL(n)(T
st
M , ρ̃)

��

// Aut∞/ρ̃(T )

��
∗ // Aut∞/BGL(n)(T

st
M )

We therefore obtain the homotopy pullback diagram

(37) Ωβ(H
∞
/BGL(n))/ρ̃(T,Ψ) //

��

Diffρ(M,Σ)

ψ∗
��

∗ // Diff ρ̃(M,T )

presenting Diffρ(M,Σ) as an extension of Diff ρ̃(M,T ) by the ∞-group Ωβ(H
∞
/BGL(n))/ρ̃(T,Ψ), i.e., by the

loop space (at a given lift β) of the space (H∞
/BGL(n))/ρ̃(T,Ψ) of lifts of the ρ̃-structure T on M to a

ρ-structure Σ. Now notice that, by the Kan condition, we have a natural homotopy equivalence

(38) (H∞
/BGL(n))/ρ̃(T,Ψ) ∼= H∞

/Y (τ, ψ).

Namely, since T and Ψ are fixed, the datum of the filler α is homotopically equvalent to the datum of the
full 3-simplex, as T,Ψ and α together give the datum of the horn at the vertex Y . As a consequence we see
that the space of lifts of the ρ̃-structure T to a ρ-structure Σ is homotopy equivalent to the space of lifts

(39) X

ψ

��
M

τ //

σ

>>⑥⑥⑥⑥⑥⑥⑥⑥
Y

α{� ⑧⑧
⑧⑧⑧⑧

of τ to a morphism σ : M → X . We refer the the reader to the Appendix for a rigorous proof of equivalence
(38).
The arguments above lead directly to

Proposition 3.3. Let ρ : X → BGL(n) and ρ̃ : Y → BGL(n) be morphisms of ∞-stacks, and let
(ψ,Ψ) : ρ → ρ̃ be a morphism in H∞

/BGL(n). Let (M,T ) be a ρ̃-framed manifold, and let Σ be a ρ-structure

on M lifting T through (α, β). We have then the following homotopy pullback

(40) ΩαH
∞
/Y (τ, ψ)

//

��

Diffρ(M,Σ)

ψ∗
��

∗ // Diff ρ̃(M,T )

Proof. Combine diagram (37) with equivalence (38), which preserves homotopy pullbacks. �

Remark 3.4. Proposition 3.3 gives a presentation of Diffρ(M,Σ) as an extension of Diff ρ̃(M,T ) by the
∞-group ΩαH

∞
/Y (τ, ψ). Notice how, for (T, τ) the identity morphism, i.e.

(41) Y

ρ̃ ##❍
❍❍

❍❍
❍❍

❍❍
idY // Y

ρ̃{{✈✈
✈✈
✈✈
✈✈
✈

BGL(n)

Id{� ⑧
⑧⑧⑧⑧⑧
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the space H∞
/Y (τ, idY ) is contractible since idY is the terminal object in the slice H∞

/Y and so one finds that

the extension of Diff ρ̃(M,T ) is the trivial one in this case, as expected.

4. Lifting ρ-structures along homotopy fibres

In this section we will investigate a particularly simple and interesting case of the lifting procedure of
ρ-structures, and of extensions of ρ-diffeomorphisms ∞-groups, namely the case when ψ : X → Y is the
homotopy fibre in H∞ of a morphism c : Y → Z from Y to some pointed stack Z.
In this case, by the universal property of the homotopy pullback, the space H∞

/Y (τ, ψ) of lifts of the ρ̃-

structure τ to a ρ-structure σ is given by the space of homotopies between the composite morphism c ◦ τ
and the trivial morphism M → Z given by the constant map on the marked point of Z:

(42) M

��

τ

##

σ

  ❆
❆

❆
❆

X //

ψ

��

∗

��
Y

c // Z

This fact has two important consequences:

• a lift σ of τ exists if and only if the class of c ◦ τ in π0H
∞(M,Z) is the trivial class (the class of the

constant map on the marked point z of Z);
• when a lift exists, the space H∞

/Y (τ, ψ) is a torsor for the ∞-group of self-homotopies of the constant

map M → Z, i.e., for the ∞-group object ΩH∞(M,Z). In particular, as soon as H∞
/Y (τ, ψ) is

nonempty, any lift σ of τ induces an equivalence of ∞-groupoids H∞
/Y (τ, ψ)

∼= ΩH∞(M,Z) and so

an equivalence

(43) ΩαH
∞
/Y (τ, ψ)

∼= Ω2H∞(M,Z).

Moreover, as soon as (Z, z) is a geometrically discrete pointed ∞-stack, we have ΩH∞(M,Z) ∼= H∞(M,ΩZ),
where ΩZ denotes the loop space of Z in H at the distinguished point z. In other words, for a geometrically
discrete ∞-stack Z, the loop space of Z in H also provides a loop space object for Z in H∞. Namely, by
definition of H∞, showing that

(44) H∞(W,ΩZ) //

��

∗

��
∗ // H∞(W,Z)

is a homotopy pullback of ∞-groupoids for any ∞-stack W amounts to showing that

(45) Π[W,ΩZ] //

��

∗

��
∗ // Π[W,Z]

is a homotopy pullback, and this in turn follows from the fact that [W,−] preserves homotopy pullbacks
and geometrical discreteness, and that Π preserves homotopy pullbacks along morphisms of geometrically
discrete stacks [Sc13]. If the pointed stack (Z, z) is geometrically discrete, then so is the stack ΩZ (pointed
at the constant loop at z), and so

(46) Ω2H∞(M,Z) ∼= ΩH∞(M,ΩZ) ∼= H∞(M,Ω2Z).

Therefore, we can assemble the general considerations of the previous section in the following
11



Proposition 4.1. Let ψ : X → Y be the homotopy fibre of a morphisms of smooth ∞-stacks Y → Z, where
Z is pointed and geometrically discrete. For any ρ̃-structured manifold (M, τ), we have a sequence of natural
homotopy pullbacks

(47) H∞(M,Ω2Z) //

��

Diffρ(M,σ)

ψ∗
��

// ∗

��
∗ // Diff ρ̃(M, τ) // H∞(M,ΩZ)

whenever a lift to of τ to a ρ-structure σ exists.

4.1. The case of manifolds with boundary. With an eye to topological quantum field theories, it is
interesting to consider also the case of k-dimensional manifolds with boundary (M,∂M). Since the boundary
∂M comes with a collar in M , i.e. with a neighbourhood in M diffeomorphic to ∂M × [0, 1) the restriction
of the tangent bundle of M to ∂M splits as TM |∂M ∼= T∂M ⊕ R∂M and this gives a natural homotopy
commutative diagram

(48) ∂M

T st $$❏
❏❏

❏❏
❏❏

❏❏
ι // M

T stzz✈✈
✈✈
✈✈
✈✈
✈

BGL(n)

for any n ≥ k. In other words, the embedding of the boundary, ι : ∂M →M is naturally a morphism in the
slice over BGL(n). This means that any ρ̃-framing on M can be pulled back to a ρ̃-framing on ∂M :

(49) ι∗ : H∞
/BGL(n)(T

st, ρ̃) → H∞
/BGL(n)(T

st
∣∣
∂M

, ρ̃).

That is, for any ρ̃-framing on M we have a natural homotopy commutative diagram

(50) ∂M
τ |∂M

%%❏❏
❏❏

❏❏
❏❏

❏❏

T st|∂M

��✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼
ι // M

τ

zz✉✉✉
✉✉
✉✉
✉✉
✉

T st

��✟✟
✟✟
✟✟
✟✟
✟✟
✟✟
✟✟
✟✟

Y

��
BGL(n)

realizing ι as a morphism in the slice over Y . Therefore we have a further pullback morphism

(51) ι∗ : H∞
/Y (τ, ψ) → H/Y (τ |∂M , ψ)

for any morphism ψ : (X, ρ) → (Y, ρ̃) in the slice over BGL(n). For any fixed ρ-framing ж on ∂M we can
then form the space of ρ-framings on the ρ̃-framed manifold M extending ж. This is the homotopy fibre of
ι∗ at ж:

(52) H∞,ж
/Y ((M,∂M, τ), (X,ψ)) //

��

∗

ж

��
H/Y (τ, ψ)

ι∗ // H/Y (τ |∂M ), ψ)

Reasoning as in Section 4, when the morphism ψ : X → Y is the homotopy fibre of a morphism c : Y → Z
one sees that, as soon as the ρ-structure ж on ∂M can be extended to a ρ-structure on M , then the space
H∞,ж
/Y ((M,∂M, τ), (X,ψ)) of such extensions is a torsor for the ∞-group H∞,rel(M,∂M ; ΩZ) defined by the

homotopy pullback

(53) H∞,rel(M,∂M ; ΩZ) //

��

∗

0

��
H∞(M,ΩZ)

ι∗ // H∞(∂M,ΩZ)

12



In particular, for Z = BnA for some discrete abelian group A, the space H∞,rel(M,∂M ;Bn−1A) is the space
whose set of connected components is the (n− 1)-th relative cohomology group of (M,∂M):

(54) π0H
∞,rel(M,∂M ;Bn−1A) ∼= Hn−1(M,∂M ;A).

Moreover, since BnA is (n − 1)-connected, we see that any homotopy from c ◦ τ |∂M : ∂M → BnA to the
trivial map can be extended to a homotopy from c◦ τ : M → BnA to the trivial map, as soon as dimM < n.
In other words, for Z = BnA, if k < n every ρ-structure on ∂M can be extended to a ρ-structure on M .

The space H∞,ж
/Y ((M,∂M, τ), (X,ψ)) has a natural interpretation in terms of ρ-framed cobordism: it is

the space of morphisms from the empty manifold to the ρ-framed manifold (∂M,ж), whose underlying non-
framed cobordism is M . As such, it carries a natural action of the ∞-group of ρ-framings on the cylinder
∂M × [0, 1] which restrict to the ρ-framing ж both on ∂M × {0} and on ∂M × {1}. These are indeed pre-
cisely the ρ-framed cobordisms lifting the trivial non-framed cobordism. Geometrically this action is just the
glueing of such a ρ-framed cylinder along ∂M , as a collar in M . On the other hand, by the very definition
of H∞, this ∞-group of ρ-framed cylinders is nothing but the loop space Ωж(H

∞
/BGL(n))/ρ(T

st
∣∣
∂M

, ψ), i.e.,

the loop space at ж of the space of ρ-structures on ∂M lifting the ρ̃-structure τ |∂M . Comparing this to
the diagram (37), we see that the space of ρ-structures on M extending a given ρ-structure on ∂M comes

with a natural action of the ∞-group which is the centre of the extension Diff ρ̃(∂M,ж) of Diff ρ̃(M, τ |∂M ).5

In the case ψ : X → Y is the homotopy fibre of a morphism c : Y → BnA, passing to equivalence classes
we find the natural action of Hn−2(∂M,A) on the relative cohomology group Hn−1(M,∂M ;A) given by
the suspension isomorphism Hn−2(∂M,A) ∼= Hn−1(∂M × [0, 1], ∂M × {0, 1}, A) combined with the natural
translation action

(55) Hn−1(M,∂M ;A)×Hn−1(∂M × [0, 1], ∂M × {0, 1}, A) → Hn−1(M,∂M ;A).

For instance, if M is a connected oriented 3-manifold with connected boundary ∂M and we choose n = 4
and A = Z, then we get the translation action of Z on itself.6

5. Mapping class groups of ρ-framed manifolds

In this final section, we consider an application of the general notion of ρ-structure developed in the
previous sections to investigate extensions of the mapping class group of smooth manifolds.
Inspired by the classical notion of mapping class group, see for instance [Ha12], we consider the following

Definition 5.1. Let M be a k-dimensional manifold, and let ρ : X → BGL(n) be a morphisms of smooth
∞-stacks, with k ≤ n. The mapping class group Γρ(M,σ) of a ρ-framed manifold (M,σ) is the group of
connected components of the ρ-diffeomorphism ∞-group of (M,σ), namely

(56) Γρ(M,σ) := π0Diffρ(M,σ)

In the setting of the Section 4, we consider the case in which the ∞-stack X is the homotopy fiber of a
morphism Y → Z, with Z a geometrically discrete ∞-stack. Then, induced by diagram (47), we have the
following long exact sequence in homotopy

(57) · · · → π1Diffρ(M,σ) → π1Diff ρ̃(M, τ) → π2H
∞(M,Z) → Γρ(M,σ) → Γρ̃(M, τ) → π1H

∞(M,Z).

Notice that the morphism

(58) Γρ̃(M, τ) → π1H
∞(M,Z)

is a homomorphism at the π0 level, so it is only a morphism of pointed sets and not a morphism of groups. It
is the morphism that associates with a ρ-diffeomorphism f the pullback of the lift σ of τ . In other words, it
is the morphism of pointed sets from the set of isotopy classes of ρ-diffeomorphisms to the set of equivalence
classes of lifts induced by the natural action

(59) Γρ̃(M, τ) × {(equivalence classes of) lifts of τ} → {(equivalence classes of) lifts of τ}
5This should be compared to Segal’s words in [Se04]: “An oriented 3-manifold Y whose boundary ∂Y is rigged has itself

a set of riggings which form a principal homogeneous set under the group Z which is the centre of the central extension of
Diff(∂Y ).”

6Again, compare to Segal’s prescription on the set of riggings on a oriented 3-manifold.
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once one picks a distinguished element σ in the set (of equivalence classes of) of lifts and uses it to identify
this set with π0H

∞(M,ΩZ) ∼= π1H
∞(M,Z). A particularly interesting situation is the case when c is a

degree d characteristic class for Y , i.e., when c : Y → BdA for some discrete abelian group A, and M is a
closed manifold. Since BdA is a geometrically discrete ∞-stack, we have that H∞(M,BdA) is equivalent, as
an ∞-groupoid, toH(M,BdA) . Consequently, we obtain that πkH

∞(M,BdA) = Hd−k(M,A) for 0 ≤ k ≤ d
(and zero otherwise): in particular, the obstruction to lifting a ρ̃-framing τ on M to a ρ-framing σ is given
by an element in Hd(M,A). When this obstruction vanishes, hence when a lift σ of τ does exist, the long
exact sequence above reads as

(60) · · · → π1Diff ρ̃(M, τ) → Hd−2(M,A) → Γρ(M,σ) → Γρ̃(M, τ) → Hd−1(M,A)

for d ≥ 2, and simply as

(61) · · · → π1Diff ρ̃(M, τ) → 1 → Γρ(M,σ) → Γρ̃(M, τ) → H0(M,A)

for d = 1.

Remark 5.2. The long exact sequences (60) and (61) are a shadow of Proposition 4.1, which is a more general
extension result for the whole ∞-group Diffρ(M,σ).

The morphism of pointed sets Γρ̃(M, τ) → Hd−1(M,A) is easily described: once a lift σ for τ has
been chosen, the space of lifts is identified with H∞(M,Bd−1A) and the natural pullback action of the
ρ̃-diffeomorphism group of M on the space of maps from M to Bd−1A induces the morphism

(62)
Diff ρ̃(M, τ) → H∞(M,Bd−1A)

f 7→ f∗σ − σ

where we have written f∗σ−σ for the element in H∞(M,Bd−1A) which represents the “difference” between
f∗σ and σ in the space of lifts of τ seen as a H∞(M,Bd−1A)-torsor. The morphism Γρ̃(M, τ) → Hd−1(M,A)
is obtained by passing to π0’s and so we see in particular from the long exact sequence (60) that the image
of Γρ(M, τ) into Γρ̃(M, τ) consist of precisely the isotopy classes of those ρ̃-diffeomorphisms of (M, ρ̃) which
fix the ρ-structure σ up to homotopy.
Similarly, for d ≥ 2, the morphism of groups π1Diff ρ̃(M, τ) → Hd−2(M,A) in sequence (60) can be described

explicitly as follows. A closed path γ based at the identity in Diff ρ̃(M, τ) defines then a morphism γ# : M ×
[0, 1] → Bd−1A, as the composition

(63) M × [0, 1] → M
0−→ Bd−1A,

where the first arrow is the homotopy from the identity of M to itself and where 0 : M → Bd−1A is the
collapsing morphism, namely the morphism obtained as the composition M → ∗ → Bd−1A (here we are
using that Bd−1A comes naturally equipped with a base point). The image of [γ] in Hd−2(M,A) is then
given by the element [γ#] in the relative cohomology group

(64) Hd−1(M × [0, 1],M × {0, 1}, A) ∼= Hd−1(ΣM,A) ∼= Hd−2(M,A) .

By construction, [γ#] is the image in Hd−1(M × [0, 1],M × {0, 1}, A) ∼= Hd−2(M,A) of the zero class in
Hd−1(M,A) via the pullback morphism M × [0, 1] → M , so it is the zero class in Hd−1(M × [0, 1],M ×
{0, 1}, A). That is, the morphism π1Diff ρ̃(M, τ) → Hd−2(M,A) is the zero morphism, and we obtain the
short exact sequence

(65) 1 → Hd−2(M,A) → Γρ(M,σ) → Γρ̃(M, τ) → Hd−1(M,A)

showing that Γρ(M,σ) is a Hd−2(M,A)-extension of a subgroup of Γρ̃(M, τ): namely, the subgroup is the
Γρ̃(M, τ)-stabilizer of the element ofHd−1(M,A) corresponding to the lift σ of τ . The action of this stabiliser
on Hd−2(M,A) is the pullback action of ρ̃-diffeomorphisms of M on the (d− 2)-th cohomology group of M
with coefficients in A. Since this action is not necessarily trivial, the Hd−2(M,A)-extension Γρ(M,σ) of the
stabiliser of σ is not a central extension in general.

14



5.1. Oriented and spin manifolds, and r-spin surfaces. Before discussing p1-structures and their mod-
ular groups, which is the main goal of this note, let us consider two simpler but instructive examples: oriented
manifolds and spin curves.

Since the ∞-stack BSO(n) is the homotopy fibre of the first Stiefel-Whitney class

(66) w1 : BO(n) → BZ/2Z

an n-dimensional manifold can be oriented if and only if [w1◦TM ] is the trivial element in π0H
∞(M,BZ/2Z) =

H1(M,Z/2Z). When this happens, the space of possible orientations on M is equivalent to H∞(M,Z/2Z),
so when M is connected it is equivalent to a 2-point set. For a fixed orientation on M , we obtain from (61)
with A = Z/2Z the exact sequence

(67) 1 → Γor(M) → Γ(M) → Z/2Z

where Γor(M) denotes the mapping class group of oriented diffeomorphisms of M , and where the rightmost
morphism is induced by the action of the diffeomorphism group of M on the set of its orientations. The
oriented mapping class group of M is therefore seen to be a subgroup of order 2 in Γ(M) in case there exists
at least an orientation reversing diffeomorphism of M , and to be the whole Γ(M) when such a orientation
reversing diffeomorphism does not exist (e.g., for M = Pn/2C, for n ≡ 0 mod 4).

Consider now the ∞-stack BSpin(n) for n ≥ 3. It can be realised as the homotopy fibre of the second
Stiefel-Whitney class

(68) w2 : BSO(n) → B2Z/2Z.

An oriented n-dimensional manifold M will then admit a spin structure if and only if [w2 ◦TM ] is the trivial
element in π0H

∞(M,B2Z/2Z) = H2(M,Z/2Z). When this happens, the space of possible orientations on
M is equivalent to H∞(M,BZ/2Z), and we obtain, for a given spin structure σ on M lifting the orientation
of M , the exact sequence

(69) 1 → H0(M,Z/2Z) → ΓSpin(M,σ) → Γor(M) → H1(M,Z/2Z).

In particular, if M is connected, we get the exact sequence

(70) 1 → Z/2Z → ΓSpin(M,σ) → Γor(M) → H1(M,Z/2Z).

Since, for a connected M , the pullback action of oriented diffeomorphisms on H0(M,Z/2Z) is trivial, we
see that in this case the group ΓSpin(M,σ) is a Z/2Z-central extension of the subgroup of Γor(M) con-
sisting of (isotopy classes of) orientation preserving diffeomorphisms of M which fix the spin structure σ
(up to homotopy). The group ΓSpin(M,σ) and its relevance to Spin TQFTs are discussed in detail in [Ma96].

For n = 2, the homotopy fibre of w2 : BSO(2) → B2Z/2Z is again BSO(2) with the morphism BSO(2) →
BSO(2) induced by the group homomorphism

(71)
SO(2) → SO(2)

x 7→ x2

Since the second Stiefel-Withney class of an oriented surface M is the mod 2 reduction of the first Chern
class of the holomorphic tangent bundle of M (for any choice of a complex structure compatible with the
orientation), and 〈c1(T hol)M |[M ]〉 = 2 − 2g, where g is the genus of M , one has that [w2 ◦ TM ] is always
the zero element in H2(M,Z/2Z) for a compact oriented surface, and so the orientation of M can always be
lifted to a spin structure. More generally, one can consider the group homomorphism SO(2) → SO(2) given
by x 7→ xr, with r ∈ Z. We have then a homotopy fibre sequence

(72) BSO(2) //

ρ1/r

��

∗

��
BSO(2)

c(x→xr) // B2Z/2Z
15



In this case one sees that an r-spin structure on an oriented surface M , i.e. a lift of the orientation of M
through ρ1/r, exists if and only if 2− 2g ≡ 0 mod r. When this happens, one obtains the exact sequence

(73) 1 → Z/rZ → Γ1/r(M,σ) → Γor(M) → H1(M,Z/rZ),
which exhibits the r-spin mapping class group Γ1/r(M,σ) as a Z/rZ-central extension of the subgroup of
Γor(M) consisting of isotopy classes of orientation preserving diffeomorphisms ofM fixing the r-spin structure
σ (up to homotopy). The group Γ1/r(M,σ) appears as the fundamental group of the moduli space of r-spin
Riemann surfaces, see [R-W12, R-W14].

5.2. p1-structures on oriented surfaces. Let now finally specialise the general construction above to
the case of p1-structures on closed oriented surfaces, to obtain the Z-central extensions considered in [Se04]
around page 476. In particular we will see, how p1-structures provide a simple realisation of Segal’s idea of
extended surfaces and 3-manifolds (see also [BN09, CHMV95]).7To this aim, our stack Y will be the stack
BSO(n) for some n ≥ 3, the stack Z will be B4Z and the morphism c will be the first Pontryagin class
p1 : BSO(n) → B4Z. the stack X will be the homotopy fiber of p1, and so the morphism ψ will be the
morphism

(74) ρp1 : B
3Z//hSO(n) → BSO(n).

of example 2.4. A lift σ of an orientation on a manifold M of dimension at most 3 to a morphism M →
B3Z//hSO(n) over BO(n) will be called a p1-struture onM . That is, a pair (M,σ) is the datum of a smooth
oriented manifoldM together with a trivialisation of its first Pontryagin class. Note that, since p1 is a degree
four cohomology class, it can always be trivialised on manifolds of dimension at most 3. In particular, when
M is a closed connected oriented 3-manifold, we see that the space of lifts of the orientation of M to a p1
structure, is equivalent to the space H(M,B3Z) and so its set of connected components is

(75) π0H(M,B3Z) = H3(M,Z) ∼= Z.
In other words, there is a Z-torsor of equivalence classes of p1-strctures on a connected oriented 3-manifold.
Similarly, in the relative case, i.e., when M is a connected oriented 3-manifold with boundary, the set of
equivalence classes of p1-strctures on M extending a given p1-structure on ∂M is nonempty and is a torsor
for the relative cohomology group

(76) H3(M,∂M ;Z) ∼= Z,
in perfect agreement with the prescription in [Se04, page 480].8

We can now combine the results of the previous section in the following

Proposition 5.3. Let M be a connected oriented surface, and let σ be a p1-structure on M . We have then
the following central extension

(77) 1 → Z → Γp1(M,σ) → Γor(M) → 1,

where Γp1 as a shorthand notation for Γρp1 .

Proof. Since M is oriented, we have a canonical isomorphism H2(M,Z) ∼= Z induced by Poincaré duality.
Moreover, since M is connected, from 65 we obtaine the following short exact sequence

(78) 1 → Z → Γρp1 (M,σ) → Γor(M) → 1

Finally, since the oriented diffeomorphisms action on H2(M,Z) is trivial for a connected oriented surfaceM ,
this short exact sequence is a Z-central extension. �

7In [Se04], the extension is defined in terms of “riggings”, a somehow ad hoc construction depending on the contractiblity of

Teichmf̈uller spaces and on properties of the η-invariant of metrics on 3-manifolds. Segal says: “I’ve not been able to think of
a less sophisticated definition of a rigged surface, although there are many possible variants. The essential idea is to associate
functorially to a smooth surface a space -such as PX - which has fundamental group Z.”

8The naturality of the appearance of this Z-torsor here should be compared to Segal’s words in [Se04]: “An oriented 3-
manifold Y whose boundary ∂Y is rigged has itself a set of riggings which form a principal homogeneous set under the group
Z which is the centre of the central extension of Diff(∂Y ). I do not know an altogether straightforward way to define a rigging
of a 3-manifold.” Rigged 3-manifolds are then introduces by Segal in terms of the space of metrics on the 3-manifold Y and of
the η-invariant of these metrics.
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Appendix: proof of the extension theorem

Here we provide the details for proof of the existence of the homotopy fibre sequence (36), which is the
extension theorem this note revolves around. All the notations in this Appendix are taken from Section 3.2.

Lemma A.1. We have a homotopy pullback diagram

(79) Diffρ(M,Σ) //

ψ∗
��

Aut∞/ρ(σ)

ψ∗

��
Diff ρ̃(M,T ) // Aut∞/ρ̃(τ)

Proof. By definition of (equation (25)), we have homotopy pullback diagrams

(80) Diffρ(M,Σ) //

��

Aut∞/ρ(σ)

��
Diff(M) // Aut∞/BGL(n)(T

st
M )

and

(81) Diff ρ̃(M,T ) //

��

Aut∞/ρ̃(τ)

��
Diff(M) // Aut∞/BGL(n)(T

st
M )

By pasting them together as

(82) Diffρ(M,Σ) //

ψ∗
��

Aut∞/ρ(σ)

ψ∗

��
Diff ρ̃(M,T ) //

��

Aut∞/ρ̃(τ)

��
Diff(M) // Aut∞/BGL(n)(T

st
M )

and by the 2-out-of-3 law for homotopy pullbacks the claim follows. �

We need the following basic fact [Lu06, Lemma 5.5.5.12]:

Lemma A.2. Let C be an ∞-category, C/x its slice over an object x ∈ C, and let f : a → x and g : b → x
be two morphisms into x. Then the hom space C/x(f, g) in the slice is expressed in terms of that in C by
the fact that there is a homotopy pullback (in ∞Grpd) of the form

C/x(f, g) //

��

C(a, b)

g◦(−)

��
∗ [f ] // C(a, x)

where the right morphism is composition with g, and where the bottom morphism picks f regarded as a point
in C(a, x).
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Lemma A.3. We have homotopy pullback diagrams
(83)

ΩTH
∞
/BGL(n)(T

st
M , ρ̃)

��

// Aut∞/ρ̃(T )

��
∗ // Aut∞/BGL(n)(T

st
M )

and

ΩΣH
∞
/BGL(n)(T

st
M , ρ)

��

// Aut∞ρ (Σ)

��
∗ // Aut∞/BGL(n)(T

st
M )

Proof. Let C be an (∞, 1)-category, and let f : x→ y be a morphism in C. Then by Lemma A.2 and using
2-out-of-3 for homotopy pullbacks, the forgetful morphism C/y → C from the slice over y to C induces a
morphism of ∞-groups AutC/y

(f) → AutC(x) sitting in a pasting of homotopy pullbacks like this:

(84) ΩfC(x, y) //

��

AutC/y
(f)

��

// ∗
[f ]

��
∗ [id] //

[f ]

33AutC(x)
f◦(−) // C(x, y)

By taking here C = H∞
/BGL(n), x = T st

M , y = ρ̃ (resp., y = ρ), and f = T (resp., f = Σ), the left square

yields the first (resp., the second) diagram in the statement of the lemma. �

Lemma A.4. We have a homotopy pullback diagram

(85) Ωβ(H
∞
/BGL(n))/ρ̃(T,Ψ) //

��

ΩΣH
∞
/BGL(n)(T

st
M , ρ)

��
∗ // ΩTH∞

/BGL(n)(T
st
M , ρ̃)

Proof. If we take C = H∞
/BGL(n), g = (ψ,Ψ), a = T st

M , f = T , b = ρ and x = ρ̃ in Lemma A.2, we find the

homotopy fibre sequence

(86) (H∞
/BGL(n))/ρ̃(T,Ψ)

��

// H∞
/BGL(n)(T

st, ρ)

ψ∗

��
∗ // H∞

/BGL(n)(T
st, ρ̃)

By looping the above diagram, the claim follows. �

Lemma A.5. We have an equivalence of (∞, 1)-categories

(87) (H∞
/BGL(n))/ρ̃

∼= H∞
/Y .

Proof. Let C be an (∞, 1)-category, and let f : b→ x be a 1-morphism in C. By abuse of notation, we can
regard f as a diagram f : ∆1 → C. We have then a morphism

(88) ϕ : (C/x)/f → C/b

induced by the ∞-functor ∆0 →֒ ∆1 induced by sending 0 to 1. Since 1 is an initial object in ∆1, the
opposite ∞-functor is a cofinal map. By noticing that Cop

x/ is canonically equivalent to C/x, then by [Lu06,

Proposition 4.1.1.8] we have that ϕ is an equivalence of ∞-categories. Therefore, if we take C = H∞, and
f = ρ̃ : Y → BGL(n), we have that the claim follows. �
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FROBENIUS ALGEBRAS AND HOMOTOPY FIXED POINTS OF
GROUP ACTIONS ON BICATEGORIES

JAN HESSE, CHRISTOPH SCHWEIGERT, AND ALESSANDRO VALENTINO

Abstract. We explicitly show that symmetric Frobenius structures on a �nite-di-
mensional, semi-simple algebra stand in bijection to homotopy �xed points of the trivial
SO(2)-action on the bicategory of �nite-dimensional, semi-simple algebras, bimodules
and intertwiners. The results are motivated by the 2-dimensional Cobordism Hypothesis
for oriented manifolds, and can hence be interpreted in the realm of Topological Quantum
Field Theory.

1. Introduction

While �xed points of a group action on a set form an ordinary subset, homotopy �xed
points of a group action on a category as considered in [Kir02, EGNO15] provide additional
structure.

In this paper, we take one more step on the categorical ladder by considering a topolog-
ical group G as a 3-group via its fundamental 2-groupoid. We provide a detailed de�nition
of an action of this 3-group on an arbitrary bicategory C, and construct the bicategory
of homotopy �xed points CG as a suitable limit of the action. Contrarily from the case
of ordinary �xed points of group actions on sets, the bicategory of homotopy �xed points
CG is strictly �larger� than the bicategory C. Hence, the usual �xed-point condition is
promoted from a property to a structure.

Our paper is motivated by the 2-dimensional Cobordism Hypothesis for oriented man-
ifolds: according to [Lur09b], 2-dimensional oriented fully-extended topological quantum
�eld theories are classi�ed by homotopy �xed points of an SO(2)-action on the core of
fully-dualizable objects of the symmetric monoidal target bicategory. In case the target
bicategory of a 2-dimensional oriented topological �eld theory is given by Alg2, the bicat-
egory of algebras, bimodules and intertwiners, it is claimed in [FHLT10, Example 2.13]
that the additional structure of a homotopy �xed point should be given by the structure
of a symmetric Frobenius algebra.

As argued in [Lur09b], the SO(2)-action on Alg2 should come from rotating the 2-
framings in the framed cobordism category. By [Dav11, Proposition 3.2.8], the induced
action on the core of fully-dualizable objects of Alg2 is actually trivializable. Hence,
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instead of considering the action coming from the framing, we may equivalently study the
trivial SO(2)-action on Algfd

2 .
Our main result, namely Theorem 4.1, computes the bicategory of homotopy �xed

points CSO(2) of the trivial SO(2)-action on an arbitrary bicategory C. It follows then
as a corollary that the bicategory (K (Algfd

2 ))SO(2) consisting of homotopy �xed points of
the trivial SO(2)-action on the core of fully-dualizable objects of Alg2 is equivalent to the
bicategory Frob of semisimple symmetric Frobenius algebras, compatible Morita contexts,
and intertwiners. This bicategory, or rather bigroupoid, classi�es 2-dimensional oriented
fully-extended topological quantum �eld theories, as shown in [SP09]. Thus, unlike �xed
points of the trivial action on a set, homotopy �xed-points of the trivial SO(2)-action
on Alg2 are actually interesting, and come equipped with the additional structure of a
symmetric Frobenius algebra.

If Vect2 is the bicategory of linear abelian categories, linear functors and natural
transformations, we show in corollary 4.8 that the bicategory (K (Vectfd

2 ))SO(2) given by
homotopy �xed points of the trivial SO(2)-action on the core of the fully dualizable objects
of Vect2 is equivalent to the bicategory of Calabi-Yau categories, which we introduce in
De�nition 4.6.

The two results above are actually intimately related to each other via natural consid-
erations from representation theory. Indeed, by assigning to a �nite-dimensional, semi-
simple algebra its category of �nitely-generated modules, we obtain a functor Rep :
K (Algfd

2 ) → K (Vectfd
2 ). This 2-functor turns out to be SO(2)-equivariant, and thus

induces a morphism on homotopy �xed point bicategories, which is moreover an equiv-
alence. More precisely, one can show that a symmetric Frobenius algebra is sent by the
induced functor to its category of representations equipped with the Calabi-Yau struc-
ture given by the composite of the Frobenius form and the Hattori-Stallings trace. These
results have appeared in [Hes16].

The present paper is organized as follows: we recall the concept of Morita contexts
between symmetric Frobenius algebras in section 2. Although most of the material has al-
ready appeared in [SP09], we give full de�nitions to mainly �x the notation. We give a very
explicit description of compatible Morita contexts between �nite-dimensional semi-simple
Frobenius algebras not present in [SP09], which will be needed to relate the bicategory
of symmetric Frobenius algebras and compatible Morita contexts to the bicategory of ho-
motopy �xed points of the trivial SO(2)-action. The expert reader might wish to at least
take notice of the notion of a compatible Morita context between symmetric Frobenius
algebras in de�nition 2.4 and the resulting bicategory Frob in de�nition 2.9.

In section 3, we recall the notion of a group action on a category and of its homotopy
�xed points, which has been named �equivariantization� in [EGNO15, Chapter 2.7]. By
categorifying this notion, we arrive at the de�nition of a group action on a bicategory and
its homotopy �xed points. This de�nition is formulated in the language of tricategories.
Since we prefer to work with bicategories, we explicitly spell out the de�nition in Remark
3.13.

In section 4, we compute the bicategory of homotopy �xed points of the trivial SO(2)-
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action on an arbitrary bicategory. Corollaries 4.3 and 4.8 then show equivalences of
bicategories

(K (Algfd
2 ))SO(2) ∼= Frob

(K (Vectfd
2 ))SO(2) ∼= CY

(1.1)

where CY is the bicategory of Calabi-Yau categories. We note that the bicategory Frob
has been proven to be equivalent [Dav11, Proposition 3.3.2] to a certain bicategory of 2-
functors. We clarify the relationship between this functor bicategory and the bicategory
of homotopy �xed points (K (Algfd

2 ))SO(2) in Remark 4.4.
Throughout the paper, we use the following conventions: all algebras considered will be

over an algebraically closed �eld K. All Frobenius algebras appearing will be symmetric.
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2. Frobenius algebras and Morita contexts

In this section we will recall some basic notions regarding Morita contexts, mostly with the
aim of setting up notations. We will mainly follow [SP09], though we point the reader to
Remark 2.5 for a slight di�erence in the statement of the compatibility condition between
Morita context and Frobenius forms.

2.1. Definition. Let A and B be two algebras. A Morita context M consists of a
quadruple M := (BMA, ANB, ε, η), where BMA is a (B,A)-bimodule, ANB is an (A,B)-
bimodule, and

ε : AN ⊗B MA → AAA

η : BBB → BM ⊗A NB

(2.1)

are isomorphisms of bimodules, so that the two diagrams

BM ⊗A NB ⊗B MA BM ⊗A AA

BB ⊗B MA BMA

idM⊗ε

η⊗idM (2.2)
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AN ⊗B M ⊗A NB AN ⊗B BB

AA⊗A NB ANB

ε⊗idN

idN⊗η
(2.3)

commute.

Note that Morita contexts are the adjoint 1-equivalences in the bicategory Alg2 of
algebras, bimodules and intertwiners. These form a category, where the morphisms are
given by the following:

2.2. Definition. Let M := (BMA, ANB, ε, η) and M′ := (BM
′
A, AN

′
B, ε

′, η′) be two
Morita contexts between two algebras A and B. A morphism of Morita contexts consists
of a morphism of (B,A)-bimodules f : M → M ′ and a morphism of (A,B)-bimodules
g : N → N ′, so that the two diagrams

BM ⊗A NB BM
′ ⊗A N ′B

B

f⊗g

η

η′

AN ⊗B MA AN
′ ⊗B M ′

A

A

g⊗f

ε

ε′
(2.4)

commute.

If the algebras in question have the additional structure of a symmetric Frobenius
form λ : A→ K, we would like to formulate a compatibility condition between the Morita
context and the Frobenius forms. We begin with the following two observations: if A is
an algebra, the map

A/[A,A]→ A⊗A⊗Aop A

[a] 7→ a⊗ 1
(2.5)

is an isomorphism of vector spaces, with inverse given by a ⊗ b 7→ [ab]. Furthermore, if
B is another algebra, and (BMA, ANB, ε, η) is a Morita context between A and B, there
is a canonical isomorphism of vector spaces

τ : (N ⊗B M)⊗A⊗Aop (N ⊗B M)→ (M ⊗A N)⊗B⊗Bop (M ⊗A N)

n⊗m⊗ n′ ⊗m′ 7→ m⊗ n′ ⊗m′ ⊗ n. (2.6)

Using the results above, we can formulate a compatibility condition between Morita con-
text and Frobenius forms, as in the following lemma.

2.3. Lemma. Let A and B be two algebras, and let (BMA, ANB, ε, η) be a Morita context
between A and B. Then, there is a canonical isomorphism of vector spaces

f : A/[A,A]→ B/[B,B]

[a] 7→
∑

i,j

[
η−1(mj.a⊗ ni)

] (2.7)
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where ni and mj are de�ned by

ε−1(1A) =
∑

i,j

ni ⊗mj ∈ N ⊗B M. (2.8)

Proof. Consider the following chain of isomorphisms:

f : A/[A,A] ∼= A⊗A⊗Aop A (by equation 2.5)
∼= (N ⊗B M)⊗A⊗Aop (N ⊗B M) (using ε⊗ ε)
∼= (M ⊗A N)⊗B⊗Bop (M ⊗A N) (by equation 2.6)
∼= B ⊗B⊗Bop B (using η ⊗ η)
∼= B/[B,B] (by equation 2.5)

(2.9)

Chasing through those isomorphisms, we can see that the map f is given by

f([a]) =
∑

i,j

[
η−1(mj.a⊗ ni)

]
(2.10)

as claimed.

The isomorphism f described in Lemma 2.3 allows to introduce the following relevant
de�nition.

2.4. Definition. Let (A, λA) and (B, λB) be two symmetric Frobenius algebras, and let
(BMA, ANB, ε, η) be a Morita context between A and B. Since the Frobenius algebras are
symmetric, the Frobenius forms necessarily factor through A/[A,A] and B/[B,B]. We
call the Morita context compatible with the Frobenius forms, if the diagram

A/[A,A] B/[B,B]

K
λA

f

λB

(2.11)

commutes.

2.5. Remark. The de�nition of compatible Morita context of [SP09, De�nition 3.72]
requires another compatibility condition on the coproduct of the unit of the Frobenius
algebras. However, a calculation using proposition 2.8 shows that the condition of [SP09]
is already implied by our condition on Frobenius form of de�nition 2.4; thus the two
de�nitions of compatible Morita context do coincide.

For later use, we give a very explicit way of expressing the compatibility condition
between Morita context and Frobenius forms: if (A, λA) and (B, λB) are two �nite-
dimensional semi-simple symmetric Frobenius algebras over an algebraically closed �eld
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K, and (BMA, BNA, ε, η) is a Morita context between them, the algebras A and B are
isomorphic to direct sums of matrix algebras by Artin-Wedderburn:

A ∼=
r⊕

i=1

Mdi(K), and B ∼=
r⊕

j=1

Mnj(K). (2.12)

By Theorem 3.3.1 of [EGH+11], the simple modules (S1, . . . , Sr) of A and the simple
modules (T1, . . . , Tr) of B are given by Si := Kdi and Ti := Kni , and every module is a
direct sum of copies of those. Since simple �nite-dimensional representations of A⊗KB

op

are given by tensor products of simple representations of A and Bop by Theorem 3.10.2
of [EGH+11], the most general form of BMA and ANB is given by

BMA : =
r⊕

i,j=1

αij Ti ⊗K Sj

ANB : =
r⊕

k,l=1

βkl Sk ⊗K Tl

(2.13)

where αij and βkl are multiplicities. First, we show that the multiplicities are trivial:

2.6. Lemma. In the situation as above, the multiplicities are trivial after a possible re-
ordering of the simple modules: αij = δij = βij and the two bimodules M and N are
actually given by

BMA =
r⊕

i=1

Ti ⊗K Si

ANB =
r⊕

j=1

Sj ⊗K Tj.

(2.14)

Proof. Suppose for a contradiction that there is a term of the form (Ti ⊕ Tj) ⊗ Sk in
the direct sum decomposition of M . Let f : Ti → Tj be a non-trivial linear map, and
de�ne ϕ ∈ EndA((Ti ⊕ Tj)⊗ Sk) by setting ϕ((ti + tj)⊗ sk) := f(ti)⊗ sk. The A-module
map ϕ induces an A-module endomorphism on all of AMB by extending ϕ with zero on
the rest of the direct summands. Since EndA(BMA) ∼= B as algebras by Theorem 3.5 of
[Bas68], the endomorphism ϕ must come from left multiplication, which cannot be true
for an arbitrary linear map f . This shows that the bimodule M is given as claimed in
equation (2.14). The statement for the other bimodule N follows analogously.

Lemma 2.6 shows how the bimodules underlying a Morita context of semi-simple
algebras look like. Next, we consider the Frobenius structure.

2.7. Lemma. [Koc03, Lemma 2.2.11] Let (A, λ) be a symmetric Frobenius algebra. Then,
every other symmetric Frobenius form on A is given by multiplying the Frobenius form
with a central invertible element of A.
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By Lemma 2.7, we conclude that the Frobenius forms on the two semi-simple algebras
A and B are given by

λA =
r⊕

i=1

λAi trMdi
(K) and λB =

r⊕

i=1

λBi trMni (K) (2.15)

where λAi and λBi are non-zero scalars. We can now state the following proposition, which
will be used in the proof of corollary 4.3.

2.8. Proposition. Let (A, λA) and (B, λB) be two �nite-dimensional, semi-simple sym-
metric Frobenius algebras and suppose thatM := (M,N, ε, η) is a Morita context between
them. Let λAi and λBj be as in equation (2.15), and de�ne two invertible central elements

a : = (λA1 , . . . , λ
A
r ) ∈ Kr ∼= Z(A)

b : = (λB1 , . . . , λ
B
r ) ∈ Kr ∼= Z(B)

(2.16)

Then, the following are equivalent:

1. The Morita context M is compatible with the Frobenius forms in the sense of de�-
nition 2.4.

2. We have m.a = b.m for all m ∈ BMA and n.b−1 = a−1.n for all n ∈ ANB.

3. For every i = 1, . . . , r, we have that λAi = λBi .

Proof.With the form of M and N determined by equation (2.14), we see that the only
isomorphisms of bimodules ε : N ⊗B M → A and η : B → M ⊗A N must be given by
multiples of the identity matrix on each direct summand:

ε : N ⊗AM ∼=
r⊕

i=1

M(di × di,K)→
r⊕

i=1

M(di × di,K) = A

r∑

i=1

Mi 7→
r∑

i=1

εiMi

(2.17)

Similarly, η is given by

η : B =
r⊕

i=1

M(ni × ni,K) 7→M ⊗A B ∼=
r⊕

i=1

M(ni × ni,K)

r∑

i=1

Mi 7→
r∑

i=1

ηiMi

(2.18)

Here, εi and ηi are non-zero scalars. The condition that this data should be a Morita con-
text then demands that εi = ηi, as a short calculation in a basis con�rms. By calculating
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the action of the elements a and b de�ned above in a basis, we see that conditions (2) and
(3) of the above proposition are equivalent.

Next, we show that (1) and (3) are equivalent. In order to see when the Morita context
is compatible with the Frobenius forms, we calculate the map f : A/[A,A] → B/[B,B]
from equation (2.11). One way to do this is to notice that [A,A] consists precisely of
trace-zero matrices (cf. [AM57]); thus

A/[A,A]→ Kr

[A1 ⊕ A2 ⊕ · · · ⊕ Ar] 7→ (tr(A1), · · · , tr(Ar))
(2.19)

is an isomorphism of vector spaces. Using this identi�cation, we see that the map f is
given by

f : A/[A,A]→ B/[B,B]

[A1 ⊕ A2 ⊕ · · · ⊕ Ar] 7→
r⊕

i=1

trMdi
(Ai)

[
E

(ni×ni)
11

] (2.20)

Note that this map is independent of the scalars εi and ηi coming from the Morita context.
Now, the two Frobenius algebras A and B are Morita equivalent via a compatible Morita
context if and only if the diagram in equation (2.11) commutes. This is the case if and
only if λAi = λBi for all i, as a straightforward calculation in a basis shows.

Having established how compatible Morita contexts between semi-simple algebras over
an algebraic closed �eld look like, we arrive at following de�nition.

2.9. Definition. Let K be an algebraically closed �eld. Let Frob be the bicategory where

• objects are given by �nite-dimensional, semisimple, symmetric Frobenius K-algebras,

• 1-morphisms are given by compatible Morita contexts, as in de�nition 2.4,

• 2-morphisms are given by isomorphisms of Morita contexts.

Note that Frob has got the structure of a symmetric monoidal bigroupoid, where the
monoidal product is given by the tensor product over the ground �eld, which is the monoidal
unit.

The bicategory Frob will be relevant for the remainder of the paper, due to the fol-
lowing theorem.

2.10. Theorem. [Oriented version of the Cobordism Hypothesis, [SP09]] The weak 2-
functor

Fun⊗(Cobor

2,1,0,Alg2)→ Frob

Z 7→ Z(+)
(2.21)

is an equivalence of bicategories.
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3. Group actions on bicategories and their homotopy �xed points

For a group G, we denote with BG the category with one object and G as morphisms.
Similarly, if C is a monoidal category, BC will denote the bicategory with one object and
C as endomorphism category of this object. Furthermore, we denote by G the discrete
monoidal category associated to G, i.e. the category with the elements of G as objects,
only identity morphisms, and monoidal product given by group multiplication.

Recall that an action of a group G on a set X is a group homomorphism ρ : G →
Aut(X). The set of �xed points XG is then de�ned as the set of all elements of X which
are invariant under the action. In equivalent, but more categorical terms, a G-action on
a set X can be de�ned to be a functor ρ : BG → Set which sends the one object of the
category BG to the set X.

If ∆ : BG→ Set is the constant functor sending the one object of BG to the set with
one element, one can check that the set of �xed points XG stands in bijection to the set
of natural transformations from the constant functor ∆ to ρ, which is exactly the limit of
the functor ρ. Thus, we have bijections of sets

XG ∼= lim
∗//G

ρ ∼= Nat(∆, ρ). (3.1)

3.1. Remark. A further equivalent way of providing a G-action on a set X is by giving
a monoidal functor ρ : G → Aut(X), where we regard both G and Aut(X) as categories
with only identity morphisms. This de�nition however does not allow us to express the
set of homotopy �xed points in a nice categorical way as in equation (3.1), and thus turns
out to be less useful for our purposes.

Categorifying the notion of a G-action on a set yields the de�nition of a discrete group
acting on a category:

3.2. Definition. Let G be a discrete group and let C be a category. Let BG be the 2-
category with one object and G as the category of endomorphisms of the single object. A
G-action on C is de�ned to be a weak 2-functor ρ : BG→ Cat with ρ(∗) = C.

Note that just as in remark 3.1, we could have avoided the language of 2-categories
and have de�ned a G-action on a category C to be a monoidal functor ρ : G→ Aut(C).

Next, we would like to de�ne the homotopy �xed point category of this action to be
a suitable limit of the action, just as in equation (3.1). The appropriate notion of a limit
of a weak 2-functor with values in a bicategory appears in the literature as a pseudo-limit
or indexed limit, which we will simply denote by lim. We will only consider limits indexed
by the constant functor. For background, we refer the reader to [Lac10], [Kel89], [Str80]
and [Str87].

We are now in the position to introduce the following de�nition:

3.3. Definition. Let G be a discrete group, let C be a category, and let ρ : BG → Cat
be a G-action on C. Then, the category of homotopy �xed points CG is de�ned to be the
pseudo-limit of ρ.
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Just as in the 1-categorical case in equation (3.1), it is shown in [Kel89] that the limit
of any weak 2-functor with values in Cat is equivalent to the category of pseudo-natural
transformations and modi�cations Nat(∆, ρ) . Hence, we have an equivalence of categories

CG ∼= lim ρ ∼= Nat(∆, ρ). (3.2)

Here, ∆ : BG→ Cat is the constant functor sending the one object of BG to the terminal
category with one object and only the identity morphism. By spelling out de�nitions, one
sees:

3.4. Remark. Let ρ : BG → Cat be a G-action on a category C, and suppose that
ρ(e) = idC, i.e. the action respects the unit strictly. Then, the homotopy �xed point
category CG is equivalent to the �equivariantization� introduced in [EGNO15, De�nition
2.7.2].

3.5. G-actions on bicategories. Next, we would like to step up the categorical ladder
once more, and de�ne an action of a group G on a bicategory. Moreover, we would also
like to account for the case where our group is equipped with a topology. This will be
done by considering the fundamental 2-groupoid of G, referring the reader to [HKK01]
for additional details.

3.6. Definition. Let G be a topological group. The fundamental 2-groupoid of G is the
monoidal bicategory Π2(G) where

• objects are given by points of G,

• 1-morphisms are given by paths between points,

• 2-morphisms are given by homotopy classes of homotopies between paths, called 2-
tracks.

The monoidal product of Π2(G) is given by the group multiplication on objects, by pointwise
multiplication of paths on 1-morphisms, and by pointwise multiplication of 2-tracks on 2-
morphisms. Notice that this monoidal product is associative on the nose, and all other
monoidal structure like associators and unitors can be chosen to be trivial.

We are now ready to give a de�nition of a G-action on a bicategory. Although the
de�nition we give uses the language of tricategories as de�ned in [GPS95] or [Gur07], we
provide a bicategorical description in Remark 3.9.

3.7. Definition. Let G be a topological group, and let C be a bicategory. A G-action on
C is de�ned to be a trifunctor

ρ : BΠ2(G)→ Bicat (3.3)

with ρ(∗) = C. Here, BΠ2(G) is the tricategory with one object and with Π2(G) as
endomorphism-bicategory, and Bicat is the tricategory of bicategories.
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3.8. Remark. If C is a bicategory, let Aut(C) be the bicategory consisting of auto-
equivalences of bicategories of C, pseudo-natural isomorphisms and invertible modi�ca-
tions. Observe that Aut(C) has the structure of a monoidal bicategory, where the monoidal
product is given by composition. Since there are two ways to de�ne the horizontal compo-
sition of pseudo-natural transformation, which are not equal to each other, there are actu-
ally two monoidal structures on Aut(C). It turns out that these two monoidal structures
are equivalent; see [GPS95, Section 5] for a discussion in the language of tricategories.

With either monoidal structure of Aut(C) chosen, note that as in Remark 3.1 we could
equivalently have de�ned a G-action on a bicategory C to be a weak monoidal 2-functor
ρ : Π2(G)→ Aut(C).

Since we will only consider trivial actions in this paper, the hasty reader may wish to
skip the next remark, in which the de�nition of a G-action on a bicategory is unpacked.
We will, however use the notation introduced here in our explicit description of homotopy
�xed points in remark 3.13.

3.9. Remark. [Unpacking De�nition 3.7] Unpacking the de�nition of a weak monoidal
2-functor ρ : Π2(G)→ Aut(C), as for instance in [SP09, De�nition 2.5], or equivalently of
a trifunctor ρ : BΠ2(G)→ Bicat, as in [GPS95, De�nition 3.1], shows that a G-action on
a bicategory C consists of the following data and conditions:

• For each group element g ∈ G, an equivalence of bicategories Fg := ρ(g) : C → C,

• For each path γ : g → h between two group elements, the action assigns a pseudo-
natural isomorphism ρ(γ) : Fg → Fh,

• For each 2-track m : γ → γ′, the action assigns an invertible modi�cation ρ(m) :
ρ(γ)→ ρ(γ′).

• There is additional data making ρ into a weak 2-functor, namely: if γ1 : g → h and
γ2 : h→ k are paths in G, we obtain invertible modi�cations

φγ2γ1 : ρ(γ2) ◦ ρ(γ1)→ ρ(γ2 ◦ γ1) (3.4)

• Furthermore, for every g ∈ G there is an invertible modi�cation φg : idFg → ρ(idg)
between the identity endotransformation on Fg and the value of ρ on the constant
path idg.

There are three compatibility conditions for this data: one condition making φγ2,γ1

compatible with the associators of Π2(G) and Aut(C), and two conditions with
respect to the left and right unitors of Π2(G) and Aut(C).

• Finally, there are data and conditions for ρ to be monoidal. These are:

� A pseudo-natural isomorphism

χ : ρ(g)⊗ ρ(h)→ ρ(g ⊗ h) (3.5)
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� A pseudo-natural isomorphism

ι : idC → Fe (3.6)

� For each triple (g, h, k) of group elements, an invertible modi�cation ωghk in
the diagram

Fg ⊗ Fh ⊗ Fk Fgh ⊗ Fk

Fg ⊗ Fhk Fghk

χgh⊗id

id⊗χhk χgh,k
ωghk

χg,hk

(3.7)

� An invertible modi�cation γ in the triangle below

Fe ⊗ Fg

idC ⊗ Fg Fg

χe,gι⊗id

idFg

γ
(3.8)

� Another invertible modi�cation δ in the triangle

Fg ⊗ Fe

Fg ⊗ idC Fg

χg,eid⊗ι

idFg

δ
(3.9)

The data (ρ, χ, ι, ω, γ, δ) then has to obey equations (HTA1) and (HTA2) in [GPS95, p.
17].

Just as in the case of a group action on a set and a group action on a category, we would
like to de�ne the bicategory of homotopy �xed points of a group action on a bicategory as
a suitable limit. However, the theory of trilimits is not very well established. Therefore
we will take the description of homotopy �xed points as natural transformations as in
equation (3.1) as a de�nition, and de�ne homotopy �xed points of a group action on
a bicategory as the bicategory of pseudo-natural transformations between the constant
functor and the action.

3.10. Definition. Let G be a topological group and C a bicategory. Let

ρ : BΠ2(G)→ Bicat (3.10)

be a G-action on C. The bicategory of homotopy �xed points CG is de�ned to be

CG := Nat(∆, ρ) (3.11)
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Here, ∆ is the constant functor which sends the one object of BΠ2(G) to the terminal bi-
category with one object, only the identity 1-morphism and only identity 2-morphism. The
bicategory Nat(∆, ρ) then has objects given by tritransformations ∆ → ρ, 1-morphisms
are given by modi�cations, and 2-morphisms are given by perturbations.

3.11. Remark. The notion of the �equivariantization� of a strict 2-monad on a 2-category
has already appeared in [MN14, Section 6.1]. Note that de�nition 3.10 is more general
than the de�nition of [MN14], in which some modi�cations have been assumed to be
trivial.

3.12. Remark. In principle, even higher-categorical de�nitions are possible: for instance
in [FV15] a homotopy �xed point of a higher character ρ of an ∞-group is de�ned to be
a (lax) morphism of ∞-functors ∆→ ρ.

3.13. Remark. [Unpacking objects of CG] Since unpacking the de�nition of homotopy
�xed points is not entirely trivial, we spell it out explicitly in the subsequent remarks,
following [GPS95, De�nition 3.3]. In the language of bicategories, a homotopy �xed point
consists of:

• an object c of C,

• a pseudo-natural equivalence

Π2(G) C

∆c

evc ◦ρ

Θ (3.12)

where ∆c is the constant functor which sends every object to c ∈ C, and evc is the
evaluation at the object c. In components, the pseudo-natural transformation Θ
consists of the following:

� for every group element g ∈ G, a 1-equivalence in C

Θg : c→ Fg(c) (3.13)

� and for each path γ : g → h, an invertible 2-morphism Θγ in the diagram

c Fg(c)

c Fh(c)

Θg

idc ρ(γ)c
Θγ

Θh

(3.14)

which is natural with respect to 2-tracks.
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• an invertible modi�cation Π in the diagram

Π2(G)× Π2(G) C

Aut(C)× C

Aut(C)× Aut(C)

Π2(G) Aut(C)

∆c

⊗

ρ×∆c

ρ×ρ

ev

⊗

id×evc

χ

ρ

evc

Θ×1

1×Θ

∼=

ΠΠ

Π2(G)× Π2(G) C

Π2(G) Aut(C)

∆c

⊗

ρ

∆c evc
Θ

∼=

(3.15)

which in components means that for every tuple of group elements (g, h) we have
an invertible 2-morphism Πgh in the diagram

c Fg(c) Fg(Fh(c)) Fgh(c)
Θg

Θgh

Fg(Θh)

Πgh

χcgh
(3.16)
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• for the unital structure, another invertible modi�cation M , which only has the
component given in the diagram

c Fe(c)

Θe

ιc

M (3.17)

with ι as in equation (3.6). The data (c,Θ,Π,M) of a homotopy �xed point then has to
obey the following three conditions. Using the equation in [GPS95, p.21-22] we �nd the
condition

FxFy c FxFyFz c

Fx c Fxy c FxyFz c

c Fxyz c

FxFy(Θz)

∼=
χcxy χ

Fz(c)
xyFx(Θy)

Fxy(Θz)

χxy,zΘxy

Θxyz

Θx

Πxy

Πxy,z

=

FxFy c FxFyFz c

Fx c FxFyz c FxyFz c

c Fxyz c

FxFy(Θz)

χ
Fz(c)
xy

Fx(χcyz)

Fx(Θy)

Fx(Θyz)

χcx,yz

χxy,z

ωxyz

Θxyz

Θx

Πx,yz

Fx(Πyz)

(3.18)
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whereas the equation on p.23 of [GPS95] demands that we have

Fe c FeFx c

c Fx c Fx c

Fe(Θx)

χex

Θx

Θe
Θx

idFx(c)

Πex

∼=

=

Fe c FeFx c

c Fx c Fx c

Fe(Θx)

∼= χex

Θx

Θe

ιc

idFx(c)

ιFx(c)

γ
M

(3.19)

and �nally the equation on p.25 of [GPS95] demands that

Fx c FxFe c

c Fx c

Fx(Θe)

χxeΘx

Θx

Πxe =

Fx c FxFe c

c Fx c

Fx(Θe)

Fx(ιc)

idFx(c) χxeΘx

Θx

Fx(M)

∼=

δ−1 (3.20)

3.14. Remark. Suppose that (c,Θ,Π,M) and (c′,Θ′,Π′,M ′) are homotopy �xed points.
A 1-morphism between these homotopy �xed points consists of a trimodi�cation. In
detail, this means:



668 JAN HESSE, CHRISTOPH SCHWEIGERT, AND ALESSANDRO VALENTINO

• A 1-morphism f : c→ c′,

• An invertible modi�cation m in the diagram

Π2(G) C

∆c

evc ◦ρ

evc′ ◦ρ

Θ

evf ∗id

mm Π2(G) C

∆c

∆c′

evc′ ◦ρ

∆f

Θ′

(3.21)
In components, mg is given by

c Fg(c)

c′ Fg(c
′)

Θg

f Fg(f)
mg

Θ′g

(3.22)

The data (f,m) of a 1-morphism of homotopy �xed points has to satisfy the following
two equations as on p.25 and p. 26 of [GPS95]:
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c Fg(c) Fg(Fh(c)) Fgh(c)

c′ Fgh(c
′)

Θg

f
Θgh

Fg(Θh)

Πgh

χcgh

Fgh(f)

Θ′gh

mgh

=

c Fg(c) Fg(Fh(c)) Fgh(c)

Fg(c
′) Fg(Fh(c

′))

c′ Fgh(c
′)

Θg

f

Fg(f)

Fg(Θh)

Fg(mh)
Fg(Fh(f))

χcgh

Fgh(f)
Fg(Θ′h)mg

χc
′
gh

∼=

Θ′gh

Θ′g Π′gh

(3.23)

whereas the second equation reads

c Fe(c)

c′ Fe(c
′)

ιc

Θe

f
ιf

Fe(f)

ιc′

M

=

c Fe(c)

c′ Fe(c
′)

Θe

f Fe(f)
me

ιc′

Θ′e

M ′

(3.24)

3.15. Remark. The condition saying that m, as introduced in equation (3.21), is a
modi�cation will be vital for the proof of Theorem 4.1 and states that for every path
γ : g → h in G, we must have the following equality of 2-morphisms in the two diagrams:
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c Fg(c) Fg(c
′) Fh(c

′)

c′ c′

c c′

idc

f

Θg

mg

Fg(f)

Θ′γ

ρ(γ)c
′

idc′

Θ′g

Θ′h

f

Θ′h∼=

=

c Fg(c) Fg(c
′) Fh(c

′)

Fh(c)

c c′

idc

Θg

ρ(γ)c

Fg(f)

ρ(γ)−1
f

ρ(γ)c
′

Θγ
Fh(f)

mh

f

Θh
Θ′h

(3.25)

Next, we come to 2-morphisms of the bicategory CG of homotopy �xed points:

3.16. Remark. Let (f,m), (ξ, n) : (c,Θ,Π,M)→ (c′,Θ′,Π′,M ′) be two 1-morphisms of
homotopy �xed points. A 2-morphism of homotopy �xed points consists of a perturbation
between those trimodi�cations. In detail, a 2-morphism of homotopy �xed points consists
of a 2-morphism α : f → ξ in C, so that

c Fg(c)

c′ Fg(c
′)

Θg

fξ α Fg(f)
mg

Θ′g

=

c Fg(c)

c′ Fg(c
′)

Θg

ξ Fg(ξ) Fg(f)
ng

Θ′g

Fg(α)
(3.26)

Let us give an example of a group action on bicategories and its homotopy �xed points:
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3.17. Example. Let G be a discrete group, and let C be any bicategory. Suppose ρ :
Π2(G) → Aut(C) is the trivial G-action. Then, by remark 3.13 a homotopy �xed point,
i.e. an object of CG consists of

• an object c of C,

• a 1-equivalence Θg : c→ c for every g ∈ G,

• a 2-isomorphism Πgh : Θh ◦Θg → Θgh,

• a 2-isomorphism M : Θe → idc.

This is exactly the same data as a functor BG→ C, where BG is the bicategory with one
object, G as morphisms, and only identity 2-morphisms. Extending this analysis to 1- and
2-morphisms of homotopy �xed points shows that we have an equivalence of bicategories

CG ∼= Fun(BG, C). (3.27)

When one specializes to C = Vect2, the functor bicategory Fun(BG, C) is also known
as Rep2(G), the bicategory of 2-representations of G. Thus, we have an equivalence of
bicategories VectG2

∼= Rep2(G). This result generalizes the 1-categorical statement that the
homotopy �xed point 1-category of the trivial G-action on Vect is equivalent to Rep(G),
cf. [EGNO15, Example 4.15.2].

4. Homotopy �xed points of the trivial SO(2)-action

We are now in the position to state and prove the main result of the present paper.
Applying the description of homotopy �xed points in Remark 3.13 to the trivial action of
the topological group SO(2) on an arbitrary bicategory yields Theorem 4.1. Specifying
the bicategory in question to be the core of the fully-dualizable objects of the Morita-
bicategory Alg2 then shows in corollary 4.3 that homotopy �xed points of the trivial
SO(2)-action on K (Algfd

2 ) are given by symmetric, semi-simple Frobenius algebras.

4.1. Theorem. Let C be a bicategory, and let ρ : Π2(SO(2)) → Aut(C) be the trivial
SO(2)-action on C. Then, the bicategory of homotopy �xed points CSO(2) is equivalent to
the bicategory where

• objects are given by pairs (c, λ) where c is an object of C, and λ : idc → idc is a
2-isomorphism,

• 1-morphisms (c, λ) → (c′, λ′) are given by 1-morphisms f : c → c′ in C, so that the
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diagram of 2-morphisms

f f ◦ idc f ◦ idc

idc′ ◦ f idc′ ◦ f f

∼

∼

idf∗λ

∼

λ′∗idf ∼

(4.1)

commutes, where ∗ denotes horizontal composition of 2-morphisms. The unlabeled
arrows are induced by the canonical coherence isomorphisms of C.

• 2-morphisms of CG are given by 2-morphisms α : f → f ′ in C.
Proof. First, notice that we do not require any conditions on the 2-morphisms of CSO(2).
This is due to the fact that the action is trivial, and that π2(SO(2)) = 0. Hence, all nat-
urality conditions with respect to 2-morphisms in Π2(SO(2)) are automatically ful�lled.

To start, we observe that the fundamental 2-groupoid Π2(SO(2)) is equivalent to the
bicategory consisting of only one object, Z worth of morphisms, and only identity 2-
morphisms which we denote by BZ. Thus, it su�ces to consider the homotopy �xed
point bicategory of the trivial action BZ → Aut(C). In this case, the de�nition of a
homotopy �xed point as in 3.10 reduces to

• An object c of C,

• A 1-equivalence Θ := Θ∗ : c→ c,

• For every n ∈ Z, an invertible 2-morphism Θn : idc ◦ Θ → Θ ◦ idc. Since Θ is
a pseudo-natural transformation, it is compatible with respect to composition of
1-morphisms in BZ. Therefore, Θn+m is fully determined by Θn and Θm, cf. [SP09,
Figure A.1] for the relevant commuting diagram. Thus, it su�ces to specify Θ1.

By using the canonical coherence isomorphisms of C, we see that instead of giving
Θ1, we can equivalently specify an invertible 2-morphism

λ̃ : Θ→ Θ. (4.2)

which will be used below.

• A 2-isomorphism
idc ◦Θ ◦Θ→ Θ (4.3)

which is equivalent to giving a 2-isomorphism

Π : Θ ◦Θ→ Θ. (4.4)

• A 2-isomorphism
M : Θ→ idc. (4.5)
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Note that equivalently to the 2-isomorphism λ̃, one can specify an invertible 2-isomorphism

λ : idc → idc (4.6)

where
λ := M ◦ λ̃ ◦M−1. (4.7)

with M as in equation (4.5). This data has to satisfy the following three equations:
Equation (3.18) says that we must have

Π ◦ (idΘ ∗ Π) = Π ◦ (Π ∗ idΘ) (4.8)

whereas equation (3.19) demands that Π equals the composition

Θ ◦Θ
idΘ∗M−−−−→ Θ ◦ idc ∼= Θ (4.9)

and �nally equation (3.20) tells us that Π must also be equal to the composition

Θ ◦Θ
M∗idΘ−−−−→ idc ◦Θ ∼= Θ. (4.10)

Hence Π is fully speci�ed by M . An explicit calculation using the two equations above
then con�rms that equation (4.8) is automatically ful�lled. Indeed, by composing with
Π−1 from the right, it su�ces to show that idΘ ∗Π = Π ∗ idΘ. Suppose for simplicity that
C is a strict 2-category. Then,

idΘ ∗ Π = idΘ ∗ (M ∗ idΘ) by equation (4.10)

= (idΘ ∗M) ∗ idΘ

= Π ∗ idΘ by equation (4.9)

(4.11)

Adding appropriate associators shows that this is true in a general bicategory.
If (c,Θ, λ,Π,M) and (c′,Θ′, λ′,Π′,M ′) are two homotopy �xed points, the de�nition

of a 1-morphism of homotopy �xed points reduces to

• A 1-morphism f : c→ c′ in C,

• A 2-isomorphism m : f ◦Θ→ Θ′ ◦ f in C

satisfying two equations. The condition due to equation (3.24) demands that the following
isomorphism

f ◦Θ
idf∗M−−−→ f ◦ idc ∼= f (4.12)

is equal to the isomorphism

f ◦Θ
m−→ Θ′ ◦ f M ′∗idf−−−−→ idc′ ◦ f ∼= f (4.13)
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and thus is equivalent to the equation

m =

(
f ◦Θ

idf∗M−−−→ f ◦ idc ∼= f ∼= idc′ ◦ f
M ′−1∗idf−−−−−→ Θ′ ◦ f

)
. (4.14)

Thus, m is fully determined by M and M ′. The condition due to equation (3.23) reads

m ◦ (idf ∗ Π) = (Π′ ∗ idf ) ◦ (idΘ′ ∗m) ◦ (m ∗ idΘ) (4.15)

and is automatically satis�ed, as an explicit calculation con�rms. Indeed, if C is a strict
2-category we have that

(Π′ ∗ idf ) ◦ (idΘ′ ∗m) ◦ (m ∗ idΘ)

= (Π′ ∗ idf ) ◦
[
idΘ′ ∗ (M ′−1 ∗ idf ◦ idf ∗M)

]
◦
[
(M ′−1 ∗ idf ◦ idf ∗M) ∗ idΘ

]

= (Π′ ∗ idf ) ◦ (idΘ′ ∗M ′−1 ∗ idf ) ◦ (idΘ′ ∗ idf ∗M)

◦ (M ′−1 ∗ idf ∗ idΘ) ◦ (idf ∗M ∗ idΘ)

= (Π′ ∗ idf ) ◦ (Π′
−1 ∗ idf ) ◦ (idΘ′ ∗ idf ∗M) ◦ (M ′−1 ∗ idf ∗ idΘ) ◦ (idf ∗ Π)

= (idΘ′ ∗ idf ∗M) ◦ (M ′−1 ∗ idf ∗ idΘ) ◦ (idf ∗ Π)

= (M−1 ∗ idf ) ◦ (idf ∗M) ◦ (idf ∗ Π)

= m ◦ (idf ∗ Π)

as desired. Here, we have used equation (4.14) in the �rst and last line, and equations (4.9)
and (4.10) in the third line. Adding associators shows this for an arbitrary bicategory.

The condition that m is a modi�cation as spelled out in equation (3.25) demands that

(λ̃′ ∗ idf ) ◦m = m ◦ (idf ∗ λ̃) (4.16)

as equality of 2-morphisms between the two 1-morphisms

f ◦Θ→ Θ′ ◦ f. (4.17)

Using equation (4.14) and replacing λ̃ by λ as in equation (4.7), we see that this require-
ment is equivalent to the commutativity of diagram (4.1).

If (f,m) and (g, n) are two 1-morphisms of homotopy �xed points, a 2-morphism of
homotopy �xed points consists of a 2-morphisms α : f → g. The condition coming from
equation (3.26) then demands that the diagram

f ◦Θ Θ′ ◦ f

g ◦Θ Θ′ ◦ g

m

α∗idΘ idΘ′∗α

n

(4.18)
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commutes. Using the fact that both m and n are uniquely speci�ed by M and M ′, one
quickly con�rms that the diagram commutes automatically.

Our analysis shows that the forgetful functor U which forgets the data M , Θ and
Π on objects, which forgets the data m on 1-morphisms, and which is the identity on
2-morphisms is an equivalence of bicategories. Indeed, let (c, λ) be an object in the
stricti�ed homotopy �xed point bicategory. Choose Θ := idc, M := idΘ and Π as in
equation (4.9). Then, U(c,Θ,M,Π, λ) = (c, λ). This shows that the forgetful functor is
essentially surjective on objects. Since m is fully determined by M and M ′, it is clear
that the forgetful functor is essentially surjective on 1-morphisms. Since (4.18) commutes
automatically, the forgetful functor is bijective on 2-morphisms and thus an equivalence
of bicategories.

In the following, we specialise Theorem 4.1 to the case of symmetric Frobenius algebras
and Calabi-Yau categories.

4.2. Symmetric Frobenius algebras as homotopy fixed points. In order to
state the next corollary, recall that the fully-dualizable objects of the Morita bicategory
Alg2 consisting of algebras, bimodules and intertwiners are precisely given by the �nite-
dimensional, semi-simple algebras [SP09]. Furthermore, recall that the core K (C) of a
bicategory C consists of all objects of C, the 1-morphisms are given by 1-equivalences of
C, and the 2-morphisms are restricted to be isomorphisms.

4.3. Corollary. Suppose C = K (Algfd
2 ), and consider the trivial SO(2)-action on C.

Then CSO(2) is equivalent to the bicategory of �nite-dimensional, semi-simple symmet-
ric Frobenius algebras Frob, as de�ned in de�nition 2.9. This implies a bijection of
isomorphism-classes of symmetric, semi-simple Frobenius algebras and homotopy �xed
points of the trivial SO(2)-action on K (Algfd

2 ).

Proof. Indeed, by Theorem 4.1, an object of CSO(2) is given by a �nite-dimensional
semisimple algebra A, together with an isomorphism of Morita contexts idA → idA. By
de�nition, a morphism of Morita contexts consists of two intertwiners of (A,A)-bimodules
λ1, λ2 : A → A. The diagrams in de�nition 2.2 then require that λ1 = λ−1

2 . Thus, λ2 is
fully determined by λ1. Let λ := λ1. Since λ is an automorphism of (A,A)-bimodules,
it is fully determined by λ(1A) ∈ Z(A). This gives A, by Lemma 2.7, the structure of a
symmetric Frobenius algebra.

We analyze the 1-morphisms of CSO(2) in a similar way: if (A, λ) and (A′, λ′) are �nite-
dimensional semi-simple symmetric Frobenius algebras, a 1-morphism in CSO(2) consists
of a Morita contextM : A→ A′ so that (4.1) commutes.

Suppose that M = (A′MA, ANA′ , ε, η) is a Morita context, and let a := λ(1A) and
a′ := λ′(1A′). Then, the condition that (4.1) commutes demands that

m.a = a′.m

a−1.n = n.a′
−1 (4.19)

for every m ∈M and every n ∈ N . By proposition 2.8 this condition is equivalent to the
fact that the Morita context is compatible with the Frobenius forms as in de�nition 2.4.
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It follows that the 2-morphisms of CSO(2) and Frob are equal to each other, proving
the result.

4.4. Remark. In [Dav11, Proposition 3.3.2], the bigroupoid Frob of corollary 4.3 is shown
to be equivalent to the bicategory of 2-functors Fun(B2Z,K (Algfd

2 )). Assuming a homo-
topy hypothesis for bigroupoids, as well as an equivariant homotopy hypothesis in a
bicategorical framework, this bicategory of functors should agree with the bicategory of
homotopy �xed points of the trivial SO(2)-action on K (Algfd

2 ) in corollary 4.3. Con-
cretely, one might envision the following strategy for an alternative proof of corollary 4.3,
which should roughly go as follows:

1. By [Dav11, Proposition 3.3.2], there is an equivalence of bigroupoids

Frob ∼= Fun(B2Z,K (Algfd
2 )).

2. Then, use the homotopy hypothesis for bigroupoids. By this, we mean that the
fundamental 2-groupoid should induce an equivalence of tricategories

Π2 : Top≤2 → BiGrp . (4.20)

Here, the right hand-side is the tricategory of bigroupoids, whereas the left hand
side is a suitable tricategory of 2-types. Such an equivalence of tricategories induces
an equivalence of bicategories

Fun(B2Z,K (Algfd
2 )) ∼= Π2(Hom(BSO(2), X)), (4.21)

where X is a 2-type representing the bigroupoid K (Algfd
2 ).

3. Now, consider the trivial homotopy SO(2)-action on the 2-type X. Using the fact
that we work with the trivial SO(2)-action, we obtain a homotopy equivalence
Hom(BSO(2), X) ∼= XhSO(2), cf. [Dav11, Page 50].

4. In order to identify the 2-type XhSO(2) with our de�nition of homotopy �xed points,
we additionally need an equivariant homotopy hypothesis: namely, we need to use
that a homotopy action of a topological group G on a 2-type Y is equivalent to a
G-action on the bicategory Π2(Y ) as in de�nition 3.7 of the present paper. Further-
more, we also need to assume that the fundamental 2-groupoid is G-equivariant,
namely that there is an equivalence of bicategories Π2(Y hG) ∼= Π2(Y )G. Using this
equivariant homotopy hypothesis for the trivial SO(2)-action on the 2-type X then
should give an equivalence of bicategories

Π2(XhSO(2)) ∼= Π2(X)SO(2) ∼= (K (Algfd
2 ))SO(2). (4.22)

Combining all four steps gives an equivalence of bicategories between the bigroupoid of
Frobenius algebras and homotopy �xed points:

Frob ∼=
(1)

Fun(B2Z,K (Algfd
2 )) ∼=

(2)
Π2(Hom(BSO(2), X)) ∼=

(3)
Π2(XhSO(2)) ∼=

(4)
(K (Algfd

2 ))SO(2).
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In order to turn this argument into a full proof, we would need to provide a proof of
the homotopy hypothesis for bigroupoids in equation (4.20), as well as a proof for the
equivariant homotopy hypothesis in equation (4.22). While the homotopy hypothesis
as formulated in equation (4.20) is widely believed to be true, we are not aware of a
proof of this statement in the literature. A step in this direction is [MS93], which proves
that the homotopy categories of 2-types and 2-groupoids are equivalent. We however
really need the full tricategorical version of this statement as in equation (4.20), since we
need to identify the (higher) morphisms in BiGrp with (higher) homotopies. Notice that
statements of this type are rather subtle, see [KV91, Sim98].

While certainly interesting and conceptually illuminating, a proof of the equivariant
homotopy hypothesis in a bicategorical language in equation (4.22) is beyond the scope of
the present paper, which aims to give an algebraic description of homotopy �xed points
on bicategories. Although an equivariant homotopy hypothesis for ∞-groupoids follows
from [Lur09a, Theorem 4.2.4.1], we are not aware of a proof of the bicategorical statement
in equation (4.22).

Next, we compute homotopy �xed points of the trivial SO(2)-action on Vectfd
2 and

show that they are given by Calabi-Yau categories. This result is new and has not yet
appeared in the literature.

4.5. Calabi-Yau categories as homotopy fixed points. We now apply Theo-
rem 4.1 to Calabi-Yau categories, as considered in [MS06]. Let Vect2 be the bicategory
consisting of linear, abelian categories, linear functors, and natural transformations.

Recall that a K-linear, abelian category C is called �nite, if is has �nite-dimensional
Hom-spaces, every object has got �nite length, the category C has got enough projectives,
and there are only �nitely many isomorphism classes of simple objects.

The fully-dualizable objects of Vect2 are then precisely the �nite, semi-simple linear
categories, cf. [BDSV15, Appendix A]. For convenience, we recall the de�nition of a �nite
Calabi-Yau category.

4.6. Definition. Let K be an algebraically closed �eld. A Calabi-Yau category (C, trC)
is a K-linear, �nite, semi-simple category C, together with a family of K-linear maps

trCc : EndC(c)→ K (4.23)

for each object c of C, so that:

1. for each f ∈ HomC(c, d) and for each g ∈ HomC(d, c), we have that

trCc (g ◦ f) = trCd(f ◦ g), (4.24)

2. for each f ∈ EndC(x) and each g ∈ EndC(d), we have that

trCc⊕d(f ⊕ g) = trCc (f) + trCd(g), (4.25)



678 JAN HESSE, CHRISTOPH SCHWEIGERT, AND ALESSANDRO VALENTINO

3. for all objects c of C, the induced pairing

〈− ,−〉C : HomC(c, d)⊗K HomC(d, c)→ K
f ⊗ g 7→ trCc (g ◦ f)

(4.26)

is a non-degenerate pairing of K-vector spaces.

We will call the collection of morphisms trCc a trace on C.
An equivalent way of de�ning a Calabi-Yau structure on a linear category C is by

specifying a natural isomorphism

HomC(c, d)→ HomC(d, c)
∗, (4.27)

cf. [Sch13, Proposition 4.1].

4.7. Definition. Let (C, trC) and (D, trD) be two Calabi-Yau categories. A linear functor
F : C → D is called a Calabi-Yau functor, if

trCc (f) = trDF (c)(F (f)) (4.28)

for each f ∈ EndC(c) and for each c ∈ Ob(C). Equivalently, one may require that

〈Ff, Fg〉D = 〈f, g〉C (4.29)

for every pair of morphisms f : c→ d and g : d→ c in C.
If F , G : C → D are two Calabi-Yau functors between Calabi-Yau categories, a Calabi-

Yau natural transformation is just an ordinary natural transformation.
This allows us to de�ne the symmetric monoidal bicategory CY consisting of Calabi-

Yau categories, Calabi-Yau functors and natural transformations. The monoidal structure
is given by the Deligne tensor product of abelian categories.

4.8. Corollary. Suppose C = K (Vectfd
2 ), and consider the trivial SO(2)-action on C.

Then CSO(2) is equivalent to the bicategory of Calabi-Yau categories.

Proof. Indeed, by Theorem 4.1 a homotopy �xed point consists of a category C, together
with a natural transformation λ : idC → idC. Let X1, . . . , Xn be the simple objects of
C. Then, the natural transformation λ : idC → idC is fully determined by giving an
endomorphism λX : X → X for every simple object X. Since λ is an invertible natural
transformation, the λX must be central invertible elements in EndC(X). Since we work
over an algebraically closed �eld, Schur's Lemma shows that EndC(X) ∼= K as vector
spaces. Hence, the structure of a natural transformation of the identity functor of C
boils down to choosing a non-zero scalar for each simple object of C. This structure is
equivalent to giving C the structure of a Calabi-Yau category.

Now note that by equation (4.1) in Theorem 4.1, 1-morphisms of homotopy �xed
points consist of equivalences of categories F : C → C ′ so that F (λX) = λ′F (X) for every
object X of C. This is exactly the condition saying that F must a Calabi-Yau functor.

Finally, one can see that 2-morphisms of homotopy �xed points are given by natural
isomorphisms of Calabi-Yau functors.
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THE SERRE AUTOMORPHISM VIA HOMOTOPY ACTIONS AND THE
COBORDISM HYPOTHESIS FOR ORIENTED MANIFOLDS

JAN HESSE AND ALESSANDRO VALENTINO

Abstract. We explicitely construct an SO(2)-action on a skeletal version of the 2-dimensional framed
bordism bicategory. By the 2-dimensional Cobordism Hypothesis for framed manifolds, we obtain an
SO(2)-action on the core of fully-dualizable objects of the target bicategory. This action is shown to
coincide with the one given by the Serre automorphism. We give an explicit description of the bicategory
of homotopy fixed points of this action, and discuss its relation to the classification of oriented 2-d
topological quantum field theories.

1. Introduction

According to [Lur09], fully-extended 2-dimensional oriented topological quantum field theories are clas-
sified by homotopy fixed points of an SO(2)-action on the core of fully-dualizable objects of the target
space. This action is supposed to be induced by an SO(2)-action on the framed bordism bicategory.
In this paper, we aim to make these statements precise, along with developing new results concerning
actions of groups on bicategories.
We first clarify the situation on the algebraic side by giving a detailed description of the SO(2)-action
of the Serre automorphism on the core of fully-dualizable objects K (Cfd) of an arbitrary symmetric
monoidal bicategory C.
We then explicitly construct an SO(2)-action on a skeletal version of the framed bordism bicategory,
which has been obtained in terms of generators and relations in [Pst14].
By the Cobordism Hypothesis for framed manifolds, which has been proven in the setting of bicategories
in [Pst14], there is an equivalence of bicategories

(1.1) Fun⊗(Cobfr
2,1,0, C) ∼= K (Cfd).

This equivalence allows us to transport the SO(2)-action on the framed bordism bicategory to the core of
fully-dualizable objects of C. We then prove that this induced SO(2)-action on K (Cfd) is given precisely
by the Serre automorphism, showing that the Serre automorphism has indeed a geometric origin, as
expected from [Lur09].
In the last section we comment on the relation between the oriented bordism bicategory and the bicategory
of homotopy co-invariants of the SO(2)-action on the framed bordism bicategory. In fact, we argue that
exhibiting the oriented bordism bicategory as the colimit of the action is equivalent to proving the
Cobordism Hypothesis for oriented manifolds.
The paper is organized as follows.
In Section 2 we recall the notion of a fully-dualizable object in a symmetric monoidal bicategory C. For
each such an object X, we define the Serre automorphism as a certain 1-endomorphism of X. We show
that the Serre automorphism is a pseudo-natural transformation of the identity functor on K (Cfd), which
is moreover monoidal. This suffices to define an SO(2)-action on K (Cfd).
Section 3 investigates when a group action on a bicategory C is equivalent to the trivial action. We obtain
a general criterion for when such an action is trivializable.
In Section 4, we compute the bicategory of homotopy fixed points of an SO(2)-action coming from a
pseudo-natural transformation of the identity functor of an arbitrary bicategory C. This generalizes the
main result in [HSV16], which computes homotopy fixed points of the trivial SO(2)-action on Algfd

2 . Our
more general theorem allows us to give an explicit description of the bicategory of homotopy fixed points
of the Serre automorphism.
In Section 5, we introduce a skeletal version of the framed bordism bicategory by generators and relations,
and define a non-trivial SO(2)-action on this bicategory. By the framed Cobordism Hypothesis, as
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in Equation (1.1), we obtain an SO(2)-action on K (Cfd), which we prove to be given by the Serre
automorphism.
In Section 6 we discuss 2d invertible field theories, providing a general criterion for the trivialization of
the SO(2)-action in this case.
In Section 7, we give an outlook on homotopy co-invariants of the SO(2)-action, and argue about their
relation to the Cobordism Hypothesis for oriented manifolds.
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2. Fully-dualizable objects and the Serre automorphism

The aim of this section is to introduce the main objects of the present paper. On the algebraic side, these
are fully-dualizable objects in a symmetric monoidal bicategory C, and the Serre automorphism. Though
some of the following material has already appeared in the literature, we recall the relevant definitions
in order to fix notation. For details, we refer the reader to [Pst14].

Definition 2.1. A dual pair in a symmetric monoidal bicategory C consists of an object X, an object
X∗, two 1-morphisms

(2.1)
evX : X ⊗X∗ → 1

coevX : 1→ X∗ ⊗X
and two invertible 2-morphisms α and β in the diagrams below.

(2.2)

X ⊗ (X∗ ⊗ X) (X ⊗ X∗) ⊗ X

X ⊗ 1 1 ⊗ X

X X

a

evX ⊗idXidX ⊗coevX

lr

idX

α

(2.3)

(X∗ ⊗ X) ⊗ X∗ X∗ ⊗ (X ⊗ X∗)

1 ⊗ X∗ X∗ ⊗ 1

X∗ X∗

a

idX∗ ⊗evXcoevX ⊗idX∗

rl

idX∗

β

We call an object X of C dualizable if it can be completed to a dual pair. A dual pair is said to be coherent
if the “swallowtail” equations are satisfied, as in [Pst14, Def. 2.6].

Remark 2.2. Given a dual pair, it is always possible to modify the 2-cell β in such a way that the
swallowtail are fulfilled, cf. [Pst14, Theorem 2.7].

Dual pairs can be organized into a bicategory by defining appropriate 1- and 2-morphisms between them.
The bicategory of dual pairs turns out to be a 2-groupoid. Moreover, the bicategory of coherent dual
pairs is equivalent to the core of dualizable objects in C. In particular, this shows that any two coherent
dual pairs over the same dualizable object are equivalent.
We now come to the stronger concept of fully-dualizability.

Definition 2.3. An object X in a symmetric monoidal bicategory is called fully-dualizable if it can be
completed into a dual pair and the evaluation and coevaluation maps admit both left- and right adjoints.

Note that if left- and right adjoints exists, the adjoint maps will have adjoints themselves, since we work
in a bicategorical setting [Pst14]. Thus, Definition 2.3 agrees with the definition of [Lur09] in the special
case of bicategories.
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2.1. The Serre automorphism. Recall that by definition, the evaluation morphism for a fully dualiz-
able object X admits both a right-adjoint evRX and a left adjoint evLX . We use these adjoints to define
the Serre-automorphism of X:
Definition 2.4. Let X be a fully-dualizable object in a symmetric monoidal bicategory. The Serre
automorphism of X is the following composition of 1-morphisms:

(2.4) SX : X ∼= X ⊗ 1 idX⊗evRX−−−−−−→ X ⊗X ⊗X∗ τX,X⊗idX∗−−−−−−−→ X ⊗X ⊗X∗ idX⊗evX−−−−−−→ X ⊗ 1 ∼= X.

Notice that the Serre automorphism is actually a 1-equivalence of X, since an inverse is given by the
1-morphism
(2.5) S−1

X = (idX ◦ evX) ◦ (τX,X ⊗ idX∗) ◦ (idX ⊗ evLX),
cf. [Lur09, DSS13].
The next lemma is well-known [Lur09, Pst14], and is straightforward to show graphically.
Lemma 2.5. Let X be fully-dualizable in C. Then, there are 2-isomorphisms

(2.6)
evRX ∼= τX∗,X ◦ (idX∗ ⊗ SX) ◦ coevX
evLX ∼= τX∗,X ◦ (idX∗ ⊗ S−1

X ) ◦ coevX .
Next, we show that the Serre automorphism is actually a pseudo-natural transformation of the identity
functor on the maximal subgroupoid of C, as suggested in [Sch13]. To the best of our knowledge, a proof
of this statement has not appeared in the literature so far, hence we illustrate the details in the following.
We begin by showing that the evaluation 1-morphism is “dinatural”.
Lemma 2.6. Let X be dualizable in C. The evaluation 1-morphism evX is “dinatural”: for every 1-
morphism f : X → Y between dualizable objects, there is a natural 2-isomorphism evf in the diagram
below.

(2.7)

X ⊗ Y ∗ X ⊗ X∗

Y ⊗ Y ∗ 1

id⊗f∗

f⊗id evXevf

evY

Proof. We explicitly write out the definition of f∗ and define evf to be the composition of the 2-morphisms
in the diagram below.
(2.8)

evF :=

X 1 Y ∗ X X∗ X Y ∗ X X∗ Y Y ∗ X X∗ 1 X X∗

∼= 1 X Y ∗ 1 Y Y ∗ 1 1

X Y ∗ X Y ∗ Y Y ∗ 1

id coevX id id id f id

evX id id

α idid

id id evY

evX id id∼=

id r

evX id∼=

evX

revX

id f id

l id id

id evY

l id
lf idid

r

l

levY

id id

id l r id

f id

f id evY

∼=

∼=

�
In order to show that the Serre automorphism is pseudo-natural, we also need to show the dinaturality
of the right adjoint of the evaluation.
Lemma 2.7. For a fully-dualizable object X of C, the right adjoint evR of the evaluation is “dinatural”
with respect to 1-equivalences: for every 1-equivalence f : X → Y between fully-dualizable objects, there
is a natural 2-isomorphism evRf in the diagram below.

(2.9)

1 X ⊗ X∗

Y ⊗ Y ∗ Y ⊗ X∗

evR
X

evR
Y f⊗id

evR
f

id⊗f∗

3



Proof. In a first step, we show that f ⊗ (f∗)−1 ◦ evRX is a right-adjoint to evX ◦(f−1 ⊗ f∗). In formula:

(2.10) (evX ◦f−1 ⊗ f∗)R = f ⊗ (f∗)−1 ◦ evRX .

Indeed, let

(2.11)
ηX : idX⊗X∗ → evRX ◦ evX

εX : evX ◦ evRX → id1

be the unit and counit of the right-adjunction of evX and its right adjoint evRX . We construct unit and
counit for the adjunction in Equation (2.10). Let

(2.12)
ε̃ : evX ◦(f−1 ⊗ f∗) ◦ (f ⊗ (f∗)−1) ◦ evRX ∼= evX ◦ evRX

εX−−→ id1

η̃ : idY⊗Y ∗ ∼= (f ⊗ (f∗)−1) ◦ (f−1 ⊗ f∗) id∗ηX∗id−−−−−−→ (f ⊗ (f∗)−1) ◦ evRX ◦ evX ◦(f−1 ⊗ f∗).
Now, one checks that the quadruple

(2.13) (evX ◦(f−1 ⊗ f∗), (f ⊗ (f∗)−1) ◦ evRX , ε̃, η̃)

fulfills indeed the axioms of an adjunction. This follows from the fact that the quadruple (evX , evRX , εX , ηX)
is an adjunction. This shows Equation (2.10).
Now, notice that due to the dinaturality of the evaluation in Lemma 2.6, we have a natural 2-isomorphism

(2.14) evY ∼= evX ◦(f−1 ⊗ f∗).
Combining this 2-isomorphism with Equation (2.10) shows that the right adjoint of evY is given by
f ⊗ (f∗)−1 ◦ evRX . Since all right-adjoints are isomorphic the 1-morphism f ⊗ (f∗)−1 ◦ evRX is isomorphic
to evRY , as desired. �

We can now prove the following

Proposition 2.8. Let C be a symmetric monoidal bicategory. Denote by K (C) the maximal sub-
bigroupoid of C. The Serre automorphism S is a pseudo-natural isomorphism of the identity functor on
K (Cfd).

Proof. Let f : X → Y be a 1-morphism in K (Cfd). We need to provide a natural 2-isomorphism in the
diagram

(2.15)

X X

Y Y

SX

f f
Sf

SY

By spelling out the definition of the Serre automorphism, we see that this is equivalent to filling the
following diagram with natural 2-cells:

(2.16)

X X 1 X X X∗ X X X∗ X 1 X

Y Y 1 Y Y Y ∗ Y Y Y ∗ Y 1 Y

f

idX evR
X

f id

τX,X idX∗

f f (f∗)−1

idX evX

f f (f∗)−1 f id f

idY evR
Y

τY,Y idY ∗ idY evY

The first, the last and the middle square can be filled with a natural 2-cell due to the fact that C is a
symmetric monoidal bicategory. The square involving the evaluation commutes up to a 2-cell using the
mate of the 2-cell of Lemma 2.6, while the square involving the right adjoint of the evaluation commutes
up a 2-cell using the mate of the 2-cell of Lemma 2.7. �

2.2. Monoidality of the Serre automorphism. In this section we show that the Serre automorphism
respects the monoidal structure. We begin with the following two lemma

Lemma 2.9. Let C be a monoidal bicategory. Let X and Y be dualizable objects of C. Then, there is a
1-equivalence ξ : (X ⊗ Y )∗ ∼= Y ∗ ⊗X∗.
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Proof. Define two 1-morphisms in C by setting
(2.17) (idY ∗⊗idX∗⊗evX⊗Y )◦(idY ∗⊗coevX ⊗idY ⊗id(X⊗Y )∗)◦(coevY ⊗id(X⊗Y )∗) : (X⊗Y )∗ → Y ∗⊗X∗

(2.18) (id(X⊗Y )∗⊗evX)◦(id(X⊗Y )∗⊗idX⊗evY ⊗idX∗)◦(coevX⊗Y ⊗id∗Y ⊗idX∗) : Y ∗⊗X∗ → (X⊗Y )∗.
These two 1-morphisms are (up to invertible 2-cells) inverse to each other. This shows the claim. �

Now, we show that the evaluation 1-morphism respects the monoidal structure:

Lemma 2.10. For a dualizable object X of a symmetric monoidal bicategory C, the evaluation 1-
morphism is monoidal. More precisely: the following diagram commutes up to a natural 2-cell.

(2.19)

(X ⊗ Y ) ⊗ (X ⊗ Y )∗ 1

(X ⊗ Y ) ⊗ Y ∗ ⊗ X∗ X ⊗ X∗ ⊗ Y ⊗ Y ∗ 1 ⊗ 1

evX⊗Y

idX⊗Y ⊗ξ

idX ⊗τY ⊗Y ∗,X∗ evX ⊗ evY

Here, the 1-equivalence ξ is due to Lemma 2.9.

Proof. Consider the diagram in figure 1 on page 20: here, the composition of the horizontal arrows at
the top, together with the two arrows on the vertical right are exactly the 1-morphism in Equation
(2.19). The other arrow is given by evX⊗Y . We have not written down the tensor product, and left out
isomorphisms of the form 1⊗X ∼= X ∼= X ⊗ 1 for readability. �

We can now establish the monoidality of the right adjoint of the evaluation via the following

Lemma 2.11. Let C a symmetric monoidal bicategory, and let X and Y be fully-dualizable objects.
Then, the right adjoint of the evaluation is monoidal. More precisely: if ξ : (X ⊗ Y )∗ → Y ∗ ⊗X∗ is the
1-equivalence of Lemma 2.9, the following diagram commutes up to a natural 2-cell.

(2.20)

1 X ⊗ Y ⊗ (X ⊗ Y )∗

X ⊗ X∗ ⊗ Y ⊗ Y ∗ X ⊗ Y ⊗ Y ∗ ⊗ X∗

evR
X⊗Y

evR
X ⊗ evR

Y idX⊗Y ⊗ξ

idX ⊗τX∗,Y ⊗Y ∗

Proof. In a first step, we show that the right adjoint of the 1-morphism
(2.21) (evX ⊗ evY ) ◦ (idX ⊗ τY⊗Y ∗,X∗) ◦ (idX⊗Y ⊗ ξ)
is given by the 1-morphism
(2.22) (idX⊗Y ⊗ ξ−1) ◦ (idX ◦ τX∗,Y⊗Y ∗) ◦ (evRX ⊗ evRY ).
Indeed, if

(2.23)
ηX : idX⊗X∗ → evRX ◦ evX

εX : evX ◦ evRX → id1

are the unit and counit of the right-adjunction of evX and its right adjoint evRX , we construct adjunction
data for the adjunction in equations (2.21) and (2.22) as follows. Let ε̃ and η̃ be the following 2-morphisms:

ε̃ : (evX ⊗ evY ) ◦ (idX ⊗ τY⊗Y ∗,X∗) ◦ (idX⊗Y ⊗ ξ) ◦ (idX⊗Y ⊗ ξ−1)
◦ (idX ⊗ τX∗,Y⊗Y ∗) ◦ (evRX ⊗ evRY )

∼= (evX ⊗ evY ) ◦ (idX ⊗ τY⊗Y ∗,X∗) ◦ (idX ⊗ τX∗,Y⊗Y ∗) ◦ (evRX ⊗ evRY )
∼= (evX ⊗ evY ) ◦ (evRX ⊗ evRY ) εX⊗εY−−−−−→ id1

(2.24)

and
η̃ : idX⊗Y⊗(X⊗Y )∗ ∼= (idX⊗Y ⊗ ξ−1) ◦ (idX⊗Y ⊗ ξ)

∼= (idX⊗Y ⊗ ξ−1) ◦ (idX ⊗ τX∗,Y⊗Y ∗) ◦ (idX ⊗ τY⊗Y ∗,X∗) ◦ (idX⊗Y ⊗ ξ)
id⊗ηX⊗ηY ⊗id−−−−−−−−−→ (idX⊗Y ⊗ ξ−1) ◦ (idX ⊗ τX∗,Y⊗Y ∗) ◦ (evRX ⊗ evRY )

◦ (evX ⊗ evY ) ◦ (idX ⊗ τY⊗Y ∗,X∗) ◦ (idX⊗Y ⊗ ξ)

(2.25)
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One now shows that the two 1-morphisms in Equation (2.21) and (2.22), together with the two 2-
morphisms ε̃ and η̃ form an adjunction. This gives that the two 1-morphisms in Equations (2.21) and
(2.22) are adjoint.
Next, notice that the 1-morphism in Equation (2.21) is isomorphic to the 1-morphism evX⊗Y by Lemma
2.10. Thus, the right adjoint of evX⊗Y is given by the right adjoint of the 1-morphism in Equation (2.21),
which is the 1-morphism in Equation (2.22) by the argument above. Since all adjoints are equivalent,
this shows the lemma. �
We are now ready to prove that the Serre automorphism is a monoidal pseudo-natural transformation.
Proposition 2.12. Let C be a symmetric monoidal bicategory. Then, the Serre automorphism is a
monoidal pseudo-natural transformation of IdK (Cfd).
Proof. By definition (cf. [SP09, Definition 2.7]) we have to provide invertible 2-cells

(2.26)
Π : SX⊗Y → SX ⊗ SY
M : id1 → S1.

By the definition of the Serre automorphism in Definition 2.4, it suffices to show that the evaluation and
its right adjoint are monoidal, since the braiding τ will be monoidal by definition. The monoidality of
the evaluation is proven in Lemma 2.10, while the monoidality of its right adjoint follows from Lemma
2.11. These two lemmas thus provide an invertible 2-cell SX⊗Y ∼= SX ⊗ SY . The second 2-cell id1 → S1
can be constructed in a similar way, by noticing that 1 ∼= 1∗. �

3. Monoidal homotopy actions

In this section, we investigate homotopy actions on symmetric monoidal bicategories. In particular,
we are interested in the case when the group action is compatible with the monoidal structure. By a
(homotopy) action of a topological group G on a bicategory C, we mean a weak monoidal 2-functor
ρ : Π2(G)→ Aut(C), where Π2(G) is the fundamental 2-groupoid of G, and Aut(C) is the bicategory of
auto-equivalences of C. For details on homotopy actions of groups on bicategories, we refer the reader to
[HSV16].
In order to simplify the exposition, we introduce the following
Definition 3.1. Let G be a topological group. We will say that G is 2-truncated if π2(G, x) is trivial for
every base point x ∈ G.
Moreover, we will need also the following
Definition 3.2. Let C be a symmetric monoidal bicategory. We will say that C is 1-connected if it is
monoidally equivalent to B2H, for some abelian group H.
In the following, we denote with Aut⊗(C) the bicategory of auto-equivalences of C which are compatible
with the monoidal structure.
Definition 3.3. Let C be a symmetric monoidal category and G be a topological group. A monoidal
homotopy action of G on C is a monoidal morphism ρ : Π2(G)→ Aut⊗(C).
We now prove a general criterion for when monoidal homotopy actions are trivializable.
Proposition 3.4. Let C be a symmetric monoidal bicategory, and let G be a path connected topolog-
ical group. Assume that G is 2-truncated, and Aut⊗(C) is 1-connected, with an abelian group H. If
H2
grp(π1(G, e), H) ' 0, then any monoidal homotopy action of G on C is pseudo-naturally isomorphic to

the trivial action.
Proof. Let ρ : Π2(G) → Aut⊗(C) be a weak monoidal 2-functor. Since Aut⊗(C) was assumed to be
monoidally equivalent to B2H for some abelian group H, the group action ρ is equivalent to a 2-functor
ρ : Π2(G) → B2H. Due to the fact that G is path connected and 2-truncated, we have that Π2(G) '
Bπ1(G, e), where π1(G, e) is regarded as a discrete monoidal category. Thus, the homotopy action ρ is
equivalent to a weak monoidal 2-functor Bπ1(G, e)→ B2H. We claim that such functors are classified by
H2
grp(π1(G, e), H) up to pseudo-natural isomorphism. Indeed, going through the definition as in [SP09,

Definition 2.5], we find that the only non-trivial datum of a monoidal 2-functor F : Bπ1(G, e)→ B2H
is given by an invertible endo-modification ω of idF ⊗ idF , which is nothing else than a 2-cocycle. One
now checks that a monoidal pseudo-natural transformations between two such functors is exactly a
2-coboundary, which shows the claim. Since we assumed that H2

grp(π1(G, e), H) ' 0, the original action
ρ must be trivializable. �
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Next, we show that the bicategory Algfd
2 of finite-dimensional, semi-simple algebras, bimodules and

intertwiners, equipped with the monoidal structure given by the direct sum fulfills the conditions of
Proposition 3.4.

Lemma 3.5. Let K be an algebraically closed field. Let C = Algfd
2 be the bicategory where objects are

given by finite-dimensional, semi-simple algebras, equipped with the monoidal structure given by the direct
sum. Then, Aut⊗(C) is equivalent to B2K∗.

Proof. Let F : Algfd
2 → Algfd

2 be a weak monoidal 2-equivalence, and let A be a finite-dimensional,
semi-simple algebra. Then A is isomorphic to a direct sum of matrix algebras. Calculating up to Morita
equivalence and using that F has to preserve the single simple object K of Alg2, we have

(3.1) F (A) ∼= F

(⊕

i

Mni(K)
)
∼=
⊕

i

F (Mni(K)) ∼=
⊕

i

F (K) ∼=
⊕

i

K ∼=
⊕

i

Mni(K) ∼= A.

Thus, the functor F is pseudo-naturally isomorphic to the identity functor on Algfd
2 .

Now, let η : F → G be a monoidal pseudo-natural isomorphism between two endofunctors of Alg2. Since
both F and G are pseudo-naturally isomorphic to the identity, we may consider instead a pseudo-natural
isomorphism η : idAlgfd

2
→ idAlgfd

2
. We claim that up to an invertible modification, the 1-equivalence

ηA : A→ A must be given by the bimodule AAA, which is the identity 1-morphism on A in Alg2. Indeed,
since ηA is assumed to be linear, it suffices to consider the case of A = Mn(K) and to take direct sums.
It is well-known that the only simple modules of A are given by Kn. Thus,
(3.2) ηA = (Kn)α ⊗K (Kn)β ,
where α and β are multiplicities. Now, [HSV16, Lemma 2.6] ensures that these multiplicities are trivial,
and thus we have ηA = AAA up to an invertible intertwiner. This shows that up to invertible modifications,
all 1-morphisms in Aut⊗(Algfd

2 ) are identities.
Now, let m be an invertible endo-modification of the pseudo-natural transformation ididAlgfd

2
. Then, the

component mA : AAA → AAA is an element of End(A,A)(A) ∼= K. This show that the 2-morphisms of
Aut⊗(Algfd

2 ) stand in bijection to K∗. �

Remark 3.6. Notice that the symmetric monoidal structure on Algfd
2 considered above is not the

standard one, which is instead the one induced by the tensor product of algebras, and which is the
monoidal structure relevant for the remainder of the paper.

The last lemmas imply the following

Lemma 3.7. Any monoidal SO(2)-action on Algfd
2 equipped with the monoidal structure given by the

direct sum is trivial.

Proof. Since π1(SO(2), e) ' Z, and H2
grp(Z,K∗) ' H2(S1,K∗) ' 0, Proposition 3.4 and Lemma 3.5

ensure that any monoidal SO(2)-action on Algfd
2 is trivializable. �

Corollary 3.8. Since Algfd
2 and Vectfd

2 are equivalent as additive categories, any SO(2)-action on Vectfd
2

via linear morphisms is trivializable.

Remark 3.9. The last two results rely on the fact that Aut⊗(Algfd
2 ) and Aut⊗(Vectfd

2 ) are 1-connected
as additive categories. This is due to the fact that fully-dualizable part of either Alg2 or Vect2 is semi-
simple. An example in which the conditions in Proposition 3.4 do not hold is provided by the bicategory
of Landau-Ginzburg models.

4. Computing homotopy fixed points

In this Section, we explicitly compute the bicategory of homotopy fixed points of an SO(2)-action which
is induced by an arbitrary pseudo-natural equivalence of the identity functor of an arbitrary bicategory
C. Recall that a G-action on a bicategory C is a monoidal 2-functor ρ : Π2(G)→ Aut(C), or equivalently
a trifunctor ρ : BΠ2(G) → Bicat with ρ(∗) = C. The bicategory of homotopy fixed points CG is then
given by the tri-limit of this trifunctor.
In Bicat, the tricategory of bicategory, this trilimit can be computed as follows: if ∆ : BΠ2(G)→ Bicat
is the constant functor assigning to the one object ∗ the terminal bicategory with one object, the trilimit
of the action functor ρ is given by
(4.1) CG := lim ρ = Nat(∆, ρ),
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the bicategory of tri-transformations between ρ and ∆. This definition is explicitly spelled out in [HSV16,
Remark 3.11]. We begin by defining an SO(2)-action on an arbitrary symmetric monoidal bicategory,
starting from a pseudo-natural transformation of the identity functor on C.
Definition 4.1. Let C be a symmetric monoidal bicategory, and let α : idC → idC be a pseudo-natural
equivalence of the identity functor on C. Since Π2(SO(2)) is equivalent to the bicategory with one object,
Z worth of morphisms, and only identity 2-morphisms, we may define an SO(2)-action ρ : Π2(SO(2))→
Aut(C) by the following data:

• For every group element g ∈ SO(2), we assign the identity functor of C.
• For the generator 1 ∈ Z, we assign the pseudo-natural transformation of the identity functor
given by α.

• Since there are only identity 2-morphisms in Z, we have to assign these to identity 2-morphisms
in C.

• For composition of 1-morphisms, we assign the identity modifications ρ(a+ b) := ρ(a) ◦ ρ(b).
• In order to make ρ into a monoidal 2-functor, we have to assign additional data which we can
choose to be trivial. In detail, we set ρ(g⊗h) := ρ(g)⊗ ρ(h), and ρ(e) := idC. Finally, we choose
ω, γ and δ as in [HSV16, Remark 3.8] to be identities.

Our main example is the action of the Serre automorphism on the core of fully-dualizable objects:
Example 4.2. If C is a symmetric monoidal bicategory, consider K (Cfd), the core of the fully-dualizable
objects of C. By Proposition 2.8, the Serre automorphism defines a pseudo-natural equivalence of the
identity functor on K (Cfd). By Definition 4.1, we obtain an SO(2)-action on K (Cfd), which we denote
by ρS .
The next theorem computes the bicategory of homotopy fixed points CSO(2) of the action in Definition
4.1. This theorem generalizes [HSV16, Theorem 4.1], which only computes the bicategory of homotopy
fixed points of the trivial SO(2)-action.
Theorem 4.3. Let C be a symmetric monoidal bicategory, and let α : idC → idC be a pseudo-natural
equivalence of the identity functor on C. Let ρ be the SO(2)-action on C as in Definition 4.1. Then, the
bicategory of homotopy fixed points CG is equivalent to the bicategory with

• objects: (c, λ) where c is an object of C and λ : αc → idc is a 2-isomorphism,
• 1-morphisms (c, λ)→ (c′, λ′) in CG are given by 1-morphisms f : c→ c′ in C, so that the diagram

(4.2)
αc′ ◦ f f ◦ αc f ◦ idc

idc ◦ f f

λ′∗idf

αf idf ∗λ

commutes,
• 2-morphisms of CG are given by 2-morphisms in C.

Proof. In order to prove the theorem, we need to explicitly unpack the definition of the bicategory of
homotopy fixed points CG. This is done in [HSV16, Remark 3.11 - 3.14]. In the following, we will use
the notation introduced in [HSV16].
The idea of the proof is to show that the forgetful functor which on objects of CG forgets the data Θ,
Π and M is an equivalence of bicategories. In order to show this, we need to analyze the bicategory of
homotopy fixed points. We start with the objects of CG.
By definition, a homotopy fixed point of this action consists of

• An object c ∈ C,
• A 1-equivalence Θ : c→ c,
• For every n ∈ Z, an invertible 2-morphism Θn : αnc ◦ Θ → Θ ◦ idc so that (Θ,Θn) fulfill the
axioms of a pseudo-natural transformation,

• A 2-isomorphism Π : Θ ◦Θ→ Θ which obeys the modification square,
• Another 2-isomorphism M : Θ→ idc

so that the following equations hold: Equation 3.18 of [HSV16] demands that
(4.3) Π ◦ (idΘ ∗Π) = Π ◦ (Π ∗ idΘ)
whereas Equation 3.19 of [HSV16] demands that Π equals the composition

(4.4) Θ ◦Θ idΘ∗M−−−−→ Θ ◦ idc ∼= Θ
8



and finally Equation 3.20 of [HSV16] tells us that Π must also be equal to the composition

(4.5) Θ ◦Θ M∗idΘ−−−−→ idc ◦Θ ∼= Θ.
Hence Π is fully specified by M . An explicit calculation using the two equations above then confirms
that Equation (4.3) is automatically fulfilled. Indeed, by composing with Π−1 from the right, it suffices
to show that idΘ ∗Π = Π ∗ idΘ. Suppose for simplicity that C is a strict 2-category. Then,

(4.6)
idΘ ∗Π = idΘ ∗ (M ∗ idΘ) by equation (4.5)

= (idΘ ∗M) ∗ idΘ

= Π ∗ idΘ by equation (4.4).
Adding appropriate associators shows that this is true in a general bicategory.
Note that by using the modification M , the 2-morphism Θn : αcn → Θ ◦ idc is equivalent to a 2-morphism
λn : αc → idc. Here, αnc is the n-times composition of 1-morphism αc. Indeed, define λn by setting

(4.7) λn :=
(
αc ∼= αc ◦ idc

idαc∗M−1

−−−−−−−→ αc ◦Θ Θn−−→ Θ ◦ idc ∼= Θ M−→ idc
)
.

In a strict 2-category, the fact that Θ is a pseudo-natural transformation requires that λ0 = idc and that
λn = λ1 ∗ · · · ∗ λ1. In a bicategory, similar equations hold by adding coherence morphisms. Thus, λn is
fully determined by λ1. In order to simplify notation, we set λ := λ1 : αc → idc.
A 1-morphism of homotopy fixed points (c,Θ,Θn,Π,M)→ (c′,Θ′,Θ′n,Π′,M ′) consists of:

• a 1-morphism f : c→ c′,
• an invertible 2-morphism m : f ◦Θ→ Θ′ ◦ f which fulfills the modification square. Note that m
is equivalent to a 2-isomorphism m : f → f ′ which can be seen by using the 2-morphism M .

The condition due to Equation 3.24 of [HSV16] demands that the following 2-isomorphism

f ◦Θ idf∗M−−−−→ f ◦ idc ∼= f(4.8)

is equal to the 2-isomorphism

f ◦Θ m−→ Θ′ ◦ f M ′∗idf−−−−−→ idc′ ◦ f ∼= f(4.9)
and thus is equivalent to the equation

(4.10) m =
(
f ◦Θ idf∗M−−−−→ f ◦ idc ∼= f ∼= idc′ ◦ f

M ′−1∗idf−−−−−−→ Θ′ ◦ f
)

Thus, m is fully determined by M and M ′. The condition due to Equation 3.23 of [HSV16] reads
(4.11) m ◦ (idf ∗Π) = (Π′ ∗ idf ) ◦ (idΘ′ ∗m) ◦ (m ∗ idΘ)
and is automatically satisfied, as an explicit calculation in [HSV16] confirms. Now, it suffices to look at the
modification square of m, in Equation 3.25 of [HSV16]. This condition is equivalent to the commutativity
of the diagram

(4.12)

αc′ ◦ f ◦ Θ f ◦ αc ◦ Θ f ◦ Θ

αc′ ◦ Θ′ ◦ f Θ′ ◦ f

idα
c′ ∗m

αf∗idΘ idf∗Θ1

m

Θ′
1∗idf

Substituting m as in Equation (4.10) and Θ1 for λ := λ1 as defined in Equation (4.7), one confirms that
this diagram commutes if and only if the diagram in Equation (4.2) commutes.
If (f,m) and (g, n) are 1-morphisms of homotopy fixed points, a 2-morphism of homotopy fixed points
consists of a 2-isomorphism β : f → g in C. The condition coming from Equation 3.26 of [HSV16] then
demands that the diagram

(4.13)

f ◦ Θ Θ′ ◦ f

g ◦ Θ Θ′ ◦ g

m

β∗idΘ idΘ′∗β

n

commutes. Using the fact that both m and n are uniquely specified by M and M ′, one quickly confirms
that this diagram commutes automatically.
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Our detailed analysis of the bicategory CG shows that the forgetful functor which forgets the data Θ,
M , and Π on objects and assigns Θ1 to λ, which forgets the data m on 1-morphisms, and which is the
identity on 2-morphisms is an equivalence of bicategories. �

Corollary 4.4. Let C be a symmetric monoidal bicategory, and consider the SO(2)-action of the Serre
automorphism on K (Cfd) as in Example 4.2. Then, the bicategory of homotopy fixed points K (Cfd)SO(2)

is equivalent to a bicategory where

• objects are given by pairs (X,λX) with X a fully-dualizable object of C and λX : SX → idX is a
2-isomorphism which trivializes the Serre automorphism,
• 1-morphisms are given by 1-equivalences f : X → Y in C, so that the diagram

(4.14)
SY ◦ f f ◦ SX f ◦ idX

idX ◦ f f

λY ∗idf

Sf idf ∗λX

commutes, and
• 2-morphisms are given by 2-isomorphisms in C.

Remark 4.5. Recall that we have defined the bicategory of homotopy fixed points CG as the tri-limit of
the action considered as a trifunctor ρ : BΠ2(G)→ Bicat. Since we only consider symmetric monoidal
bicategories, we actually obtain an action with values in SymMonBicat, the tricategory of symmetric
monoidal bicategories. It would be interesting to compute the limit of the action in this tricategory. We
expect that this trilimit computed in SymMonBicat is given by CG as a bicategory, with the symmetric
monoidal structure induced by the symmetric monoidal structure of C.

Remark 4.6. By [Dav11], the action via the Serre automorphism on K (Algfd
2 ) is trivializable. The

category of homotopy fixed points K (Algfd
2 )SO(2) is then equivalent to the bigroupoid of symmetric,

semi-simple Frobenius algebras.
Similarly, the action of the Serre automorphism on Vect2 is trivializable. The bicategory of homotopy
fixed points of this action is equivalent to the bicategory of finite Calabi-Yau categories, cf. [HSV16].

5. The 2-dimensional framed bordism bicategory

In this Section, we introduce a skeleton of the framed bordism bicategory Cobfr
2,1,0: this symmetric

monoidal bicategory Fcfd is the free bicategory of a coherent fully-dual pair as introduced in [Pst14,
Definition 3.13].
Using this presentation, we define a non-trivial SO(2)-action on this skeleton. If C is an arbitrary
symmetric monoidal bicategory, the action on Fcfd will induce an action on the functor bicategory
Fun⊗(Fcfd, C) of symmetric monoidal functors. Using the Cobordism Hypothesis for framed manifolds,
which has been proven in the bicategorical framework in [Pst14], we obtain an SO(2)-action on K (Cfd).
We show that this induced action coming from the framed bordism bicategory is exactly the action given
by the Serre automorphism.
We begin by recalling the definition of Fcfd.

Definition 5.1. The symmetric monoidal bicategory Fcfd consists of

• 2 generating objects L and R,
• 4 generating 1-morphisms, given by

– a 1-morphism coev : 1→ R⊗ L, which we write as R L ,

– ev : L⊗R→ 1 which we write as
L R

,
– a 1-morphism q : L→ L,
– another 1-morphism q−1 : L→ L,

• 12 generating 2-cells given by
10



– isomorphisms α, β, α−1 and β−1 as in Definition 2.1, which in pictorial form are given as
follows:

(5.1)
R L

α=⇒ L
L

Rβ=⇒R L R

– isomorphisms ψ : qq−1 ∼= idL : ψ−1 and φ : q−1q ∼= idL : φ−1

– 2-cells µe : id1 → ev ◦ evL and εe : evL ◦ ev → idL⊗R, where evL := τ ◦ (idR ⊗ q−1) ◦ coev
which in pictorial form are given as follows:

(5.2) 1 µe=⇒

L R

q−1

R L

q−1

R L

L R

εe=⇒ L R

– 2-cells µc : idR⊗L → coev ◦ coevL and εc : coevL ◦ coev → id1, where coevL := ev ◦(q ⊗
idR) ◦ τ

which in pictorial form are given as follows:

(5.3) L R

R L

q

µc=⇒LR

L R

R L

q
εc=⇒ 1

so that the following relations hold:

• α and α−1, β and β−1, φ and φ−1, ψ and ψ−1 are inverses to each other,
• µe and εe satisfy the two Zorro equations, which in pictorial form demand that the following
composition of 2-morphisms

(5.4)

L R

q−1

R L

L R

εe=⇒

L R

L R

µe=⇒

11



is equal to idev, and that the following composition of 2-morphisms

(5.5)

q−1

R L

L R

q−1

R L

q−1

R L

µe=⇒
q−1

R L

εe=⇒

is equal to idevL .
• µc and εc satisfy the two Zorro equations, which in pictorial form demand that the composition

(5.6)
L R

q

R L

R L

R L

µc=⇒

R L

εc=⇒

is equal to idcoev, and the composition of the following 2-morphisms

(5.7)

L R

q

R L

L R

q

L R

q

µc=⇒

εc=⇒

L R

q

is equal to idcoevL .
• φ and ψ satisfy triangle identities,
• the cusp-counit equations in figure 5 and 6 on p.33 of [Pst14] are satisfied,
• the swallowtail equations in figure 3 and 4 on p.15 of [Pst14] are satisfied.

5.1. Action on the framed bordism bicategory. We can now proceed to construct an SO(2)-action
on Fcfd. This action will be vital for the remainder of the paper.
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By Definition 4.1 it suffices to construct a pseudo-natural equivalence of the identity functor on Fcfd in
order to construct an SO(2)-action. This pseudo-natural transformation is given as follows:

Definition 5.2. Let Fcfd be the free symmetric monoidal bicategory on a coherent fully-dual object as
in Definition 5.1. We construct a pseudo-natural equivalence α : idFcfd → idFcfd of the identity functor
on Fcfd as follows:

• For every object c of Fcfd, we need to provide a 1-equivalence αc : c→ c.
– For the object L of Fcfd, we define αL := q : L→ L,
– for the object R of Fcfd, we set αR := (q−1)∗, which in pictorial form is given by

(5.8) (q−1)∗ :=

R L

q−1

R

• for every 1-morphism f : c→ d in Fcfd, we need to provide a 2-isomorphism
(5.9) αf : f ◦ αc → αd ◦ f.

– For the 1-morphism q : L→ L of Fcfd we define the 2-isomorphism αq := idq◦q.
– For the 1-morphism q−1 : L→ L we define the 2-isomorphism

(5.10) αq−1 :=
(
q−1 ◦ q φ−→ idL

ψ−1

−−−→ q ◦ q−1
)
.

– For the evaluation ev : L ⊗ R → 1, we define the 2-isomorphism αev to be the following
composition:

(5.11)

q (q−1)∗

L R =
q

R L

q−1

R

L R

∼=

R LL

q

q−1

α=⇒

q

q−1

L R

ψ=⇒

L R

– For the coevaluation coev : 1 → R ⊗ L, we define the 2-isomorphism αcoev to be the
composition

(5.12)

R L

(q−1)∗ q

=
R L

q−1

R

q

∼=

R L

R LL

q−1

q

α=⇒

R L

q−1

q

φ=⇒

R L

One now checks that this defines a pseudo-natural transformation of idFcfd . Using Definition 4.1 gives
us a non-trivial SO(2)-action on Fcfd.

Remark 5.3. Note that the SO(2)-action on Fcfd does not send generators to generators: for instance,
the 1-morphism (q−1)∗ in Equation (5.8) is not part of the generating data of Fcfd.
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Remark 5.4. Notice that the pseudo-natural equivalence α : idFcfd → idFcfd constructed in Definition
5.2 is a symmetric monoidal pseudo-natural transformation. This follows from the fact that Fcfd is
the free symmetric monoidal bicategory generated by a coherent fully-dual pair. Thus, we obtain an
SO(2)-action on Fcfd via symmetric monoidal morphisms.

5.2. Induced action on functor categories. Starting from the action defined on Fcfd, we induce an
action on the bicategory of functors Fun(Fcfd, C) for an arbitrary bicategory C. The construction of the
induced action on the bicategory of functors is a general construction. We provide details in the following.

Definition 5.5. Let ρ : Π2(G)→ Aut(C) be a G-action on a bicategory C, and let D be another bicategory.
The G-action ρ̃ : Π2(G)→ Aut(Fun(C,D)) induced by ρ is defined as follows:

• On objects g ∈ G, we define an endofunctor ρ̃(g) of Fun(C,D) on objects F on Fun(C,D) by
ρ̃(g)(F ) := F ◦ ρ(g−1). If α : F → G is a 1-morphism in Fun(C,D), we define

(5.13) ρ̃(g)(α) :=

Fρ(g−1)c Gρ(g−1)c

Fρ(g−1)d Gρ(g−1)d

αρ(g−1)(c)

Fρ(g−1)(f) Gρ(g−1)(f)αρ(g−1)(f)

αρ(g−1)(d)

If m : α→ β is a 2-morphism in Fun(C,D), the value of ρ̃(γ) is given by
(5.14) ρ̃(γ)(m)x := mρ(g−1)(x).

• on 1-morphisms γ : g → h of Π2(G), we define a 1-morphism ρ̃(γ) in Aut(Fun(C,D)) between
the two endofunctors F 7→ F ◦ ρ(g−1) and F 7→ F ◦ ρ(h−1) of Fun(C,D).

Explicitly, this means:
– For each 2-functor F : C → D, we need to provide a pseudo-natural transformation ρ̃(γ)F :
F ◦ ρ(g−1)→ F ◦ ρ(h−1) which we define via the diagram

(5.15)

Fρ(g−1)x Fρ(h−1)x

Fρ(g−1)y Fρ(h−1)y

F (ρ(γ−1)x)

Fρ(g−1)(f) Fρ(h−1)(f)
F (ρ(γ−1)f )

F (ρ(γ−1)y)

Here, γ−1 is the “inverse” path of γ given by t 7→ γ(t)−1, and f : x→ y is a 1-morphism in
C.

– For every pseudo-natural transformation α : F → G, we need to provide a modification
ρ̃(γ)α in the diagram

(5.16)

ρ̃(g)(F ) ρ̃(h)(F )

ρ̃(g)(G) ρ̃(h)(G)

ρ̃(γ)F

ρ̃(g)(α) ρ̃(h)(α)
ρ̃(γ)α

ρ̃(γ)G

which we define by
(5.17) ρ̃(γ)α := α−1

ρ(γ−1)x .

• For the 2-morphisms in Aut(Fun(C,D)) we proceed in a similar fashion: if m : γ → γ′ is a
2-track, we have to provide a 2-morphism ρ̃(m) : ρ̃(γ) → ρ̃(γ′) which can be done by explicitly
writing down diagrams as above.

The rest of the data of a monoidal functor ρ̃ is induced from the data of the monoidal functor ρ.

For C and D symmetric monoidal bicategories, the bicategory of symmetric monoidal functors Fun⊗(C,D)
acquires a monoidal structure by “pointwise evaluation” of functors. Such a monoidal structure is also
symmetric, see [SP09]. The following result is straightforward.

Lemma 5.6. Let C and D be symmetric monoidal bicategories, and let ρ be a monoidal action of a group
G on C. Then ρ induces a monoidal action ρ̃ : Π2(G)→ Aut⊗(Fun⊗(C,D)) .
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Example 5.7. Our main example for induced actions is the SO(2)-action on Fcfd as in Definition
5.2. This action only depends on a pseudo-natural equivalence α of the identity functor on idFcfd .
Consequently, the induced action on Fun(Fcfd, C) also only depends on a pseudo-natural equivalence of
the identity functor on Fun(Fcfd, C). Using the definition above, we construct this induced pseudo-natural
equivalence α̃ as follows.

• For every 2-functor F : C → D, we need to provide a pseudo-natural equivalence α̃F : F → F ,
which is given by the diagram

(5.18) α̃F :=

Fx Fx

Fy Fy

F (α−1
x )

F (f) F (f)
F (α−1

f
)

F (α−1)y

• for every pseudo-natural transformation β : F → G, we need to give a modification α̃β , which
we define by the diagram

(5.19)

Fx Fx

Gx Gx

F (α−1
x )

βx βx
β−1

(α−1
x )

G(α−1)x

This defines a pseudo-natural equivalence of the identity functor on Fun(Fcfd, C). By Definition 4.1, we
obtain an SO(2)-action on Fun(Fcfd,C). Note that Fcfd is even a symmetric monoidal bicategory. The
SO(2)-action on Fcfd of Definition 5.2 is via symmetric monoidal homomorphisms by Remark 5.4. Hence,
if C is also symmetric monoidal, then Lemma 5.6 provides a monoidal action on Fun⊗(Fcfd, C).
5.3. Induced action on the core of fully-dualizable objects. In this subsection, we compute the
SO(2)-action on the core of fully-dualizable objects coming from the SO(2)-action on Fcfd. Starting
from the SO(2)-action on Fcfd as by Definition 5.2, we have shown in the previous subsection how to
induce an SO(2)-action on the bicategory of symmetric monoidal functors Fun⊗(Fcfd, C) for C some
symmetric monoidal bicategory. By the Cobordism Hypothesis for framed manifolds, we obtain an
induced SO(2)-action on K (Cfd). More precisely, denote by

(5.20)
evL : Fun⊗(Fcfd, C)→ K (Cfd)

Z 7→ Z(L)
the evaluation map. The Cobordism Hypothesis for framed manifolds in two dimensions [Pst14, Lur09]
states that evL is an equivalence of symmetric monoidal bicategories. Hence, the composition of the
SO(2)-action on Fun⊗(Fcfd, C) and (the inverse of) evL provides an SO(2)-action on K (Cfd). The next
proposition shows that this action is equivalent to the action ρS induced by the Serre automorphism
which is illustrated in Example 4.2.

Proposition 5.8. Let ρ be the SO(2)-action on Fcfd given in Definition 5.2, and let C be a symmetric
monoidal bicategory. By Definition 5.5, we obtain a monoidal SO(2)-action on Fun⊗(Fcfd, C). Then,
the monoidal SO(2)-action induced by the evaluation in Equation (5.20) on K (Cfd) is equivalent to ρS.

Proof. Let
(5.21) ρ : Π2(SO(2))→ Aut(Fun⊗(Fcfd, C))
be the SO(2)-action on the bicategory of symmetric monoidal functors Fun⊗(Fcfd, C) as in Example 5.7.
This action only depends on a pseudo-natural transformation α on the identity functor on Fun⊗(Fcfd, C).
By [Pst14], the 2-functor in Equation (5.20) which evaluates a framed field theory on the object L is
an equivalence of bicategories. Thus, we obtain an SO(2)-action ρ′ on K (Cfd). This action is given
as follows. By Definition 4.1, we only need to provide a pseudo-natural transformation of the identity
functor of K (Cfd). In order to write down this pseudo-natural transformation, note that the functor

(5.22)
Aut(Fun⊗(Fcfd, C))→ Aut(K (Cfd))

F 7→ evL ◦F ◦ ev−1
L
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is an equivalence. Hence, the induced pseudo-natural transformation of idK (Cfd) is given as follows:
• For each fully-dualizable object c of C, we assign the 1-morphism α′c : c→ c defined by

(5.23) α′c := evL
(
α(ev−1

L
(c))
)

• for each 1-equivalence f : c→ d between fully-dualizable objects of C, we define a 2-isomorphism
α′f : f ◦ α′c → α′d ◦ f by the formula

(5.24) α′f := evL
(
α(ev−1

L
(f))
)
.

Here, α is the pseudo-natural transformation as in Example 5.7. In order to see that α′c is given by
the Serre automorphism of the fully-dualizable object c, note that the 1-morphism q : L→ L of Fcfd is
mapped to the Serre automorphism SZ(L) by the equivalence in Equation (5.20). �
Corollary 5.9. Let ρ be the SO(2)-action on Fcfd given in Definition 5.2, and let C be a symmetric
monoidal bicategory. Consider the SO(2)-action ρS on K (Cfd) induced by the Serre automorphism.
Then the evaluation morphism evL induces an equivalence of bicategories
(5.25) Fun⊗(Fcfd, C)SO(2) → K (Cfd)SO(2).

Proof. By Proposition 5.8, the equivalence of Equation (5.20) is SO(2)-equivariant. Thus, it induces an
equivalence on homotopy fixed points, cf. [Hes16, Definition 5.3] for an explicit description. It is also
possible to construct this equivalence directly: by theorem 4.3, the bicategory of homotopy fixed points
Fun⊗(Fcfd, C)SO(2) is equivalent to the bicategory where

• objects are given by symmetric monoidal functors Z : Fcfd → C, together with a modification
λZ : α̃Z → idZ . Explicitly, this means: if α is the endotransformation of the identity functor of
Fcfd as in Definition 5.2, we obtain two 2-isomorphisms in C:

(5.26)
λL : Z(q−1)→ idZ(L)

λR : Z(((q−1)∗)−1)→ idZ(R)

which are compatible with evaluation and coevaluation,
• 1-morphisms are given by symmetric monoidal pseudo-natural transformations µ : Z → Z ′, so

that the analogue of the diagram in Equation (4.2) commutes,
• 2-morphisms are given by symmetric monoidal modifications.

Now notice that Z(q) is precisely the Serre automorphism of the object Z(L). Thus, λL provides a
trivialization of (the inverse of) the Serre automorphism. Applying theorem 4.3 again to the action of
the Serre automorphism on the core of fully-dualizable objects shows that the functor Z 7→ (Z(L), λL) is
an equivalence of homotopy fixed point bicategories. �

6. Invertible Field Theories

In the section, we consider the case of 2-dimensional oriented invertible topological field theories: such
theories are in many ways easier to describe than arbitrary TQFTs, and play an important role in
condensed matter physics and homotopy theory, as suggested in [Fre14a, Fre14b].
Denote with Pic(C) the Picard groupoid of a symmetric monoidal bicategory C: it is defined as the
maximal subgroupoid of C where the objects are invertible with respect to the monoidal structure of C.
Recall that Fun⊗(Cob2,1,0, C) is equipped with a monoidal structure which is defined pointwise.

Definition 6.1. An invertible framed TQFT with values in C is an invertible object in Fun⊗(Cobfr
2,1,0, C).

The space of invertible framed TQFTs with values in C is given by Pic(Fun⊗(Cob2,1,0, C)).
Remark 6.2. Equivalently, an invertible TQFT assigns to the point in Cob2,1,0 an invertible object in
C, and to any 1- and 2-dimensional manifold it assigns invertible 1- and 2-morphisms.

Since the Cobordism Hypothesis provides a monoidal equivalence between Fun⊗(Cob2,1,0, C) and K (Cfd),
the space of invertible framed TQFTs is given by Pic(K (Cfd)), since taking the Picard groupoid behaves
well with respect to monoidal equivalences.
We begin by proving the following:

Lemma 6.3. Let C be a symmetric monoidal bicategory. Then, there is an equivalence of symmetric
monoidal bicategories
(6.1) Pic(K (Cfd)) ∼= Pic(C).
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Proof. First note that K (Cfd) is a monoidal 2-groupoid, so there is an equivalence of bicategories
Pic(K (Cfd)) ∼= Pic(Cfd). Now, it suffices to show that every object X in Pic(C) is already fully-dualizable.
Indeed, denote the tensor-inverse of X by X−1. By definition, we have 1-equivalences X ⊗X−1 ∼= 1 and
1 ∼= X−1 ⊗ X, which serve as evaluation and coevaluation. These maps may be promoted to adjoint
1-equivalences by [SP09, Proposition A.27]. Thus, the evaluation and coevaluation also admit adjoints,
which suffices for fully-dualizability. �

Notice that given a monoidal bicategory C, any monoidal autoequivalence of C preserves the Picard
groupoid of C, since it preserves invertibility of objects and (higher) morphisms. In particular, we have a
monoidal 2-functor

(6.2) Aut⊗(C)→ Aut⊗(Pic(C))
obtained by restriction. Since the SO(2)-action induced by the action on Cob2,1,0 is monoidal, it induces
an action on Pic(C). To proceed, we need the following

Lemma 6.4. Let C be a symmetric monoidal bicategory such that Pic(C) is monoidally equivalent to
B2K∗. Then

(6.3) Aut⊗(Pic(C)) ' Iso(K∗)

where the category on the right hand side is regarded as a discrete category.

Proof. Since Pic(C) ' B2K∗, we have to describe the Picard groupoid of the category of monoidal functors
from B2K∗ to B2K∗. First, notice that the monoidal bicategory B2K∗ is computadic in the sense of
[SP09]: it admits a presentation with only one object, only the identity 1-morphism, K∗ as the set of
1-morphisms, and no relations between the 2-morphisms. The cofibrancy theorem in [SP09, Theorem
2.78] ensures that every monoidal 2-functor out of a computadic monoidal bicategory is equivalent to
a strict monoidal functor. It is clear that strict monoidal auto-equivalences of B2K are classified by
Iso(K∗) up to natural isomorphism. In order to see that the 1- and 2- morphisms of Aut⊗(B2K∗) are
trivial, we use the cofibrancy theorem again to strictify monoidal pseudo-natural transformations. In
detail, if F, F ′ : B2K∗ → B2K∗ are two weak monoidal 2-functors, and η : F → F ′ is a monoidal
pseudo-natural equivalence, the confibrancy theorem ensures that η is equivalent to a strict monoidal
pseudo-natural transformation, which means we may choose the data Π and M in [SP09, Figure 2.7] to
be identity 2-morphisms. Thus, η is fully determined by a 1-morphism η∗ : F (∗)→ F (∗) in B2K∗ which
has to be the identity, and by a 2-morphism ηid∗ in B2K∗ filling the naturality square. This 2-morphism
however is also fixed to be trivial by the unitality conditions of a monoidal pseudo-natural transformation
in [SP09, Axiom MBTA2 and Axiom MBTA3]. We now come to the last layer of information: any
monoidal modification between two monoidal pseudo-natural transformations is fixed to be the identity
modification by the unitality requirement in [SP09, Axiom BMBM2]. �

Examples of symmetric monoidal bicategories satisfying the assumption of Lemma 6.4 are Algfd
2 and

Vectfd
2 . In general cases, we have the following

Lemma 6.5. Let C be a symmetric monoidal bicategory such that Pic(C) is monoidally equivalent to
B2K∗. Then any monoidal SO(2)-action on Pic(C) is trivializable.

Proof. Since we have monoidal equivalences Π2(SO(2)) ' BZ and Aut⊗(Pic(C)) ' Iso(K∗), monoidal
actions correspond to monoidal 2-functors BZ→ Iso(K∗). Monoidality implies that the single object of
BZ is sent to the identity isomorphism of K∗, which correspond to the identity functor on Pic(C). This
forces the functor to be trivial on objects. It is clear that the action is also trivial on 1- and 2-morphisms.
Since there are no nontrivial morphisms in Iso(K∗), the monoidal structure on the action ρ must also be
trivial. �

Finally, we need the following

Lemma 6.6. Let C be a symmetric monoidal bicategory, and let ρS be the SO(2)-action on K (Cfd)
by the Serre automorphism as in Example 4.2. Since this action is monoidal, it induces an action on
Pic(K (Cfd)) ∼= Pic(C) by Lemma 6.3. We have then an equivalence of monoidal bicategories

(6.4) Pic
(

(K (Cfd))SO(2)
)
∼= Pic(C)SO(2).
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Proof. Theorem 4.3 allows us to compute the two bicategories of homotopy fixed points explicitly: we
see that both bicategories have invertible objects X of C, together with the choice of a trivialization of
the Serre automorphism as objects. The 1-morphisms of both bicategories are given by 1-equivalences
between invertible objects of C, so that the diagram in equation (4.14) commutes, while 2-morphisms are
given by 2-isomorphisms in C. �

The implication of the above lemmas is the following: when C is a symmetric monoidal bicategory with
Pic(C) ∼= B2K∗, the action of the Serre-automorphism on framed, invertible field theories with values in
C is trivializable. Thus all framed invertible 2d TQFTs wih values in C can be turned into orientable
ones.

7. Comments on Homotopy Orbits

So far, we have constructed an SO(2)-action on the bicategory Fcfd. We have shown how the action on
Fcfd induces an action on the bicategory of symmetric monoidal functors Fun⊗(Fcfd, C), and that via
the (framed) Cobordism Hypothesis the induced action on K (Cfd) for framed manifolds agrees with the
action of the Serre automorphism. As a consequence, we are able to provide an equivalence of bicategories
(7.1) Fun⊗(Fcfd, C)SO(2) → K (Cfd)SO(2)

in Corollary 5.9. We could then in principle deduce the Cobordism Hypothesis for oriented manifolds
from 7.1, once we provide an equivalence of bicategories
(7.2) Fun⊗(Fcfd, C)SO(2) ∼= Fun(Cobor

2,1,0, C).
The above equivalence can be proven directly by using a presentation of the oriented bordism bicategory
via generators and relations, given in [SP09], and the notion of a Calabi-Yau object internal to a bicategory.
The details will appear in [HVar].
Here, we want instead to comment on an alternative approach. Namely, in order to provide an equivalence
as in (7.2), it suffices to identify the oriented bordism bicategory with the colimit of the SO(2)-action on
Fcfd. Indeed, recall that one may define a G-action on a bicategory C to be a trifunctor ρ : BΠ2(G)→
Bicat with ρ(∗) = C. The tricategorical colimit of this functor will then be the bicategory of co-invariants
or homotopy orbits of the G-action, denoted by CG. By Definition of the tricategorical colimit, and the
fact that colimits are sent to limits by the Hom functor, we then obtain an equivalence of bicategories
(7.3) Fun⊗(CG,D) ∼= Fun⊗(C,D)G.
The following conjecture is then natural:

Conjecture 7.1. The bicategory of co-invariants of the SO(2)-action on Fcfd is monoidally equivalent
to the oriented bordism bicategory, i.e. we have a monoidal equivalence
(7.4) (Fcfd)SO(2) ∼= Cobor

2,1,0 .

Furthermore, the colimit is compatible with the monoidal structure.

Remark 7.2. We believe that this is not an isolated phenomenon, in the sense that any higher bordism
category equipped with additional tangential structure should be obtained by taking an appropriate
colimit of a G-action on the framed bordism category.

Given Conjecture 7.1 and Equation 7.3, we obtain the following sequence of monoidal equivalences
(7.5) Fun⊗(Cobor

2,1,0, C) ∼= Fun⊗((Fcfd)SO(2), C) ∼= Fun⊗(Fcfd, C)SO(2) ∼= K (Cfd)SO(2).

Hence Conjecture 7.1 implies the Cobordism Hypothesis for oriented 2-manifolds. Notice that the chain
of equivalences in 7.5 is natural in C.
On the other hand, the Cobordism Hypothesis for oriented manifolds in 2-dimensions implies Conjecture
7.1 . Indeed, by using a tricategorical version of the Yoneda Lemma, as developed for instance in [Buh15],
the chain of equivalences

Fun⊗(Cobor
2,1,0, C) ∼= K (Cfd)SO(2)

∼= Fun⊗(Cobfr
2,1,0, C)SO(2)

∼= Fun⊗((Fcfd)SO(2), C)
(7.6)

implies that Cobor
2,1,0 is equivalent to (Fcfd)SO(2), due to the uniqueness of representable objects.

We summarise the above arguments in the following
18



Lemma 7.3. The Cobordism Hypothesis for oriented 2-dimensional manifolds is equivalent to Conjecture
7.1.

It would then be of great interest to develop concrete constructions of homotopy co-invariants of actions
of groups on bicategories, in the same spirit of [HSV16] and the present work, in order to verify directly
the equivalence in Conjecture 7.1, and to extend the above arguments to general tangential G-structures.
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X Y (X Y )∗ X Y Y ∗ Y (X Y )∗ X Y Y ∗ X∗ X Y (X Y )∗ X Y Y ∗ X∗ XX∗ Y Y ∗

X Y (X Y )∗ X Y (X Y )∗ XX∗ X Y (X Y )∗ XX∗ 1

X Y (X Y )∗ 1

idX Y coevY id(X Y )∗

ididX
αY idid(X Y )∗

idX Y Y ∗ coevX idY (X Y )∗

idX evY idY (X Y )∗ ∼=

idX Y Y ∗ X∗ evX Y

idX evY idX∗ X Y (X Y )∗ ∼=

idX τY Y ∗,X∗

idX evY idX∗ ∼= evX evY

idX Y (X Y )∗ idX coevX idY (XY )∗

αX idid(X Y )∗

idX X∗ evX Y

evX idX Y (X Y )∗

evX

∼=
evX Y

Figure 1. Diagram for the proof of Lemma 2.10
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