

*Dynamical Systems Conference
in memory of Jean-Christophe Yoccoz*

Corinna Ulcigrai

On Birkhoff sums
and Roth type conditions
for interval exchange maps

*(based on joint work with
S. Marmi and J.-C. Yoccoz)*

Collège de France, Paris, May 29 2017

Interval exchange maps and Birkhoff sums

► Interval exchange map (i.e.m.)

$T = (\pi, \lambda)$, where:

- $T : I \rightarrow I$ where $I := [0, 1]$;
- \mathcal{A} alphabet with $|\mathcal{A}| = d$;
- d subintervals I_α , $\alpha \in \mathcal{A}$;
- π permutation on \mathcal{A} ;
- $\lambda = (\lambda_\alpha)_{\alpha \in \mathcal{A}}$;
- $\lambda_\alpha = |I_\alpha|$ lengths vector;



► Function $f : [0, 1] \rightarrow \mathbb{R}$;

Consider its Birkhoff sums

$$S_n f(x) := \sum_{i=0}^n f(T^i x), \quad x \in I.$$

- In this talk we will mostly focus on $f \in \Gamma(T)$, where

$\Gamma(T) := \{f : \text{piecewise constant}\} \subset \mathbb{R}^d$

- f_α value on I_α , so $f \longleftrightarrow (f_\alpha, f_\beta, \dots, f_\omega) \in \mathbb{R}^d$;

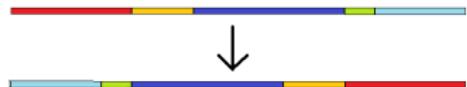
- $\Gamma_0(T) := \{\varphi \in \Gamma(T) : \int \varphi dx = \sum_\alpha \lambda_\alpha \varphi_\alpha = 0\}$.

Interval exchange maps and Birkhoff sums

- ▶ Interval exchange map (i.e.m.)

$T = (\pi, \lambda)$, where:

- ▶ $T : I \rightarrow I$ where $I := [0, 1]$;
- ▶ \mathcal{A} alphabet with $|\mathcal{A}| = d$;
- ▶ d subintervals I_α , $\alpha \in \mathcal{A}$;
- ▶ π permutation on \mathcal{A} ;
- ▶ $\lambda = (\lambda_\alpha)_{\alpha \in \mathcal{A}}$;
- ▶ $\lambda_\alpha = |I_\alpha|$ lengths vector;



- ▶ Function $f : [0, 1] \rightarrow \mathbb{R}$;

Consider its Birkhoff sums

$$S_n f(x) := \sum_{i=0}^n f(T^i x), \quad x \in I.$$

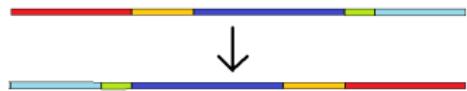
- ▶ In this talk we will mostly focus on $f \in \Gamma(T)$, where $\Gamma(T) := \{f : \text{piecewise constant}\} \subset \mathbb{R}^d$
- ▶ f_α value on I_α , so $f \longleftrightarrow (f_\alpha, f_\beta, \dots, f_\omega) \in \mathbb{R}^d$;
- ▶ $\Gamma_0(T) := \{\varphi \in \Gamma(T) : \int \varphi dx = \sum_\alpha \lambda_\alpha \varphi_\alpha = 0\}$.

Interval exchange maps and Birkhoff sums

- ▶ Interval exchange map (i.e.m.)

$T = (\pi, \lambda)$, where:

- ▶ $T : I \rightarrow I$ where $I := [0, 1]$;
- ▶ \mathcal{A} alphabet with $|\mathcal{A}| = d$;
- ▶ d subintervals I_α , $\alpha \in \mathcal{A}$;
- ▶ π permutation on \mathcal{A} ;
- ▶ $\lambda = (\lambda_\alpha)_{\alpha \in \mathcal{A}}$;
- ▶ $\lambda_\alpha = |I_\alpha|$ lengths vector;



$$\mathcal{A} := \{\alpha, \beta, \gamma, \delta, \varepsilon\}$$

- ▶ Function $f : [0, 1] \rightarrow \mathbb{R}$;

Consider its Birkhoff sums

$$S_n f(x) := \sum_{i=0}^n f(T^i x), \quad x \in I.$$

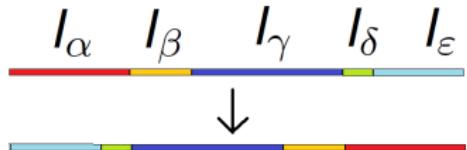
- ▶ In this talk we will mostly focus on $f \in \Gamma(T)$, where $\Gamma(T) := \{f : \text{piecewise constant}\} \subset \mathbb{R}^d$
- ▶ f_α value on I_α , so $f \longleftrightarrow (f_\alpha, f_\beta, \dots, f_\omega) \in \mathbb{R}^d$;
- ▶ $\Gamma_0(T) := \{\varphi \in \Gamma(T) : \int \varphi dx = \sum_\alpha \lambda_\alpha \varphi_\alpha = 0\}$.

Interval exchange maps and Birkhoff sums

- ▶ Interval exchange map (i.e.m.)

$T = (\pi, \lambda)$, where:

- ▶ $T : I \rightarrow I$ where $I := [0, 1]$;
- ▶ \mathcal{A} alphabet with $|\mathcal{A}| = d$;
- ▶ **d subintervals** I_α , $\alpha \in \mathcal{A}$;
- ▶ π permutation on \mathcal{A} ;
- ▶ $\lambda = (\lambda_\alpha)_\alpha \in \mathcal{A}$;
- ▶ $\lambda_\alpha = |I_\alpha|$ lengths vector;



- ▶ Function $f : [0, 1] \rightarrow \mathbb{R}$;

Consider its Birkhoff sums

$$S_n f(x) := \sum_{i=0}^n f(T^i x), \quad x \in I.$$

- ▶ In this talk we will mostly focus on $f \in \Gamma(T)$, where $\Gamma(T) := \{f : \text{piecewise constant}\} \subset \mathbb{R}^d$

▶ f_α value on I_α , so $f \longleftrightarrow (f_\alpha, f_\beta, \dots, f_\omega) \in \mathbb{R}^d$;

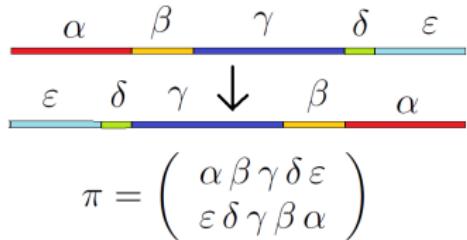
▶ $\Gamma_0(T) := \{\varphi \in \Gamma(T) : \int \varphi dx = \sum_\alpha \lambda_\alpha \varphi_\alpha = 0\}$.

Interval exchange maps and Birkhoff sums

- ▶ Interval exchange map (i.e.m.)

$T = (\pi, \lambda)$, where:

- ▶ $T : I \rightarrow I$ where $I := [0, 1]$;
- ▶ \mathcal{A} alphabet with $|\mathcal{A}| = d$;
- ▶ d subintervals I_α , $\alpha \in \mathcal{A}$;
- ▶ π permutation on \mathcal{A} ;
- ▶ $\lambda = (\lambda_\alpha)_{\alpha \in \mathcal{A}}$;
- ▶ $\lambda_\alpha = |I_\alpha|$ lengths vector;



- ▶ Function $f : [0, 1] \rightarrow \mathbb{R}$;

Consider its Birkhoff sums

$$S_n f(x) := \sum_{i=0}^n f(T^i x), \quad x \in I.$$

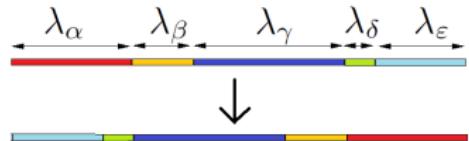
- ▶ In this talk we will mostly focus on $f \in \Gamma(T)$, where $\Gamma(T) := \{f : \text{piecewise constant}\} \subset \mathbb{R}^d$
- ▶ f_α value on I_α , so $f \longleftrightarrow (f_\alpha, f_\beta, \dots, f_\omega) \in \mathbb{R}^d$;
- ▶ $\Gamma_0(T) := \{\varphi \in \Gamma(T) : \int \varphi dx = \sum_\alpha \lambda_\alpha \varphi_\alpha = 0\}$.

Interval exchange maps and Birkhoff sums

- ▶ Interval exchange map (i.e.m.)

$T = (\pi, \lambda)$, where:

- ▶ $T : I \rightarrow I$ where $I := [0, 1]$;
- ▶ \mathcal{A} alphabet with $|\mathcal{A}| = d$;
- ▶ d subintervals I_α , $\alpha \in \mathcal{A}$;
- ▶ π permutation on \mathcal{A} ;
- ▶ $\lambda = (\lambda_\alpha)_{\alpha \in \mathcal{A}}$;
- ▶ $\lambda_\alpha = |I_\alpha|$ lengths vector;



- ▶ Function $f : [0, 1] \rightarrow \mathbb{R}$;

Consider its Birkhoff sums

$$S_n f(x) := \sum_{i=0}^n f(T^i x), \quad x \in I.$$

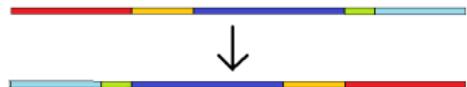
- ▶ In this talk we will mostly focus on $f \in \Gamma(T)$, where $\Gamma(T) := \{f: \text{ piecewise constant}\} \subset \mathbb{R}^d$
- ▶ f_α value on I_α , so $f \longleftrightarrow (f_\alpha, f_\beta, \dots, f_\omega) \in \mathbb{R}^d$;
- ▶ $\Gamma_0(T) := \{\varphi \in \Gamma(T) : \int \varphi dx = \sum_\alpha \lambda_\alpha \varphi_\alpha = 0\}$.

Interval exchange maps and Birkhoff sums

- ▶ Interval exchange map (i.e.m.)

$T = (\pi, \lambda)$, where:

- ▶ $T : I \rightarrow I$ where $I := [0, 1]$;
- ▶ \mathcal{A} alphabet with $|\mathcal{A}| = d$;
- ▶ d subintervals I_α , $\alpha \in \mathcal{A}$;
- ▶ π permutation on \mathcal{A} ;
- ▶ $\lambda = (\lambda_\alpha)_{\alpha \in \mathcal{A}}$;
- ▶ $\lambda_\alpha = |I_\alpha|$ lengths vector;



- ▶ Function $f : [0, 1] \rightarrow \mathbb{R}$;

Consider its Birkhoff sums

$$S_n f(x) := \sum_{i=0}^n f(T^i x), \quad x \in I.$$

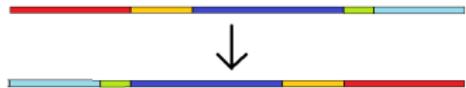
- ▶ In this talk we will mostly focus on $f \in \Gamma(T)$, where $\Gamma(T) := \{f : \text{piecewise constant}\} \subset \mathbb{R}^d$
- ▶ f_α value on I_α , so $f \longleftrightarrow (f_\alpha, f_\beta, \dots, f_\omega) \in \mathbb{R}^d$;
- ▶ $\Gamma_0(T) := \{\varphi \in \Gamma(T) : \int \varphi dx = \sum_\alpha \lambda_\alpha \varphi_\alpha = 0\}$.

Interval exchange maps and Birkhoff sums

- ▶ Interval exchange map (i.e.m.)

$T = (\pi, \lambda)$, where:

- ▶ $T : I \rightarrow I$ where $I := [0, 1]$;
- ▶ \mathcal{A} alphabet with $|\mathcal{A}| = d$;
- ▶ d subintervals I_α , $\alpha \in \mathcal{A}$;
- ▶ π permutation on \mathcal{A} ;
- ▶ $\lambda = (\lambda_\alpha)_{\alpha \in \mathcal{A}}$;
- ▶ $\lambda_\alpha = |I_\alpha|$ lengths vector;



- ▶ Function $f : [0, 1] \rightarrow \mathbb{R}$;

Consider its Birkhoff sums

$$S_n f(x) := \sum_{i=0}^n f(T^i x), \quad x \in I.$$

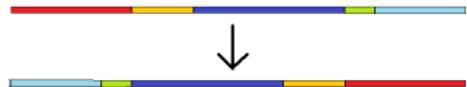
- ▶ In this talk we will mostly focus on $f \in \Gamma(T)$, where $\Gamma(T) := \{f : \text{piecewise constant}\} \subset \mathbb{R}^d$
- ▶ f_α value on I_α , so $f \longleftrightarrow (f_\alpha, f_\beta, \dots, f_\omega) \in \mathbb{R}^d$;
- ▶ $\Gamma_0(T) := \{\varphi \in \Gamma(T) : \int \varphi dx = \sum_\alpha \lambda_\alpha \varphi_\alpha = 0\}$.

Interval exchange maps and Birkhoff sums

- ▶ Interval exchange map (i.e.m.)

$T = (\pi, \lambda)$, where:

- ▶ $T : I \rightarrow I$ where $I := [0, 1]$;
- ▶ \mathcal{A} alphabet with $|\mathcal{A}| = d$;
- ▶ d subintervals I_α , $\alpha \in \mathcal{A}$;
- ▶ π permutation on \mathcal{A} ;
- ▶ $\lambda = (\lambda_\alpha)_{\alpha \in \mathcal{A}}$;
- ▶ $\lambda_\alpha = |I_\alpha|$ lengths vector;



- ▶ Function $f : [0, 1] \rightarrow \mathbb{R}$;

Consider its Birkhoff sums

$$S_n f(x) := \sum_{i=0}^n f(T^i x), \quad x \in I.$$

- ▶ In this talk we will mostly focus on $f \in \Gamma(T)$, where $\Gamma(T) := \{f : \text{piecewise constant}\} \subset \mathbb{R}^d$
- ▶ f_α value on I_α , so $f \longleftrightarrow (f_\alpha, f_\beta, \dots, f_\omega) \in \mathbb{R}^d$;
- ▶ $\Gamma_0(T) := \{\varphi \in \Gamma(T) : \int \varphi dx = \sum_\alpha \lambda_\alpha \varphi_\alpha = 0\}$.

Interval exchange maps and Birkhoff sums

- ▶ Interval exchange map (i.e.m.)

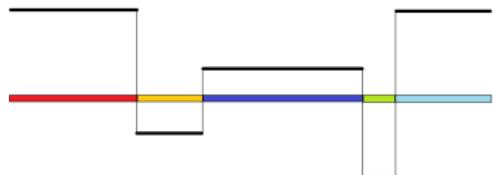
$T = (\pi, \lambda)$, where:

- ▶ $T : I \rightarrow I$ where $I := [0, 1]$;
- ▶ \mathcal{A} alphabet with $|\mathcal{A}| = d$;
- ▶ d subintervals I_α , $\alpha \in \mathcal{A}$;
- ▶ π permutation on \mathcal{A} ;
- ▶ $\lambda = (\lambda_\alpha)_{\alpha \in \mathcal{A}}$;
- ▶ $\lambda_\alpha = |I_\alpha|$ lengths vector;

- ▶ Function $f : [0, 1] \rightarrow \mathbb{R}$;

Consider its Birkhoff sums

$$S_n f(x) := \sum_{i=0}^n f(T^i x), \quad x \in I.$$



- ▶ In this talk we will mostly focus on $f \in \Gamma(T)$, where $\Gamma(T) := \{f: \text{piecewise constant}\} \subset \mathbb{R}^d$

▶ f_α value on I_α , so $f \longleftrightarrow (f_\alpha, f_\beta, \dots, f_\omega) \in \mathbb{R}^d$;

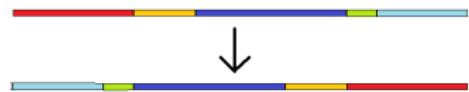
▶ $\Gamma_0(T) := \{\varphi \in \Gamma(T) : \int \varphi dx = \sum_\alpha \lambda_\alpha \varphi_\alpha = 0\}$.

Interval exchange maps and Birkhoff sums

- ▶ Interval exchange map (i.e.m.)

$T = (\pi, \lambda)$, where:

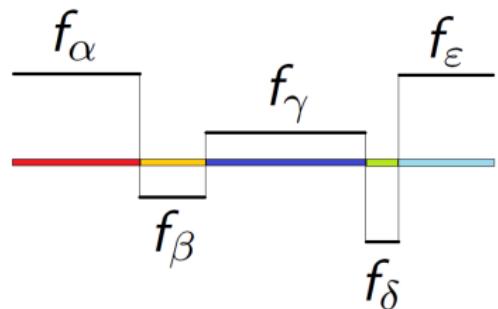
- ▶ $T : I \rightarrow I$ where $I := [0, 1]$;
- ▶ \mathcal{A} alphabet with $|\mathcal{A}| = d$;
- ▶ d subintervals I_α , $\alpha \in \mathcal{A}$;
- ▶ π permutation on \mathcal{A} ;
- ▶ $\lambda = (\lambda_\alpha)_{\alpha \in \mathcal{A}}$;
- ▶ $\lambda_\alpha = |I_\alpha|$ lengths vector;



- ▶ Function $f : [0, 1] \rightarrow \mathbb{R}$;

Consider its Birkhoff sums

$$S_n f(x) := \sum_{i=0}^n f(T^i x), \quad x \in I.$$



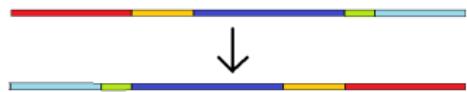
- ▶ In this talk we will mostly focus on $f \in \Gamma(T)$, where $\Gamma(T) := \{f: \text{piecewise constant}\} \subset \mathbb{R}^d$
- ▶ f_α value on I_α , so $f \longleftrightarrow (f_\alpha, f_\beta, \dots, f_\omega) \in \mathbb{R}^d$;
- ▶ $\Gamma_0(T) := \{\varphi \in \Gamma(T) : \int \varphi dx = \sum_\alpha \lambda_\alpha \varphi_\alpha = 0\}$.

Interval exchange maps and Birkhoff sums

- ▶ Interval exchange map (i.e.m.)

$T = (\pi, \lambda)$, where:

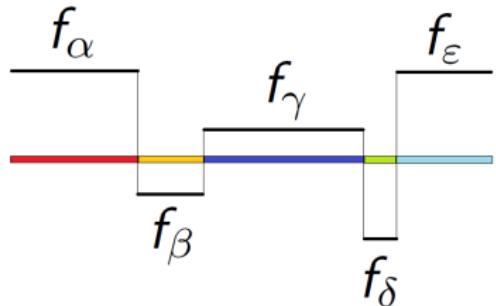
- ▶ $T : I \rightarrow I$ where $I := [0, 1]$;
- ▶ \mathcal{A} alphabet with $|\mathcal{A}| = d$;
- ▶ d subintervals I_α , $\alpha \in \mathcal{A}$;
- ▶ π permutation on \mathcal{A} ;
- ▶ $\lambda = (\lambda_\alpha)_{\alpha \in \mathcal{A}}$;
- ▶ $\lambda_\alpha = |I_\alpha|$ lengths vector;



- ▶ Function $f : [0, 1] \rightarrow \mathbb{R}$;

Consider its Birkhoff sums

$$S_n f(x) := \sum_{i=0}^n f(T^i x), \quad x \in I.$$

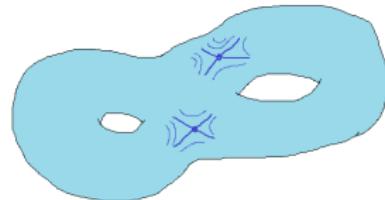


- ▶ In this talk we will mostly focus on $f \in \Gamma(T)$, where $\Gamma(T) := \{f: \text{piecewise constant}\} \subset \mathbb{R}^d$
- ▶ f_α value on I_α , so $f \longleftrightarrow (f_\alpha, f_\beta, \dots, f_\omega) \in \mathbb{R}^d$;
- ▶ $\Gamma_0(T) := \{\varphi \in \Gamma(T) : \int \varphi dx = \sum_\alpha \lambda_\alpha \varphi_\alpha = 0\}$.

Translation surfaces and ergodic integrals

Geometric counterpart object:

- ▶ $M = M(\pi, \lambda, \tau)$ translation surface
(flat metric, conical singularities)
- ▶ M can be represented as a zippered rectangle, i.e. union of rectangles R_α with glueings;
 λ_α width, q_α height of R_α
 τ “zips heights”; (π, τ) determine
 $q = (q_\alpha)_\alpha$ height vector ($q = -\Omega_\pi(\tau)$)



Remark: π “knows” about the genus g and number of conical singularities k ;

$$d = 2g + k$$

- ▶ $\varphi_t : S \rightarrow S$ vertical linear flow;
- ▶ Poincaré section is the i.e.m $T = (\pi, \lambda)$;
- ▶ Given $f : S \rightarrow \mathbb{R}$, consider ergodic integrals

$$\int_0^T f(\varphi_t(x)) dt, \quad x \in M.$$

Translation surfaces and ergodic integrals

Geometric counterpart object:

- ▶ $M = M(\pi, \lambda, \tau)$ translation surface
(flat metric, conical singularities)
- ▶ M can be represented as a **zippered rectangle**, i.e. union of rectangles R_α with glueings;

λ_α width, q_α height of R_α

τ “zips heights”; (π, τ) determine

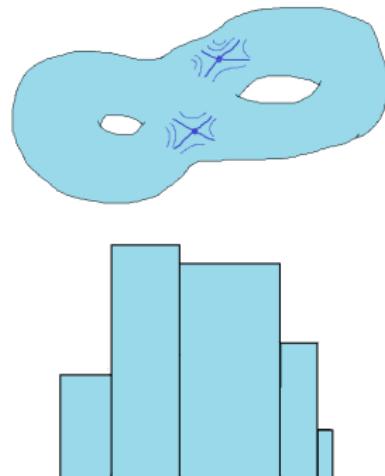
$q = (q_\alpha)_\alpha$ height vector ($q = -\Omega_\pi(\tau)$)

Remark: π “knows” about the genus g and number of conical singularities k ;

$$d = 2g + k$$

- ▶ $\varphi_t : S \rightarrow S$ vertical linear flow;
- ▶ *Poincaré section* is the i.e.m $T = (\pi, \lambda)$;
- ▶ Given $f : S \rightarrow \mathbb{R}$, consider ergodic integrals

$$\int_0^T f(\varphi_t(x)) dt, \quad x \in M.$$



Translation surfaces and ergodic integrals

Geometric counterpart object:

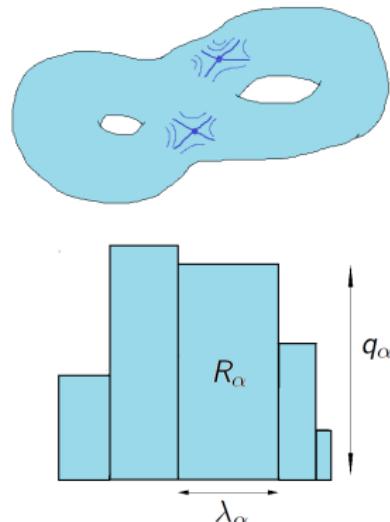
- ▶ $M = M(\pi, \lambda, \tau)$ translation surface
(flat metric, conical singularities)
- ▶ M can be represented as a **zippered rectangle**, i.e. union of rectangles R_α with glueings;
 λ_α width, q_α height of R_α
 τ “zips heights”; (π, τ) determine
 $q = (q_\alpha)_\alpha$ height vector ($q = -\Omega_\pi(\tau)$)

Remark: π “knows” about the genus g and number of conical singularities k ;

$$d = 2g + k$$

- ▶ $\varphi_t : S \rightarrow S$ vertical linear flow;
- ▶ *Poincaré section* is the i.e.m $T = (\pi, \lambda)$;
- ▶ Given $f : S \rightarrow \mathbb{R}$, consider ergodic integrals

$$\int_0^T f(\varphi_t(x)) dt, \quad x \in M.$$



Translation surfaces and ergodic integrals

Geometric counterpart object:

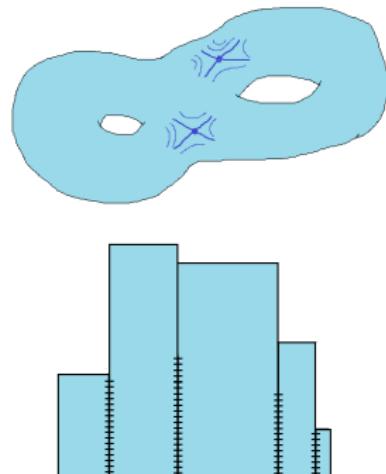
- ▶ $M = M(\pi, \lambda, \tau)$ translation surface
(flat metric, conical singularities)
- ▶ M can be represented as a **zippered rectangle**, i.e. union of rectangles R_α with glueings;
 λ_α width, q_α height of R_α
 τ “*zips heights*”; (π, τ) determine
 $q = (q_\alpha)_\alpha$ height vector ($q = -\Omega_\pi(\tau)$)

Remark: π “knows” about the genus g and number of conical singularities k ;

$$d = 2g + k$$

- ▶ $\varphi_t : S \rightarrow S$ vertical linear flow;
- ▶ *Poincaré section* is the i.e.m $T = (\pi, \lambda)$;
- ▶ Given $f : S \rightarrow \mathbb{R}$, consider ergodic integrals

$$\int_0^T f(\varphi_t(x)) dt, \quad x \in M.$$



Translation surfaces and ergodic integrals

Geometric counterpart object:

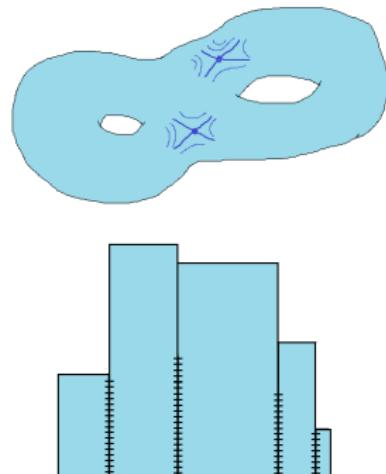
- ▶ $M = M(\pi, \lambda, \tau)$ translation surface
(flat metric, conical singularities)
- ▶ M can be represented as a **zippered rectangle**, i.e. union of rectangles R_α with glueings;
 λ_α width, q_α height of R_α
 τ “*zips heights*”; (π, τ) determine
 $q = (q_\alpha)_\alpha$ **height vector** ($q = -\Omega_\pi(\tau)$)

Remark: π “knows” about the genus g and number of conical singularities k ;

$$d = 2g + k$$

- ▶ $\varphi_t : S \rightarrow S$ vertical linear flow;
- ▶ *Poincaré section* is the i.e.m $T = (\pi, \lambda)$;
- ▶ Given $f : S \rightarrow \mathbb{R}$, consider ergodic integrals

$$\int_0^T f(\varphi_t(x)) dt, \quad x \in M.$$



Translation surfaces and ergodic integrals

Geometric counterpart object:

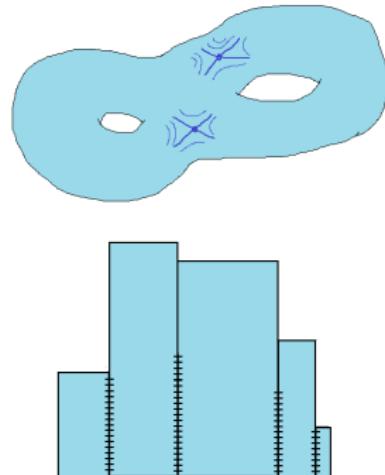
- ▶ $M = M(\pi, \lambda, \tau)$ translation surface
(flat metric, conical singularities)
- ▶ M can be represented as a **zippered rectangle**, i.e. union of rectangles R_α with glueings;
 λ_α width, q_α height of R_α
 τ “*zips heights*”; (π, τ) determine
 $q = (q_\alpha)_\alpha$ **height vector** ($q = -\Omega_\pi(\tau)$)

Remark: π “*knows*” about the **genus g** and
number of **conical singularities k** ;

$$d = 2g + k$$

- ▶ $\varphi_t : S \rightarrow S$ vertical linear flow;
- ▶ *Poincaré section* is the i.e.m $T = (\pi, \lambda)$;
- ▶ Given $f : S \rightarrow \mathbb{R}$, consider ergodic integrals

$$\int_0^T f(\varphi_t(x)) dt, \quad x \in M.$$



Translation surfaces and ergodic integrals

Geometric counterpart object:

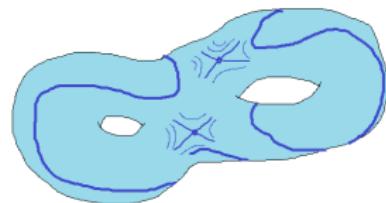
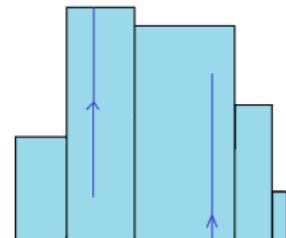
- ▶ $M = M(\pi, \lambda, \tau)$ translation surface
(flat metric, conical singularities)
- ▶ M can be represented as a **zippered rectangle**, i.e. union of rectangles R_α with glueings;
 λ_α width, q_α height of R_α
 τ “zips heights”; (π, τ) determine
 $q = (q_\alpha)_\alpha$ height vector ($q = -\Omega_\pi(\tau)$)

Remark: π “knows” about the genus g and number of **conical singularities** k ;

$$d = 2g + k$$

- ▶ $\varphi_t : S \rightarrow S$ vertical linear flow;
- ▶ *Poincaré section* is the i.e.m $T = (\pi, \lambda)$;
- ▶ Given $f : S \rightarrow \mathbb{R}$, consider ergodic integrals

$$\int_0^T f(\varphi_t(x)) dt, \quad x \in M.$$



Translation surfaces and ergodic integrals

Geometric counterpart object:

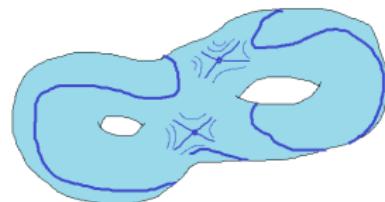
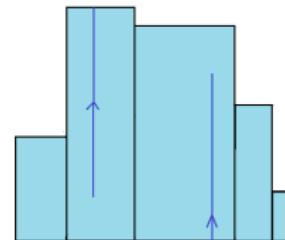
- ▶ $M = M(\pi, \lambda, \tau)$ translation surface
(flat metric, conical singularities)
- ▶ M can be represented as a **zippered rectangle**, i.e. union of rectangles R_α with glueings;
 λ_α width, q_α height of R_α
 τ “zips heights”; (π, τ) determine
 $q = (q_\alpha)_\alpha$ **height vector** ($q = -\Omega_\pi(\tau)$)

Remark: π “knows” about the **genus g** and
number of **conical singularities k** ;

$$d = 2g + k$$

- ▶ $\varphi_t : S \rightarrow S$ **vertical linear flow**;
- ▶ **Poincaré section** is the i.e.m $T = (\pi, \lambda)$;
- ▶ Given $f : S \rightarrow \mathbb{R}$, consider **ergodic integrals**

$$\int_0^T f(\varphi_t(x)) dt, \quad x \in M.$$



Translation surfaces and ergodic integrals

Geometric counterpart object:

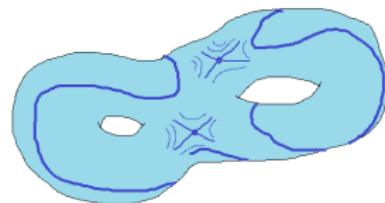
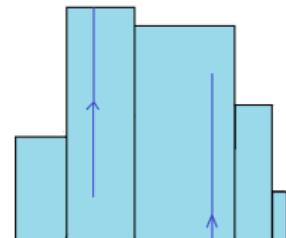
- ▶ $M = M(\pi, \lambda, \tau)$ translation surface
(flat metric, conical singularities)
- ▶ M can be represented as a **zippered rectangle**, i.e. union of rectangles R_α with glueings;
 λ_α width, q_α height of R_α
 τ “zips heights”; (π, τ) determine
 $q = (q_\alpha)_\alpha$ **height vector** ($q = -\Omega_\pi(\tau)$)

Remark: π “knows” about the **genus g** and number of **conical singularities k** ;

$$d = 2g + k$$

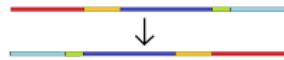
- ▶ $\varphi_t : S \rightarrow S$ **vertical linear flow**;
- ▶ **Poincaré section** is the i.e.m $T = (\pi, \lambda)$;
- ▶ Given $f : S \rightarrow \mathbb{R}$, consider **ergodic integrals**

$$\int_0^T f(\varphi_t(x)) dt, \quad x \in M.$$



Ergodicity and deviations of ergodic averages

- ▶ Almost every i.e.m. := any π irreducible
[i.e. $\pi\{1, \dots, k\} = \{1, \dots, k\} \Rightarrow k = d$]
and Lebesgue-a.e. $\lambda \in \mathbb{R}^d$;
- ▶ Almost every M := almost every with respect to the *Masur-Veech measure*;
[Lebesgue measure on *period coordinates* (λ, τ)]
- ▶ **Masur/Veech, 1980s:** a.e. i.e.m. (hence φ_t on a.e. M) is (uniquely) ergodic; thus $\forall f \in L^1(I)$ (resp. $f \in L^1(M)$), $\int f = 0$,
for all $x \in I$ (resp. all $x \in M$ not on a separatrix)



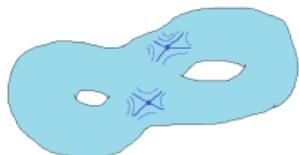
$$S_n f(x) = o(n), \quad \left(\text{resp } \int_0^T f(\varphi_t(x)) dt = o(T) \right)$$

- ▶ Deviations of ergodic averages (A. Zorich, 1997): *Upper bounds:*
For a.e. i.e.m. T , for all $f \in \Gamma_0(T)$,
there exists $0 < \gamma < 1, C > 0$ s.t.

$$|S_n f(x)| \leq Cn^\gamma, \quad \forall x \in I.$$

Ergodicity and deviations of ergodic averages

- ▶ Almost every i.e.m. := any π irreducible
[i.e. $\pi\{1, \dots, k\} = \{1, \dots, k\} \Rightarrow k = d$]
and Lebesgue-a.e. $\lambda \in \mathbb{R}^d$;
- ▶ Almost every M := almost every with respect
to the *Masur-Veech measure*;
[Lebesgue measure on *period coordinates* (λ, τ)]



- ▶ Masur/Veech, 1980s: a.e. i.e.m. (hence φ_t on a.e. M) is (uniquely) ergodic; thus $\forall f \in L^1(I)$ (resp. $f \in L^1(M)$), $\int f = 0$,
for all $x \in I$ (resp. all $x \in M$ not on a separatrix)

$$S_n f(x) = o(n), \quad \left(\text{resp } \int_0^T f(\varphi_t(x)) dt = o(T) \right)$$

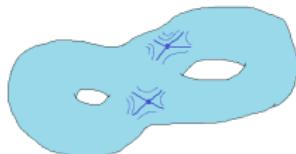
- ▶ Deviations of ergodic averages (A. Zorich, 1997): *Upper bounds*:

For a.e. i.e.m. T , for all $f \in \Gamma_0(T)$,
there exists $0 < \gamma < 1, C > 0$ s.t.

$$|S_n f(x)| \leq Cn^\gamma, \quad \forall x \in I.$$

Ergodicity and deviations of ergodic averages

- ▶ Almost every i.e.m. := any π irreducible
[i.e. $\pi\{1, \dots, k\} = \{1, \dots, k\} \Rightarrow k = d$]
and Lebesgue-a.e. $\lambda \in \mathbb{R}^d$;
- ▶ Almost every M := almost every with respect
to the *Masur-Veech measure*;
[Lebesgue measure on *period coordinates* (λ, τ)]



- ▶ **Masur/Veech, 1980s:** a.e. i.e.m. (hence φ_t on a.e. M) is (uniquely) ergodic; thus $\forall f \in L^1(I)$ (resp. $f \in L^1(M)$), $\int f = 0$,
for all $x \in I$ (resp. all $x \in M$ not on a separatrix)

$$S_n f(x) = o(n), \quad \left(\text{resp } \int_0^T f(\varphi_t(x)) dt = o(T) \right)$$

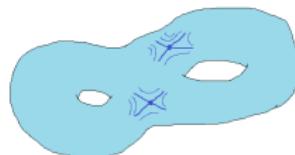
- ▶ Deviations of ergodic averages (A. Zorich, 1997): *Upper bounds:*

For a.e. i.e.m. T , for all $f \in \Gamma_0(T)$,
there exists $0 < \gamma < 1, C > 0$ s.t.

$$|S_n f(x)| \leq Cn^\gamma, \quad \forall x \in I.$$

Ergodicity and deviations of ergodic averages

- ▶ Almost every i.e.m. := any π irreducible
[i.e. $\pi\{1, \dots, k\} = \{1, \dots, k\} \Rightarrow k = d$]
and Lebesgue-a.e. $\lambda \in \mathbb{R}^d$;
- ▶ Almost every M := almost every with respect
to the *Masur-Veech measure*;
[Lebesgue measure on *period coordinates* (λ, τ)]



- ▶ **Masur/Veech, 1980s:** a.e. i.e.m. (hence φ_t on a.e. M) is (uniquely) ergodic; thus $\forall f \in L^1(I)$ (resp. $f \in L^1(M)$), $\int f = 0$,
for all $x \in I$ (resp. all $x \in M$ not on a separatrix)

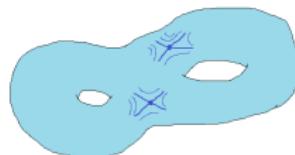
$$S_n f(x) = o(n), \quad \left(\text{resp } \int_0^T f(\varphi_t(x)) dt = o(T) \right)$$

- ▶ Deviations of ergodic averages (A. Zorich, 1997): *Upper bounds:*
For a.e. i.e.m. T , for all $f \in \Gamma_0(T)$,
there exists $0 < \gamma < 1, C > 0$ s.t.

$$|S_n f(x)| \leq Cn^\gamma, \quad \forall x \in I.$$

Ergodicity and deviations of ergodic averages

- ▶ Almost every i.e.m. := any π irreducible
[i.e. $\pi\{1, \dots, k\} = \{1, \dots, k\} \Rightarrow k = d$]
and Lebesgue-a.e. $\lambda \in \mathbb{R}^d$;
- ▶ Almost every M := almost every with respect
to the *Masur-Veech measure*;
[Lebesgue measure on *period coordinates* (λ, τ)]



- ▶ **Masur/Veech, 1980s**: a.e. i.e.m. (hence φ_t on a.e. M) is (uniquely) ergodic; thus $\forall f \in L^1(I)$ (resp. $f \in L^1(M)$), $\int f = 0$,
for all $x \in I$ (resp. all $x \in M$ not on a separatrix)

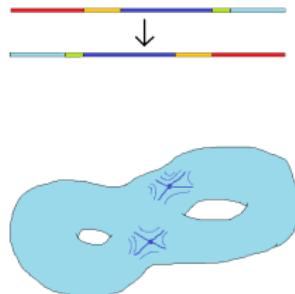
$$S_n f(x) = o(n), \quad \left(\text{resp } \int_0^T f(\varphi_t(x)) dt = o(T) \right)$$

- ▶ Deviations of ergodic averages (A. Zorich, 1997): *Upper bounds*:
For a.e. i.e.m. T , for all $f \in \Gamma_0(T)$,
there exists $0 < \gamma < 1, C > 0$ s.t.

$$|S_n f(x)| \leq Cn^\gamma, \quad \forall x \in I.$$

Ergodicity and deviations of ergodic averages

- ▶ Almost every i.e.m. := any π irreducible
[i.e. $\pi\{1, \dots, k\} = \{1, \dots, k\} \Rightarrow k = d$]
and Lebesgue-a.e. $\lambda \in \mathbb{R}^d$;
- ▶ Almost every M := almost every with respect
to the *Masur-Veech measure*;
[Lebesgue measure on *period coordinates* (λ, τ)]



- ▶ **Masur/Veech, 1980s:** a.e. i.e.m. (hence φ_t on a.e. M) is (uniquely) ergodic; thus $\forall f \in L^1(I)$ (resp. $f \in L^1(M)$), $\int f = 0$,
for all $x \in I$ (resp. all $x \in M$ not on a separatrix)

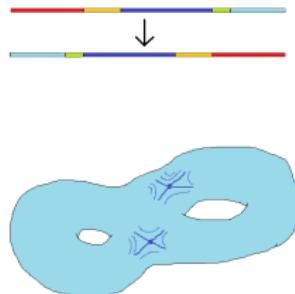
$$S_n f(x) = o(n), \quad \left(\text{resp } \int_0^T f(\varphi_t(x)) dt = o(T) \right)$$

- ▶ Deviations of ergodic averages (A. Zorich, 1997): *Upper bounds:*
For a.e. i.e.m. T , for all $f \in \Gamma_0(T)$,
there exists $0 < \gamma < 1, C > 0$ s.t.

$$|S_n f(x)| \leq Cn^\gamma, \quad \forall x \in I.$$

Ergodicity and deviations of ergodic averages

- ▶ Almost every i.e.m. := any π irreducible
[i.e. $\pi\{1, \dots, k\} = \{1, \dots, k\} \Rightarrow k = d$]
and Lebesgue-a.e. $\lambda \in \mathbb{R}^d$;
- ▶ Almost every M := almost every with respect
to the *Masur-Veech measure*;
[Lebesgue measure on *period coordinates* (λ, τ)]



- ▶ **Masur/Veech, 1980s:** a.e. i.e.m. (hence φ_t on a.e. M) is (uniquely) ergodic; thus $\forall f \in L^1(I)$ (resp. $f \in L^1(M)$), $\int f = 0$,
for all $x \in I$ (resp. all $x \in M$ not on a separatrix)

$$S_n f(x) = o(n), \quad \left(\text{resp } \int_0^T f(\varphi_t(x)) dt = o(T) \right)$$

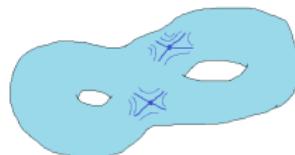
- ▶ Deviations of ergodic averages (A. Zorich, 1997): *Upper bounds*:

For a.e. i.e.m. T , for all $f \in \Gamma_0(T)$,
there exists $0 < \gamma < 1, C > 0$ s.t.

$$|S_n f(x)| \leq Cn^\gamma, \quad \forall x \in I.$$

Ergodicity and deviations of ergodic averages

- ▶ Almost every i.e.m. := any π irreducible
[i.e. $\pi\{1, \dots, k\} = \{1, \dots, k\} \Rightarrow k = d$]
and Lebesgue-a.e. $\lambda \in \mathbb{R}^d$;
- ▶ Almost every M := almost every with respect
to the *Masur-Veech measure*;
[Lebesgue measure on *period coordinates* (λ, τ)]



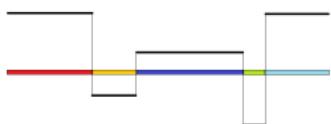
- ▶ **Masur/Veech, 1980s:** a.e. i.e.m. (hence φ_t on a.e. M) is (uniquely) ergodic; thus $\forall f \in L^1(I)$ (resp. $f \in L^1(M)$), $\int f = 0$,
for all $x \in I$ (resp. all $x \in M$ not on a separatrix)

$$S_n f(x) = o(n), \quad \left(\text{resp } \int_0^T f(\varphi_t(x)) dt = o(T) \right)$$

- ▶ Deviations of ergodic averages (A. Zorich, 1997): *Upper bounds*:

For a.e. i.e.m. T , for all $f \in \Gamma_0(T)$,
there exists $0 < \gamma < 1$, $C > 0$ s.t.

$$|S_n f(x)| \leq Cn^\gamma, \quad \forall x \in I.$$



Lower bounds on deviations

What about *lower bounds*?

Consider e.g. piecewise constant functions

$\Gamma(T) \sim \mathbb{R}^d$, where $d = |\mathcal{A}|$.

For a.e. i.e.m. T (e.g. Roth type) we have:

$$\mathbb{R}^d = F_+(T) \supset F_0(T) \supset F_-(T),$$

where $\dim(F_+/F_0) = g$, $\dim(F_0/F_-) = k-1$, $\dim(F_-) = g$

($d = 2g + k - 1$, $k > 1$ if there are more singularities) s.t. for all $x \in I$,

- ▶ if $f \in F_+(T) \setminus F_0(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} > 0$,
i.e. $S_n f(x) \geq c n^\gamma$ for some $\gamma > 0$ ∞ -often;
- ▶ if $f \in F_0(T) \setminus F_-(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} = 0$,
i.e. $S_n f(x) \leq c n^\epsilon$ for any $\epsilon > 0$;
- ▶ if $f \in F_-(T)$, $\exists C > 0$ such that $\|S_n f\|_\infty < C$;
one can show in this case that $f = g \circ T - g$ is a *coboundary*.

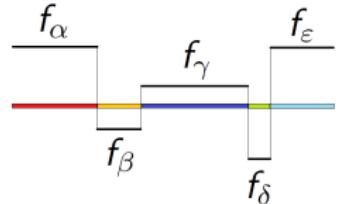
Lower bounds on deviations

What about *lower bounds*?

Consider e.g. **piecewise constant functions**

$\Gamma(T) \sim \mathbb{R}^d$, where $d = |\mathcal{A}|$.

For a.e. i.e.m. T (e.g. Roth type) we have:



$$\mathbb{R}^d = F_+(T) \supset F_0(T) \supset F_-(T),$$

where $\dim(F_+/F_0) = g$, $\dim(F_0/F_-) = k-1$, $\dim(F_-) = g$

($d = 2g + k - 1$, $k > 1$ if there are more singularities) s.t. for all $x \in I$,

- if $f \in F_+(T) \setminus F_0(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} > 0$,
i.e. $S_n f(x) \geq c n^\gamma$ for some $\gamma > 0$ ∞ -often;
- if $f \in F_0(T) \setminus F_-(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} = 0$,
i.e. $S_n f(x) \leq c n^\epsilon$ for any $\epsilon > 0$;
- if $f \in F_-(T)$, $\exists C > 0$ such that $\|S_n f\|_\infty < C$;
one can show in this case that $f = g \circ T - g$ is a *coboundary*.

Lower bounds on deviations

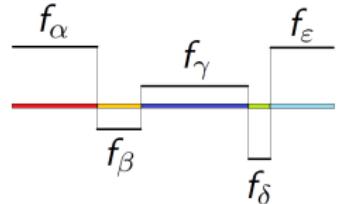
What about *lower bounds*?

Consider e.g. **piecewise constant functions**

$\Gamma(T) \sim \mathbb{R}^d$, where $d = |\mathcal{A}|$.

For a.e. i.e.m. T (e.g. Roth type) we have:

$$\mathbb{R}^d = F_+(T) \supset F_0(T) \supset F_-(T),$$



where $\dim(F_+/F_0) = g$, $\dim(F_0/F_-) = k-1$, $\dim(F_-) = g$

($d = 2g + k - 1$, $k > 1$ if there are more singularities) s.t. for all $x \in I$,

- ▶ if $f \in F_+(T) \setminus F_0(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} > 0$,
i.e. $S_n f(x) \geq c n^\gamma$ for some $\gamma > 0$ ∞ -often;
- ▶ if $f \in F_0(T) \setminus F_-(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} = 0$,
i.e. $S_n f(x) \leq c n^\epsilon$ for any $\epsilon > 0$;
- ▶ if $f \in F_-(T)$, $\exists C > 0$ such that $\|S_n f\|_\infty < C$;
one can show in this case that $f = g \circ T - g$ is a *coboundary*.

Lower bounds on deviations

What about *lower bounds*?

Consider e.g. [piecewise constant functions](#)

$\Gamma(T) \sim \mathbb{R}^d$, where $d = |\mathcal{A}|$.

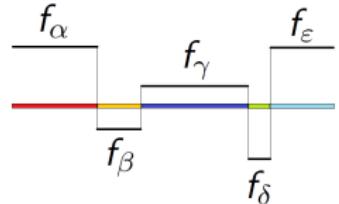
For a.e. i.e.m. T (e.g. Roth type) we have:

$$\mathbb{R}^d = F_+(T) \supset F_0(T) \supset F_-(T),$$

where $\dim(F_+/F_0) = g$, $\dim(F_0/F_-) = k-1$, $\dim(F_-) = g$

($d = 2g + k - 1$, $k > 1$ if there are more singularities) s.t. for all $x \in I$,

- ▶ if $f \in F_+(T) \setminus F_0(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} > 0$,
i.e. $S_n f(x) \geq c n^\gamma$ for some $\gamma > 0$ ∞ -often;
- ▶ if $f \in F_0(T) \setminus F_-(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} = 0$,
i.e. $S_n f(x) \leq c n^\epsilon$ for any $\epsilon > 0$;
- ▶ if $f \in F_-(T)$, $\exists C > 0$ such that $\|S_n f\|_\infty < C$;
one can show in this case that $f = g \circ T - g$ is a *coboundary*.



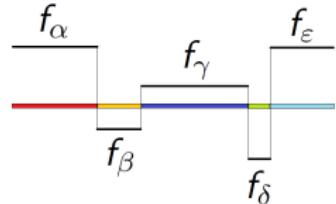
Lower bounds on deviations

What about *lower bounds*?

Consider e.g. [piecewise constant functions](#)

$\Gamma(T) \sim \mathbb{R}^d$, where $d = |\mathcal{A}|$.

For a.e. i.e.m. T (e.g. Roth type) we have:



$$\mathbb{R}^d = F_+(T) \supset F_0(T) \supset F_-(T),$$

where $\dim(F_+/F_0) = g$, $\dim(F_0/F_-) = k-1$, $\dim(F_-) = g$

($d = 2g + k - 1$, $k > 1$ if there are more singularities) s.t. for all $x \in I$,

- ▶ if $f \in F_+(T) \setminus F_0(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} > 0$,
i.e. $S_n f(x) \geq c n^\gamma$ for some $\gamma > 0$ ∞ -often;
- ▶ if $f \in F_0(T) \setminus F_-(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} = 0$,
i.e. $S_n f(x) \leq c n^\epsilon$ for any $\epsilon > 0$;
- ▶ if $f \in F_-(T)$, $\exists C > 0$ such that $\|S_n f\|_\infty < C$;
one can show in this case that $f = g \circ T - g$ is a *coboundary*.

Lower bounds on deviations

What about *lower bounds*?

Consider e.g. [piecewise constant functions](#)

$\Gamma(T) \sim \mathbb{R}^d$, where $d = |\mathcal{A}|$.

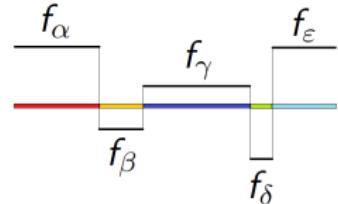
For a.e. i.e.m. T (e.g. Roth type) we have:

$$\mathbb{R}^d = F_+(T) \supset F_0(T) \supset F_-(T),$$

where $\dim(F_+/F_0) = g$, $\dim(F_0/F_-) = k-1$, $\dim(F_-) = g$

($d = 2g + k - 1$, $k > 1$ if there are more singularities) s.t. for all $x \in I$,

- ▶ if $f \in F_+(T) \setminus F_0(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} > 0$,
i.e. $S_n f(x) \geq c n^\gamma$ for some $\gamma > 0$ ∞ -often;
- ▶ if $f \in F_0(T) \setminus F_-(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} = 0$,
i.e. $S_n f(x) \leq c n^\epsilon$ for any $\epsilon > 0$;
- ▶ if $f \in F_-(T)$, $\exists C > 0$ such that $\|S_n f\|_\infty < C$;
one can show in this case that $f = g \circ T - g$ is a *coboundary*.



Lower bounds on deviations

What about *lower bounds*?

Consider e.g. [piecewise constant functions](#)

$\Gamma(T) \sim \mathbb{R}^d$, where $d = |\mathcal{A}|$.

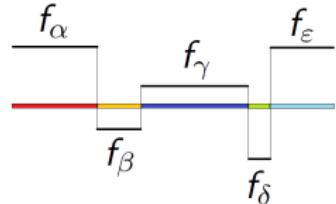
For a.e. i.e.m. T (e.g. Roth type) we have:

$$\mathbb{R}^d = F_+(T) \supset F_0(T) \supset F_-(T),$$

where $\dim(F_+/F_0) = g$, $\dim(F_0/F_-) = k-1$, $\dim(F_-) = g$

($d = 2g + k - 1$, $k > 1$ if there are more singularities) s.t. for all $x \in I$,

- ▶ if $f \in F_+(T) \setminus F_0(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} > 0$,
i.e. $S_n f(x) \geq c n^\gamma$ for some $\gamma > 0$ ∞ -often;
- ▶ if $f \in F_0(T) \setminus F_-(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} = 0$,
i.e. $S_n f(x) \leq c n^\epsilon$ for any $\epsilon > 0$;
- ▶ if $f \in F_-(T)$, $\exists C > 0$ such that $\|S_n f\|_\infty < C$;
one can show in this case that $f = g \circ T - g$ is a *coboundary*.



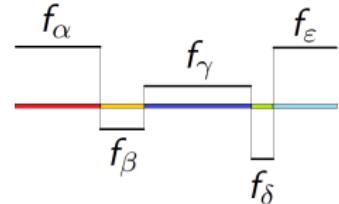
Lower bounds on deviations

What about *lower bounds*?

Consider e.g. [piecewise constant functions](#)

$\Gamma(T) \sim \mathbb{R}^d$, where $d = |\mathcal{A}|$.

For a.e. i.e.m. T (e.g. Roth type) we have:



$$\mathbb{R}^d = F_+(T) \supset F_0(T) \supset F_-(T),$$

where $\dim(F_+/F_0) = g$, $\dim(F_0/F_-) = k-1$, $\dim(F_-) = g$

($d = 2g + k - 1$, $k > 1$ if there are more singularities) s.t. for all $x \in I$,

- ▶ if $f \in F_+(T) \setminus F_0(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} > 0$,
i.e. $S_n f(x) \geq c n^\gamma$ for some $\gamma > 0$ ∞ -often;
- ▶ if $f \in F_0(T) \setminus F_-(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} = 0$,
i.e. $S_n f(x) \leq c n^\epsilon$ for any $\epsilon > 0$;
- ▶ if $f \in F_-(T)$, $\exists C > 0$ such that $\|S_n f\|_\infty < C$;
one can show in this case that $f = g \circ T - g$ is a *coboundary*.

Lower bounds on deviations

What about *lower bounds*?

Consider e.g. [piecewise constant functions](#)

$\Gamma(T) \sim \mathbb{R}^d$, where $d = |\mathcal{A}|$.

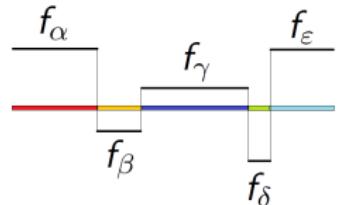
For a.e. i.e.m. T (e.g. Roth type) we have:

$$\mathbb{R}^d = F_+(T) \supset F_0(T) \supset F_-(T),$$

where $\dim(F_+/F_0) = g$, $\dim(F_0/F_-) = k-1$, $\dim(F_-) = g$

($d = 2g + k - 1$, $k > 1$ if there are more singularities) s.t. for all $x \in I$,

- ▶ if $f \in F_+(T) \setminus F_0(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} > 0$,
i.e. $S_n f(x) \geq c n^\gamma$ for some $\gamma > 0$ ∞ -often;
- ▶ if $f \in F_0(T) \setminus F_-(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} = 0$,
i.e. $S_n f(x) \leq c n^\epsilon$ for any $\epsilon > 0$;
- ▶ if $f \in F_-(T)$, $\exists C > 0$ such that $\|S_n f\|_\infty < C$;
one can show in this case that $f = g \circ T - g$ is a *coboundary*.



Lower bounds on deviations

What about *lower bounds*?

Consider e.g. [piecewise constant functions](#)

$\Gamma(T) \sim \mathbb{R}^d$, where $d = |\mathcal{A}|$.

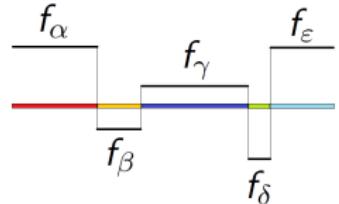
For a.e. i.e.m. T (e.g. Roth type) we have:

$$\mathbb{R}^d = F_+(T) \supset F_0(T) \supset F_-(T),$$

where $\dim(F_+/F_0) = g$, $\dim(F_0/F_-) = k-1$, $\dim(F_-) = g$

($d = 2g + k - 1$, $k > 1$ if there are more singularities) s.t. for all $x \in I$,

- ▶ if $f \in F_+(T) \setminus F_0(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} > 0$,
i.e. $S_n f(x) \geq c n^\gamma$ for some $\gamma > 0$ ∞ -often;
- ▶ if $f \in F_0(T) \setminus F_-(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} = 0$,
i.e. $S_n f(x) \leq c n^\epsilon$ for any $\epsilon > 0$;
- ▶ if $f \in F_-(T)$, $\exists C > 0$ such that $\|S_n f\|_\infty < C$;
one can show in this case that $f = g \circ T - g$ is a *coboundary*.



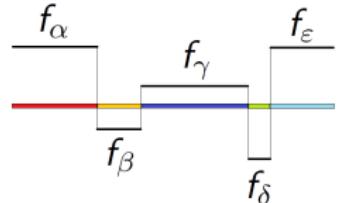
Lower bounds on deviations

What about *lower bounds*?

Consider e.g. [piecewise constant functions](#)

$\Gamma(T) \sim \mathbb{R}^d$, where $d = |\mathcal{A}|$.

For a.e. i.e.m. T (e.g. Roth type) we have:



$$\mathbb{R}^d = F_+(T) \supset F_0(T) \supset F_-(T),$$

where $\dim(F_+/F_0) = g$, $\dim(F_0/F_-) = k-1$, $\dim(F_-) = g$

($d = 2g + k - 1$, $k > 1$ if there are more singularities) s.t. for all $x \in I$,

- ▶ if $f \in F_+(T) \setminus F_0(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} > 0$,
i.e. $S_n f(x) \geq c n^\gamma$ for some $\gamma > 0$ ∞ -often;
- ▶ if $f \in F_0(T) \setminus F_-(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} = 0$,
i.e. $S_n f(x) \leq c n^\epsilon$ for any $\epsilon > 0$;
- ▶ if $f \in F_-(T)$, $\exists C > 0$ such that $\|S_n f\|_\infty < C$;
one can show in this case that $f = g \circ T - g$ is a *coboundary*.

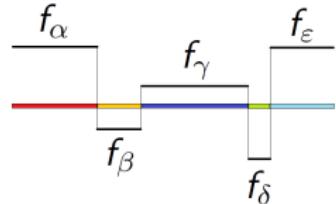
Lower bounds on deviations

What about *lower bounds*?

Consider e.g. [piecewise constant functions](#)

$\Gamma(T) \sim \mathbb{R}^d$, where $d = |\mathcal{A}|$.

For a.e. i.e.m. T (e.g. Roth type) we have:



$$\mathbb{R}^d = F_+(T) \supset F_0(T) \supset F_-(T),$$

where $\dim(F_+/F_0) = g$, $\dim(F_0/F_-) = k-1$, $\dim(F_-) = g$

($d = 2g + k - 1$, $k > 1$ if there are more singularities) s.t. for all $x \in I$,

- ▶ if $f \in F_+(T) \setminus F_0(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} > 0$,
i.e. $S_n f(x) \geq c n^\gamma$ for some $\gamma > 0$ ∞ -often;
- ▶ if $f \in F_0(T) \setminus F_-(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} = 0$,
i.e. $S_n f(x) \leq c n^\epsilon$ for any $\epsilon > 0$;
- ▶ if $f \in F_-(T)$, $\exists C > 0$ such that $\|S_n f\|_\infty < C$;
one can show in this case that $f = g \circ T - g$ is a *coboundary*.

Lower bounds on deviations

What about *lower bounds*?

Consider e.g. [piecewise constant functions](#)

$\Gamma(T) \sim \mathbb{R}^d$, where $d = |\mathcal{A}|$.

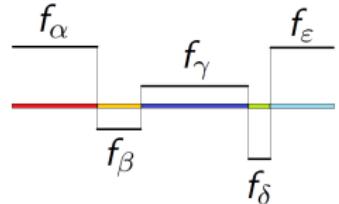
For a.e. i.e.m. T (e.g. Roth type) we have:

$$\mathbb{R}^d = F_+(T) \supset F_0(T) \supset F_-(T),$$

where $\dim(F_+/F_0) = g$, $\dim(F_0/F_-) = k-1$, $\dim(F_-) = g$

($d = 2g + k - 1$, $k > 1$ if there are more singularities) s.t. for all $x \in I$,

- ▶ if $f \in F_+(T) \setminus F_0(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} > 0$,
i.e. $S_n f(x) \geq c n^\gamma$ for some $\gamma > 0$ ∞ -often;
- ▶ if $f \in F_0(T) \setminus F_-(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} = 0$,
i.e. $S_n f(x) \leq c n^\epsilon$ for any $\epsilon > 0$;
- ▶ if $f \in F_-(T)$, $\exists C > 0$ such that $\|S_n f\|_\infty < C$;
one can show in this case that $f = g \circ T - g$ is a *coboundary*.



Lower bounds on deviations

What about *lower bounds*?

Consider e.g. [piecewise constant functions](#)

$\Gamma(T) \sim \mathbb{R}^d$, where $d = |\mathcal{A}|$.

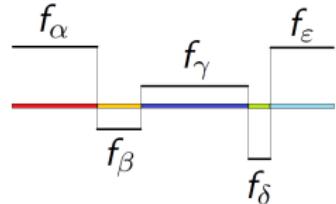
For a.e. i.e.m. T (e.g. Roth type) we have:

$$\mathbb{R}^d = F_+(T) \supset F_0(T) \supset F_-(T),$$

where $\dim(F_+/F_0) = g$, $\dim(F_0/F_-) = k-1$, $\dim(F_-) = g$

($d = 2g + k - 1$, $k > 1$ if there are more singularities) s.t. for all $x \in I$,

- ▶ if $f \in F_+(T) \setminus F_0(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} > 0$,
i.e. $S_n f(x) \geq c n^\gamma$ for some $\gamma > 0$ ∞ -often;
- ▶ if $f \in F_0(T) \setminus F_-(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} = 0$,
i.e. $S_n f(x) \leq c n^\epsilon$ for any $\epsilon > 0$;
- ▶ if $f \in F_-(T)$, $\exists C > 0$ such that $\|S_n f\|_\infty < C$;
one can show in this case that $f = g \circ T - g$ is a *coboundary*.



Lower bounds on deviations

What about *lower bounds*?

Consider e.g. [piecewise constant functions](#)

$\Gamma(T) \sim \mathbb{R}^d$, where $d = |\mathcal{A}|$.

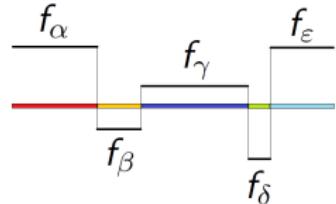
For a.e. i.e.m. T (e.g. Roth type) we have:

$$\mathbb{R}^d = F_+(T) \supset F_0(T) \supset F_-(T),$$

where $\dim(F_+/F_0) = g$, $\dim(F_0/F_-) = k-1$, $\dim(F_-) = g$

($d = 2g + k - 1$, $k > 1$ if there are more singularities) s.t. for all $x \in I$,

- ▶ if $f \in F_+(T) \setminus F_0(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} > 0$,
i.e. $S_n f(x) \geq c n^\gamma$ for some $\gamma > 0$ ∞ -often;
- ▶ if $f \in F_0(T) \setminus F_-(T)$, $\limsup \frac{\log |S_n f(x)|}{\log n} = 0$,
i.e. $S_n f(x) \leq c n^\epsilon$ for any $\epsilon > 0$;
- ▶ if $f \in F_-(T)$, $\exists C > 0$ such that $\|S_n f\|_\infty < C$;
one can show in this case that $f = g \circ T - g$ is a *coboundary*.



Deviation spectrum and Kontsevitch-Zorich conjecture

More in general, φ_t area-preserving flows on M ,
 f smooth function supported *outside* singularities:

- For a.e. M , $\exists \nu_i > 0$, \mathcal{D}_i , $1 \leq i \leq g$ invariant distributions $(\mathcal{D}_i(f) := \int_M f)$ s.t. $\forall \epsilon > 0$,

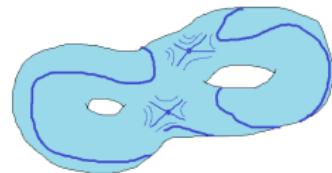
$$\int_0^T f(\varphi_t(x)) dt \sim \int_M f \, d\mu \cdot T + \mathcal{D}_2(f) T^{\nu_2} + \cdots + \mathcal{D}_g(f) T^{\nu_g} + O(T^\epsilon),$$

or more precisely, if $\mathcal{D}_1(f) = \cdots = \mathcal{D}_{i-1}(f) = 0$ but $\mathcal{D}_i(f) \neq 0$,

$$\limsup \frac{\log \left(\int_0^T (\varphi_t(x) dt) \right)}{\log T} = \nu_i.$$

Reference: Giovanni Forni, (Annals Math., 2002)

- The exponents in the deviation spectrum, i.e. $1 = \nu_1 > \nu_2 > \cdots > \nu_g > 0$ are the positive *Lyapunov exponents* of the (KZ cocycle over) *Teichmueller geodesic flow*;
- Simplicity was proved by Avila- Viana (Acta Math., 2007), thus proving the Kontsevitch-Zorich conjecture.



Deviation spectrum and Kontsevitch-Zorich conjecture

More in general, φ_t area-preserving flows on M ,
 f smooth function supported *outside* singularities:

- For a.e. M , $\exists \nu_i > 0$, \mathcal{D}_i , $1 \leq i \leq g$ invariant distributions $(\mathcal{D}_1(f) := \int_M f)$ s.t. $\forall \epsilon > 0$,

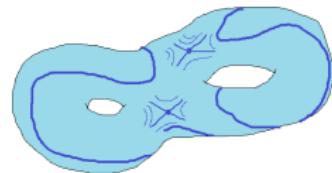
$$\int_0^T f(\varphi_t(x)) dt \sim \int_M f \, d\mu \cdot T + \mathcal{D}_2(f) T^{\nu_2} + \cdots + \mathcal{D}_g(f) T^{\nu_g} + O(T^\epsilon),$$

or more precisely, if $\mathcal{D}_1(f) = \cdots = \mathcal{D}_{i-1}(f) = 0$ but $\mathcal{D}_i(f) \neq 0$,

$$\limsup \frac{\log \left(\int_0^T (\varphi_t(x) dt) \right)}{\log T} = \nu_i.$$

Reference: Giovanni Forni, (Annals Math., 2002)

- The exponents in the deviation spectrum, i.e. $1 = \nu_1 > \nu_2 > \cdots > \nu_g > 0$ are the positive *Lyapunov exponents* of the (KZ cocycle over) *Teichmueller geodesic flow*;
- Simplicity was proved by Avila- Viana (Acta Math., 2007), thus proving the Kontsevitch-Zorich conjecture.



Deviation spectrum and Kontsevitch-Zorich conjecture

More in general, φ_t area-preserving flows on M ,
 f smooth function supported *outside* singularities:

- For a.e. M , $\exists \nu_i > 0$, \mathcal{D}_i , $1 \leq i \leq g$ invariant distributions $(\mathcal{D}_1(f) := \int_M f)$ s.t. $\forall \epsilon > 0$,

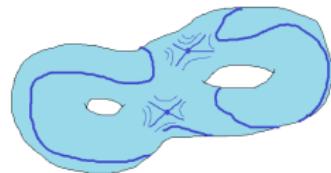
$$\int_0^T f(\varphi_t(x)) dt \sim \int_M f \, d\mu \cdot T + \mathcal{D}_2(f) T^{\nu_2} + \cdots + \mathcal{D}_g(f) T^{\nu_g} + O(T^\epsilon),$$

or more precisely, if $\mathcal{D}_1(f) = \cdots = \mathcal{D}_{i-1}(f) = 0$ but $\mathcal{D}_i(f) \neq 0$,

$$\limsup \frac{\log \left(\int_0^T (\varphi_t(x) dt) \right)}{\log T} = \nu_i.$$

Reference: Giovanni Forni, (Annals Math., 2002)

- The exponents in the deviation spectrum, i.e. $1 = \nu_1 > \nu_2 > \cdots > \nu_g > 0$ are the positive *Lyapunov exponents* of the (KZ cocycle over) *Teichmueller geodesic flow*;
- Simplicity was proved by Avila- Viana (Acta Math., 2007), thus proving the Kontsevitch-Zorich conjecture.



Deviation spectrum and Kontsevitch-Zorich conjecture

More in general, φ_t area-preserving flows on M ,
 f smooth function supported *outside* singularities:

- For a.e. M , $\exists \nu_i > 0$, \mathcal{D}_i , $1 \leq i \leq g$ invariant distributions $(\mathcal{D}_1(f) := \int_M f)$ s.t. $\forall \epsilon > 0$,

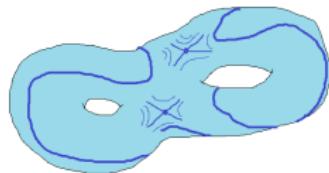
$$\int_0^T f(\varphi_t(x)) dt \sim \int_M f \, d\mu \cdot T + \mathcal{D}_2(f) T^{\nu_2} + \cdots + \mathcal{D}_g(f) T^{\nu_g} + O(T^\epsilon),$$

or more precisely, if $\mathcal{D}_1(f) = \cdots = \mathcal{D}_{i-1}(f) = 0$ but $\mathcal{D}_i(f) \neq 0$,

$$\limsup \frac{\log \left(\int_0^T (\varphi_t(x) dt) \right)}{\log T} = \nu_i.$$

Reference: Giovanni Forni, (Annals Math., 2002)

- The exponents in the deviation spectrum, i.e. $1 = \nu_1 > \nu_2 > \cdots > \nu_g > 0$ are the positive *Lyapunov exponents* of the (KZ cocycle over) *Teichmueller geodesic flow*;
- Simplicity was proved by Avila- Viana (Acta Math., 2007), thus proving the Kontsevitch-Zorich conjecture.



Deviation spectrum and Kontsevitch-Zorich conjecture

More in general, φ_t area-preserving flows on M ,
 f smooth function supported *outside* singularities:

- For a.e. M , $\exists \nu_i > 0$, \mathcal{D}_i , $1 \leq i \leq g$ invariant distributions $(\mathcal{D}_1(f) := \int_M f)$ s.t. $\forall \epsilon > 0$,

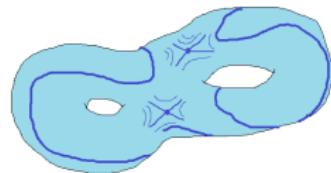
$$\int_0^T f(\varphi_t(x)) dt \sim \int_M f \, d\mu \cdot T + \mathcal{D}_2(f) T^{\nu_2} + \cdots + \mathcal{D}_g(f) T^{\nu_g} + O(T^\epsilon),$$

or more precisely, if $\mathcal{D}_1(f) = \cdots = \mathcal{D}_{i-1}(f) = 0$ but $\mathcal{D}_i(f) \neq 0$,

$$\limsup \frac{\log \left(\int_0^T (\varphi_t(x) dt) \right)}{\log T} = \nu_i.$$

Reference: Giovanni Forni, (Annals Math., 2002)

- The exponents in the deviation spectrum, i.e. $1 = \nu_1 > \nu_2 > \cdots > \nu_g > 0$ are the positive *Lyapunov exponents* of the (KZ cocycle over) *Teichmueller geodesic flow*;
- Simplicity was proved by Avila- Viana (Acta Math., 2007), thus proving the *Kontsevitch-Zorich conjecture*.



Graphs of Birkhoff sums

Question: What can we say beyond the deviations asymptotic size?

- ▶ Take $f \in \Gamma(T)$, fix $x_0 \in I$.
- ▶ Plot the graph of the Birkhoff sums $S_k f(x_0)$, for $k = 0, 1, \dots, n$.

Piecewise affine function with vertices $(k, S_k f(x_0))$, $k = 0, 1, \dots, n$.

- ▶ Call $\Omega_n = \Omega_n(f, T, x_0)$ the rescaled plot, where the x -axis is rescaled to $[0, 1]$, by mapping $x \mapsto x/n$.

Graphs of Birkhoff sums

Question: What can we say beyond the deviations asymptotic size?

- ▶ Take $f \in \Gamma(T)$, fix $x_0 \in I$.
- ▶ Plot the graph of the Birkhoff sums $S_k f(x_0)$, for $k = 0, 1, \dots, n$.

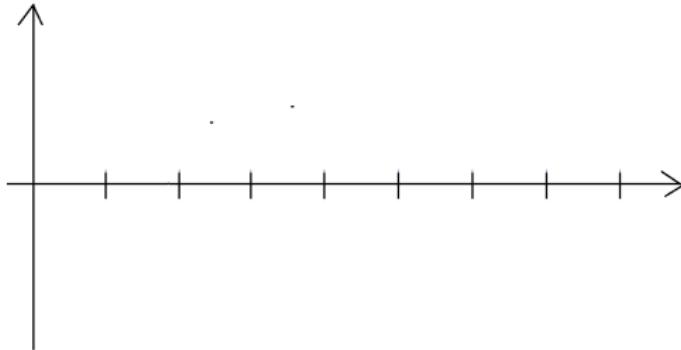
Piecewise affine function with vertices $(k, S_k f(x_0))$, $k = 0, 1, \dots, n$.

- ▶ Call $\Omega_n = \Omega_n(f, T, x_0)$ the rescaled plot, where the x -axis is rescaled to $[0, 1]$, by mapping $x \mapsto x/n$.

Graphs of Birkhoff sums

Question: What can we say beyond the deviations asymptotic size?

- ▶ Take $f \in \Gamma(T)$, fix $x_0 \in I$.
- ▶ Plot the graph of the Birkhoff sums $S_k f(x_0)$, for $k = 0, 1, \dots, n$.



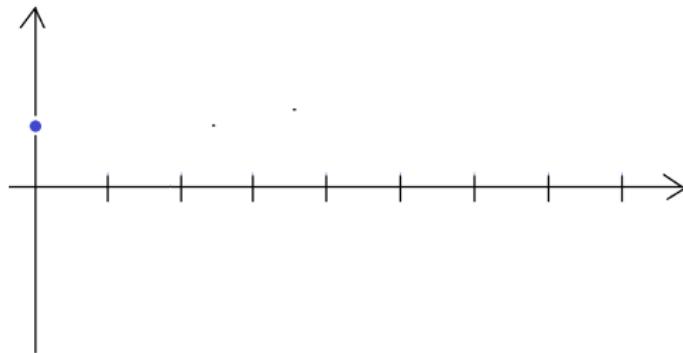
Piecewise affine function with vertices $(k, S_k f(x_0))$, $k = 0, 1, \dots, n$.

- ▶ Call $\Omega_n = \Omega_n(f, T, x_0)$ the rescaled plot, where the x-axis is rescaled to $[0, 1]$, by mapping $x \mapsto x/n$.

Graphs of Birkhoff sums

Question: What can we say beyond the deviations asymptotic size?

- ▶ Take $f \in \Gamma(T)$, fix $x_0 \in I$.
- ▶ Plot the graph of the Birkhoff sums $S_k f(x_0)$, for $k = 0, 1, \dots, n$.



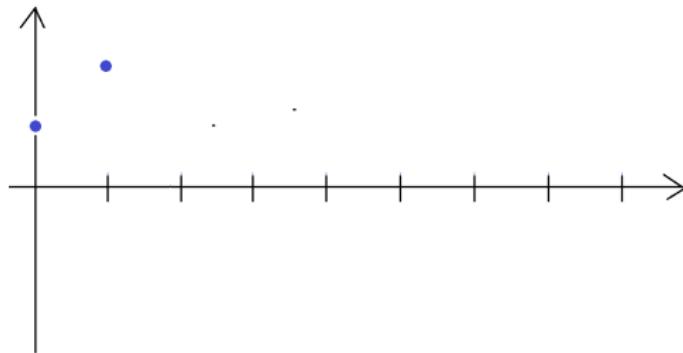
Piecewise affine function with vertices $(k, S_k f(x_0))$, $k = 0, 1, \dots, n$.

- ▶ Call $\Omega_n = \Omega_n(f, T, x_0)$ the rescaled plot, where the x-axis is rescaled to $[0, 1]$, by mapping $x \mapsto x/n$.

Graphs of Birkhoff sums

Question: What can we say beyond the deviations asymptotic size?

- ▶ Take $f \in \Gamma(T)$, fix $x_0 \in I$.
- ▶ Plot the graph of the Birkhoff sums $S_k f(x_0)$, for $k = 0, 1, \dots, n$.



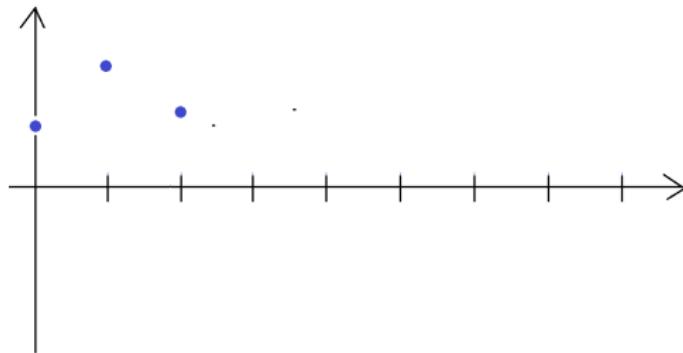
Piecewise affine function with vertices $(k, S_k f(x_0))$, $k = 0, 1, \dots, n$.

- ▶ Call $\Omega_n = \Omega_n(f, T, x_0)$ the rescaled plot, where the x-axis is rescaled to $[0, 1]$, by mapping $x \mapsto x/n$.

Graphs of Birkhoff sums

Question: What can we say beyond the deviations asymptotic size?

- ▶ Take $f \in \Gamma(T)$, fix $x_0 \in I$.
- ▶ Plot the graph of the Birkhoff sums $S_k f(x_0)$, for $k = 0, 1, \dots, n$.



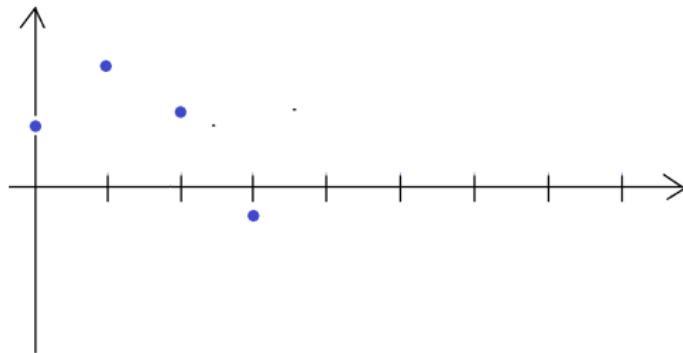
Piecewise affine function with vertices $(k, S_k f(x_0))$, $k = 0, 1, \dots, n$.

- ▶ Call $\Omega_n = \Omega_n(f, T, x_0)$ the rescaled plot, where the x -axis is rescaled to $[0, 1]$, by mapping $x \mapsto x/n$.

Graphs of Birkhoff sums

Question: What can we say beyond the deviations asymptotic size?

- ▶ Take $f \in \Gamma(T)$, fix $x_0 \in I$.
- ▶ Plot the graph of the Birkhoff sums $S_k f(x_0)$, for $k = 0, 1, \dots, n$.



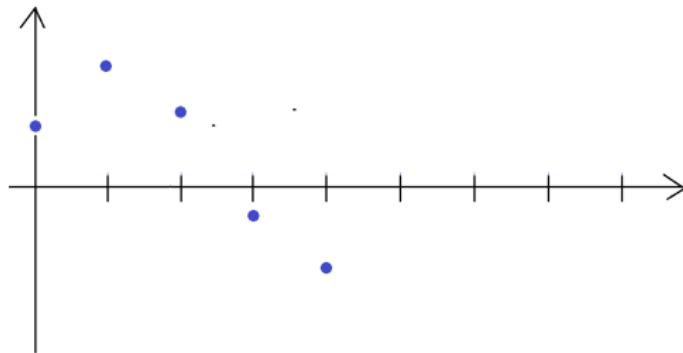
Piecewise affine function with vertices $(k, S_k f(x_0))$, $k = 0, 1, \dots, n$.

- ▶ Call $\Omega_n = \Omega_n(f, T, x_0)$ the rescaled plot, where the x -axis is rescaled to $[0, 1]$, by mapping $x \mapsto x/n$.

Graphs of Birkhoff sums

Question: What can we say beyond the deviations asymptotic size?

- ▶ Take $f \in \Gamma(T)$, fix $x_0 \in I$.
- ▶ Plot the graph of the Birkhoff sums $S_k f(x_0)$, for $k = 0, 1, \dots, n$.



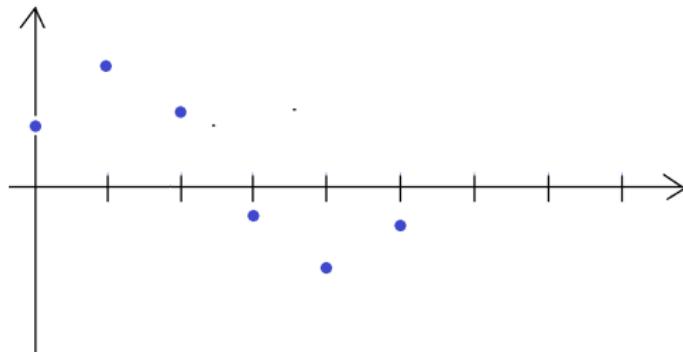
Piecewise affine function with vertices $(k, S_k f(x_0))$, $k = 0, 1, \dots, n$.

- ▶ Call $\Omega_n = \Omega_n(f, T, x_0)$ the rescaled plot, where the x -axis is rescaled to $[0, 1]$, by mapping $x \mapsto x/n$.

Graphs of Birkhoff sums

Question: What can we say beyond the deviations asymptotic size?

- ▶ Take $f \in \Gamma(T)$, fix $x_0 \in I$.
- ▶ Plot the graph of the Birkhoff sums $S_k f(x_0)$, for $k = 0, 1, \dots, n$.



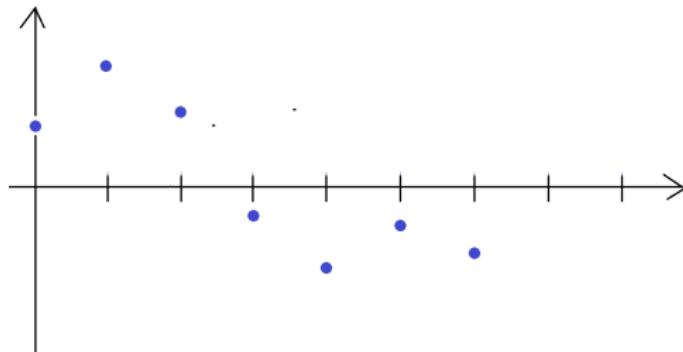
Piecewise affine function with vertices $(k, S_k f(x_0))$, $k = 0, 1, \dots, n$.

- ▶ Call $\Omega_n = \Omega_n(f, T, x_0)$ the rescaled plot, where the x -axis is rescaled to $[0, 1]$, by mapping $x \mapsto x/n$.

Graphs of Birkhoff sums

Question: What can we say beyond the deviations asymptotic size?

- ▶ Take $f \in \Gamma(T)$, fix $x_0 \in I$.
- ▶ Plot the graph of the Birkhoff sums $S_k f(x_0)$, for $k = 0, 1, \dots, n$.



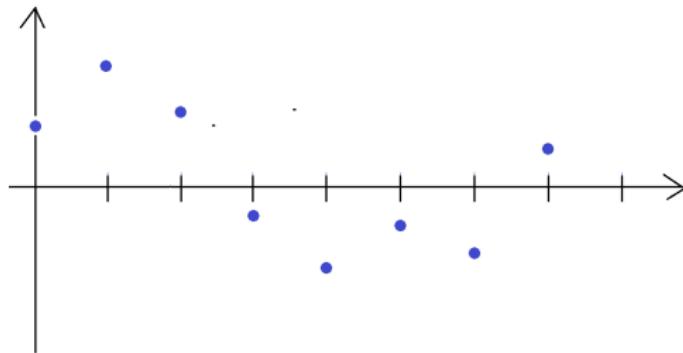
Piecewise affine function with vertices $(k, S_k f(x_0))$, $k = 0, 1, \dots, n$.

- ▶ Call $\Omega_n = \Omega_n(f, T, x_0)$ the rescaled plot, where the x -axis is rescaled to $[0, 1]$, by mapping $x \mapsto x/n$.

Graphs of Birkhoff sums

Question: What can we say beyond the deviations asymptotic size?

- ▶ Take $f \in \Gamma(T)$, fix $x_0 \in I$.
- ▶ Plot the graph of the Birkhoff sums $S_k f(x_0)$, for $k = 0, 1, \dots, n$.



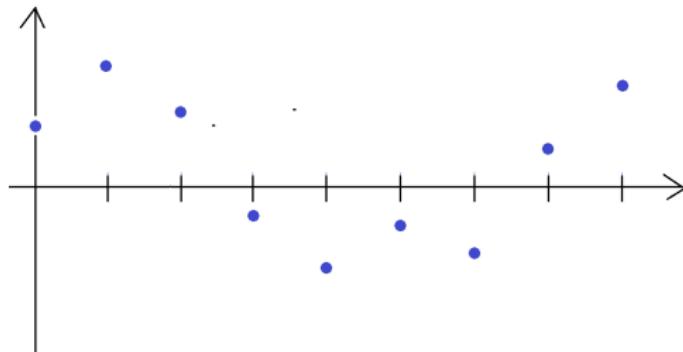
Piecewise affine function with vertices $(k, S_k f(x_0))$, $k = 0, 1, \dots, n$.

- ▶ Call $\Omega_n = \Omega_n(f, T, x_0)$ the rescaled plot, where the x -axis is rescaled to $[0, 1]$, by mapping $x \mapsto x/n$.

Graphs of Birkhoff sums

Question: What can we say beyond the deviations asymptotic size?

- ▶ Take $f \in \Gamma(T)$, fix $x_0 \in I$.
- ▶ Plot the graph of the Birkhoff sums $S_k f(x_0)$, for $k = 0, 1, \dots, n$.



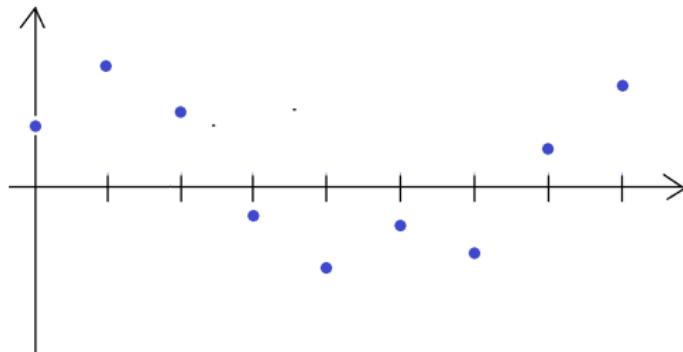
Piecewise affine function with vertices $(k, S_k f(x_0))$, $k = 0, 1, \dots, n$.

- ▶ Call $\Omega_n = \Omega_n(f, T, x_0)$ the rescaled plot, where the x -axis is rescaled to $[0, 1]$, by mapping $x \mapsto x/n$.

Graphs of Birkhoff sums

Question: What can we say beyond the deviations asymptotic size?

- ▶ Take $f \in \Gamma(T)$, fix $x_0 \in I$.
- ▶ Plot the graph of the Birkhoff sums $S_k f(x_0)$, for $k = 0, 1, \dots, n$.



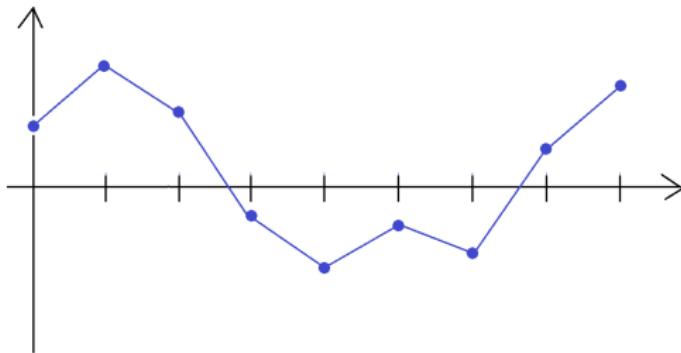
Piecewise affine function with vertices $(k, S_k f(x_0))$, $k = 0, 1, \dots, n$.

- ▶ Call $\Omega_n = \Omega_n(f, T, x_0)$ the rescaled plot, where the x -axis is rescaled to $[0, 1]$, by mapping $x \mapsto x/n$.

Graphs of Birkhoff sums

Question: What can we say beyond the deviations asymptotic size?

- ▶ Take $f \in \Gamma(T)$, fix $x_0 \in I$.
- ▶ Plot the graph of the Birkhoff sums $S_k f(x_0)$, for $k = 0, 1, \dots, n$.



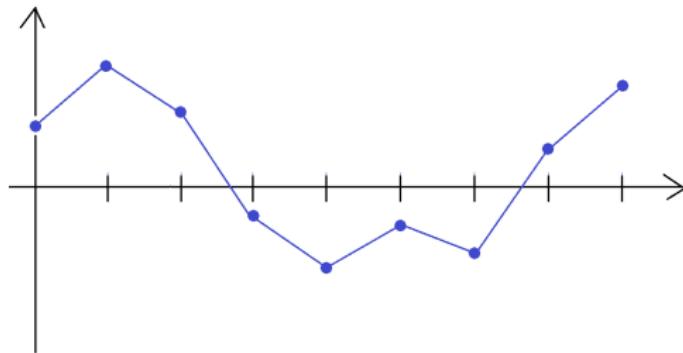
Piecewise affine function with vertices $(k, S_k f(x_0))$, $k = 0, 1, \dots, n$.

- ▶ Call $\Omega_n = \Omega_n(f, T, x_0)$ the rescaled plot, where the x -axis is rescaled to $[0, 1]$, by mapping $x \mapsto x/n$.

Graphs of Birkhoff sums

Question: What can we say beyond the deviations asymptotic size?

- ▶ Take $f \in \Gamma(T)$, fix $x_0 \in I$.
- ▶ Plot the graph of the Birkhoff sums $S_k f(x_0)$, for $k = 0, 1, \dots, n$.



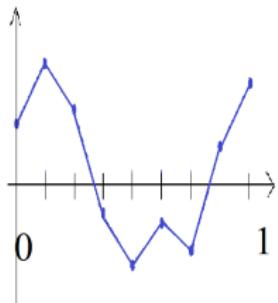
Piecewise affine function with vertices $(k, S_k f(x_0))$, $k = 0, 1, \dots, n$.

- ▶ Call $\Omega_n = \Omega_n(f, T, x_0)$ the rescaled plot, where the x-axis is rescaled to $[0, 1]$, by mapping $x \mapsto x/n$.

Graphs of Birkhoff sums

Question: What can we say beyond the deviations asymptotic size?

- ▶ Take $f \in \Gamma(T)$, fix $x_0 \in I$.
- ▶ Plot the graph of the Birkhoff sums $S_k f(x_0)$, for $k = 0, 1, \dots, n$.



Piecewise affine function with vertices $(k, S_k f(x_0))$, $k = 0, 1, \dots, n$.

- ▶ Call $\Omega_n = \Omega_n(f, T, x_0)$ the rescaled plot, where the x -axis is rescaled to $[0, 1]$, by mapping $x \mapsto x/n$.

Graphs of Birkhoff sums: examples of behaviour

The behaviour of the plot depends on whether:

- ▶ $f \in F_-(T)$,
- ▶ $f \in F_0(T) \setminus F_-(T)$
- ▶ $f \in F_+(T) \setminus F_0(T)$

(Credit for Figures: Stefano Marmi)

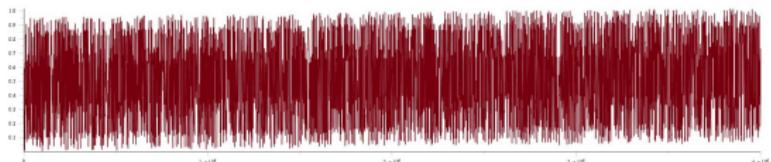
E.g. T i.e.m. with $d = 5$ (pseudo-Anosov), plot of $\Omega_n(f, T, 0)$, for $f \in \Gamma_0(T)$.

Graphs of Birkhoff sums: examples of behaviour

The behaviour of the plot depends on whether:

- ▶ $f \in F_-(T)$,

$$\|\Omega_n\|_\infty < C$$



- ▶ $f \in F_0(T) \setminus F_-(T)$

- ▶ $f \in F_+(T) \setminus F_0(T)$

(Credit for Figures: [Stefano Marmi](#))

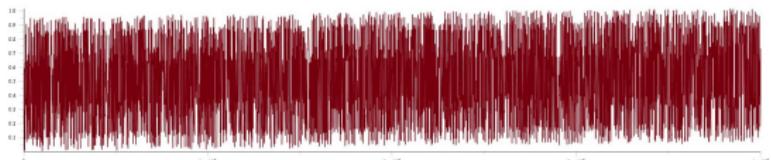
E.g. T i.e.m. with $d = 5$ (pseudo-Anosov), plot of $\Omega_n(f, T, 0)$, for $f \in \Gamma_0(T)$.

Graphs of Birkhoff sums: examples of behaviour

The behaviour of the plot depends on whether:

- ▶ $f \in F_-(T)$,

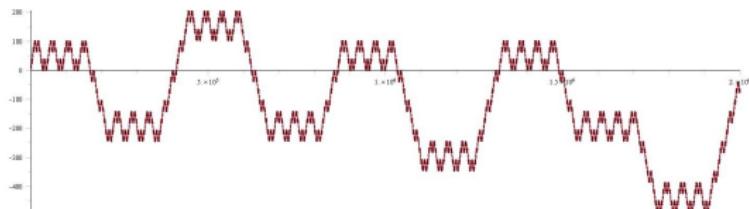
$$\|\Omega_n\|_\infty < C$$



- ▶ $f \in F_0(T) \setminus F_-(T)$

- ▶ $f \in F_+(T) \setminus F_0(T)$

$$\overline{\lim} \frac{\log \|\Omega_n\|_\infty}{\log n} > 0$$



(Credit for Figures: [Stefano Marmi](#))

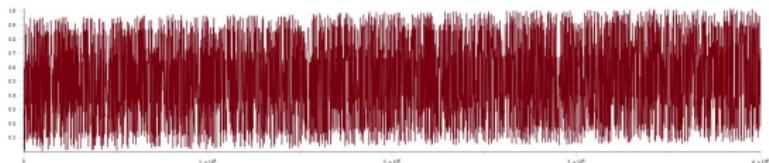
E.g. T i.e.m. with $d = 5$ (pseudo-Anosov), plot of $\Omega_n(f, T, 0)$, for $f \in \Gamma_0(T)$.

Graphs of Birkhoff sums: examples of behaviour

The behaviour of the plot depends on whether:

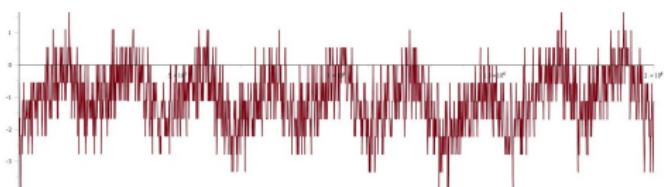
- ▶ $f \in F_-(T)$,

$$\|\Omega_n\|_\infty < C$$



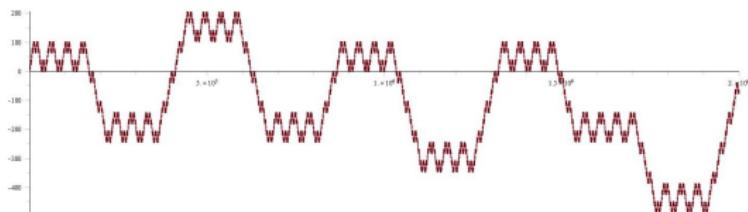
- ▶ $f \in F_0(T) \setminus F_-(T)$

$$\overline{\lim} \frac{\log \|\Omega_n\|_\infty}{\log n} = 0$$



- ▶ $f \in F_+(T) \setminus F_0(T)$

$$\overline{\lim} \frac{\log \|\Omega_n\|_\infty}{\log n} > 0$$



(Credit for Figures: [Stefano Marmi](#))

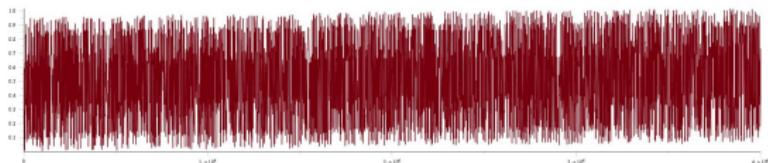
E.g. T i.e.m. with $d = 5$ (pseudo-Anosov), plot of $\Omega_n(f, T, 0)$, for $f \in \Gamma_0(T)$.

Graphs of Birkhoff sums: examples of behaviour

The behaviour of the plot depends on whether:

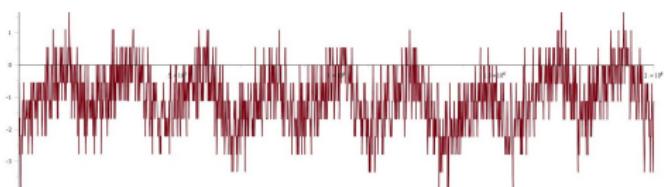
- $f \in F_-(T)$,

$$\|\Omega_n\|_\infty < C$$



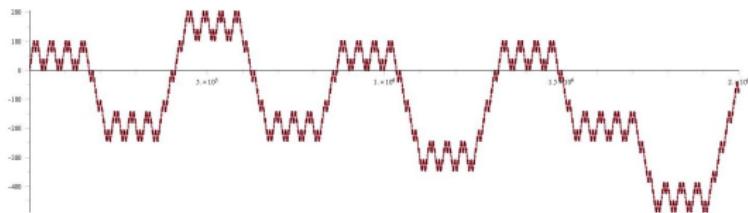
- $f \in F_0(T) \setminus F_-(T)$

$$\overline{\lim} \frac{\log \|\Omega_n\|_\infty}{\log n} = 0$$



- $f \in F_+(T) \setminus F_0(T)$

$$\overline{\lim} \frac{\log \|\Omega_n\|_\infty}{\log n} > 0$$



(Credit for Figures: [Stefano Marmi](#))

E.g. T i.e.m. with $d = 5$ (pseudo-Anosov), plot of $\Omega_n(f, T, 0)$, for $f \in \Gamma_0(T)$.

Today: we will focus on describing the behaviour of $f \in F_0(T) \setminus F_-(T)$.

Examples of Birkhoff sums with subpolynomial deviations

- Ex 1: $T = R_a$ rotation,

$$T(x) = x + a \bmod 1,$$

$$f = f_b = \mathbb{1}_{[0,b]} - b.$$

- If $b \in \{T^n(a), n \in \mathbb{N}\}$,

$$\Rightarrow f_b \in F_-$$

- If $b \notin \{T^n(a), n \in \mathbb{N}\}$,

$$\Rightarrow f_b \in F_0 \setminus F_-$$

- Ex 2: IETs with $k > 1$ (so that $\dim F_0 / F_- = k - 1 > 0$), $f \in F_0 \setminus F_-$
(e.g. $\pi = \begin{pmatrix} \alpha\beta\gamma\delta\epsilon \\ \epsilon\delta\gamma\beta\alpha \end{pmatrix}$ with d odd).

- Ex 3: Corrected characteristic functions $f_b - \chi$, given by:

Lemma (Marmi-U-Yoccoz)

For a.e. $T = (\pi, \lambda, \tau)$, given $f_b = \mathbb{1}_{[0,b]}$, there exists $\chi \in \Gamma(T)$ such that $\tilde{f}_b := f_b - \chi \in F_0(T, b)$, i.e.

$$\lim_{n \rightarrow \pm\infty} \left| S_n \tilde{f}_b(x) \right| \leq C|n|^\epsilon, \quad \forall \epsilon > 0, \quad \forall x \in I.$$

Examples of Birkhoff sums with subpolynomial deviations

- Ex 1: $T = R_a$ rotation,

$$T(x) = x + a \bmod 1,$$

$$f = f_b = \mathbb{1}_{[0,b]} - b.$$

- If $b \in \{T^n(a), n \in \mathbb{N}\}$,

$$\Rightarrow f_b \in F_-$$

- If $b \notin \{T^n(a), n \in \mathbb{N}\}$,

$$\Rightarrow f_b \in F_0 \setminus F_-$$

- Ex 2: IETs with $k > 1$ (so that $\dim F_0/F_- = k - 1 > 0$), $f \in F_0 \setminus F_-$
(e.g. $\pi = \begin{pmatrix} \alpha\beta\gamma\delta\varepsilon \\ \varepsilon\delta\gamma\beta\alpha \end{pmatrix}$ with d odd).

- Ex 3: Corrected characteristic functions $f_b - \chi$, given by:

Lemma (Marmi-U-Yoccoz)

For a.e. $T = (\pi, \lambda, \tau)$, given $f_b = \mathbb{1}_{[0,b]}$, there exists $\chi \in \Gamma(T)$ such that $\tilde{f}_b := f_b - \chi \in F_0(T, b)$, i.e.

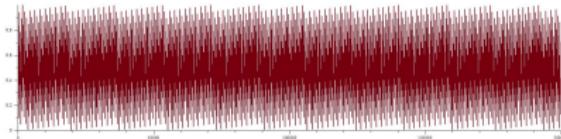
$$\lim_{n \rightarrow \pm\infty} \left| S_n \tilde{f}_b(x) \right| \leq C|n|^\epsilon, \quad \forall \epsilon > 0, \quad \forall x \in I.$$

Examples of Birkhoff sums with subpolynomial deviations

- Ex 1: $T = R_a$ rotation,

$$T(x) = x + a \bmod 1,$$

$$f = f_b = \mathbb{1}_{[0,b]} - b.$$



- If $b \in \{T^n(a), n \in \mathbb{N}\}$,

$$\Rightarrow f_b \in F_-$$

- If $b \notin \{T^n(a), n \in \mathbb{N}\}$,

$$\Rightarrow f_b \in F_0 \setminus F_-$$

- Ex 2: IETs with $k > 1$ (so that $\dim F_0/F_- = k - 1 > 0$), $f \in F_0 \setminus F_-$
(e.g. $\pi = \begin{pmatrix} \alpha\beta\gamma\delta\epsilon \\ \epsilon\delta\gamma\beta\alpha \end{pmatrix}$ with d odd).

- Ex 3: Corrected characteristic functions $f_b - \chi$, given by:

Lemma (Marmi-U-Yoccoz)

For a.e. $T = (\pi, \lambda, \tau)$, given $f_b = \mathbb{1}_{[0,b]}$, there exists $\chi \in \Gamma(T)$ such that $\tilde{f}_b := f_b - \chi \in F_0(T, b)$, i.e.

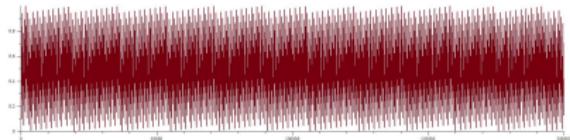
$$\lim_{n \rightarrow \pm\infty} \left| S_n \tilde{f}_b(x) \right| \leq C|n|^\epsilon, \quad \forall \epsilon > 0, \quad \forall x \in I.$$

Examples of Birkhoff sums with subpolynomial deviations

- Ex 1: $T = R_a$ rotation,

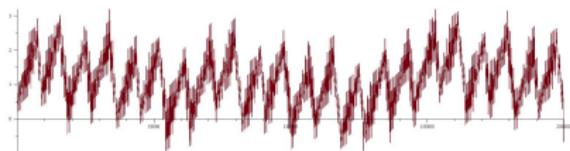
$$T(x) = x + a \bmod 1,$$

$$f = f_b = \mathbb{1}_{[0,b]} - b.$$



- If $b \in \{T^n(a), n \in \mathbb{N}\}$,

$$\Rightarrow f_b \in F_-$$



- If $b \notin \{T^n(a), n \in \mathbb{N}\}$,

$$\Rightarrow f_b \in F_0 \setminus F_-$$

- Ex 2: IETs with $k > 1$ (so that $\dim F_0 / F_- = k - 1 > 0$), $f \in F_0 \setminus F_-$

(e.g. $\pi = \begin{pmatrix} \alpha\beta\gamma\delta\epsilon \\ \epsilon\delta\gamma\beta\alpha \end{pmatrix}$ with d odd).

- Ex 3: Corrected characteristic functions $f_b - \chi$, given by:

Lemma (Marmi-U-Yoccoz)

For a.e. $T = (\pi, \lambda, \tau)$, given $f_b = \mathbb{1}_{[0,b]}$, there exists $\chi \in \Gamma(T)$ such that $\tilde{f}_b := f_b - \chi \in F_0(T, b)$, i.e.

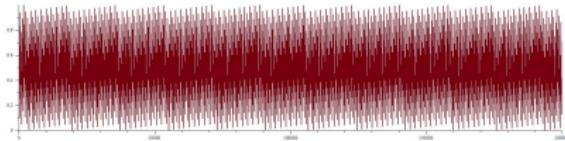
$$\lim_{n \rightarrow \pm\infty} \left| S_n \tilde{f}_b(x) \right| \leq C|n|^\epsilon, \quad \forall \epsilon > 0, \quad \forall x \in I.$$

Examples of Birkhoff sums with subpolynomial deviations

- Ex 1: $T = R_a$ rotation,

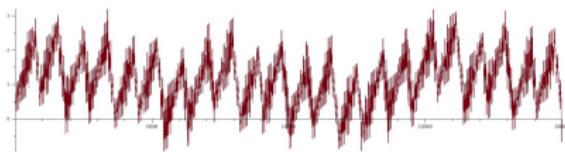
$$T(x) = x + a \bmod 1,$$

$$f = f_b = \mathbb{1}_{[0,b]} - b.$$



- If $b \in \{T^n(a), n \in \mathbb{N}\}$,

$$\Rightarrow f_b \in F_-$$



- If $b \notin \{T^n(a), n \in \mathbb{N}\}$,

$$\Rightarrow f_b \in F_0 \setminus F_-$$

- Ex 2: IETs with $k > 1$ (so that $\dim F_0 / F_- = k - 1 > 0$), $f \in F_0 \setminus F_-$

(e.g. $\pi = \begin{pmatrix} \alpha\beta\gamma\delta\epsilon \\ \epsilon\delta\gamma\beta\alpha \end{pmatrix}$ with d odd).

- Ex 3: Corrected characteristic functions $f_b - \chi$, given by:

Lemma (Marmi-U-Yoccoz)

For a.e. $T = (\pi, \lambda, \tau)$, given $f_b = \mathbb{1}_{[0,b]}$, there exists $\chi \in \Gamma(T)$ such that $\tilde{f}_b := f_b - \chi \in F_0(T, b)$, i.e.

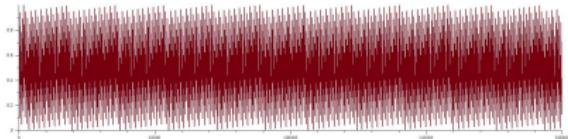
$$\lim_{n \rightarrow \pm\infty} \left| S_n \tilde{f}_b(x) \right| \leq C|n|^\epsilon, \quad \forall \epsilon > 0, \quad \forall x \in I.$$

Examples of Birkhoff sums with subpolynomial deviations

- Ex 1: $T = R_a$ rotation,

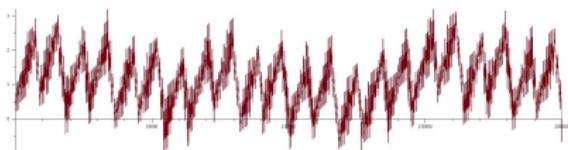
$$T(x) = x + a \bmod 1,$$

$$f = f_b = \mathbb{1}_{[0,b]} - b.$$



- If $b \in \{T^n(a), n \in \mathbb{N}\}$,

$$\Rightarrow f_b \in F_-$$



- If $b \notin \{T^n(a), n \in \mathbb{N}\}$,

$$\Rightarrow f_b \in F_0 \setminus F_-$$

- Ex 2: IETs with $k > 1$ (so that $\dim F_0 / F_- = k - 1 > 0$), $f \in F_0 \setminus F_-$

(e.g. $\pi = \begin{pmatrix} \alpha\beta\gamma\delta\epsilon \\ \epsilon\delta\gamma\beta\alpha \end{pmatrix}$ with d odd).

- Ex 3: Corrected characteristic functions $f_b - \chi$, given by:

Lemma (Marmi-U-Yoccoz)

For a.e. $T = (\pi, \lambda, \tau)$, given $f_b = \mathbb{1}_{[0,b]}$, there exists $\chi \in \Gamma(T)$ such that $\tilde{f}_b := f_b - \chi \in F_0(T, b)$, i.e.

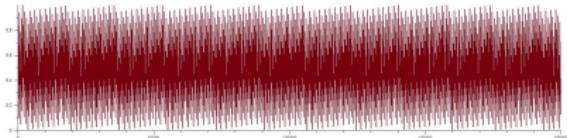
$$\lim_{n \rightarrow \pm\infty} \left| S_n \tilde{f}_b(x) \right| \leq C|n|^\epsilon, \quad \forall \epsilon > 0, \quad \forall x \in I.$$

Examples of Birkhoff sums with subpolynomial deviations

- Ex 1: $T = R_a$ rotation,

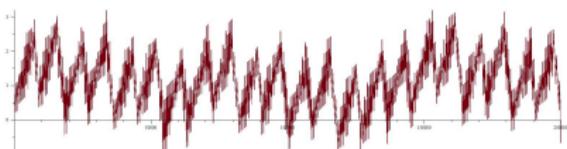
$$T(x) = x + a \bmod 1,$$

$$f = f_b = \mathbb{1}_{[0,b]} - b.$$



- If $b \in \{T^n(a), n \in \mathbb{N}\}$,

$$\Rightarrow f_b \in F_-$$



- If $b \notin \{T^n(a), n \in \mathbb{N}\}$,

$$\Rightarrow f_b \in F_0 \setminus F_-$$

- Ex 2: IETs with $k > 1$ (so that $\dim F_0/F_- = k - 1 > 0$), $f \in F_0 \setminus F_-$ (e.g. $\pi = \begin{pmatrix} \alpha\beta\gamma\delta\epsilon \\ \epsilon\delta\gamma\beta\alpha \end{pmatrix}$ with d odd).

- Ex 3: Corrected characteristic functions $f_b - \chi$, given by:

Lemma (Marmi-U-Yoccoz)

For a.e. $T = (\pi, \lambda, \tau)$, given $f_b = \mathbb{1}_{[0,b]}$, there exists $\chi \in \Gamma(T)$ such that $\tilde{f}_b := f_b - \chi \in F_0(T, b)$, i.e.

$$\lim_{n \rightarrow \pm\infty} |S_n \tilde{f}_b(x)| \leq C|n|^\epsilon, \quad \forall \epsilon > 0, \quad \forall x \in I.$$

Motivation to study “central” Birkhoff sums

- ▶ For $T = R_a$ (rotations), $f = f_b$, there are many interesting results on the behaviour of $S_n f_b(x)$, e.g.
 - ▶ Discrepancy estimates (e.g. in terms of *Ostrowsky expansion*);
 - ▶ Kesten Theorem:
$$\frac{1}{\log n} S_n f_b(R_a, x) \rightarrow \text{Cauchy r.v.}, \quad \text{for } (x, a) \text{ random (unif. distr.)}.$$
 - ▶ Beck Theorem: (temporal CLT): *a quadratic irrational*; $x_0 = 0$
$$\frac{S_k f_b(x_0) - C_1 \log n}{C_2 \sqrt{\log n}} \rightarrow \text{Gaussian r.v.}, \quad \text{for } k = 1, \dots, n \quad \text{unif. distr.}$$
 - ▶ *Generalizations of Beck*: Dolgopyat-Sarig: for non-zero x_0 , any b rational (a bounded type); Bromberg-U': for a bounded type, also for a full Hdim set of irrational bs ;
- ▶ *Question*: Can we prove some of these results for *corrected characteristic functions* over IETs?
- ▶ *Remark*: Interesting examples arise for example from the study of \mathbb{Z} -covers of translation surfaces.

Motivation to study “central” Birkhoff sums

- ▶ For $T = R_a$ (rotations), $f = f_b$, there are many interesting results on the behaviour of $S_n f_b(x)$, e.g.
 - ▶ Discrepancy estimates (e.g. in terms of *Ostrowsky expansion*);
 - ▶ Kesten Theorem:
$$\frac{1}{\log n} S_n f_b(R_a, x) \rightarrow \text{Cauchy r.v.}, \quad \text{for } (x, a) \text{ random (unif. distr.)}.$$
 - ▶ Beck Theorem: (temporal CLT): *a quadratic irrational*; $x_0 = 0$
$$\frac{S_k f_b(x_0) - C_1 \log n}{C_2 \sqrt{\log n}} \rightarrow \text{Gaussian r.v.}, \quad \text{for } k = 1, \dots, n \quad \text{unif. distr.}$$
 - ▶ Generalizations of Beck: *Dolgopyat-Sarig*: for non-zero x_0 , any b rational (a bounded type); *Bromberg-U'*: for a bounded type, also for a full Hdim set of irrational bs ;
- ▶ Question: Can we prove some of these results for *corrected characteristic functions* over IETs?
- ▶ Remark: Interesting examples arise for example from the study of \mathbb{Z} -covers of translation surfaces.

Motivation to study “central” Birkhoff sums

- ▶ For $T = R_a$ (rotations), $f = f_b$, there are many interesting results on the behaviour of $S_n f_b(x)$, e.g.
 - ▶ Discrepancy estimates (e.g. in terms of *Ostrowsky expansion*);
 - ▶ **Kesten Theorem:**
$$\frac{1}{\log n} S_n f_b(R_a, x) \rightarrow \text{Cauchy r.v.}, \quad \text{for } (x, a) \text{ random (unif. distr.)}.$$
 - ▶ **Beck Theorem:** (temporal CLT): *a quadratic irrational*; $x_0 = 0$
$$\frac{S_k f_b(x_0) - C_1 \log n}{C_2 \sqrt{\log n}} \rightarrow \text{Gaussian r.v.}, \quad \text{for } k = 1, \dots, n \quad \text{unif. distr.}$$
 - ▶ *Generalizations of Beck:* **Dolgopyat-Sarig:** for non-zero x_0 , any b rational (a bounded type); **Bromberg-U'**: for a bounded type, also for a full Hdim set of irrational bs ;
- ▶ *Question:* Can we prove some of these results for *corrected characteristic functions* over IETs?
- ▶ *Remark:* Interesting examples arise for example from the study of \mathbb{Z} -covers of translation surfaces.

Motivation to study “central” Birkhoff sums

- ▶ For $T = R_a$ (rotations), $f = f_b$, there are many interesting results on the behaviour of $S_n f_b(x)$, e.g.

- ▶ Discrepancy estimates (e.g. in terms of *Ostrowsky expansion*);
- ▶ Kesten Theorem:

$$\frac{1}{\log n} S_n f_b(R_a, x) \rightarrow \text{Cauchy r.v.}, \quad \text{for } (x, a) \text{ random (unif. distr.)}.$$

- ▶ Beck Theorem: (temporal CLT): *a quadratic irrational*; $x_0 = 0$

$$\frac{S_k f_b(x_0) - C_1 \log n}{C_2 \sqrt{\log n}} \rightarrow \text{Gaussian r.v.}, \quad \text{for } k = 1, \dots, n \quad \text{unif. distr.}$$

- ▶ Generalizations of Beck: Dolgopyat-Sarig: for non-zero x_0 , any b rational (a bounded type); Bromberg-U': for a bounded type, also for a full Hdim set of irrational bs ;

- ▶ Question: Can we prove some of these results for *corrected characteristic functions* over IETs?
- ▶ Remark: Interesting examples arise for example from the study of \mathbb{Z} -covers of translation surfaces.

Motivation to study “central” Birkhoff sums

- ▶ For $T = R_a$ (rotations), $f = f_b$, there are many interesting results on the behaviour of $S_n f_b(x)$, e.g.
 - ▶ Discrepancy estimates (e.g. in terms of *Ostrowsky expansion*);
 - ▶ **Kesten Theorem:**
$$\frac{1}{\log n} S_n f_b(R_a, x) \rightarrow \text{Cauchy r.v.}, \quad \text{for } (x, a) \text{ random (unif. distr.)}.$$
 - ▶ **Beck Theorem:** (temporal CLT): *a quadratic irrational*; $x_0 = 0$
$$\frac{S_k f_b(x_0) - C_1 \log n}{C_2 \sqrt{\log n}} \rightarrow \text{Gaussian r.v.}, \quad \text{for } k = 1, \dots, n \text{ unif. distr.}$$
 - ▶ *Generalizations of Beck:* **Dolgopyat-Sarig:** for non-zero x_0 , any b rational (a bounded type); **Bromberg-U'**: for a bounded type, also for a full Hdim set of irrational bs ;
- ▶ *Question:* Can we prove some of these results for *corrected characteristic functions* over IETs?
- ▶ *Remark:* Interesting examples arise for example from the study of \mathbb{Z} -covers of translation surfaces.

Motivation to study “central” Birkhoff sums

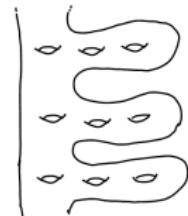
- ▶ For $T = R_a$ (rotations), $f = f_b$, there are many interesting results on the behaviour of $S_n f_b(x)$, e.g.
 - ▶ Discrepancy estimates (e.g. in terms of *Ostrowsky expansion*);
 - ▶ **Kesten Theorem:**
$$\frac{1}{\log n} S_n f_b(R_a, x) \rightarrow \text{Cauchy r.v.}, \quad \text{for } (x, a) \text{ random (unif. distr.)}.$$
 - ▶ **Beck Theorem:** (temporal CLT): *a quadratic irrational*; $x_0 = 0$
$$\frac{S_k f_b(x_0) - C_1 \log n}{C_2 \sqrt{\log n}} \rightarrow \text{Gaussian r.v.}, \quad \text{for } k = 1, \dots, n \text{ unif. distr.}$$
 - ▶ *Generalizations of Beck:* **Dolgopyat-Sarig**: for non-zero x_0 , any b rational (a bounded type); **Bromberg-U'**: for a bounded type, also for a full Hdim set of irrational bs ;
- ▶ *Question:* Can we prove some of these results for *corrected characteristic functions* over IETs?
- ▶ *Remark:* Interesting examples arise for example from the study of \mathbb{Z} -covers of translation surfaces.

Motivation to study “central” Birkhoff sums

- ▶ For $T = R_a$ (rotations), $f = f_b$, there are many interesting results on the behaviour of $S_n f_b(x)$, e.g.
 - ▶ Discrepancy estimates (e.g. in terms of *Ostrowsky expansion*);
 - ▶ Kesten Theorem:
$$\frac{1}{\log n} S_n f_b(R_a, x) \rightarrow \text{Cauchy r.v.}, \quad \text{for } (x, a) \text{ random (unif. distr.)}.$$
 - ▶ Beck Theorem: (temporal CLT): *a quadratic irrational*; $x_0 = 0$
$$\frac{S_k f_b(x_0) - C_1 \log n}{C_2 \sqrt{\log n}} \rightarrow \text{Gaussian r.v.}, \quad \text{for } k = 1, \dots, n \quad \text{unif. distr.}$$
 - ▶ Generalizations of Beck: **Dolgopyat-Sarig**: for non-zero x_0 , any b rational (a bounded type); **Bromberg-U'**: for a bounded type, also for a full Hdim set of irrational bs ;
- ▶ Question: Can we prove some of these results for *corrected characteristic functions* over IETs?
- ▶ Remark: Interesting examples arise for example from the study of \mathbb{Z} -covers of translation surfaces.

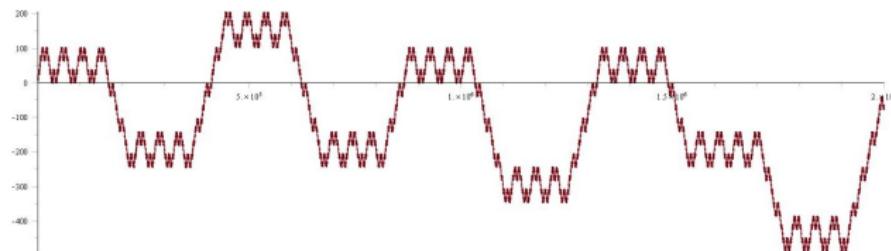
Motivation to study “central” Birkhoff sums

- ▶ For $T = R_a$ (rotations), $f = f_b$, there are many interesting results on the behaviour of $S_n f_b(x)$, e.g.
 - ▶ Discrepancy estimates (e.g. in terms of *Ostrowsky expansion*);
 - ▶ **Kesten Theorem:**
$$\frac{1}{\log n} S_n f_b(R_a, x) \rightarrow \text{Cauchy r.v.}, \text{ for } (x, a) \text{ random (unif. distr.)}.$$
 - ▶ **Beck Theorem:** (temporal CLT): *a quadratic irrational*; $x_0 = 0$
$$\frac{S_k f_b(x_0) - C_1 \log n}{C_2 \sqrt{\log n}} \rightarrow \text{Gaussian r.v.}, \text{ for } k = 1, \dots, n \text{ unif. distr.}$$
 - ▶ *Generalizations of Beck:* **Dolgopyat-Sarig**: for non-zero x_0 , any b rational (a bounded type); **Bromberg-U'**: for a bounded type, also for a full Hdim set of irrational bs ;
- ▶ *Question:* Can we prove some of these results for *corrected characteristic functions* over IETs?
- ▶ *Remark:* Interesting examples arise for example from the study of \mathbb{Z} -covers of translation surfaces.



Limit shapes of Birkhoff sums with power deviations

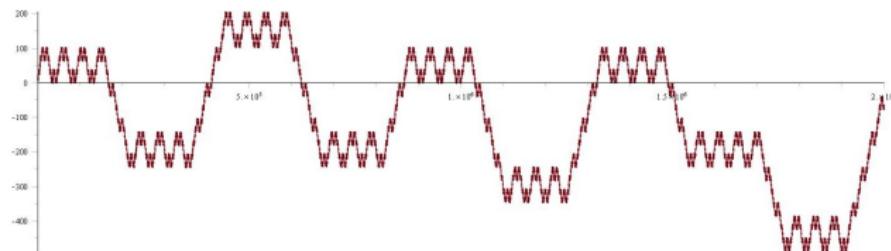
- Take $f \in \Gamma(T)$ s.t. $\nu := \limsup \frac{\log S_n f(p)}{\log n} = > 0$, i.e. $f \in E_+ \setminus E_0$.



- The behaviour can be understood/described in terms of limit shapes:
 - Marmi-Moussa-Yoccoz, "Affine IETs with a wandering interval", *Proceedings of the London Mathematical Society*, 2005, Key tool: "Limit shapes for Birkhoff sums".
 - Bufetov, "Limit Theorem for Translation Flows", *Annals of Mathematics*, 2014, Key object: "finitely-additive transverse invariant measures" (or Hölder cocycles).

Limit shapes of Birkhoff sums with power deviations

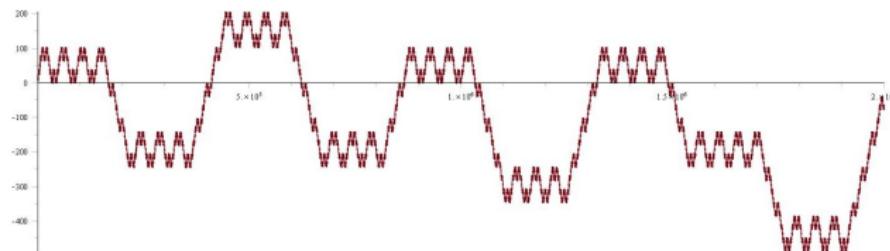
- Take $f \in \Gamma(T)$ s.t. $\nu := \limsup \frac{\log S_n f(p)}{\log n} = > 0$, i.e. $f \in E_+ \setminus E_0$.



- The behaviour can be understood/described in terms of limit shapes:
 - Marmi-Moussa-Yoccoz, "Affine IETs with a wandering interval", *Proceedings of the London Mathematical Society*, 2005, Key tool: "Limit shapes for Birkhoff sums".
 - Bufetov, "Limit Theorem for Translation Flows", *Annals of Mathematics*, 2014, Key object: "finitely-additive transverse invariant measures" (or Hölder cocycles).

Limit shapes of Birkhoff sums with power deviations

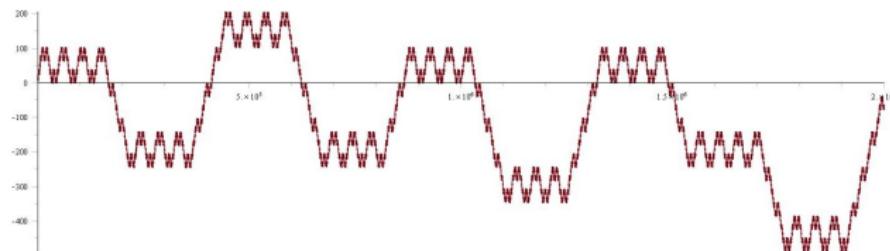
- Take $f \in \Gamma(T)$ s.t. $\nu := \limsup \frac{\log S_n f(p)}{\log n} = > 0$, i.e. $f \in E_+ \setminus E_0$.



- The behaviour can be understood/described in terms of limit shapes:
 - Marmi-Moussa-Yoccoz, "Affine IETs with a wandering interval", *Proceedings of the London Mathematical Society*, 2005, Key tool: "Limit shapes for Birkhoff sums".
 - Bufetov, "Limit Theorem for Translation Flows", *Annals of Mathematics*, 2014, Key object: "finitely-additive transverse invariant measures" (or Hölder cocycles).

Limit shapes of Birkhoff sums with power deviations

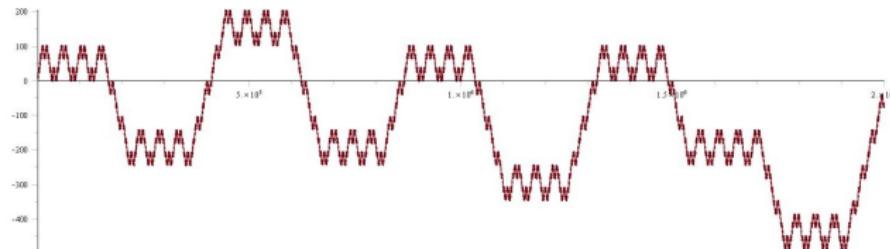
- Take $f \in \Gamma(T)$ s.t. $\nu := \limsup \frac{\log S_n f(p)}{\log n} = > 0$, i.e. $f \in E_+ \setminus E_0$.



- The behaviour can be understood/described in terms of limit shapes:
 - Marmi-Moussa-Yoccoz, "Affine IETs with a wandering interval", *Proceedings of the London Mathematical Society*, 2005, Key tool: "Limit shapes for Birkhoff sums".
 - Bufetov, "Limit Theorem for Translation Flows", *Annals of Mathematics*, 2014, Key object: "finitely-additive transverse invariant measures" (or Hölder cocycles).

Limit shapes of Birkhoff sums with power deviations

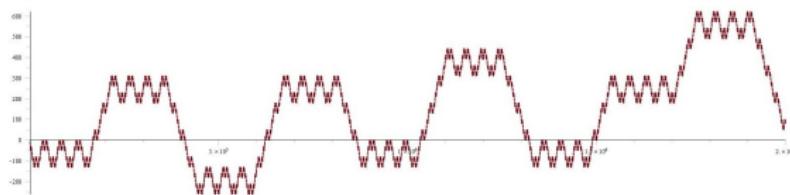
- Take $f \in \Gamma(T)$ s.t. $\nu := \limsup \frac{\log S_n f(p)}{\log n} = > 0$, i.e. $f \in E_+ \setminus E_0$.



- The behaviour can be understood/described in terms of limit shapes:
 - Marmi-Moussa-Yoccoz, "Affine IETs with a wandering interval", *Proceedings of the London Mathematical Society*, 2005, *Key tool: "Limit shapes for Birkhoff sums"*.
 - Bufetov, "Limit Theorem for Translation Flows", *Annals of Mathematics*, 2014, *Key object: "finitely-additive transverse invariant measures"* (or Hölder cocycles).

Convergence to a moving target

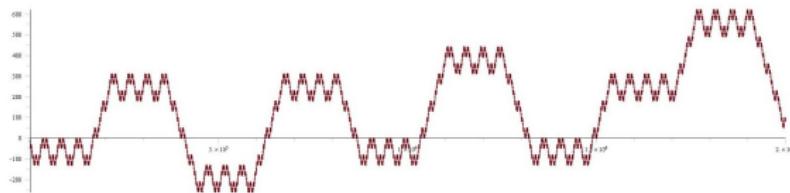
- ▶ The graphs Ω_n have a *fractal graph* structure; is there convergence?
 - ▶ NO: there are oscillations, since $S_n f(x) \sim n^\nu$ ($\nu > 0$)



- ▶ Rescale the y -axis by the oscillation size n^ν ; is there convergence?
 - ▶ NO: the *shape* typically changes as n grows... BUT:
- ▶ There is convergence to a *moving target*:
 - ▶ Rescaled graphs of Birkhoff sums approach a *moving limit shape* (moving under the Teichmueller geodesic flow/Rauzy-Veech induction)
 - ▶ Next: Construction of limit shapes ($\nu > 0$) using Rauzy-Veech induction (following Marmi-Moussa-Yoccoz).
- ▶ SPOILER: If $f \in F_0(T) \setminus F_-(T)$, i.e. $\nu = 0$, there is convergence to a moving distribution (Marmi-U-Yoccoz).

Convergence to a moving target

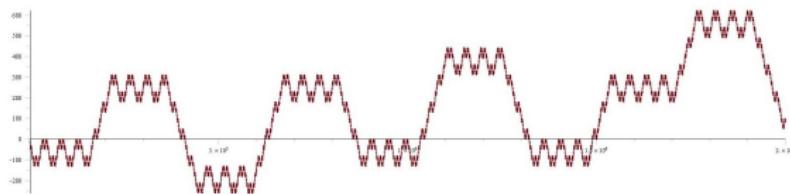
- ▶ The graphs Ω_n have a *fractal graph* structure; is there convergence?
 - ▶ NO: there are oscillations, since $S_n f(x) \sim n^\nu$ ($\nu > 0$)



- ▶ Rescale the y -axis by the oscillation size n^ν ; is there convergence?
 - ▶ NO: the *shape* typically changes as n grows... BUT:
- ▶ There is convergence to a *moving target*:
 - ▶ Rescaled graphs of Birkhoff sums approach a *moving limit shape* (moving under the Teichmueller geodesic flow/Rauzy-Veech induction)
 - ▶ Next: Construction of limit shapes ($\nu > 0$) using Rauzy-Veech induction (following Marmi-Moussa-Yoccoz).
- ▶ SPOILER: If $f \in F_0(T) \setminus F_-(T)$, i.e. $\nu = 0$, there is convergence to a moving distribution (Marmi-U-Yoccoz).

Convergence to a moving target

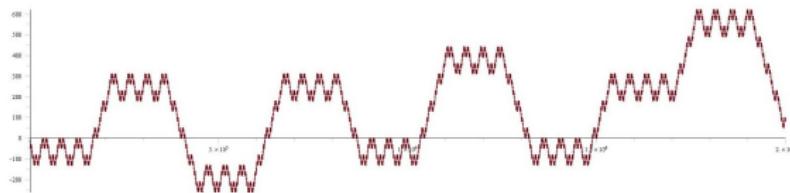
- ▶ The graphs Ω_n have a *fractal graph* structure; is there convergence?
 - ▶ NO: there are oscillations, since $S_n f(x) \sim n^\nu$ ($\nu > 0$)



- ▶ Rescale the y -axis by the oscillation size n^ν ; is there convergence?
 - ▶ NO: the *shape* typically changes as n grows... BUT:
- ▶ There is convergence to a *moving target*:
 - ▶ Rescaled graphs of Birkhoff sums approach a *moving limit shape* (moving under the Teichmueller geodesic flow/Rauzy-Veech induction)
 - ▶ Next: Construction of limit shapes ($\nu > 0$) using Rauzy-Veech induction (following Marmi-Moussa-Yoccoz).
- ▶ SPOILER: If $f \in F_0(T) \setminus F_-(T)$, i.e. $\nu = 0$, there is convergence to a moving distribution (Marmi-U-Yoccoz).

Convergence to a moving target

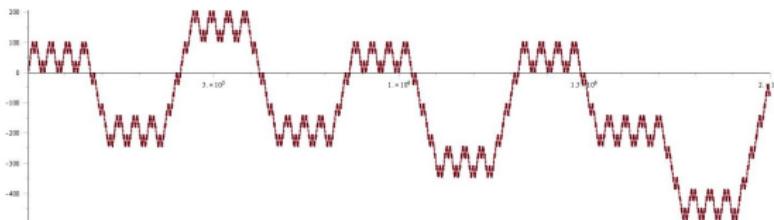
- ▶ The graphs Ω_n have a *fractal graph* structure; is there convergence?
 - ▶ NO: there are oscillations, since $S_n f(x) \sim n^\nu$ ($\nu > 0$)



- ▶ Rescale the y -axis by the oscillation size n^ν ; is there convergence?
 - ▶ NO: the *shape* typically changes as n grows... BUT:
- ▶ There is convergence to a *moving target*:
 - ▶ Rescaled graphs of Birkhoff sums approach a *moving limit shape* (moving under the Teichmueller geodesic flow/Rauzy-Veech induction)
 - ▶ Next: Construction of limit shapes ($\nu > 0$) using Rauzy-Veech induction (following Marmi-Moussa-Yoccoz).
- ▶ SPOILER: If $f \in F_0(T) \setminus F_-(T)$, i.e. $\nu = 0$, there is convergence to a moving distribution (Marmi-U-Yoccoz).

Convergence to a moving target

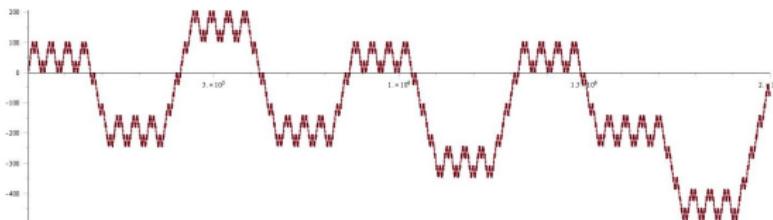
- ▶ The graphs Ω_n have a *fractal graph* structure; is there convergence?
 - ▶ NO: there are oscillations, since $S_n f(x) \sim n^\nu$ ($\nu > 0$)



- ▶ Rescale the y -axis by the oscillation size n^ν ; is there convergence?
 - ▶ NO: the *shape* typically changes as n grows... BUT:
- ▶ There is convergence to a *moving target*:
 - ▶ Rescaled graphs of Birkhoff sums approach a *moving limit shape* (moving under the Teichmueller geodesic flow/Rauzy-Veech induction)
 - ▶ Next: Construction of limit shapes ($\nu > 0$) using Rauzy-Veech induction (following Marmi-Moussa-Yoccoz).
- ▶ SPOILER: If $f \in F_0(T) \setminus F_-(T)$, i.e. $\nu = 0$, there is convergence to a moving distribution (Marmi-U-Yoccoz).

Convergence to a moving target

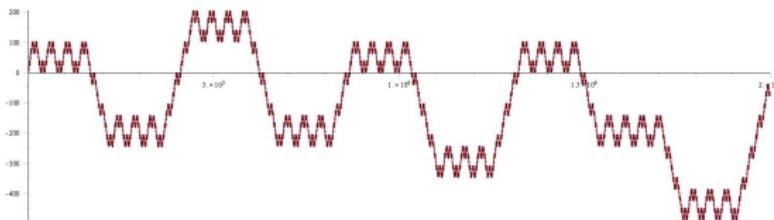
- ▶ The graphs Ω_n have a *fractal graph* structure; is there convergence?
 - ▶ NO: there are oscillations, since $S_n f(x) \sim n^\nu$ ($\nu > 0$)



- ▶ Rescale the y -axis by the oscillation size n^ν ; is there convergence?
 - ▶ NO: the *shape* typically changes as n grows... BUT:
- ▶ There is convergence to a *moving target*:
 - ▶ Rescaled graphs of Birkhoff sums approach a *moving limit shape* (moving under the Teichmueller geodesic flow/Rauzy-Veech induction)
 - ▶ Next: Construction of limit shapes ($\nu > 0$) using Rauzy-Veech induction (following Marmi-Moussa-Yoccoz).
- ▶ SPOILER: If $f \in F_0(T) \setminus F_-(T)$, i.e. $\nu = 0$, there is convergence to a moving distribution (Marmi-U-Yoccoz).

Convergence to a moving target

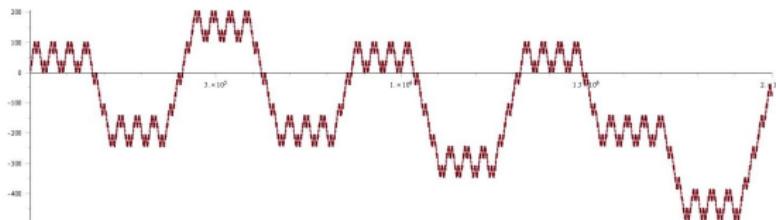
- ▶ The graphs Ω_n have a *fractal graph* structure; is there convergence?
 - ▶ NO: there are oscillations, since $S_n f(x) \sim n^\nu$ ($\nu > 0$)



- ▶ Rescale the y -axis by the oscillation size n^ν ; is there convergence?
 - ▶ NO: the *shape* typically changes as n grows... BUT:
- ▶ There is convergence to a *moving target*:
 - ▶ Rescaled graphs of Birkhoff sums approach a *moving limit shape* (moving under the Teichmueller geodesic flow/Rauzy-Veech induction)
 - ▶ Next: Construction of limit shapes ($\nu > 0$) using Rauzy-Veech induction (following Marmi-Moussa-Yoccoz).
- ▶ SPOILER: If $f \in F_0(T) \setminus F_-(T)$, i.e. $\nu = 0$, there is convergence to a moving distribution (Marmi-U-Yoccoz).

Convergence to a moving target

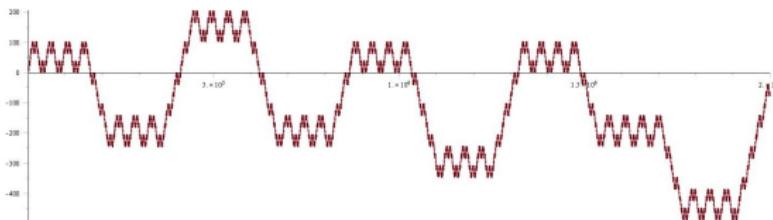
- ▶ The graphs Ω_n have a *fractal graph* structure; is there convergence?
 - ▶ NO: there are oscillations, since $S_n f(x) \sim n^\nu$ ($\nu > 0$)



- ▶ Rescale the y-axis by the oscillation size n^ν ; is there convergence?
 - ▶ NO: the *shape* typically changes as n grows... BUT:
- ▶ There is convergence to a *moving target*:
 - ▶ Rescaled graphs of Birkhoff sums approach a *moving limit shape* (moving under the Teichmueller geodesic flow/Rauzy-Veech induction)
 - ▶ Next: Construction of limit shapes ($\nu > 0$) using Rauzy-Veech induction (following Marmi-Moussa-Yoccoz).
- ▶ SPOILER: If $f \in F_0(T) \setminus F_-(T)$, i.e. $\nu = 0$, there is convergence to a moving distribution (Marmi-U-Yoccoz).

Convergence to a moving target

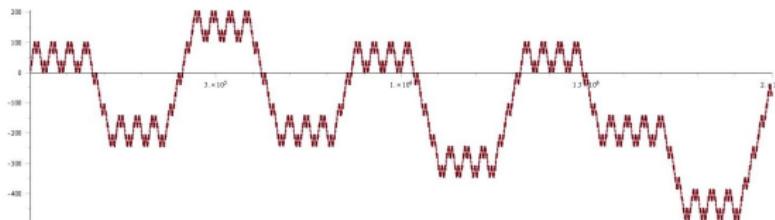
- ▶ The graphs Ω_n have a *fractal graph* structure; is there convergence?
 - ▶ NO: there are oscillations, since $S_n f(x) \sim n^\nu$ ($\nu > 0$)



- ▶ Rescale the y-axis by the oscillation size n^ν ; is there convergence?
 - ▶ NO: the *shape* typically changes as n grows... BUT:
- ▶ There is convergence to a *moving target*:
 - ▶ Rescaled graphs of Birkhoff sums approach a *moving limit shape* (moving under the Teichmueller geodesic flow/Rauzy-Veech induction)
 - ▶ Next: Construction of *limit shapes* ($\nu > 0$) using Rauzy-Veech induction (following Marmi-Moussa-Yoccoz).
- ▶ SPOILER: If $f \in F_0(T) \setminus F_-(T)$, i.e. $\nu = 0$, there is convergence to a moving distribution (Marmi-U-Yoccoz).

Convergence to a moving target

- ▶ The graphs Ω_n have a *fractal graph* structure; is there convergence?
 - ▶ NO: there are oscillations, since $S_n f(x) \sim n^\nu$ ($\nu > 0$)



- ▶ Rescale the y-axis by the oscillation size n^ν ; is there convergence?
 - ▶ NO: the *shape* typically changes as n grows... BUT:
- ▶ There is convergence to a *moving target*:
 - ▶ Rescaled graphs of Birkhoff sums approach a *moving limit shape* (moving under the Teichmueller geodesic flow/Rauzy-Veech induction)
 - ▶ Next: Construction of *limit shapes* ($\nu > 0$) using *Rauzy-Veech induction* (following Marmi-Moussa-Yoccoz).
- ▶ SPOILER: If $f \in F_0(T) \setminus F_-(T)$, i.e. $\nu = 0$, there is convergence to a *moving distribution* (Marmi-U-Yoccoz).

Rauzy-Veech renormalization

- ▶ $I^{(0)} := I$, $T^{(0)} = (\pi^{(0)}, \lambda^{(0)})$;
- ▶ Nested $I^{(n)} \subset I^{(n-1)}$, $n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$ induced d -IET.

- ▶ Start with $M^{(0)} = (\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$.
- ▶ The algorithm produces $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$, where $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$.

- ▶ *Remark:* on zippered rectangles, the Rauzy-Veech algorithm:
 - ▶ acts by *cutting and stacking*;
 - ▶ is *invertible*: the initial data $(\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$ determines $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$ and heights $q^{(n)}$, $\forall n \in \mathbb{Z}$.

Rauzy-Veech renormalization

- ▶ $I^{(0)} := I$, $T^{(0)} = (\pi^{(0)}, \lambda^{(0)})$;
- ▶ Nested $I^{(n)} \subset I^{(n-1)}$, $n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$ induced d -IET.

- ▶ Start with $M^{(0)} = (\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$.
- ▶ The algorithm produces $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$, where $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$.

- ▶ Remark: on zippered rectangles, the Rauzy-Veech algorithm:
 - ▶ acts by *cutting and stacking*;
 - ▶ is *invertible*: the initial data $(\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$ determines $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$ and heights $q^{(n)}$, $\forall n \in \mathbb{Z}$.

Rauzy-Veech renormalization

- ▶ $I^{(0)} := I$, $T^{(0)} = (\pi^{(0)}, \lambda^{(0)})$;
- ▶ Nested $I^{(n)} \subset I^{(n-1)}$, $n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$ induced d -IET.

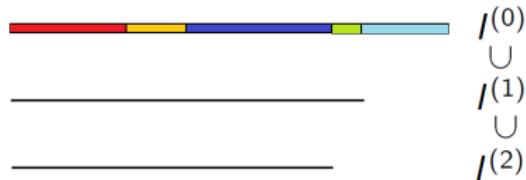
- ▶ Start with $M^{(0)} = (\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$.
- ▶ The algorithm produces $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$, where $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$.

- ▶ Remark: on zippered rectangles, the Rauzy-Veech algorithm:
 - ▶ acts by *cutting and stacking*;
 - ▶ is *invertible*: the initial data $(\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$ determines $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$ and heights $q^{(n)}$, $\forall n \in \mathbb{Z}$.

Rauzy-Veech renormalization

- ▶ $I^{(0)} := I$, $T^{(0)} = (\pi^{(0)}, \lambda^{(0)})$;
- ▶ Nested $I^{(n)} \subset I^{(n-1)}$, $n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$ induced d -IET.

- ▶ Start with $M^{(0)} = (\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$.
- ▶ The algorithm produces $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$, where $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$.

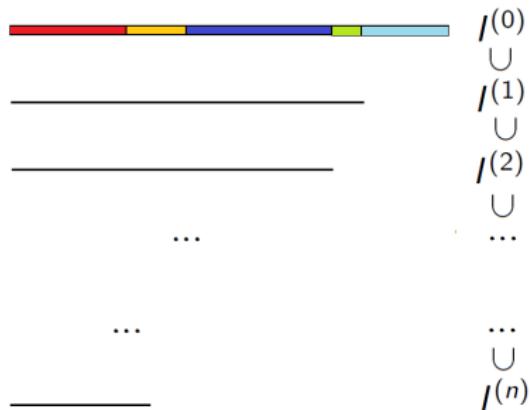


- ▶ Remark: on zippered rectangles, the Rauzy-Veech algorithm:
 - ▶ acts by *cutting and stacking*;
 - ▶ is *invertible*: the initial data $(\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$ determines $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$ and heights $q^{(n)}$, $\forall n \in \mathbb{Z}$.

Rauzy-Veech renormalization

- ▶ $I^{(0)} := I$, $T^{(0)} = (\pi^{(0)}, \lambda^{(0)})$;
- ▶ Nested $I^{(n)} \subset I^{(n-1)}$, $n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$ induced d -IET.

- ▶ Start with $M^{(0)} = (\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$.
- ▶ The algorithm produces $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$, where $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$.

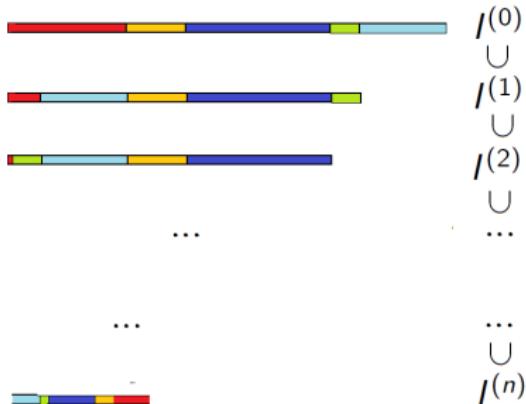


- ▶ Remark: on zippered rectangles, the Rauzy-Veech algorithm:
 - ▶ acts by *cutting and stacking*;
 - ▶ is *invertible*: the initial data $(\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$ determines $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$ and heights $q^{(n)}$, $\forall n \in \mathbb{Z}$.

Rauzy-Veech renormalization

- ▶ $I^{(0)} := I$, $T^{(0)} = (\pi^{(0)}, \lambda^{(0)})$;
- ▶ Nested $I^{(n)} \subset I^{(n-1)}$, $n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$ induced d -IET.

- ▶ Start with $M^{(0)} = (\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$.
- ▶ The algorithm produces $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$, where $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$.

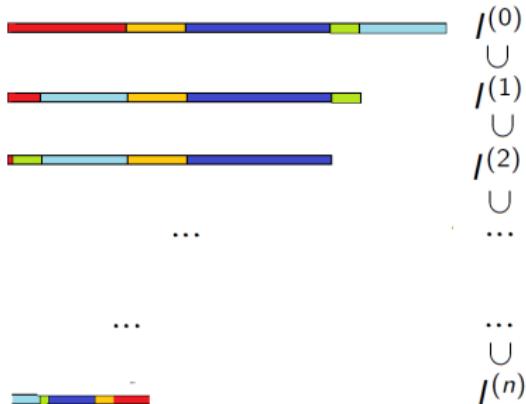


- ▶ Remark: on zippered rectangles, the Rauzy-Veech algorithm:
 - ▶ acts by *cutting and stacking*;
 - ▶ is *invertible*: the initial data $(\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$ determines $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$ and heights $q^{(n)}$, $\forall n \in \mathbb{Z}$.

Rauzy-Veech renormalization

- ▶ $I^{(0)} := I$, $T^{(0)} = (\pi^{(0)}, \lambda^{(0)})$;
- ▶ Nested $I^{(n)} \subset I^{(n-1)}$, $n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$ induced d -IET.

- ▶ Start with $M^{(0)} = (\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$.
- ▶ The algorithm produces $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$, where $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$.

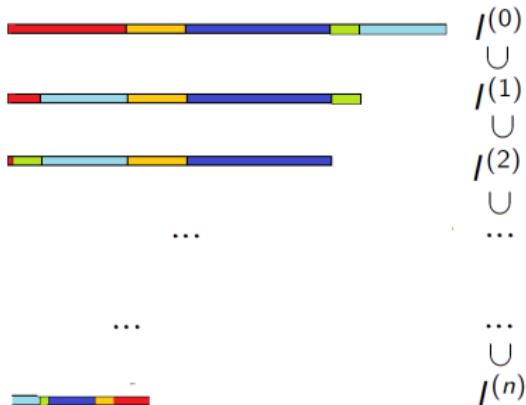


- ▶ Remark: on zippered rectangles, the Rauzy-Veech algorithm:
 - ▶ acts by *cutting and stacking*;
 - ▶ is *invertible*: the initial data $(\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$ determines $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$ and heights $q^{(n)}$, $\forall n \in \mathbb{Z}$.

Rauzy-Veech renormalization

- ▶ $I^{(0)} := I$, $T^{(0)} = (\pi^{(0)}, \lambda^{(0)})$;
- ▶ Nested $I^{(n)} \subset I^{(n-1)}$, $n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$ induced d -IET.

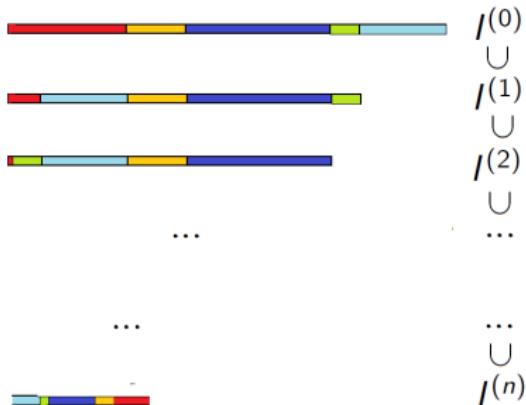
- ▶ Start with $M^{(0)} = (\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$.
- ▶ The algorithm produces $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$, where $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$.



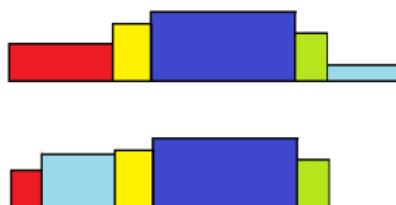
- ▶ Remark: on zippered rectangles, the Rauzy-Veech algorithm:
 - ▶ acts by *cutting and stacking*;
 - ▶ is *invertible*: the initial data $(\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$ determines $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$ and heights $q^{(n)}$, $\forall n \in \mathbb{Z}$.

Rauzy-Veech renormalization

- ▶ $I^{(0)} := I$, $T^{(0)} = (\pi^{(0)}, \lambda^{(0)})$;
- ▶ Nested $I^{(n)} \subset I^{(n-1)}$, $n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$ induced d -IET.



- ▶ Start with $M^{(0)} = (\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$.
- ▶ The algorithm produces $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$, where $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$.

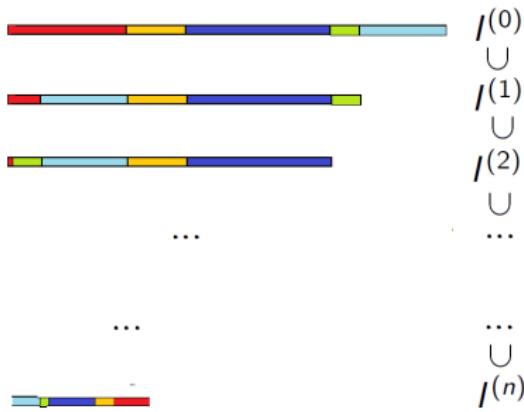
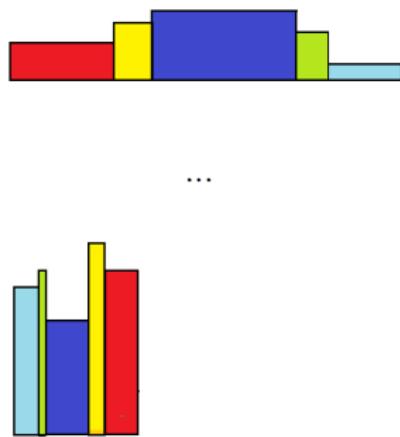


- ▶ Remark: on zippered rectangles, the Rauzy-Veech algorithm:
 - ▶ acts by *cutting and stacking*;
 - ▶ is *invertible*: the initial data $(\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$ determines $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$ and heights $q^{(n)}$, $\forall n \in \mathbb{Z}$.

Rauzy-Veech renormalization

- ▶ $I^{(0)} := I$, $T^{(0)} = (\pi^{(0)}, \lambda^{(0)})$;
- ▶ Nested $I^{(n)} \subset I^{(n-1)}$, $n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$ induced d -IET.

- ▶ Start with $M^{(0)} = (\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$.
- ▶ The algorithm produces $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$, where $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$.

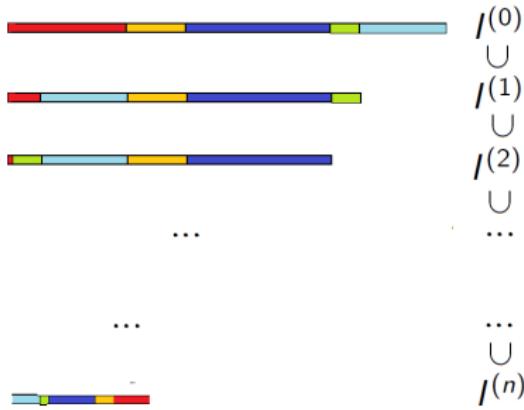
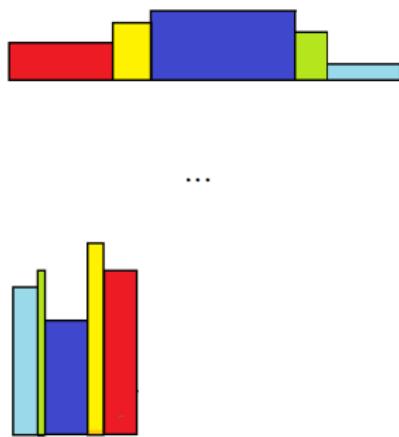


- ▶ Remark: on zippered rectangles, the Rauzy-Veech algorithm:
 - ▶ acts by *cutting and stacking*;
 - ▶ is *invertible*: the initial data $(\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$ determines $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$ and heights $q^{(n)}$, $\forall n \in \mathbb{Z}$.

Rauzy-Veech renormalization

- ▶ $I^{(0)} := I$, $T^{(0)} = (\pi^{(0)}, \lambda^{(0)})$;
- ▶ Nested $I^{(n)} \subset I^{(n-1)}$, $n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$ induced d -IET.

- ▶ Start with $M^{(0)} = (\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$.
- ▶ The algorithm produces $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$, where $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$.

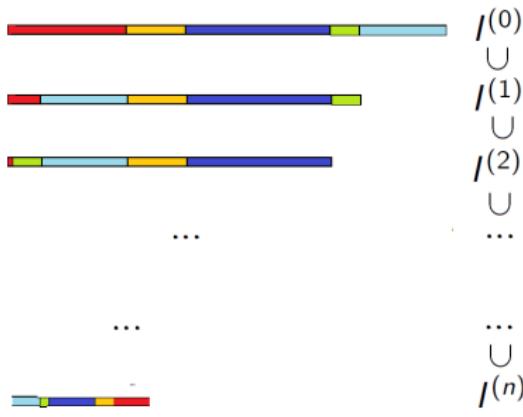
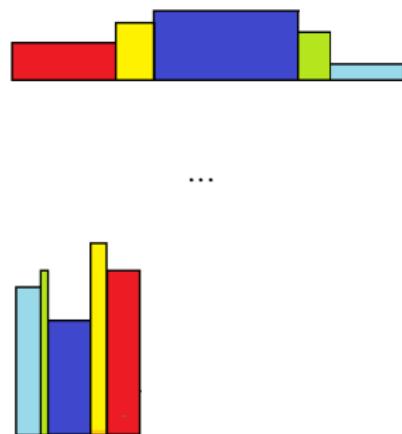


- ▶ Remark: on zippered rectangles, the Rauzy-Veech algorithm:
 - ▶ acts by *cutting and stacking*;
 - ▶ is *invertible*: the initial data $(\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$ determines $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$ and heights $q^{(n)}$, $\forall n \in \mathbb{Z}$.

Rauzy-Veech renormalization

- ▶ $I^{(0)} := I$, $T^{(0)} = (\pi^{(0)}, \lambda^{(0)})$;
- ▶ Nested $I^{(n)} \subset I^{(n-1)}$, $n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$ induced d -IET.

- ▶ Start with $M^{(0)} = (\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$.
- ▶ The algorithm produces $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$, where $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$.

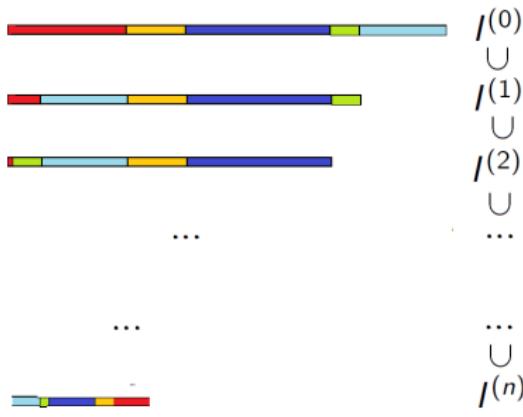
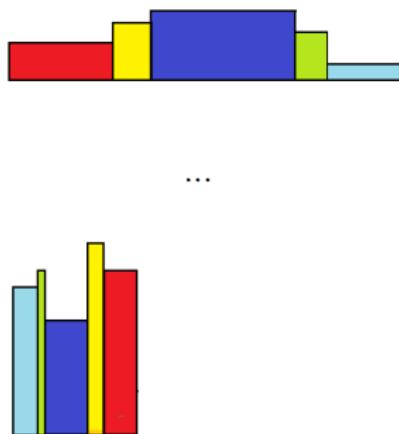


- ▶ Remark: on **zippered rectangles**, the Rauzy-Veech algorithm:
 - ▶ acts by *cutting and stacking*;
 - ▶ is *invertible*: the initial data $(\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$ determines $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$ and heights $q^{(n)}$, $\forall n \in \mathbb{Z}$.

Rauzy-Veech renormalization

- ▶ $I^{(0)} := I$, $T^{(0)} = (\pi^{(0)}, \lambda^{(0)})$;
- ▶ Nested $I^{(n)} \subset I^{(n-1)}$, $n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$ induced d -IET.

- ▶ Start with $M^{(0)} = (\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$.
- ▶ The algorithm produces $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$, where $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$.

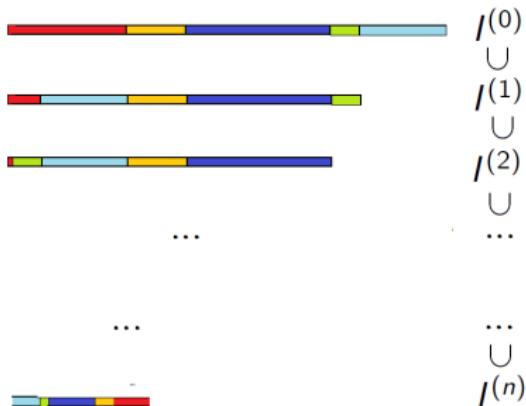


- ▶ Remark: on **zippered rectangles**, the Rauzy-Veech algorithm:
 - ▶ acts by *cutting and stacking*;
 - ▶ is *invertible*: the initial data $(\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$ determines $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$ and heights $q^{(n)}$, $\forall n \in \mathbb{Z}$.

Rauzy-Veech renormalization

- ▶ $I^{(0)} := I$, $T^{(0)} = (\pi^{(0)}, \lambda^{(0)})$;
- ▶ Nested $I^{(n)} \subset I^{(n-1)}$, $n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$ induced d -IET.

- ▶ Start with $M^{(0)} = (\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$.
- ▶ The algorithm produces $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$, where $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$.

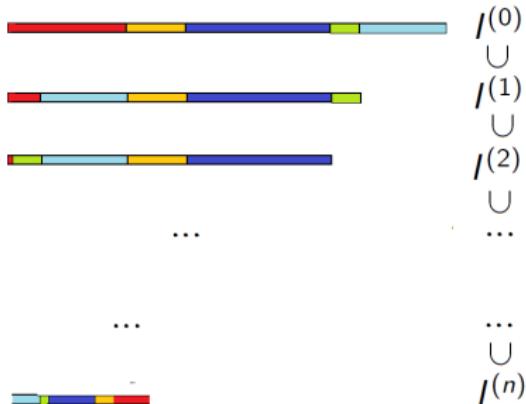


- ▶ Remark: on **zippered rectangles**, the Rauzy-Veech algorithm:
 - ▶ acts by *cutting and stacking*;
 - ▶ is *invertible*: the initial data $(\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$ determines $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$ and heights $q^{(n)}$, $\forall n \in \mathbb{Z}$.

Rauzy-Veech renormalization

- ▶ $I^{(0)} := I$, $T^{(0)} = (\pi^{(0)}, \lambda^{(0)})$;
- ▶ Nested $I^{(n)} \subset I^{(n-1)}$, $n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$ induced d -IET.

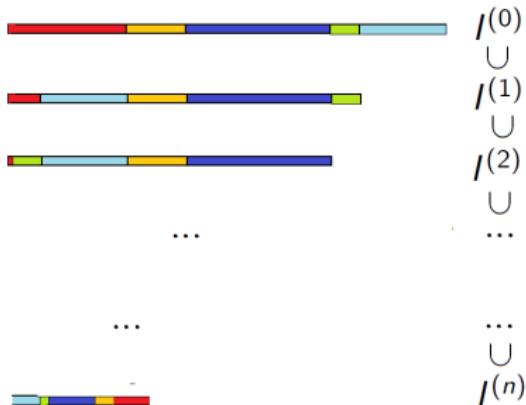
- ▶ Start with $M^{(0)} = (\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$.
- ▶ The algorithm produces $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$, where $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$.



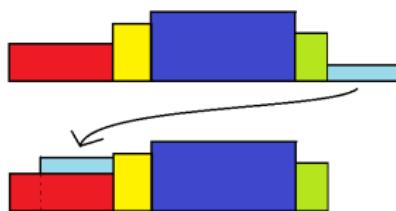
- ▶ Remark: on **zippered rectangles**, the Rauzy-Veech algorithm:
 - ▶ acts by *cutting and stacking*;
 - ▶ is *invertible*: the initial data $(\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$ determines $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$ and heights $q^{(n)}$, $\forall n \in \mathbb{Z}$.

Rauzy-Veech renormalization

- ▶ $I^{(0)} := I$, $T^{(0)} = (\pi^{(0)}, \lambda^{(0)})$;
- ▶ Nested $I^{(n)} \subset I^{(n-1)}$, $n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$ induced d -IET.



- ▶ Start with $M^{(0)} = (\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$.
- ▶ The algorithm produces $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$, where $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$.

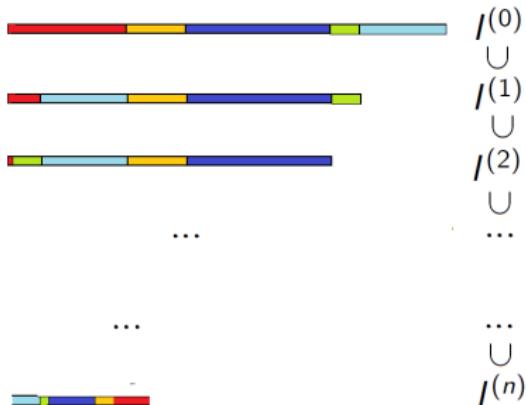
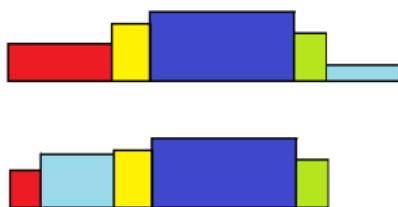


- ▶ Remark: on **zippered rectangles**, the Rauzy-Veech algorithm:
 - ▶ acts by *cutting and stacking*;
 - ▶ is *invertible*: the initial data $(\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$ determines $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$ and heights $q^{(n)}$, $\forall n \in \mathbb{Z}$.

Rauzy-Veech renormalization

- ▶ $I^{(0)} := I$, $T^{(0)} = (\pi^{(0)}, \lambda^{(0)})$;
- ▶ Nested $I^{(n)} \subset I^{(n-1)}$, $n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$ induced d -IET.

- ▶ Start with $M^{(0)} = (\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$.
- ▶ The algorithm produces $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$, where $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$.

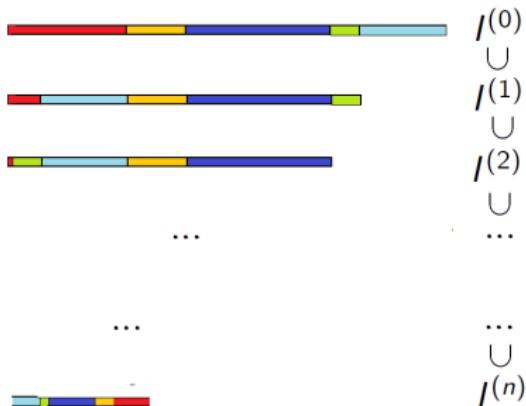
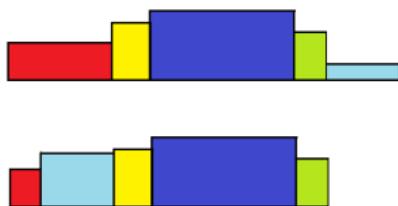


- ▶ Remark: on **zippered rectangles**, the Rauzy-Veech algorithm:
 - ▶ acts by *cutting and stacking*;
 - ▶ is *invertible*: the initial data $(\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$ determines $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$ and heights $q^{(n)}$, $\forall n \in \mathbb{Z}$.

Rauzy-Veech renormalization

- ▶ $I^{(0)} := I$, $T^{(0)} = (\pi^{(0)}, \lambda^{(0)})$;
- ▶ Nested $I^{(n)} \subset I^{(n-1)}$, $n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$ induced d -IET.

- ▶ Start with $M^{(0)} = (\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$.
- ▶ The algorithm produces $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$, where $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$.

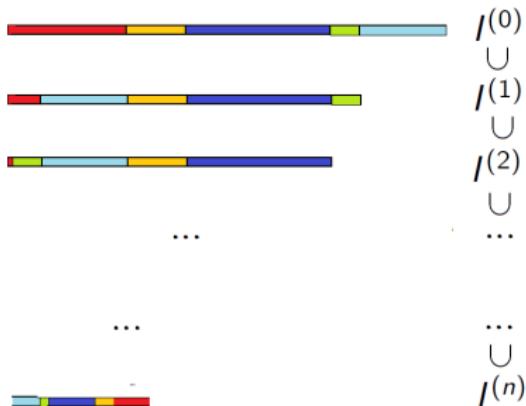
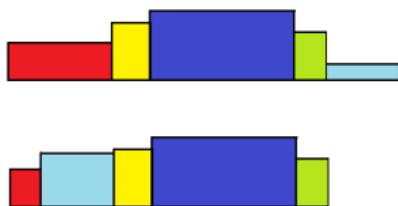


- ▶ Remark: on **zippered rectangles**, the Rauzy-Veech algorithm:
 - ▶ acts by *cutting and stacking*;
 - ▶ is *invertible*: the initial data $(\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$ determines $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$ and heights $q^{(n)}$, $\forall n \in \mathbb{Z}$.

Rauzy-Veech renormalization

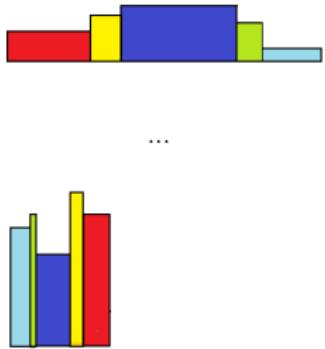
- ▶ $I^{(0)} := I$, $T^{(0)} = (\pi^{(0)}, \lambda^{(0)})$;
- ▶ Nested $I^{(n)} \subset I^{(n-1)}$, $n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$ induced d -IET.

- ▶ Start with $M^{(0)} = (\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$.
- ▶ The algorithm produces $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$, where $T^{(n)} = (\pi^{(n)}, \lambda^{(n)})$.



- ▶ Remark: on **zippered rectangles**, the Rauzy-Veech algorithm:
 - ▶ acts by *cutting and stacking*;
 - ▶ is *invertible*: the initial data $(\pi^{(0)}, \lambda^{(0)}, \tau^{(0)})$ determines $M^{(n)} = (\pi^{(n)}, \lambda^{(n)}, \tau^{(n)})$ and heights $q^{(n)}$, $\forall n \in \mathbb{Z}$.

Rauzy-Veech cocycle



- ▶ Define $B(0, n)_{\alpha, \beta} :=$ number of pieces of $R_{\beta}^{(n)}$ inside the rectangle $R_{\alpha}^{(0)}$
- ▶ The matrices $B(n) := (B(0, n)_{\alpha, \beta})_{\alpha, \beta \in \mathbb{A}}$ are the Rauzy-Veech cocycle.
- ▶ Use *positive acceleration* of Rauzy-Veech induction: $B(n) > 0 \ \forall n;$

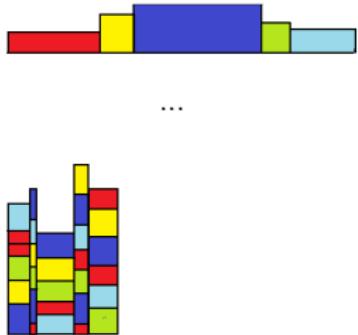
- ▶ Oseledets Thm + $B(n)$ symplectic \Rightarrow for a.e. (π, λ, τ) has $\nu_1 > \dots > \nu_g > 0 = \dots = 0 > \nu_{-g} > \dots > \nu_{-1}$

$$\mathbb{R}^d = \sum_{i=1}^g E_i \oplus \sum_{i=1}^{k-1} E_0 \oplus \sum_{i=1}^g E_{-i},$$

where $v_i \in E_i$ iff $\lim_n \frac{\log |v_i^{(n)}|}{n} = \nu_i$, where $v^{(n)} := A^{(n)}v$.

- ▶ Remark: the decomposition $\Gamma(T) = F_+ \supset F_0 \supset F_-$ comes from here: $F_- = \sum_{i<0} E_{-i}$, $F_0 = \sum_{i \leq 0} E_i$.

Rauzy-Veech cocycle



- ▶ Define $B(0, n)_{\alpha, \beta} :=$ number of pieces of $R_{\beta}^{(n)}$ inside the rectangle $R_{\alpha}^{(0)}$
- ▶ The matrices $B(n) := (B(0, n)_{\alpha, \beta})_{\alpha, \beta \in \mathbb{A}}$ are the Rauzy-Veech cocycle.
- ▶ Use *positive acceleration* of Rauzy-Veech induction: $B(n) > 0 \ \forall n$;

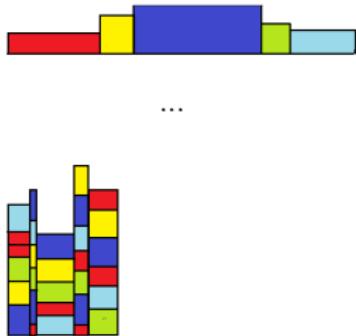
- ▶ Oseledets Thm + $B(n)$ *symplectic* \Rightarrow for a.e. (π, λ, τ) has $\nu_1 > \dots > \nu_g > 0 = \dots = 0 > \nu_{-g} > \dots > \nu_{-1}$

$$\mathbb{R}^d = \sum_{i=1}^g E_i \oplus \sum_{i=1}^{k-1} E_0 \oplus \sum_{i=1}^g E_{-i},$$

where $v_i \in E_i$ iff $\lim_n \frac{\log |v_i^{(n)}|}{n} = \nu_i$, where $v^{(n)} := A^{(n)} v$.

- ▶ Remark: the decomposition $\Gamma(T) = F_+ \supset F_0 \supset F_-$ comes from here: $F_- = \sum_{i<0} E_{-i}$, $F_0 = \sum_{i \leq 0} E_i$.

Rauzy-Veech cocycle



- ▶ Define $B(0, n)_{\alpha, \beta} :=$ number of pieces of $R_{\beta}^{(n)}$ inside the rectangle $R_{\alpha}^{(0)}$
- ▶ The matrices $B(n) := (B(0, n)_{\alpha, \beta})_{\alpha, \beta \in \mathbb{A}}$ are the Rauzy-Veech cocycle.
- ▶ Use *positive acceleration* of Rauzy-Veech induction: $B(n) > 0 \ \forall n$;

- ▶ Oseledets Thm + $B(n)$ symplectic \Rightarrow for a.e. (π, λ, τ) has $\nu_1 > \dots > \nu_g > 0 = \dots = 0 > \nu_{-g} > \dots > \nu_{-1}$

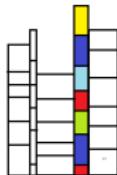
$$\mathbb{R}^d = \sum_{i=1}^g E_i \oplus \sum_{i=1}^{k-1} E_0 \oplus \sum_{i=1}^g E_{-i},$$

where $v_i \in E_i$ iff $\lim_n \frac{\log |v_i^{(n)}|}{n} = \nu_i$, where $v^{(n)} := A^{(n)} v$.

- ▶ Remark: the decomposition $\Gamma(T) = F_+ \supset F_0 \supset F_-$ comes from here: $F_- = \sum_{i<0} E_{-i}$, $F_0 = \sum_{i \leq 0} E_i$.

Rauzy-Veech cocycle

...



- ▶ Define $B(0, n)_{\alpha, \beta} :=$ number of pieces of $R_{\beta}^{(n)}$ inside the rectangle $R_{\alpha}^{(0)}$
- ▶ The matrices $B(n) := (B(0, n)_{\alpha, \beta})_{\alpha, \beta \in \mathbb{A}}$ are the Rauzy-Veech cocycle.
- ▶ Use *positive acceleration* of Rauzy-Veech induction: $B(n) > 0 \ \forall n$;

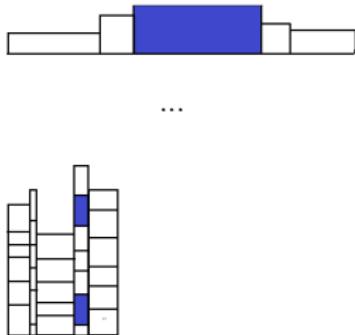
- ▶ Oseledets Thm + $B(n)$ *symplectic* \Rightarrow for a.e. (π, λ, τ) has $\nu_1 > \dots > \nu_g > 0 = \dots = 0 > \nu_{-g} > \dots > \nu_{-1}$

$$\mathbb{R}^d = \sum_{i=1}^g E_i \oplus \sum_{i=1}^{k-1} E_0 \oplus \sum_{i=1}^g E_{-i},$$

where $v_i \in E_i$ iff $\lim_n \frac{\log |v_i^{(n)}|}{n} = \nu_i$, where $v^{(n)} := A^{(n)} v$.

- ▶ Remark: the decomposition $\Gamma(T) = F_+ \supset F_0 \supset F_-$ comes from here: $F_- = \sum_{i<0} E_{-i}$, $F_0 = \sum_{i \leq 0} E_i$.

Rauzy-Veech cocycle



- ▶ Define $B(0, n)_{\alpha, \beta} :=$ number of pieces of $R_{\beta}^{(n)}$ inside the rectangle $R_{\alpha}^{(0)}$
- ▶ The matrices $B(n) := (B(0, n)_{\alpha, \beta})_{\alpha, \beta \in \mathbb{A}}$ are the Rauzy-Veech cocycle.
- ▶ Use *positive acceleration* of Rauzy-Veech induction: $B(n) > 0 \ \forall n$;

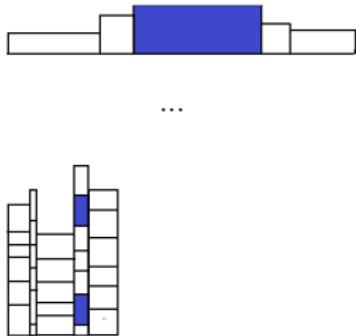
- ▶ Oseledets Thm + $B(n)$ *symplectic* \Rightarrow for a.e. (π, λ, τ) has $\nu_1 > \dots > \nu_g > 0 = \dots = 0 > \nu_{-g} > \dots > \nu_{-1}$

$$\mathbb{R}^d = \sum_{i=1}^g E_i \oplus \sum_{i=1}^{k-1} E_0 \oplus \sum_{i=1}^g E_{-i},$$

where $v_i \in E_i$ iff $\lim_n \frac{\log |v_i^{(n)}|}{n} = \nu_i$, where $v^{(n)} := A^{(n)} v$.

- ▶ Remark: the decomposition $\Gamma(T) = F_+ \supset F_0 \supset F_-$ comes from here: $F_- = \sum_{i<0} E_{-i}$, $F_0 = \sum_{i \leq 0} E_i$.

Rauzy-Veech cocycle



- ▶ Define $B(0, n)_{\alpha, \beta} :=$ number of pieces of $R_{\beta}^{(n)}$ inside the rectangle $R_{\alpha}^{(0)}$
- ▶ The matrices $B(n) := (B(0, n)_{\alpha, \beta})_{\alpha, \beta \in \mathbb{A}}$ are the Rauzy-Veech cocycle.
- ▶ Use *positive acceleration* of Rauzy-Veech induction: $B(n) > 0 \ \forall n$;

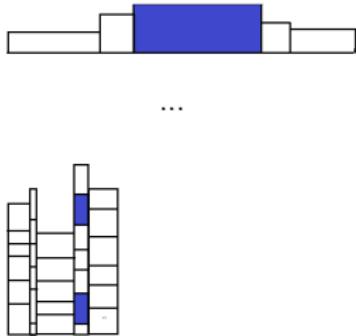
- ▶ Oseledets Thm + $B(n)$ symplectic \Rightarrow for a.e. (π, λ, τ) has $\nu_1 > \dots > \nu_g > 0 = \dots = 0 > \nu_{-g} > \dots > \nu_{-1}$

$$\mathbb{R}^d = \sum_{i=1}^g E_i \oplus \sum_{i=1}^{k-1} E_0 \oplus \sum_{i=1}^g E_{-i},$$

where $v_i \in E_i$ iff $\lim_n \frac{\log |v_i^{(n)}|}{n} = \nu_i$, where $v^{(n)} := A^{(n)} v$.

- ▶ Remark: the decomposition $\Gamma(T) = F_+ \supset F_0 \supset F_-$ comes from here: $F_- = \sum_{i<0} E_{-i}$, $F_0 = \sum_{i \leq 0} E_i$.

Rauzy-Veech cocycle



- ▶ Define $B(0, n)_{\alpha, \beta} :=$ number of pieces of $R_{\beta}^{(n)}$ inside the rectangle $R_{\alpha}^{(0)}$
- ▶ The matrices $B(n) := (B(0, n)_{\alpha, \beta})_{\alpha, \beta \in \mathbb{A}}$ are the Rauzy-Veech cocycle.
- ▶ Use *positive acceleration* of Rauzy-Veech induction: $B(n) > 0 \ \forall n;$

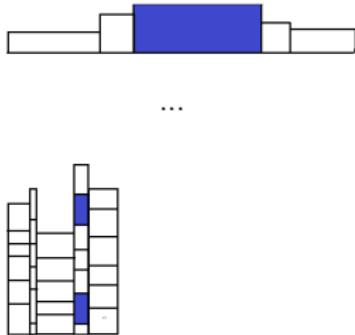
- ▶ Oseledets Thm + $B(n)$ symplectic \Rightarrow for a.e. (π, λ, τ) has $\nu_1 > \dots > \nu_g > 0 = \dots = 0 > \nu_{-g} > \dots > \nu_{-1}$

$$\mathbb{R}^d = \sum_{i=1}^g E_i \oplus \sum_{i=1}^{k-1} E_0 \oplus \sum_{i=1}^g E_{-i},$$

where $v_i \in E_i$ iff $\lim_n \frac{\log |v_i^{(n)}|}{n} = \nu_i$, where $v^{(n)} := A^{(n)} v$.

- ▶ Remark: the decomposition $\Gamma(T) = F_+ \supset F_0 \supset F_-$ comes from here: $F_- = \sum_{i<0} E_{-i}$, $F_0 = \sum_{i \leq 0} E_i$.

Rauzy-Veech cocycle



- ▶ Define $B(0, n)_{\alpha, \beta} :=$ number of pieces of $R_{\beta}^{(n)}$ inside the rectangle $R_{\alpha}^{(0)}$
- ▶ The matrices $B(n) := (B(0, n)_{\alpha, \beta})_{\alpha, \beta \in \mathbb{A}}$ are the Rauzy-Veech cocycle.
- ▶ Use *positive acceleration* of Rauzy-Veech induction: $B(n) > 0 \ \forall n;$

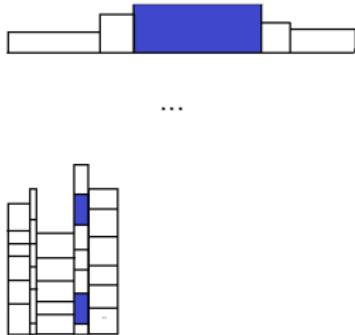
- ▶ Oseledets Thm + $B(n)$ *symplectic* \Rightarrow for a.e. (π, λ, τ) has $\nu_1 > \dots > \nu_g > 0 = \dots = 0 > \nu_{-g} > \dots > \nu_{-1}$

$$\mathbb{R}^d = \sum_{i=1}^g E_i \oplus \sum_{i=1}^{k-1} E_0 \oplus \sum_{i=1}^g E_{-i},$$

where $v_i \in E_i$ iff $\lim_n \frac{\log |v_i^{(n)}|}{n} = \nu_i$, where $v^{(n)} := A^{(n)} v$.

- ▶ Remark: the decomposition $\Gamma(T) = F_+ \supset F_0 \supset F_-$ comes from here: $F_- = \sum_{i<0} E_{-i}$, $F_0 = \sum_{i \leq 0} E_i$.

Rauzy-Veech cocycle



- ▶ Define $B(0, n)_{\alpha, \beta} :=$ number of pieces of $R_{\beta}^{(n)}$ inside the rectangle $R_{\alpha}^{(0)}$
- ▶ The matrices $B(n) := (B(0, n)_{\alpha, \beta})_{\alpha, \beta \in \mathbb{A}}$ are the Rauzy-Veech cocycle.
- ▶ Use *positive acceleration* of Rauzy-Veech induction: $B(n) > 0 \ \forall n;$

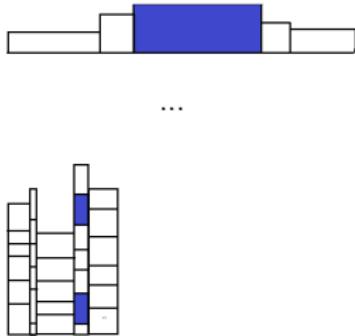
- ▶ Oseledets Thm + $B(n)$ *symplectic* \Rightarrow for a.e. (π, λ, τ) has $\nu_1 > \dots > \nu_g > 0 = \dots = 0 > \nu_{-g} > \dots > \nu_{-1}$

$$\mathbb{R}^d = \sum_{i=1}^g E_i \oplus \sum_{i=1}^{k-1} E_0 \oplus \sum_{i=1}^g E_{-i},$$

where $v_i \in E_i$ iff $\lim_n \frac{\log |v_i^{(n)}|}{n} = \nu_i$, where $v^{(n)} := A^{(n)} v$.

- ▶ Remark: the decomposition $\Gamma(T) = F_+ \supset F_0 \supset F_-$ comes from here: $F_- = \sum_{i<0} E_{-i}$, $F_0 = \sum_{i \leq 0} E_i$.

Rauzy-Veech cocycle



- ▶ Define $B(0, n)_{\alpha, \beta} :=$ number of pieces of $R_{\beta}^{(n)}$ inside the rectangle $R_{\alpha}^{(0)}$
- ▶ The matrices $B(n) := (B(0, n)_{\alpha, \beta})_{\alpha, \beta \in \mathbb{A}}$ are the Rauzy-Veech cocycle.
- ▶ Use *positive acceleration* of Rauzy-Veech induction: $B(n) > 0 \ \forall n;$

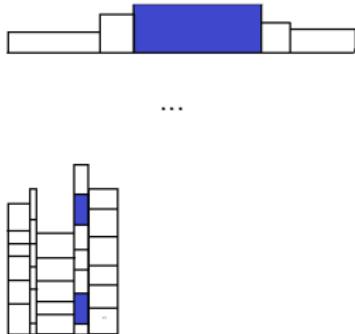
- ▶ Oseledets Thm + $B(n)$ *symplectic* \Rightarrow for a.e. (π, λ, τ) has $\nu_1 > \dots > \nu_g > 0 = \dots = 0 > \nu_{-g} > \dots > \nu_{-1}$

$$\mathbb{R}^d = \sum_{i=1}^g E_i \oplus \sum_{i=1}^{k-1} E_0 \oplus \sum_{i=1}^g E_{-i},$$

where $\nu_i \in E_i$ iff $\lim_n \frac{\log |\nu_i^{(n)}|}{n} = \nu_i$, where $\nu^{(n)} := A^{(n)}\nu$.

- ▶ Remark: the decomposition $\Gamma(T) = F_+ \supset F_0 \supset F_-$ comes from here: $F_- = \sum_{i<0} E_{-i}$, $F_0 = \sum_{i \leq 0} E_i$.

Rauzy-Veech cocycle



- ▶ Define $B(0, n)_{\alpha, \beta} :=$ number of pieces of $R_{\beta}^{(n)}$ inside the rectangle $R_{\alpha}^{(0)}$
- ▶ The matrices $B(n) := (B(0, n)_{\alpha, \beta})_{\alpha, \beta \in \mathbb{A}}$ are the Rauzy-Veech cocycle.
- ▶ Use *positive acceleration* of Rauzy-Veech induction: $B(n) > 0 \ \forall n;$

- ▶ Oseledets Thm + $B(n)$ *symplectic* \Rightarrow for a.e. (π, λ, τ) has $\nu_1 > \dots > \nu_g > 0 = \dots = 0 > \nu_{-g} > \dots > \nu_{-1}$

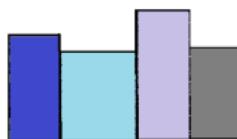
$$\mathbb{R}^d = \sum_{i=1}^g E_i \oplus \sum_{i=1}^{k-1} E_0 \oplus \sum_{i=1}^g E_{-i},$$

where $v_i \in E_i$ iff $\lim_n \frac{\log |v_i^{(n)}|}{n} = \nu_i$, where $v^{(n)} := A^{(n)}v$.

- ▶ Remark: the decomposition $\Gamma(T) = F_+ \supset F_0 \supset F_-$ comes from here: $F_- = \sum_{i<0} E_{-i}$, $F_0 = \sum_{i \leq 0} E_i$.

Constructing Limit Shapes

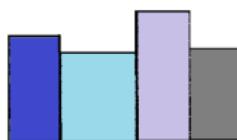
- ▶ Let (π, λ, τ) Oseledets generic.
- ▶ Fix $f \in E_i$, $i > 0$, so $\lim_n \frac{\log B(n)f}{n} = \nu_i > 0$.
- ▶ Renormalize *backwards*: consider $T^{(-n)}$, $q^{(-n)}$, $f^{(-n)}$, for $-n < 0$.



- ▶ Fix $\alpha \in A$, q_α is subdivided into $q_\beta^{(-n)}$ time increments.
- ▶ Plot $\Omega_{I_\alpha}^{(-n)}$ graph of Birkhoff sums of $f^{(-n)}$ over $T^{(-n)}$ starting at $x \in I_\alpha$ in $q_\beta^{(-n)}$ times intervals.
- ▶ If $-m < -n$, time intervals are finer, and $\Omega_{I_\alpha}^{(-m)}$ refines $\Omega_{I_\alpha}^{(-n)}$.

Constructing Limit Shapes

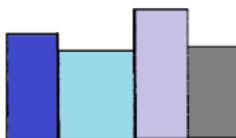
- ▶ Let (π, λ, τ) Oseledets generic.
- ▶ Fix $f \in E_i$, $i > 0$, so $\lim_n \frac{\log B(n)f}{n} = \nu_i > 0$.
- ▶ Renormalize *backwards*: consider $T^{(-n)}$, $q^{(-n)}$, $f^{(-n)}$, for $-n < 0$.



- ▶ Fix $\alpha \in A$, q_α is subdivided into $q_\beta^{(-n)}$ time increments.
- ▶ Plot $\Omega_{I_\alpha}^{(-n)}$ graph of Birkhoff sums of $f^{(-n)}$ over $T^{(-n)}$ starting at $x \in I_\alpha$ in $q_\beta^{(-n)}$ times intervals.
- ▶ If $-m < -n$, time intervals are finer, and $\Omega_{I_\alpha}^{(-m)}$ refines $\Omega_{I_\alpha}^{(-n)}$.

Constructing Limit Shapes

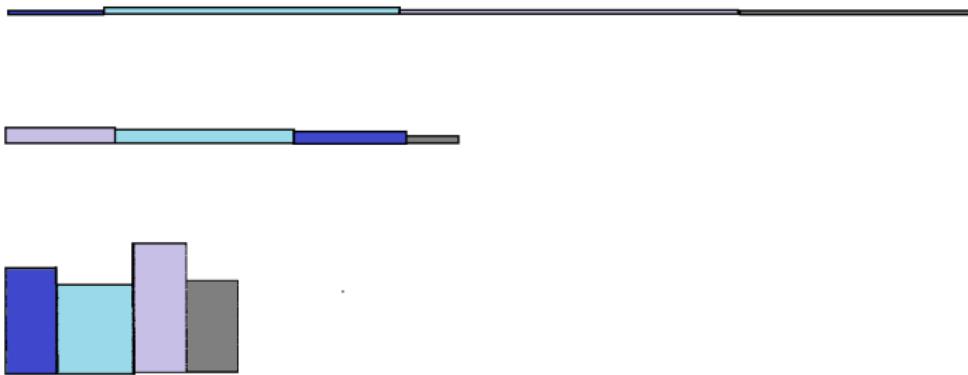
- ▶ Let (π, λ, τ) Oseledets generic.
- ▶ Fix $f \in E_i$, $i > 0$, so $\lim_n \frac{\log B(n)f}{n} = \nu_i > 0$.
- ▶ Renormalize *backwards*: consider $T^{(-n)}$, $q^{(-n)}$, $f^{(-n)}$, for $-n < 0$.



- ▶ Fix $\alpha \in \mathcal{A}$; q_α is subdivided into $q_\beta^{(-n)}$ time increments.
- ▶ Plot $\Omega_{i,\alpha}^{(-n)}$ graph of Birkhoff sums of $f^{(-n)}$ over $T^{(-n)}$ starting at $x \in I_\alpha$ in $q_\beta^{(-n)}$ times intervals.
- ▶ If $-m < -n$, time intervals are finer, and $\Omega_{i,\alpha}^{(-m)}$ refines $\Omega_{i,\alpha}^{(-n)}$.

Constructing Limit Shapes

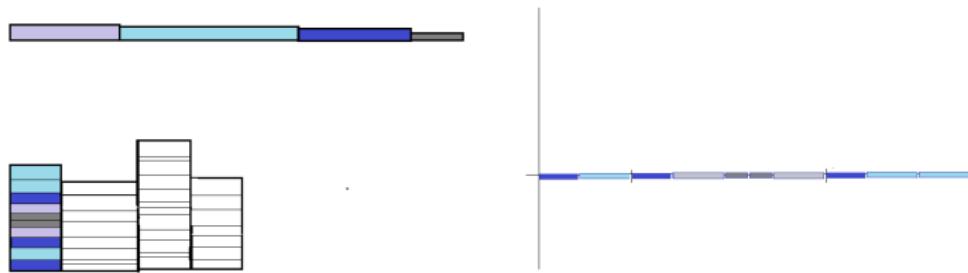
- ▶ Let (π, λ, τ) Oseledets generic.
- ▶ Fix $f \in E_i$, $i > 0$, so $\lim_n \frac{\log B(n)f}{n} = \nu_i > 0$.
- ▶ Renormalize *backwards*: consider $T^{(-n)}$, $q^{(-n)}$, $f^{(-n)}$, for $-n < 0$.



- ▶ Fix $\alpha \in \mathcal{A}$; q_α is subdivided into $q_\beta^{(-n)}$ time increments.
- ▶ Plot $\Omega_{i,\alpha}^{(-n)}$ graph of Birkhoff sums of $f^{(-n)}$ over $T^{(-n)}$ starting at $x \in I_\alpha$ in $q_\beta^{(-n)}$ times intervals.
- ▶ If $-m < -n$, time intervals are finer, and $\Omega_{i,\alpha}^{(-m)}$ refines $\Omega_{i,\alpha}^{(-n)}$.

Constructing Limit Shapes

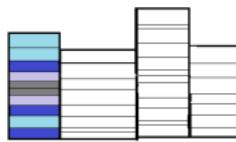
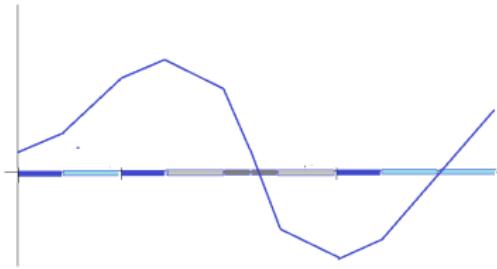
- ▶ Let (π, λ, τ) Oseledets generic.
- ▶ Fix $f \in E_i$, $i > 0$, so $\lim_n \frac{\log B(n)f}{n} = \nu_i > 0$.
- ▶ Renormalize *backwards*: consider $T^{(-n)}$, $q^{(-n)}$, $f^{(-n)}$, for $-n < 0$.



- ▶ Fix $\alpha \in \mathcal{A}$; q_α is subdivided into $q_\beta^{(-n)}$ time increments.
- ▶ Plot $\Omega_{i,\alpha}^{(-n)}$ graph of Birkhoff sums of $f^{(-n)}$ over $T^{(-n)}$ starting at $x \in I_\alpha$ in $q_\beta^{(-n)}$ times intervals.
- ▶ If $-m < -n$, time intervals are finer, and $\Omega_{i,\alpha}^{(-m)}$ refines $\Omega_{i,\alpha}^{(-n)}$.

Constructing Limit Shapes

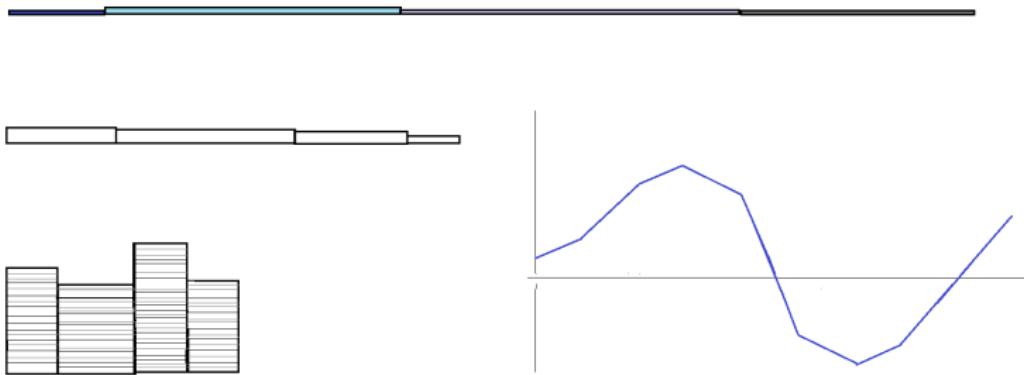
- ▶ Let (π, λ, τ) Oseledets generic.
- ▶ Fix $f \in E_i$, $i > 0$, so $\lim_n \frac{\log B(n)f}{n} = \nu_i > 0$.
- ▶ Renormalize *backwards*: consider $T^{(-n)}$, $q^{(-n)}$, $f^{(-n)}$, for $-n < 0$.



- ▶ Fix $\alpha \in \mathcal{A}$; q_α is subdivided into $q_\beta^{(-n)}$ time increments.
- ▶ Plot $\Omega_{i,\alpha}^{(-n)}$ graph of Birkhoff sums of $f^{(-n)}$ over $T^{(-n)}$ starting at $x \in I_\alpha$ in $q_\beta^{(-n)}$ times intervals.
- ▶ If $-m < -n$, time intervals are finer, and $\Omega_{i,\alpha}^{(-m)}$ refines $\Omega_{i,\alpha}^{(-n)}$.

Constructing Limit Shapes

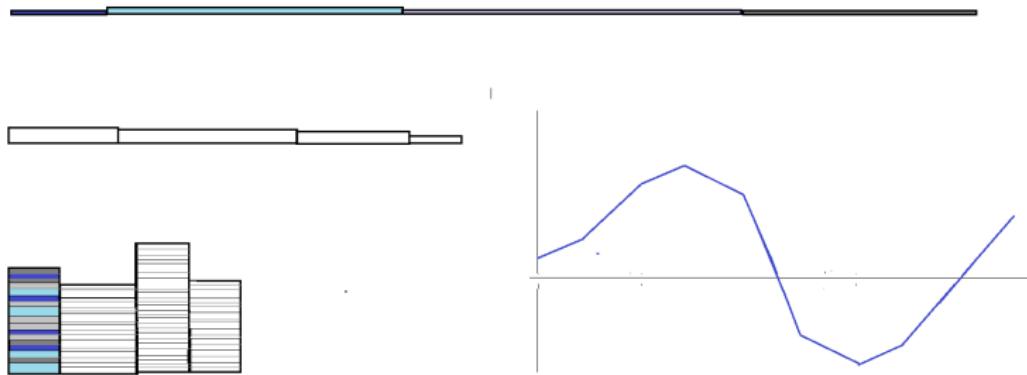
- ▶ Let (π, λ, τ) Oseledets generic.
- ▶ Fix $f \in E_i$, $i > 0$, so $\lim_n \frac{\log B(n)f}{n} = \nu_i > 0$.
- ▶ Renormalize *backwards*: consider $T^{(-n)}$, $q^{(-n)}$, $f^{(-n)}$, for $-n < 0$.



- ▶ Fix $\alpha \in \mathcal{A}$; q_α is subdivided into $q_\beta^{(-n)}$ time increments.
- ▶ Plot $\Omega_{i,\alpha}^{(-n)}$ graph of Birkhoff sums of $f^{(-n)}$ over $T^{(-n)}$ starting at $x \in I_\alpha$ in $q_\beta^{(-n)}$ times intervals.
- ▶ If $-m < -n$, time intervals are finer, and $\Omega_{i,\alpha}^{(-m)}$ refines $\Omega_{i,\alpha}^{(-n)}$.

Constructing Limit Shapes

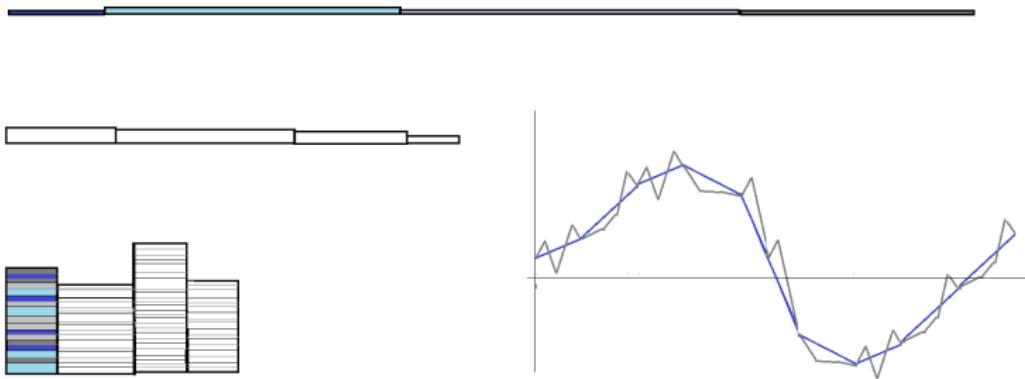
- ▶ Let (π, λ, τ) Oseledets generic.
- ▶ Fix $f \in E_i$, $i > 0$, so $\lim_n \frac{\log B(n)f}{n} = \nu_i > 0$.
- ▶ Renormalize *backwards*: consider $T^{(-n)}$, $q^{(-n)}$, $f^{(-n)}$, for $-n < 0$.



- ▶ Fix $\alpha \in \mathcal{A}$; q_α is subdivided into $q_\beta^{(-n)}$ time increments.
- ▶ Plot $\Omega_{i,\alpha}^{(-n)}$ graph of Birkhoff sums of $f^{(-n)}$ over $T^{(-n)}$ starting at $x \in I_\alpha$ in $q_\beta^{(-n)}$ times intervals.
- ▶ If $-m < -n$, time intervals are finer, and $\Omega_{i,\alpha}^{(-m)}$ refines $\Omega_{i,\alpha}^{(-n)}$.

Constructing Limit Shapes

- ▶ Let (π, λ, τ) Oseledets generic.
- ▶ Fix $f \in E_i$, $i > 0$, so $\lim_n \frac{\log B(n)f}{n} = \nu_i > 0$.
- ▶ Renormalize *backwards*: consider $T^{(-n)}$, $q^{(-n)}$, $f^{(-n)}$, for $-n < 0$.



- ▶ Fix $\alpha \in \mathcal{A}$; q_α is subdivided into $q_\beta^{(-n)}$ time increments.
- ▶ Plot $\Omega_{i,\alpha}^{(-n)}$ graph of Birkhoff sums of $f^{(-n)}$ over $T^{(-n)}$ starting at $x \in I_\alpha$ in $q_\beta^{(-n)}$ times intervals.
- ▶ If $-m < -n$, time intervals are finer, and $\Omega_{i,\alpha}^{(-m)}$ refines $\Omega_{i,\alpha}^{(-n)}$.

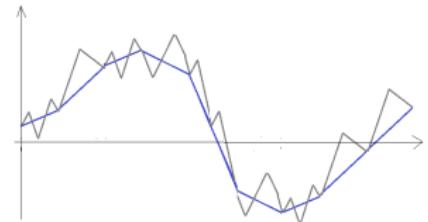
Limit Shapes

Proposition (Marmi-Moussa-Yoccoz)

For a.e. (π, λ, τ) (Oseledets generic),

$$\lim_{n \rightarrow \infty} \Omega_{i,\alpha}^{(-n)} = \Omega_{\alpha}^i = \Omega_{\alpha}^i(f, \pi, \lambda, \tau) \quad (\text{limit shape})$$

in the Hausdorff topology, $\forall \alpha \in \mathcal{A}$.
(exponentially fast in $-n$).



Rk: the limit shape Ω_{α}^i is a ν -Holder function on $[0, q_{\alpha}^{(0)}]$ $\forall \nu < \frac{\nu_i}{\nu_1}$.

► Application to Birkhoff sums: (convergence to moving shape)

The graph of $S_k f_i$ Birkhoff sums over $T = T^{(0)}$ for $x_0 = 0$, for $k = 0, \dots, q_{\alpha_0}^{(n)}$, $n > 0$,
rescaled, approaches as $n \rightarrow +\infty$ the (moving) limit shape

$$\Omega_{\alpha_0, i} \left(f, \lambda^{(n)}, \pi^{(n)}, \tau^{(n)} \right).$$

[here α_0 is the first interval]

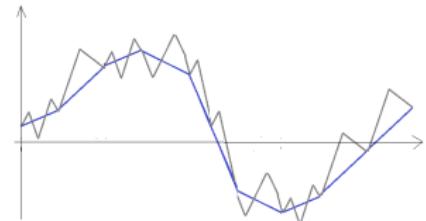
Limit Shapes

Proposition (Marmi-Moussa-Yoccoz)

For a.e. (π, λ, τ) (Oseledets generic),

$$\lim_{n \rightarrow \infty} \Omega_{i, \alpha}^{(-n)} = \Omega_{\alpha}^i = \Omega_{\alpha}^i(f, \pi, \lambda, \tau) \quad (\text{limit shape})$$

in the Hausdorff topology, $\forall \alpha \in \mathcal{A}$.
(exponentially fast in $-n$).



Rk: the limit shape Ω_{α}^i is a ν -Holder function on $[0, q_{\alpha}^{(0)}]$ $\forall \nu < \frac{\nu_i}{\nu_1}$.

► Application to Birkhoff sums: (convergence to moving shape)

The graph of $S_k f_i$ Birkhoff sums over $T = T^{(0)}$ for $x_0 = 0$, for $k = 0, \dots, q_{\alpha_0}^{(n)}$, $n > 0$,
rescaled, approaches as $n \rightarrow +\infty$ the
(moving) limit shape

$$\Omega_{\alpha_0, i} \left(f, \lambda^{(n)}, \pi^{(n)}, \tau^{(n)} \right).$$

[here α_0 is the first interval]

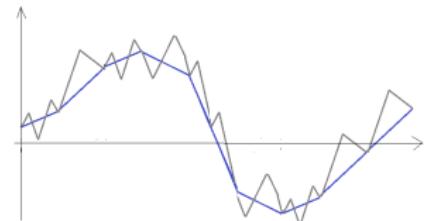
Limit Shapes

Proposition (Marmi-Moussa-Yoccoz)

For a.e. (π, λ, τ) (Oseledets generic),

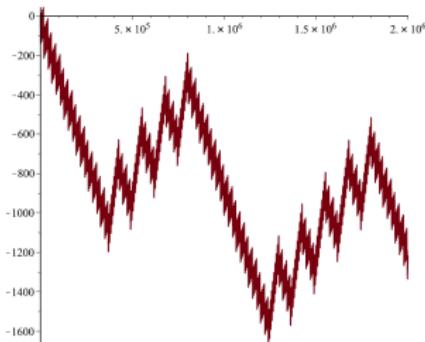
$$\lim_{n \rightarrow \infty} \Omega_{i, \alpha}^{(-n)} = \Omega_{\alpha}^i = \Omega_{\alpha}^i(f, \pi, \lambda, \tau) \quad (\text{limit shape})$$

in the Hausdorff topology, $\forall \alpha \in \mathcal{A}$.
(exponentially fast in $-n$).



Rk: the limit shape Ω_{α}^i is a ν -Holder function on $[0, q_{\alpha}^{(0)}]$ $\forall \nu < \frac{\nu_i}{\nu_1}$.

► Application to Birkhoff sums: (convergence to moving shape)



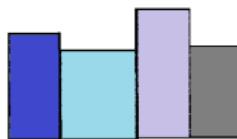
The graph of $S_k f_i$ Birkhoff sums over $T = T^{(0)}$ for $x_0 = 0$, for $k = 0, \dots, q_{\alpha_0}^{(n)}$, $n > 0$,
rescaled, approaches as $n \rightarrow +\infty$ the
(moving) limit shape

$$\Omega_{\alpha_0, i} \left(f, \lambda^{(n)}, \pi^{(n)}, \tau^{(n)} \right).$$

[here α_0 is the first interval]

Backward graphs of central Birkhoff sums

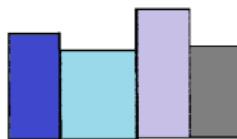
- ▶ Let (π, λ, τ) Oseledets generic. Fix $f \in E_0 \setminus E_-$ (e.g. **corrected characteristic function**).
- ▶ Consider $T^{(-n)}, q^{(-n)}, f^{(-n)}$, for $-n < 0$. Fix $\alpha \in \mathcal{A}$.
- ▶ Plot $\Omega_{0,\alpha}^{(-n)}$ graph of Birkhoff sums of $f^{(-n)}$ over $T^{(-n)}$ starting at $x \in I_\alpha$ in $q^{(-n)\beta}$ times intervals.



- ▶ Consider $-m < -n$. As before, $\Omega_{0,\alpha}^{(-m)}$ refines $\Omega_{0,\alpha}^{(-n)}$.
- ▶ *Remark:* $\Omega_{0,\alpha}^{(-n)}$ DO NOT converge as graphs as $-n \rightarrow -\infty$ (oscillations of constant size).

Backward graphs of central Birkhoff sums

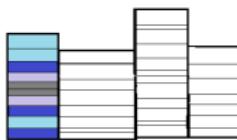
- ▶ Let (π, λ, τ) Oseledets generic. Fix $f \in E_0 \setminus E_-$ (e.g. **corrected characteristic function**).
- ▶ Consider $T^{(-n)}, q^{(-n)}, f^{(-n)}$, for $-n < 0$. Fix $\alpha \in \mathcal{A}$.
- ▶ Plot $\Omega_{0,\alpha}^{(-n)}$ graph of Birkhoff sums of $f^{(-n)}$ over $T^{(-n)}$ starting at $x \in I_\alpha$ in $q^{(-n)\beta}$ times intervals.



- ▶ Consider $-m < -n$. As before, $\Omega_{0,\alpha}^{(-m)}$ refines $\Omega_{0,\alpha}^{(-n)}$.
- ▶ *Remark:* $\Omega_{0,\alpha}^{(-n)}$ DO NOT converge as graphs as $-n \rightarrow -\infty$ (oscillations of constant size).

Backward graphs of central Birkhoff sums

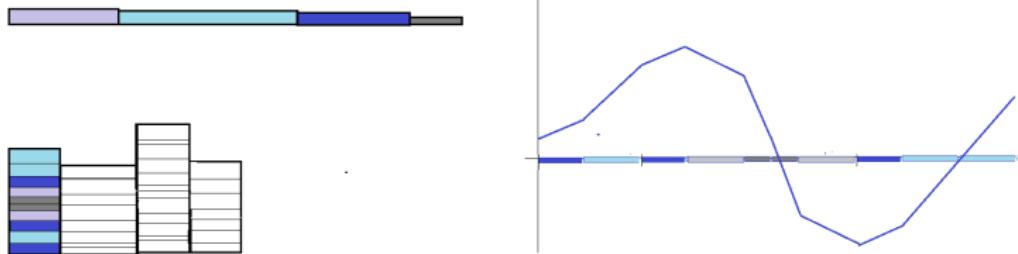
- ▶ Let (π, λ, τ) Oseledets generic. Fix $f \in E_0 \setminus E_-$ (e.g. **corrected characteristic function**).
- ▶ Consider $T^{(-n)}, q^{(-n)}, f^{(-n)}$, for $-n < 0$. Fix $\alpha \in \mathcal{A}$.
- ▶ Plot $\Omega_{0,\alpha}^{(-n)}$ graph of Birkhoff sums of $f^{(-n)}$ over $T^{(-n)}$ starting at $x \in I_\alpha$ in $q^{(-n)\beta}$ times intervals.



- ▶ Consider $-m < -n$. As before, $\Omega_{0,\alpha}^{(-m)}$ refines $\Omega_{0,\alpha}^{(-n)}$.
- ▶ *Remark:* $\Omega_{0,\alpha}^{(-n)}$ DO NOT converge as graphs as $-n \rightarrow -\infty$ (oscillations of constant size).

Backward graphs of central Birkhoff sums

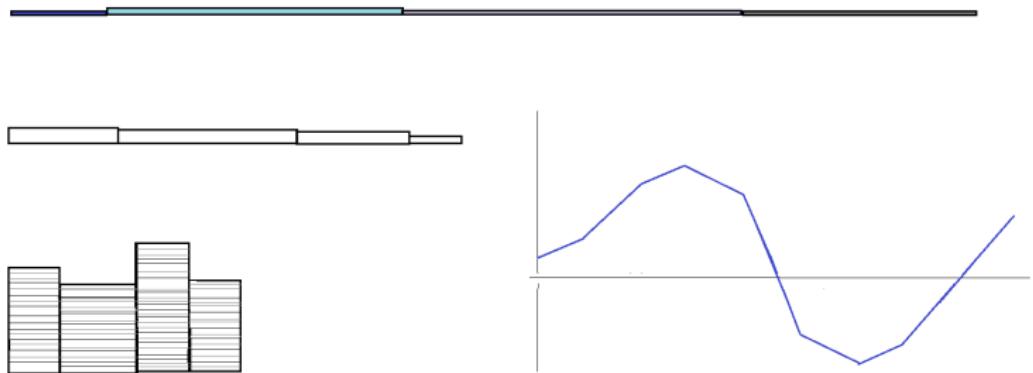
- ▶ Let (π, λ, τ) Oseledets generic. Fix $f \in E_0 \setminus E_-$ (e.g. [corrected characteristic function](#)).
- ▶ Consider $T^{(-n)}, q^{(-n)}, f^{(-n)}$, for $-n < 0$. Fix $\alpha \in \mathcal{A}$.
- ▶ [Plot](#) $\Omega_{0,\alpha}^{(-n)}$ graph of Birkhoff sums of $f^{(-n)}$ over $T^{(-n)}$ starting at $x \in I_\alpha$ in $q^{(-n)\beta}$ times intervals.



- ▶ Consider $-m < -n$. As before, $\Omega_{0,\alpha}^{(-m)}$ refines $\Omega_{0,\alpha}^{(-n)}$.
- ▶ *Remark:* $\Omega_{0,\alpha}^{(-n)}$ DO NOT converge as graphs as $-n \rightarrow -\infty$ (oscillations of constant size).

Backward graphs of central Birkhoff sums

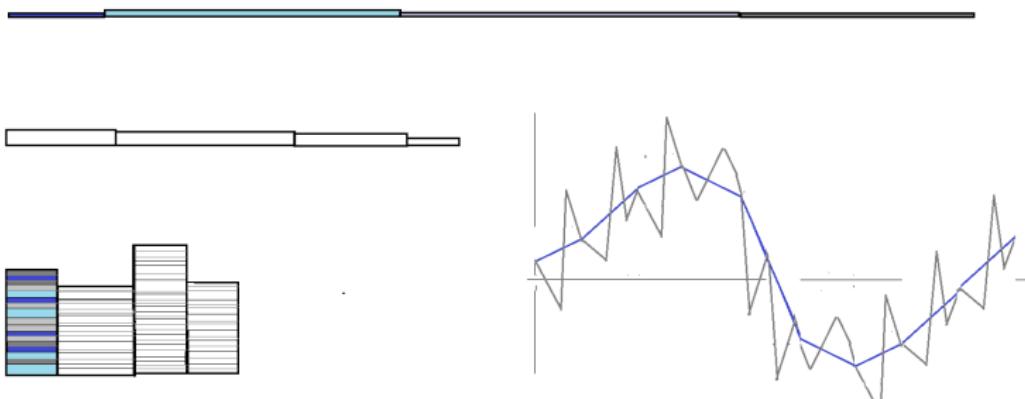
- ▶ Let (π, λ, τ) Oseledets generic. Fix $f \in E_0 \setminus E_-$ (e.g. [corrected characteristic function](#)).
- ▶ Consider $T^{(-n)}, q^{(-n)}, f^{(-n)}$, for $-n < 0$. Fix $\alpha \in \mathcal{A}$.
- ▶ [Plot](#) $\Omega_{0,\alpha}^{(-n)}$ graph of Birkhoff sums of $f^{(-n)}$ over $T^{(-n)}$ starting at $x \in I_\alpha$ in $q^{(-n)\beta}$ times intervals.



- ▶ Consider $-m < -n$. As before, $\Omega_{0,\alpha}^{(-m)}$ refines $\Omega_{0,\alpha}^{(-n)}$.
- ▶ *Remark:* $\Omega_{0,\alpha}^{(-n)}$ DO NOT converge as graphs as $-n \rightarrow -\infty$ (oscillations of constant size).

Backward graphs of central Birkhoff sums

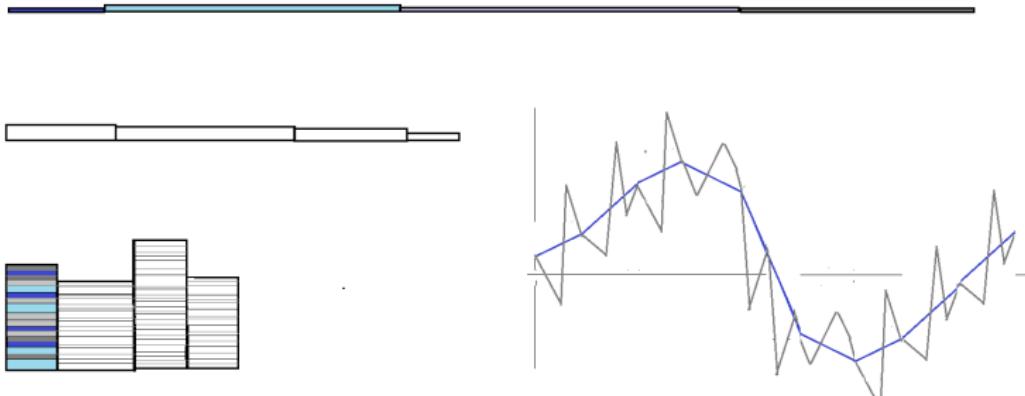
- ▶ Let (π, λ, τ) Oseledets generic. Fix $f \in E_0 \setminus E_-$ (e.g. [corrected characteristic function](#)).
- ▶ Consider $T^{(-n)}, q^{(-n)}, f^{(-n)}$, for $-n < 0$. Fix $\alpha \in \mathcal{A}$.
- ▶ [Plot](#) $\Omega_{0,\alpha}^{(-n)}$ graph of Birkhoff sums of $f^{(-n)}$ over $T^{(-n)}$ starting at $x \in I_\alpha$ in $q^{(-n)\beta}$ times intervals.



- ▶ Consider $-m < -n$. As before, $\Omega_{0,\alpha}^{(-m)}$ [refines](#) $\Omega_{0,\alpha}^{(-n)}$.
- ▶ [Remark:](#) $\Omega_{0,\alpha}^{(-n)}$ DO NOT converge as graphs as $-n \rightarrow -\infty$ (oscillations of constant size).

Backward graphs of central Birkhoff sums

- ▶ Let (π, λ, τ) Oseledets generic. Fix $f \in E_0 \setminus E_-$ (e.g. [corrected characteristic function](#)).
- ▶ Consider $T^{(-n)}, q^{(-n)}, f^{(-n)}$, for $-n < 0$. Fix $\alpha \in \mathcal{A}$.
- ▶ [Plot](#) $\Omega_{0,\alpha}^{(-n)}$ graph of Birkhoff sums of $f^{(-n)}$ over $T^{(-n)}$ starting at $x \in I_\alpha$ in $q^{(-n)\beta}$ times intervals.



- ▶ Consider $-m < -n$. As before, $\Omega_{0,\alpha}^{(-m)}$ [refines](#) $\Omega_{0,\alpha}^{(-n)}$.
- ▶ [Remark:](#) $\Omega_{0,\alpha}^{(-n)}$ [DO NOT](#) converge as graphs as $-n \rightarrow -\infty$ (oscillations of constant size).

Convergence to central limit distributions

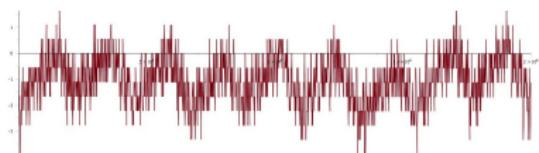
Theorem (Marmi-U'-Yoccoz)

There is a full measure condition on (π, λ, τ) (dual Roth type) s.t. for any $f \in E_0 \setminus E_-$, $\forall \alpha \in \mathcal{A}$

$$\lim_{n \rightarrow \infty} \int_0^{q_\alpha^{(0)}} \Omega_{0,\alpha}^{(-n)} \psi(x) dx = \int_0^{q_\alpha^{(0)}} \Omega_{0,\alpha} dx \quad (\text{limit distribution})$$

for any φ γ -Holder test function on $[0, q_\alpha]$ with $0 < \gamma < 1$. (exponentially in n positive time).

Remark: Here there is NO rescaling in the y -coordinate.



- ▶ *Application to Birkhoff sums:*
Convergence of weighted Birkhoff sums for $T = T^{(0)}$ (w.r.t a Holder weight function ψ) to a moving object;
- ▶ Limit object associated to *central distributions/relative homology*;

Convergence to central limit distributions

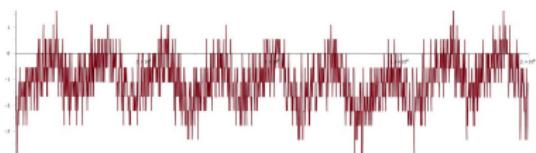
Theorem (Marmi-U'-Yoccoz)

There is a full measure condition on (π, λ, τ) (dual Roth type) s.t. for any $f \in E_0 \setminus E_-$, $\forall \alpha \in \mathcal{A}$

$$\lim_{n \rightarrow \infty} \int_0^{q_\alpha^{(0)}} \Omega_{0,\alpha}^{(-n)} \psi(x) dx = \int_0^{q_\alpha^{(0)}} \Omega_{0,\alpha} dx \quad (\text{limit distribution})$$

for any φ γ -Holder test function on $[0, q_\alpha]$ with $0 < \gamma < 1$. (exponentially in n positive time).

Remark: Here there is NO rescaling in the y -coordinate.



- ▶ Application to Birkhoff sums:
Convergence of weighted Birkhoff sums for $T = T^{(0)}$ (w.r.t a Holder weight function ψ) to a moving object;
- ▶ Limit object associated to central distributions/relative homology;

Convergence to central limit distributions

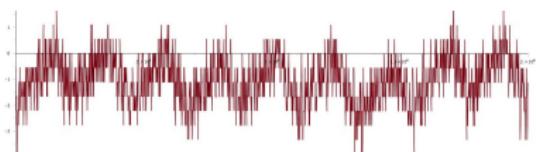
Theorem (Marmi-U'-Yoccoz)

There is a full measure condition on (π, λ, τ) (dual Roth type) s.t. for any $f \in E_0 \setminus E_-$, $\forall \alpha \in \mathcal{A}$

$$\lim_{n \rightarrow \infty} \int_0^{q_\alpha^{(0)}} \Omega_{0,\alpha}^{(-n)} \psi(x) dx = \int_0^{q_\alpha^{(0)}} \Omega_{0,\alpha} dx \quad (\text{limit distribution})$$

for any φ γ -Holder test function on $[0, q_\alpha]$ with $0 < \gamma < 1$. (exponentially in n positive time).

Remark: Here there is NO rescaling in the y -coordinate.



- ▶ *Application to Birkhoff sums:*
Convergence of weighted Birkhoff sums for $T = T^{(0)}$ (w.r.t a Holder weight function ψ) to a moving object;
- ▶ Limit object associated to *central distributions/relative homology*;

Convergence to central limit distributions

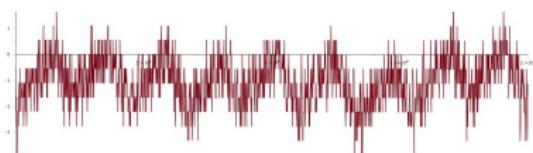
Theorem (Marmi-U'-Yoccoz)

There is a full measure condition on (π, λ, τ) (dual Roth type) s.t. for any $f \in E_0 \setminus E_-$, $\forall \alpha \in \mathcal{A}$

$$\lim_{n \rightarrow \infty} \int_0^{q_\alpha^{(0)}} \Omega_{0,\alpha}^{(-n)} \psi(x) dx = \int_0^{q_\alpha^{(0)}} \Omega_{0,\alpha} dx \quad (\text{limit distribution})$$

for any φ γ -Holder test function on $[0, q_\alpha]$ with $0 < \gamma < 1$. (exponentially in n positive time).

Remark: Here there is NO rescaling in the y -coordinate.



- ▶ *Application to Birkhoff sums:*
Convergence of **weighted Birkhoff sums** for $T = T^{(0)}$ (w.r.t a Holder weight function ψ) to a moving object;
- ▶ *Limit object associated to central distributions/relative homology;*

Two New Diophantine conditions and Duality

Tools introduced and used for the proof of the Theorem:

- ▶ Key duality between *space* vs *time*
(equivalently, *horizontal* vs *vertical* flows on M ,
or *KZ cocycle* vs *dual cocycle*);
- ▶ a new Diophantine Condition for i.e.m.s,
the *dual Roth type* Diophantine condition; which involves:
 - ▶ the dual Rauzy-Veech cocycle;
 - ▶ *dual special Birkhoff sums*, a dual version of the special Birkhoff
sums (a tool introduced by [Marmi-Moussa-Yoccoz](#));

Remarks:

- ▶ The Theorem also holds under a milder *absolute* dual Roth type
Diophantine condition;
 - ▶ *Motivation:* given a characteristic f_b , the absolute Roth type
condition does NOT depend on b .
- ▶ We define also a *absolute* Roth type Diophantine condition;
 - ▶ all results proved by [Marmi-Moussa-Yoccoz](#) on the cohomological
equation for i.e.m.s are shown to hold also under this weaker
condition;

Two New Diophantine conditions and Duality

Tools introduced and used for the proof of the Theorem:

- ▶ Key *duality* between *space* vs *time*
(equivalently, *horizontal* vs *vertical* flows on M ,
or *KZ cocycle* vs *dual cocycle*);
- ▶ a new Diophantine Condition for i.e.m.s,
the *dual Roth type* Diophantine condition; which involves:
 - ▶ the dual Rauzy-Veech cocycle;
 - ▶ *dual special Birkhoff sums*, a dual version of the special Birkhoff
sums (a tool introduced by [Marmi-Moussa-Yoccoz](#));

Remarks:

- ▶ The Theorem also holds under a milder *absolute* dual Roth type
Diophantine condition;
 - ▶ *Motivation:* given a characteristic f_b , the absolute Roth type
condition does NOT depend on b .
- ▶ We define also a *absolute* Roth type Diophantine condition;
 - ▶ all results proved by [Marmi-Moussa-Yoccoz](#) on the cohomological
equation for i.e.m.s are shown to hold also under this weaker
condition;

Two New Diophantine conditions and Duality

Tools introduced and used for the proof of the Theorem:

- ▶ Key *duality* between *space* vs *time*
(equivalently, *horizontal* vs *vertical* flows on M ,
or *KZ cocycle* vs *dual cocycle*);
- ▶ a new Diophantine Condition for i.e.m.s,
the *dual Roth type* Diophantine condition; which involves:
 - ▶ the dual Rauzy-Veech cocycle;
 - ▶ *dual special Birkhoff sums*, a dual version of the special Birkhoff
sums (a tool introduced by [Marmi-Moussa-Yoccoz](#));

Remarks:

- ▶ The Theorem also holds under a milder *absolute* dual Roth type Diophantine condition;
 - ▶ *Motivation:* given a characteristic f_b , the absolute Roth type condition does NOT depend on b .
- ▶ We define also a *absolute* Roth type Diophantine condition;
 - ▶ all results proved by [Marmi-Moussa-Yoccoz](#) on the cohomological equation for i.e.m.s are shown to hold also under this weaker condition;

Two New Diophantine conditions and Duality

Tools introduced and used for the proof of the Theorem:

- ▶ Key *duality* between *space* vs *time*
(equivalently, *horizontal* vs *vertical* flows on M ,
or *KZ cocycle* vs *dual cocycle*);
- ▶ a new Diophantine Condition for i.e.m.s,
the *dual Roth type Diophantine condition*; which involves:
 - ▶ the dual Rauzy-Veech cocycle;
 - ▶ *dual special Birkhoff sums*, a dual version of the special Birkhoff
sums (a tool introduced by [Marmi-Moussa-Yoccoz](#));

Remarks:

- ▶ The Theorem also holds under a milder *absolute* dual Roth type Diophantine condition;
 - ▶ *Motivation*: given a characteristic f_b , the absolute Roth type condition does NOT depend on b .
- ▶ We define also a *absolute* Roth type Diophantine condition;
 - ▶ all results proved by [Marmi-Moussa-Yoccoz](#) on the cohomological equation for i.e.m.s are shown to hold also under this weaker condition;

Two New Diophantine conditions and Duality

Tools introduced and used for the proof of the Theorem:

- ▶ Key *duality* between *space* vs *time*
(equivalently, *horizontal* vs *vertical* flows on M ,
or *KZ cocycle* vs *dual cocycle*);
- ▶ a new Diophantine Condition for i.e.m.s,
the *dual Roth type Diophantine condition*; which involves:
 - ▶ the dual Rauzy-Veech cocycle;
 - ▶ *dual special Birkhoff sums*, a dual version of the *special Birkhoff sums* (a tool introduced by [Marmi-Moussa-Yoccoz](#));

Remarks:

- ▶ The Theorem also holds under a milder *absolute* dual Roth type Diophantine condition;
 - ▶ *Motivation:* given a characteristic f_b , the absolute Roth type condition does NOT depend on b .
- ▶ We define also a *absolute* Roth type Diophantine condition;
 - ▶ all results proved by [Marmi-Moussa-Yoccoz](#) on the cohomological equation for i.e.m.s are shown to hold also under this weaker condition;

Two New Diophantine conditions and Duality

Tools introduced and used for the proof of the Theorem:

- ▶ Key *duality* between *space* vs *time*
(equivalently, *horizontal* vs *vertical* flows on M ,
or *KZ cocycle* vs *dual cocycle*);
- ▶ a new Diophantine Condition for i.e.m.s,
the *dual Roth type Diophantine condition*; which involves:
 - ▶ the dual Rauzy-Veech cocycle;
 - ▶ *dual special Birkhoff sums*, a dual version of the *special Birkhoff sums* (a tool introduced by [Marmi-Moussa-Yoccoz](#));

Remarks:

- ▶ The Theorem also holds under a milder *absolute* dual Roth type Diophantine condition;
 - ▶ *Motivation:* given a characteristic f_b , the absolute Roth type condition does NOT depend on b .
- ▶ We define also a *absolute* Roth type Diophantine condition;
 - ▶ all results proved by [Marmi-Moussa-Yoccoz](#) on the cohomological equation for i.e.m.s are shown to hold also under this weaker condition;

Two New Diophantine conditions and Duality

Tools introduced and used for the proof of the Theorem:

- ▶ Key *duality* between *space* vs *time*
(equivalently, *horizontal* vs *vertical* flows on M ,
or *KZ cocycle* vs *dual cocycle*);
- ▶ a new Diophantine Condition for i.e.m.s,
the *dual Roth type Diophantine condition*; which involves:
 - ▶ the dual Rauzy-Veech cocycle;
 - ▶ *dual special Birkhoff sums*, a dual version of the *special Birkhoff sums* (a tool introduced by [Marmi-Moussa-Yoccoz](#));

Remarks:

- ▶ The Theorem also holds under a milder *absolute* dual Roth type Diophantine condition;
 - ▶ *Motivation:* given a characteristic f_b , the absolute Roth type condition does NOT depend on b .
- ▶ We define also a *absolute* Roth type Diophantine condition;
 - ▶ all results proved by [Marmi-Moussa-Yoccoz](#) on the cohomological equation for i.e.m.s are shown to hold also under this weaker condition;

Two New Diophantine conditions and Duality

Tools introduced and used for the proof of the Theorem:

- ▶ Key *duality* between *space* vs *time*
(equivalently, *horizontal* vs *vertical* flows on M ,
or *KZ cocycle* vs *dual cocycle*);
- ▶ a new Diophantine Condition for i.e.m.s,
the *dual Roth type Diophantine condition*; which involves:
 - ▶ the dual Rauzy-Veech cocycle;
 - ▶ *dual special Birkhoff sums*, a dual version of the *special Birkhoff sums* (a tool introduced by [Marmi-Moussa-Yoccoz](#));

Remarks:

- ▶ The Theorem also holds under a milder *absolute* dual Roth type Diophantine condition;
 - ▶ *Motivation:* given a characteristic f_b , the absolute Roth type condition does NOT depend on b .
- ▶ We define also a *absolute* Roth type Diophantine condition;
 - ▶ all results proved by [Marmi-Moussa-Yoccoz](#) on the cohomological equation for i.e.m.s are shown to hold also under this weaker condition;

Two New Diophantine conditions and Duality

Tools introduced and used for the proof of the Theorem:

- ▶ Key *duality* between *space* vs *time*
(equivalently, *horizontal* vs *vertical* flows on M ,
or *KZ cocycle* vs *dual cocycle*);
- ▶ a new Diophantine Condition for i.e.m.s,
the *dual Roth type Diophantine condition*; which involves:
 - ▶ the dual Rauzy-Veech cocycle;
 - ▶ *dual special Birkhoff sums*, a dual version of the *special Birkhoff sums* (a tool introduced by [Marmi-Moussa-Yoccoz](#));

Remarks:

- ▶ The Theorem also holds under a milder *absolute* dual Roth type Diophantine condition;
 - ▶ *Motivation:* given a characteristic f_b , the absolute Roth type condition does NOT depend on b .
- ▶ We define also a *absolute* Roth type Diophantine condition;
 - ▶ all results proved by [Marmi-Moussa-Yoccoz](#) on the cohomological equation for i.e.m.s are shown to hold also under this weaker condition;

Classical Roth type conditions

- *Def:* a rotation number $a \in \mathbb{R}$ with continued fraction expansion $a = [a_1, a_2, \dots, a_n, \dots]$ and convergences p_n/q_n is of **Roth type** if $\exists C > 0$ such that

$$a_n = q_n^\epsilon, \quad \forall \epsilon > 0.$$

- Marmi-Moussa-Yoccoz introduced a (restricted) Roth type Diophantine condition for i.e.m.;
3 (resp. 4) conditions on the positive Rauzy-Veech acceleration:
 - (a) Matrices growth: $\exists C > 0$ s.t.

$$\|B(n, n+1)\| \leq C \|B(0, n)\| \quad \forall n > 0$$

- (b) Spectral gap
 - (c) Coherence
 - [(d) Hyperbolicity]
- The Roth type condition was used by Marmi-Moussa-Yoccoz to solve the *cohomological equation*:
if T is of (restricted) Roth type, $r > 1$, for every f piecewise C^r on each I_{α_i} , $\exists g \in C^r$ such that $f = g - g \circ T$.

$$f - g = g - g \circ T.$$

Classical Roth type conditions

- ▶ *Def:* a rotation number $a \in \mathbb{R}$ with continued fraction expansion $a = [a_1, a_2, \dots, a_n, \dots]$ and convergences p_n/q_n is of **Roth type** if $\exists C > 0$ such that

$$a_n = q_n^\epsilon, \quad \forall \epsilon > 0.$$

- ▶ Marmi-Moussa-Yoccoz introduced a (restricted) Roth type Diophantine condition for i.e.m.;
3 (resp. 4) conditions on the positive Rauzy-Veech acceleration:
 - (a) Matrices growth: $\exists C > 0$ s.t.

$$\|B(n, n+1)\| \leq C \|B(0, n)\| \quad \forall n > 0$$

- (b) Spectral gap
- (c) Coherence
- [(d) Hyperbolicity]

- ▶ The Roth type condition was used by Marmi-Moussa-Yoccoz to solve the *cohomological equation*:
if T is of (restricted) Roth type, $r > 1$, for every f piecewise C^r on each I_{α_i} , $\exists g \in C^r$ such that $f = g - g \circ T$

$$f - g = g - g \circ T.$$

Classical Roth type conditions

- ▶ *Def:* a rotation number $a \in \mathbb{R}$ with continued fraction expansion $a = [a_1, a_2, \dots, a_n, \dots]$ and convergences p_n/q_n is of **Roth type** if $\exists C > 0$ such that

$$a_n = q_n^\epsilon, \quad \forall \epsilon > 0.$$

- ▶ **Marmi-Moussa-Yoccoz** introduced a (restricted) **Roth type Diophantine condition for i.e.m.;**
3 (resp. 4) conditions on the positive Rauzy-Veech acceleration:
 - (a) Matrices growth: $\exists C > 0$ s.t.

$$\|B(n, n+1)\| \leq C \|B(0, n)\| \quad \forall n > 0$$

- (b) Spectral gap
- (c) Coherence
- [(d) Hyperbolicity]

- ▶ The Roth type condition was used by **Marmi-Moussa-Yoccoz** to solve the *cohomological equation*:
if T is of (restricted) Roth type, $r > 1$, for every f piecewise C^r on each I_{α_i} , $\exists g \in C^r$ such that $f = g - g \circ T$

$$f - g = g - g \circ T.$$

Classical Roth type conditions

- ▶ *Def:* a rotation number $a \in \mathbb{R}$ with continued fraction expansion $a = [a_1, a_2, \dots, a_n, \dots]$ and convergences p_n/q_n is of **Roth type** if $\exists C > 0$ such that

$$a_n = q_n^\epsilon, \quad \forall \epsilon > 0.$$

- ▶ **Marmi-Moussa-Yoccoz** introduced a (restricted) **Roth type Diophantine condition for i.e.m.;**
3 (resp. 4) conditions on the positive Rauzy-Veech acceleration:
(a) Matrices growth: $\exists C > 0$ s.t.

$$\|B(n, n+1)\| \leq C \|B(0, n)\| \quad \forall n > 0$$

- (b) Spectral gap
- (c) Coherence
- [(d) Hyperbolicity]

- ▶ The Roth type condition was used by **Marmi-Moussa-Yoccoz** to solve the *cohomological equation*:
if T is of (restricted) Roth type, $r > 1$, for every f piecewise C^r on each I_{α_i} , $\exists g \in C^r$ such that $f = g - g \circ T$

$$f - g = g - g \circ T.$$

Classical Roth type conditions

- ▶ *Def:* a rotation number $a \in \mathbb{R}$ with continued fraction expansion $a = [a_1, a_2, \dots, a_n, \dots]$ and convergences p_n/q_n is of **Roth type** if $\exists C > 0$ such that

$$a_n = q_n^\epsilon, \quad \forall \epsilon > 0.$$

- ▶ **Marmi-Moussa-Yoccoz** introduced a (restricted) **Roth type Diophantine condition for i.e.m.;**
3 (resp. 4) conditions on the positive Rauzy-Veech acceleration:
 - (a) Matrices growth: $\exists C > 0$ s.t.

$$\|B(n, n+1)\| \leq C \|B(0, n)\| \quad \forall \epsilon > 0$$

- (b) Spectral gap
- (c) Coherence
- [(d) Hyperbolicity]

- ▶ The Roth type condition was used by **Marmi-Moussa-Yoccoz** to solve the *cohomological equation*:
if T is of (restricted) Roth type, $r > 1$, for every f piecewise C^r on each I_{α_i} , $\exists g$ such that $f = g - g \circ T$.

$$f - g = g - g \circ T.$$

Classical Roth type conditions

- ▶ *Def:* a rotation number $a \in \mathbb{R}$ with continued fraction expansion $a = [a_1, a_2, \dots, a_n, \dots]$ and convergences p_n/q_n is of **Roth type** if $\exists C > 0$ such that

$$a_n = q_n^\epsilon, \quad \forall \epsilon > 0.$$

- ▶ **Marmi-Moussa-Yoccoz** introduced a (restricted) **Roth type Diophantine condition for i.e.m.;**
3 (resp. 4) conditions on the positive Rauzy-Veech acceleration:
 - (a) Matrices growth: $\exists C > 0$ s.t.

$$\|B(n, n+1)\| \leq C \|B(0, n)\| \quad \forall \epsilon > 0$$

- (b) Spectral gap
- (c) Coherence
- [(d) Hyperbolicity]

- ▶ The Roth type condition was used by **Marmi-Moussa-Yoccoz** to solve the *cohomological equation*:
if T is of (restricted) Roth type, $r > 1$, for every f piecewise C^r on each I_{α_i} , $\exists g$ such that $f = g - g \circ T$.

$$f - g = g - g \circ T.$$

Classical Roth type conditions

- *Def:* a rotation number $a \in \mathbb{R}$ with continued fraction expansion $a = [a_1, a_2, \dots, a_n, \dots]$ and convergences p_n/q_n is of **Roth type** if $\exists C > 0$ such that

$$a_n = q_n^\epsilon, \quad \forall \epsilon > 0.$$

- **Marmi-Moussa-Yoccoz** introduced a (restricted) **Roth type Diophantine condition for i.e.m.;**
3 (resp. 4) conditions on the positive Rauzy-Veech acceleration:
 - (a) Matrices growth: $\exists C > 0$ s.t.

$$\|B(n, n+1)\| \leq C \|B(0, n)\| \quad \forall \epsilon > 0$$

- (b) Spectral gap
- (c) Coherence
- [(d) Hyperbolicity]

- The Roth type condition was used by **Marmi-Moussa-Yoccoz** to solve the *cohomological equation*:

if T is of (restricted) Roth type, $r > 1$, for every f piecewise C^r on each I_α , there exists a correction $\chi \in \mathcal{E}(T)$ and a piecewise Holder continuous solution g such that

$$f - \chi = g - g \circ T.$$

Classical Roth type conditions

- ▶ *Def:* a rotation number $a \in \mathbb{R}$ with continued fraction expansion $a = [a_1, a_2, \dots, a_n, \dots]$ and convergences p_n/q_n is of **Roth type** if $\exists C > 0$ such that

$$a_n = q_n^\epsilon, \quad \forall \epsilon > 0.$$

- ▶ **Marmi-Moussa-Yoccoz** introduced a (restricted) **Roth type Diophantine condition for i.e.m.;**
3 (resp. 4) conditions on the positive Rauzy-Veech acceleration:
 - (a) Matrices growth: $\exists C > 0$ s.t.

$$\|B(n, n+1)\| \leq C \|B(0, n)\| \quad \forall \epsilon > 0$$

- (b) Spectral gap
- (c) Coherence
- [(d) Hyperbolicity]

- ▶ The Roth type condition was used by **Marmi-Moussa-Yoccoz** to solve the *cohomological equation*:
if T is of (restricted) Roth type, $r > 1$, for every f piecewise C^r on each I_α , there exists a *correction* $\chi \in \Gamma(T)$ and a piecewise Holder continuous solution g such that

$$f - \chi = g - g \circ T.$$

Classical Roth type conditions

- *Def:* a rotation number $a \in \mathbb{R}$ with continued fraction expansion $a = [a_1, a_2, \dots, a_n, \dots]$ and convergences p_n/q_n is of **Roth type** if $\exists C > 0$ such that

$$a_n = q_n^\epsilon, \quad \forall \epsilon > 0.$$

- **Marmi-Moussa-Yoccoz** introduced a (restricted) **Roth type Diophantine condition for i.e.m.;**
3 (resp. 4) conditions on the positive Rauzy-Veech acceleration:
(a) Matrices growth: $\exists C > 0$ s.t.

$$\|B(n, n+1)\| \leq C \|B(0, n)\| \quad \forall \epsilon > 0$$

- (b) Spectral gap
- (c) Coherence
- [(d) Hyperbolicity]

- The Roth type condition was used by **Marmi-Moussa-Yoccoz** to solve the *cohomological equation*:
if T is of (restricted) Roth type, $r > 1$, for every f piecewise C^r on each I_α , there exists a *correction* $\chi \in \Gamma(T)$ and a piecewise Holder continuous solution g such that

$$f - \chi = g - g \circ T.$$

Absolute Roth type

- ▶ $B(0, n)$ act on \mathbb{R}^d which can be identified with $H_1(M, \text{Sing}, \mathbb{R})$ relative homology.
- ▶ Focus on the absolute homology $H_1(M, \mathbb{R}) \subset H_1(M, \text{Sing}, \mathbb{R})$;
 - ▶ define *positive acceleration* only with respect to absolute homology;
 - ▶ Rk : more natural geometrically, less *visible* from Ruazy-Veech induction, but it can be defined considering $H_\pi = \text{Im} \Omega_\pi$;
 - ▶ Modify condition (a) in (classical=relative) Roth type, to define *absolute Roth type*;
- ▶ Marmi-U'-Yoccoz: the results by Marmi-Moussa-Yoccoz can be reproved assuming only the absolute Roth type condition;
- ▶ As a consequence, using
 - ▶ Eskin-Chaika, any M is Oseledetes generic in a.e. direction θ ;for all translation surfaces M , one can solve the cohomological equation under the absolute Roth type condition for a.e. direction θ ;

Absolute Roth type

- ▶ $B(0, n)$ act on \mathbb{R}^d which can be identified with $H_1(M, \text{Sing}, \mathbb{R})$ relative homology.
- ▶ Focus on the absolute homology $H_1(M, \mathbb{R}) \subset H_1(M, \text{Sing}, \mathbb{R})$;
 - ▶ define *positive acceleration* only with respect to absolute homology;
 - ▶ Rk : more natural geometrically, less *visible* from Ruazy-Veech induction, but it can be defined considering $H_\pi = \text{Im} \Omega_\pi$;
 - ▶ Modify condition (a) in (classical=relative) Roth type, to define *absolute Roth type*;
- ▶ Marmi-U'-Yoccoz: the results by Marmi-Moussa-Yoccoz can be reproved assuming only the absolute Roth type condition;
- ▶ As a consequence, using
 - ▶ Eskin-Chaika, any M is Oseledetes generic in a.e. direction θ ;for all translation surfaces M , one can solve the cohomological equation under the absolute Roth type condition for a.e. direction θ ;

Absolute Roth type

- ▶ $B(0, n)$ act on \mathbb{R}^d which can be identified with $H_1(M, \text{Sing}, \mathbb{R})$ relative homology.
- ▶ Focus on the absolute homology $H_1(M, \mathbb{R}) \subset H_1(M, \text{Sing}, \mathbb{R})$;
 - ▶ define *positive acceleration* only with respect to absolute homology;
 - ▶ Rk : more natural geometrically, less *visible* from Ruazy-Veech induction, but it can be defined considering $H_\pi = \text{Im}\Omega_\pi$;
 - ▶ Modify condition (a) in (classical=relative) Roth type, to define *absolute Roth type*;
- ▶ Marmi-U'-Yoccoz: the results by Marmi-Moussa-Yoccoz can be reproved assuming only the absolute Roth type condition;
- ▶ As a consequence, using
 - ▶ Eskin-Chaika, any M is Oseledetes generic in a.e. direction θ ;for all translation surfaces M , one can solve the cohomological equation under the absolute Roth type condition for a.e. direction θ ;

Absolute Roth type

- ▶ $B(0, n)$ act on \mathbb{R}^d which can be identified with $H_1(M, \text{Sing}, \mathbb{R})$ relative homology.
- ▶ Focus on the absolute homology $H_1(M, \mathbb{R}) \subset H_1(M, \text{Sing}, \mathbb{R})$;
 - ▶ define *positive acceleration* only with respect to absolute homology;
 - ▶ Rk : more natural geometrically, less *visible* from Ruazy-Veech induction, but it can be defined considering $H_\pi = \text{Im} \Omega_\pi$;
 - ▶ Modify condition (a) in (classical=relative) Roth type, to define *absolute Roth type*;
- ▶ Marmi-U'-Yoccoz: the results by Marmi-Moussa-Yoccoz can be reproved assuming only the absolute Roth type condition;
- ▶ As a consequence, using
 - ▶ Eskin-Chaika, any M is Oseledetes generic in a.e. direction θ ;for all translation surfaces M , one can solve the cohomological equation under the absolute Roth type condition for a.e. direction θ ;

Absolute Roth type

- ▶ $B(0, n)$ act on \mathbb{R}^d which can be identified with $H_1(M, \text{Sing}, \mathbb{R})$ relative homology.
- ▶ Focus on the absolute homology $H_1(M, \mathbb{R}) \subset H_1(M, \text{Sing}, \mathbb{R})$;
 - ▶ define *positive acceleration* only with respect to absolute homology;
 - ▶ Rk : more natural geometrically, less *visible* from Ruazy-Veech induction, but it can be defined considering $H_\pi = \text{Im} \Omega_\pi$;
 - ▶ Modify condition (a) in (classical=relative) Roth type, to define *absolute Roth type*;
- ▶ Marmi-U'-Yoccoz: the results by Marmi-Moussa-Yoccoz can be reproved assuming only the absolute Roth type condition;
- ▶ As a consequence, using
 - ▶ Eskin-Chaika, any M is Oseledetes generic in a.e. direction θ ;for all translation surfaces M , one can solve the cohomological equation under the absolute Roth type condition for a.e. direction θ ;

Absolute Roth type

- ▶ $B(0, n)$ act on \mathbb{R}^d which can be identified with $H_1(M, \text{Sing}, \mathbb{R})$ relative homology.
- ▶ Focus on the absolute homology $H_1(M, \mathbb{R}) \subset H_1(M, \text{Sing}, \mathbb{R})$;
 - ▶ define *positive acceleration* only with respect to absolute homology;
 - ▶ Rk : more natural geometrically, less *visible* from Ruazy-Veech induction, but it can be defined considering $H_\pi = \text{Im} \Omega_\pi$;
 - ▶ Modify condition (a) in (classical=relative) Roth type, to define *absolute Roth type*;
- ▶ Marmi-U'-Yoccoz: the results by Marmi-Moussa-Yoccoz can be reproved assuming only the absolute Roth type condition;
- ▶ As a consequence, using
 - ▶ Eskin-Chaika, any M is Oseledetes generic in a.e. direction θ ;for all translation surfaces M , one can solve the cohomological equation under the absolute Roth type condition for a.e. direction θ ;

Dual Roth type

Assume (M, π, τ) has no *horizontal saddle connections*. Iterate Rauzy-Veech backward; (π, τ) determines a *backward rotation number*.

Lemma (Marmi-U-Yoccoz)

The backward rotation number is infinitely complete, i.e. for every $-n < 0$ there exists $-m < -n$ such that $B^\circ(-m, -n) > 0$.

Remark: very involved combinatorial proof (by Yoccoz)!

Corollary The backward positive acceleration is well defined.

Let $B^\circ(-n)$ denote the positive acceleration.

Definition

(π, τ) satisfy the *dual Roth type condition* if it satisfies

(a) Matrices growth for the dual cocycle: $\exists C > 0$ s.t.

$$\|B^\circ(n, n+1)\| \leq C \|B^\circ(0, n)\| \quad \forall \epsilon > 0$$

(b) Spectral gap for dual cocycle/dual Birkhoff sums

(c) Coherence for dual cocycle/dual Birkhoff sums

Proposition: [Marmi-U'-Yoccoz] dual Roth type has full measure.

Dual Roth type

Assume (M, π, τ) has no *horizontal saddle connections*. Iterate Rauzy-Veech backward; (π, τ) determines a *backward rotation number*.

Lemma (Marmi-U-Yoccoz)

The backward rotation number is infinitely complete, i.e. for every $-n < 0$ there exists $-m < -n$ such that $B^\circ(-m, -n) > 0$.

Remark: very involved combinatorial proof (by Yoccoz)!

Corollary The backward positive acceleration is well defined.

Let $B^\circ(-n)$ denote the positive acceleration.

Definition

(π, τ) satisfy the *dual Roth type condition* if it satisfies

(a) Matrices growth for the dual cocycle: $\exists C > 0$ s.t.

$$\|B^\circ(n, n+1)\| \leq C \|B^\circ(0, n)\| \quad \forall \epsilon > 0$$

(b) Spectral gap for dual cocycle/dual Birkhoff sums

(c) Coherence for dual cocycle/dual Birkhoff sums

Proposition: [Marmi-U'-Yoccoz] dual Roth type has full measure.

Dual Roth type

Assume (M, π, τ) has no *horizontal saddle connections*. Iterate Rauzy-Veech backward; (π, τ) determines a *backward rotation number*.

Lemma (Marmi-U-Yoccoz)

The *backward rotation number is infinitely complete*, i.e. for every $-n < 0$ there exists $-m < -n$ such that $B^\circ(-m, -n) > 0$.

Remark: very involved combinatorial proof (by Yoccoz)!

Corollary The backward positive acceleration is well defined.

Let $B^\circ(-n)$ denote the positive acceleration.

Definition

(π, τ) satisfy the *dual Roth type condition* if it satisfies

(a) Matrices growth for the dual cocycle: $\exists C > 0$ s.t.

$$\|B^\circ(n, n+1)\| \leq C \|B^\circ(0, n)\| \quad \forall \epsilon > 0$$

(b) Spectral gap for dual cocycle/dual Birkhoff sums

(c) Coherence for dual cocycle/dual Birkhoff sums

Proposition: [Marmi-U'-Yoccoz] dual Roth type has full measure.

Dual Roth type

Assume (M, π, τ) has no *horizontal saddle connections*. Iterate Rauzy-Veech backward; (π, τ) determines a *backward rotation number*.

Lemma (Marmi-U-Yoccoz)

The *backward rotation number is infinitely complete*, i.e. for every $-n < 0$ there exists $-m < -n$ such that $B^\circ(-m, -n) > 0$.

Remark: very involved combinatorial proof (by Yoccoz)!

Corollary The backward positive acceleration is well defined.

Let $B^\circ(-n)$ denote the positive acceleration.

Definition

(π, τ) satisfy the *dual Roth type condition* if it satisfies

(a) Matrices growth for the dual cocycle: $\exists C > 0$ s.t.

$$\|B^\circ(n, n+1)\| \leq C \|B^\circ(0, n)\| \quad \forall \epsilon > 0$$

(b) Spectral gap for dual cocycle/dual Birkhoff sums

(c) Coherence for dual cocycle/dual Birkhoff sums

Proposition: [Marmi-U'-Yoccoz] dual Roth type has full measure.

Dual Roth type

Assume (M, π, τ) has no *horizontal saddle connections*. Iterate Rauzy-Veech backward; (π, τ) determines a *backward rotation number*.

Lemma (Marmi-U-Yoccoz)

The *backward rotation number is infinitely complete*, i.e. for every $-n < 0$ there exists $-m < -n$ such that $B^\circ(-m, -n) > 0$.

Remark: very involved combinatorial proof (by Yoccoz)!

Corollary The backward positive acceleration is well defined.

Let $B^\circ(-n)$ denote the positive acceleration.

Definition

(π, τ) satisfy the *dual Roth type condition* if it satisfies

(a) Matrices growth for the dual cocycle: $\exists C > 0$ s.t.

$$\|B^\circ(n, n+1)\| \leq C \|B^\circ(0, n)\| \quad \forall \epsilon > 0$$

(b) Spectral gap for dual cocycle/dual Birkhoff sums

(c) Coherence for dual cocycle/dual Birkhoff sums

Proposition: [Marmi-U'-Yoccoz] dual Roth type has full measure.

Dual Roth type

Assume (M, π, τ) has no *horizontal saddle connections*. Iterate Rauzy-Veech backward; (π, τ) determines a *backward rotation number*.

Lemma (Marmi-U-Yoccoz)

The *backward rotation number is infinitely complete*, i.e. for every $-n < 0$ there exists $-m < -n$ such that $B^\circ(-m, -n) > 0$.

Remark: very involved combinatorial proof (by Yoccoz)!

Corollary The backward positive acceleration is well defined.

Let $B^\circ(-n)$ denote the positive acceleration.

Definition

(π, τ) satisfy the *dual Roth type condition* if it satisfies

(a) Matrices growth for the dual cocycle: $\exists C > 0$ s.t.

$$\|B^\circ(n, n+1)\| \leq C \|B^\circ(0, n)\| \quad \forall \epsilon > 0$$

(b) Spectral gap for dual cocycle/dual Birkhoff sums

(c) Coherence for dual cocycle/dual Birkhoff sums

Proposition: [Marmi-U'-Yoccoz] dual Roth type has full measure.

Dual Roth type

Assume (M, π, τ) has no *horizontal saddle connections*. Iterate Rauzy-Veech backward; (π, τ) determines a *backward rotation number*.

Lemma (Marmi-U-Yoccoz)

The *backward rotation number is infinitely complete*, i.e. for every $-n < 0$ there exists $-m < -n$ such that $B^\circ(-m, -n) > 0$.

Remark: very involved combinatorial proof (by Yoccoz)!

Corollary The backward positive acceleration is well defined.

Let $B^\circ(-n)$ denote the positive acceleration.

Definition

(π, τ) satisfy the *dual Roth type condition* if it satisfies

(a) Matrices growth for the dual cocycle: $\exists C > 0$ s.t.

$$\|B^\circ(n, n+1)\| \leq C \|B^\circ(0, n)\| \quad \forall \epsilon > 0$$

(b) Spectral gap for dual cocycle/dual Birkhoff sums

(c) Coherence for dual cocycle/dual Birkhoff sums

Proposition: [Marmi-U'-Yoccoz] dual Roth type has full measure.

Dual Roth type

Assume (M, π, τ) has no *horizontal saddle connections*. Iterate Rauzy-Veech backward; (π, τ) determines a *backward rotation number*.

Lemma (Marmi-U-Yoccoz)

The *backward rotation number is infinitely complete*, i.e. for every $-n < 0$ there exists $-m < -n$ such that $B^\circ(-m, -n) > 0$.

Remark: very involved combinatorial proof (by Yoccoz)!

Corollary The backward positive acceleration is well defined.

Let $B^\circ(-n)$ denote the positive acceleration.

Definition

(π, τ) satisfy the *dual Roth type condition* if it satisfies

(a) Matrices growth for the dual cocycle: $\exists C > 0$ s.t.

$$\|B^\circ(n, n+1)\| \leq C \|B^\circ(0, n)\| \quad \forall \epsilon > 0$$

(b) Spectral gap for dual cocycle/dual Birkhoff sums

(c) Coherence for dual cocycle/dual Birkhoff sums

Proposition: [Marmi-U'-Yoccoz] dual Roth type has full measure.

Dual Roth type

Assume (M, π, τ) has no *horizontal saddle connections*. Iterate Rauzy-Veech backward; (π, τ) determines a *backward rotation number*.

Lemma (Marmi-U-Yoccoz)

The *backward rotation number is infinitely complete*, i.e. for every $-n < 0$ there exists $-m < -n$ such that $B^\circ(-m, -n) > 0$.

Remark: very involved combinatorial proof (by Yoccoz)!

Corollary The backward positive acceleration is well defined.

Let $B^\circ(-n)$ denote the positive acceleration.

Definition

(π, τ) satisfy the *dual Roth type condition* if it satisfies

(a) Matrices growth for the dual cocycle: $\exists C > 0$ s.t.

$$\|B^\circ(n, n+1)\| \leq C \|B^\circ(0, n)\| \quad \forall \epsilon > 0$$

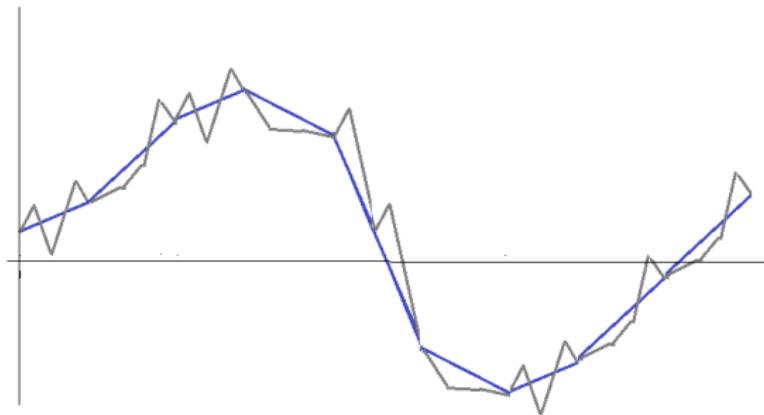
(b) Spectral gap for dual cocycle/dual Birkhoff sums

(c) Coherence for dual cocycle/dual Birkhoff sums

Proposition: [Marmi-U'-Yoccoz] dual Roth type has full measure.

Dual Birkhoff sums in distributional convergence

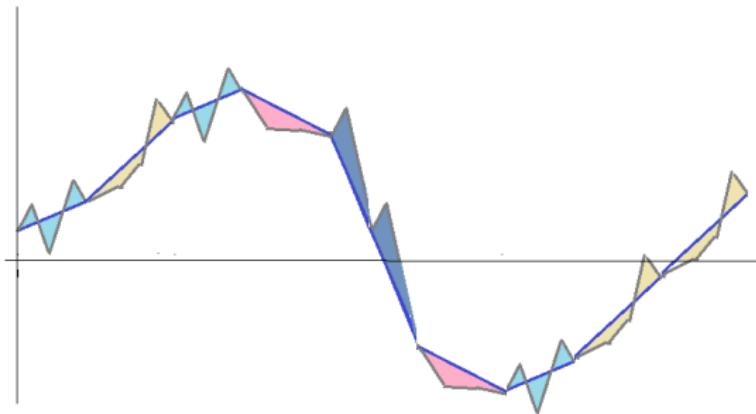
- ▶ For $-m < -n$, compare $\Omega_{0,\alpha}^{(-m)} - \Omega_{0,\alpha}^{(-n)}$:



- ▶ Difference is a sum of rescaled versions of copies of $\Omega_{0,\beta}^{(-m-n)}(T^{(-n)})$, $\beta \in \mathcal{A}$.
- ▶ Sum over occurrences of a fixed subgraph $\Omega_{0,\beta}^{(-m-n)}(T^{(-n)})$ is a *dual Birkhoff sum*;
- ▶ to estimate $\int (\Omega_{0,\alpha}^{(-m)} - \Omega_{0,\alpha}^{(-n)}) \psi$ exploit estimates on dual special Birkhoff sums of Holder functions, which hold under the dual Roth type condition.

Dual Birkhoff sums in distributional convergence

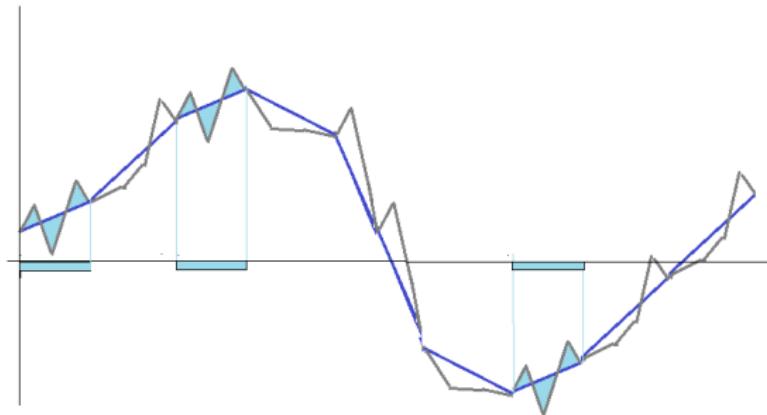
- ▶ For $-m < -n$, compare $\Omega_{0,\alpha}^{(-m)} - \Omega_{0,\alpha}^{(-n)}$:



- ▶ Difference is a sum of rescaled versions of copies of $\Omega_{0,\beta}^{(-m-n)}(T^{(-n)})$, $\beta \in \mathcal{A}$.
- ▶ Sum over occurrences of a fixed subgraph $\Omega_{0,\beta}^{(-m-n)}(T^{(-n)})$ is a *dual Birkhoff sum*;
- ▶ to estimate $\int (\Omega_{0,\alpha}^{(-m)} - \Omega_{0,\alpha}^{(-n)}) \psi$ exploit estimates on dual special Birkhoff sums of Holder functions, which hold under the dual Roth type condition.

Dual Birkhoff sums in distributional convergence

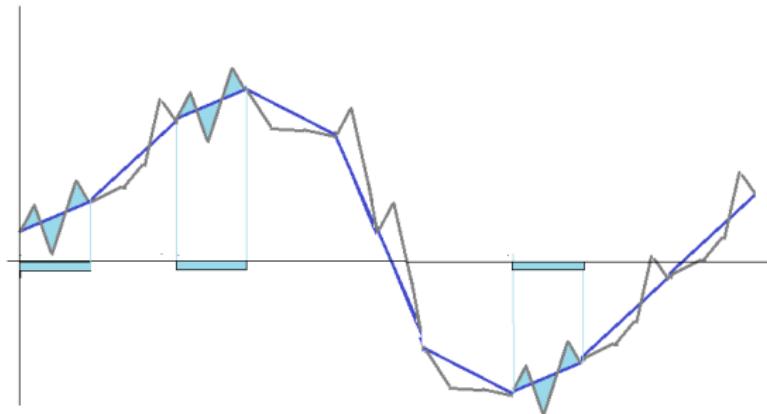
- ▶ For $-m < -n$, compare $\Omega_{0,\alpha}^{(-m)} - \Omega_{0,\alpha}^{(-n)}$:



- ▶ Difference is a sum of rescaled versions of copies of $\Omega_{0,\beta}^{(-m-n)}(T^{(-n)})$, $\beta \in \mathcal{A}$.
- ▶ Sum over occurrences of a fixed subgraph $\Omega_{0,\beta}^{(-m-n)}(T^{(-n)})$ is a *dual Birkhoff sum*;
- ▶ to estimate $\int \left(\Omega_{0,\alpha}^{(-m)} - \Omega_{0,\alpha}^{(-n)} \right) \psi$ exploit estimates on dual special Birkhoff sums of Holder functions, which hold under the dual Roth type condition.

Dual Birkhoff sums in distributional convergence

- ▶ For $-m < -n$, compare $\Omega_{0,\alpha}^{(-m)} - \Omega_{0,\alpha}^{(-n)}$:



- ▶ Difference is a sum of rescaled versions of copies of $\Omega_{0,\beta}^{(-m-n)}(T^{(-n)})$, $\beta \in \mathcal{A}$.
- ▶ Sum over occurrences of a fixed subgraph $\Omega_{0,\beta}^{(-m-n)}(T^{(-n)})$ is a *dual Birkhoff sum*;
- ▶ to estimate $\int (\Omega_{0,\alpha}^{(-m)} - \Omega_{0,\alpha}^{(-n)}) \psi$ exploit estimates on dual special Birkhoff sums of Holder functions, which hold under the dual Roth type condition.