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Interval exchange maps and Birkhoff sums

I Interval exchange map (i.e.m.)

T = (π, λ), where:
I T : I → I where I := [0, 1];
I A alphabet with |A| = d ;
I d subintervals Iα, α ∈ A;
I π permutation on A;
I λ = (λα)α ∈ A;
λα = |Iα| lenghts vector;

I Function f : [0, 1]→ R;

Consider its Birkhoff sums

Snf (x) :=
n∑

i=0

f (T ix), x ∈ I .

I In this talk we will mostly focus on f ∈ Γ(T ), where
Γ(T ) := {f: piecewise constant } ⊂ Rd

I fα value on Iα, so f ←→ (fα, fβ , . . . , fω) ∈ Rd ;

I Γ0(T ) := {ϕ ∈ Γ(T ) :
∫
ϕdx =

∑
α λαϕα = 0}.
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Translation surfaces and ergodic integrals
Geometric counterpart object:

I M = M(π, λ, τ) translation surface
(flat metric, conical singularities)

I M can be represented as a zippered
rectangle, i.e. union of rectangles Rα
with glueings;
λα width, qα height of Rα
τ “zips heights”; (π, τ) determine
q = (qα)α height vector (q = −Ωπ(τ))

Remark: π “knows” about the genus g and
number of conical singularities k ;

d = 2g + k

I ϕt : S → S vertical linear flow;
I Poincaré section is the i.e.m T = (π, λ);
I Given f : S → R, consider ergodic integrals∫ T

0

f (ϕt(x))dt, x ∈ M.
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Ergodicity and deviations of ergodic averages

I Almost every i.e.m. := any π irreducible
[i.e. π{1, . . . , k} = {1, . . . , k} ⇒ k = d ]

and Lebesgue-a.e. λ ∈ Rd ;

I Almost every M:= almost every with respect
to the Masur-Veech measure;
[Lebesgue measure on period coordinates (λ, τ)]

I Masur/Veech, 1980s: a.e. i.e.m. (hence ϕt on a.e. M) is (uniquely)
ergodic; thus ∀ f ∈ L1(I ) (resp. f ∈ L1(M)) ,

∫
f = 0,

for all x ∈ I (resp. all x ∈ M not on a separatrix)

Snf (x) = o(n),

(
resp

∫ T

0

f (ϕt(x))dt = o(T )

)
I Deviations of ergodic averages (A. Zorich, 1997): Upper bounds:

For a.e. i.e.m. T , for all f ∈ Γ0(T ),
there exists 0 < γ < 1,C > 0 s.t.

|Snf (x)| ≤ Cnγ , ∀x ∈ I .
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Lower bounds on deviations

What about lower bounds?

Consider e.g. piecewise constant functions
Γ(T ) ∼ Rd , where d = |A|.
For a.e. i.e.m. T (e.g. Roth type) we have:

Rd = F+(T ) ⊃ F0(T ) ⊃ F−(T ),

where dim(F+/F0) = g , dim(F0/F−) = k − 1, dim(F−) = g

(d = 2g + k − 1, k > 1 if there are more singularities) s.t. for all x ∈ I ,

I if f ∈ F+(T )\F0(T ), lim sup log |Snf (x)|
log n > 0,

i.e. Snf (x) ≥ cnγ for some γ > 0 ∞-often;
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Deviation spectrum and Kontsevitch-Zorich conjecture
More in general, ϕt area-preserving flows on M,
f smooth function supported outside singularities:

I For a.e. M, ∃ νi > 0, Di , 1 ≤ i ≤ g invariant
distributions (D1(f ) :=

∫
M
f ) s.t. ∀ ε > 0,∫ T

0

f (ϕt(x)) dt∼
∫
M

f dµ · T + D2(f )T ν2 + · · ·+ Dg (f )T νg + O(T ε),

or more precisely, if D1(f ) = · · · = Di−1(f ) = 0 but Di (f )6= 0,

lim sup
log
(∫ T

0
(ϕt(x)dt

)
logT

= νi .

Reference: Giovanni Forni, (Annals Math., 2002)

I The exponents in the deviation spectrum, i.e.
1 = ν1 > ν2 > · · · > νg > 0 are the positive Lyapunov exponents
of the (KZ cocycle over) Teichmueller geodesic flow;

I Simplicity was proved by Avila- Viana (Acta Math., 2007),
thus proving the Kontsevitch-Zorich conjecture.
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Graphs of Birkhoff sums

Question: What can we say beyond the deviations asymptotic size?

I Take f ∈ Γ(T ), fix x0 ∈ I .

I Plot the graph of the Birkhoff sums Sk f (x0), for k = 0, 1, . . . , n.

Piecewise affine function with vertices (k ,Sk f (x)), k = 0, 1, . . . , n.

I Call Ωn = Ωn(f ,T , x0) the rescaled plot, where the x-axis is rescaled
to [0, 1], by mapping x 7→ x/n.
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Graphs of Birkhoff sums: examples of behaviour
The behaviour of the plot depends on whether:

I f ∈ F−(T ),

||Ωn||∞ < C

I f ∈ F0(T )\F−(T )

lim log ||Ωn||∞
log n

= 0

I f ∈ F+(T )\F0(T )

lim log ||Ωn||∞
log n

> 0

(Credit for Figures: Stefano Marmi)

E.g. T i.e.m. with d = 5 (pseudo-Anosov), plot of Ωn(f ,T , 0), for f ∈ Γ0(T ).

Today: we will focus on describing the behaviour of f ∈ F0(T )\F−(T ).
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Examples of Birkhoff sums with subpolynomial deviations
I Ex 1: T = Ra rotation,

T (x) = x + a mod 1,

f = fb = 1[0,b] − b.

I If b ∈ {T n(a), n ∈ N},

⇒ fb ∈ F−

I If b /∈ {T n(a), n ∈ N},

⇒ fb ∈ F0\F−

I Ex 2: IETs with k > 1 (so that dimF0/F− = k − 1 > 0), f ∈ F0\F−
(e.g. π =

(
αβγδε
εδγβα

)
with d odd).

I Ex 3: Corrected characteristic functions fb − χ, given by:

Lemma (Marmi-U’-Yoccoz)

For a.e. T = (π, λ, τ), given fb = 1[0,b], there exists χ ∈ Γ(T ) such that

f̃b := fb − χ ∈ F0(T , b), i.e.

lim
n→±∞

∣∣∣Sn f̃b(x)
∣∣∣ ≤ C |n|ε, ∀ε > 0, ∀x ∈ I .
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Motivation to study “central” Birkhoff sums

I For T = Ra (rotations), f = fb, there are many interesting
results on the behaviour of Snfb(x), e.g.

I Discrepancy estimates (e.g. in terms of Ostrowsky expansion);
I Kesten Theorem:

1

log n
Snfb(Ra, x)→ Cauchy r.v., for (x , a) random (unif. distr.).

I Beck Theorem: (temporal CLT): a quadratic irrational; x0 = 0

Sk fb(x0)− C1 log n

C2

√
log n

→ Gaussian r.v., for k = 1, . . . , n unif. distr.

I Generalizations of Beck: Dolgopyat-Sarig: for non-zero x0, any b
rational (a bounded type); Bromberg-U’: for a bounded type, also for
a full Hdim set of irrational bs;

I Question: Can we prove some of these results for corrected
characteristic functions over IETs?

I Remark: Intersting examples arise for example from the
study of Z−covers of translation surfaces.



Motivation to study “central” Birkhoff sums

I For T = Ra (rotations), f = fb, there are many interesting
results on the behaviour of Snfb(x), e.g.

I Discrepancy estimates (e.g. in terms of Ostrowsky expansion);
I Kesten Theorem:

1

log n
Snfb(Ra, x)→ Cauchy r.v., for (x , a) random (unif. distr.).

I Beck Theorem: (temporal CLT): a quadratic irrational; x0 = 0

Sk fb(x0)− C1 log n

C2

√
log n

→ Gaussian r.v., for k = 1, . . . , n unif. distr.

I Generalizations of Beck: Dolgopyat-Sarig: for non-zero x0, any b
rational (a bounded type); Bromberg-U’: for a bounded type, also for
a full Hdim set of irrational bs;

I Question: Can we prove some of these results for corrected
characteristic functions over IETs?

I Remark: Intersting examples arise for example from the
study of Z−covers of translation surfaces.



Motivation to study “central” Birkhoff sums

I For T = Ra (rotations), f = fb, there are many interesting
results on the behaviour of Snfb(x), e.g.

I Discrepancy estimates (e.g. in terms of Ostrowsky expansion);
I Kesten Theorem:

1

log n
Snfb(Ra, x)→ Cauchy r.v., for (x , a) random (unif. distr.).

I Beck Theorem: (temporal CLT): a quadratic irrational; x0 = 0

Sk fb(x0)− C1 log n

C2

√
log n

→ Gaussian r.v., for k = 1, . . . , n unif. distr.

I Generalizations of Beck: Dolgopyat-Sarig: for non-zero x0, any b
rational (a bounded type); Bromberg-U’: for a bounded type, also for
a full Hdim set of irrational bs;

I Question: Can we prove some of these results for corrected
characteristic functions over IETs?

I Remark: Intersting examples arise for example from the
study of Z−covers of translation surfaces.



Motivation to study “central” Birkhoff sums

I For T = Ra (rotations), f = fb, there are many interesting
results on the behaviour of Snfb(x), e.g.

I Discrepancy estimates (e.g. in terms of Ostrowsky expansion);
I Kesten Theorem:

1

log n
Snfb(Ra, x)→ Cauchy r.v., for (x , a) random (unif. distr.).

I Beck Theorem: (temporal CLT): a quadratic irrational; x0 = 0

Sk fb(x0)− C1 log n

C2

√
log n

→ Gaussian r.v., for k = 1, . . . , n unif. distr.

I Generalizations of Beck: Dolgopyat-Sarig: for non-zero x0, any b
rational (a bounded type); Bromberg-U’: for a bounded type, also for
a full Hdim set of irrational bs;

I Question: Can we prove some of these results for corrected
characteristic functions over IETs?

I Remark: Intersting examples arise for example from the
study of Z−covers of translation surfaces.



Motivation to study “central” Birkhoff sums

I For T = Ra (rotations), f = fb, there are many interesting
results on the behaviour of Snfb(x), e.g.

I Discrepancy estimates (e.g. in terms of Ostrowsky expansion);
I Kesten Theorem:

1

log n
Snfb(Ra, x)→ Cauchy r.v., for (x , a) random (unif. distr.).

I Beck Theorem: (temporal CLT): a quadratic irrational; x0 = 0

Sk fb(x0)− C1 log n

C2

√
log n

→ Gaussian r.v., for k = 1, . . . , n unif. distr.

I Generalizations of Beck: Dolgopyat-Sarig: for non-zero x0, any b
rational (a bounded type); Bromberg-U’: for a bounded type, also for
a full Hdim set of irrational bs;

I Question: Can we prove some of these results for corrected
characteristic functions over IETs?

I Remark: Intersting examples arise for example from the
study of Z−covers of translation surfaces.



Motivation to study “central” Birkhoff sums

I For T = Ra (rotations), f = fb, there are many interesting
results on the behaviour of Snfb(x), e.g.

I Discrepancy estimates (e.g. in terms of Ostrowsky expansion);
I Kesten Theorem:

1

log n
Snfb(Ra, x)→ Cauchy r.v., for (x , a) random (unif. distr.).

I Beck Theorem: (temporal CLT): a quadratic irrational; x0 = 0

Sk fb(x0)− C1 log n

C2

√
log n

→ Gaussian r.v., for k = 1, . . . , n unif. distr.

I Generalizations of Beck: Dolgopyat-Sarig: for non-zero x0, any b
rational (a bounded type); Bromberg-U’: for a bounded type, also for
a full Hdim set of irrational bs;

I Question: Can we prove some of these results for corrected
characteristic functions over IETs?

I Remark: Intersting examples arise for example from the
study of Z−covers of translation surfaces.



Motivation to study “central” Birkhoff sums

I For T = Ra (rotations), f = fb, there are many interesting
results on the behaviour of Snfb(x), e.g.

I Discrepancy estimates (e.g. in terms of Ostrowsky expansion);
I Kesten Theorem:

1

log n
Snfb(Ra, x)→ Cauchy r.v., for (x , a) random (unif. distr.).

I Beck Theorem: (temporal CLT): a quadratic irrational; x0 = 0

Sk fb(x0)− C1 log n

C2

√
log n

→ Gaussian r.v., for k = 1, . . . , n unif. distr.

I Generalizations of Beck: Dolgopyat-Sarig: for non-zero x0, any b
rational (a bounded type); Bromberg-U’: for a bounded type, also for
a full Hdim set of irrational bs;

I Question: Can we prove some of these results for corrected
characteristic functions over IETs?

I Remark: Intersting examples arise for example from the
study of Z−covers of translation surfaces.



Motivation to study “central” Birkhoff sums

I For T = Ra (rotations), f = fb, there are many interesting
results on the behaviour of Snfb(x), e.g.

I Discrepancy estimates (e.g. in terms of Ostrowsky expansion);
I Kesten Theorem:

1

log n
Snfb(Ra, x)→ Cauchy r.v., for (x , a) random (unif. distr.).

I Beck Theorem: (temporal CLT): a quadratic irrational; x0 = 0

Sk fb(x0)− C1 log n

C2

√
log n

→ Gaussian r.v., for k = 1, . . . , n unif. distr.

I Generalizations of Beck: Dolgopyat-Sarig: for non-zero x0, any b
rational (a bounded type); Bromberg-U’: for a bounded type, also for
a full Hdim set of irrational bs;

I Question: Can we prove some of these results for corrected
characteristic functions over IETs?

I Remark: Intersting examples arise for example from the
study of Z−covers of translation surfaces.



Limit shapes of Birkhoff sums with power deviations
I Take f ∈ Γ(T ) s.t. ν := lim sup log Snf (p)

log n = > 0, i.e. f ∈ E+\E0.

I The behaviour can be understood/described in terms of limit shapes:

I Marmi-Moussa-Yoccoz, “Affine IETs with a wondering interval”’,
Proceedings of the London Mathematical Society, 2005,
Key tool: “Limit shapes for Birkhoff sums”.

I Bufetov, “Limit Theorem for Translation Flows”’,
Annals of Mathematics, 2014, Key object: “finitely-additive
transverse invariant measures” (or Hölder cocycles).
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Convergence to a moving target
I The graphs Ωn have a fractal graph structure; is there convergence?

I NO: there are oscillations, since Snf (x) ∼ nν (ν > 0)

I Rescale the y -axis by the oscillation size nν ; is there convergence?

I NO: the shape typically changes as n grows... BUT:

I There is convergence to a moving target:

I Rescaled graphs of Birkhoff sums approach a moving limit shape
(moving under the Teichmueller geodesic flow/Rauzy-Veech
induction)

I Next: Construction of limit shapes (ν > 0) using Rauzy-Veech
induction (following Marmi-Moussa-Yoccoz).

I SPOILER: If f ∈ F0(T )\F−(T ), i.e. ν = 0, there is convergence to
a moving distribution (Marmi-U-Yoccoz).
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Rauzy-Veech renormalization

I I (0) := I , T (0) = (π(0), λ(0));

I Nested I (n) ⊂ I (n−1), n ∈ N, s.t.

I T (n) = (π(n), λ(n)) induced d-IET.

I Start with M(0) = (π(0), λ(0), τ (0)).

I The algorithm produces
M(n) = (π(n), λ(n), τ (n)),
where T (n) = (π(n), λ(n)).

I Remark: on zippered rectangles, the Rauzy-Veech algorithm:
I acts by cutting and stacking;
I is invertible: the initial data (π(0), λ(0), τ (0)) determines

M(n) = (π(n), λ(n), τ (n)) and heights q(n), ∀n ∈ Z.
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Rauzy-Veech cocycle

I Define B(0, n)α,β := number of pieces

of R
(n)
β inside the rectangle R

(0)
α

I The matrices
B(n) := (B(0, n)α,β)α,β∈A are the
Rauzy-Veech cocycle.

I Use positive acceleration of
Rauzy-Veech induction: B(n) > 0 ∀n;

I Oseledets Thm + B(n) symplectic ⇒ for a.e. (π, λ, τ) has
ν1 > · · · > νg > 0 = · · · = 0 > ν−g > · · · > ν−1

Rd =

g∑
i=1

Ei ⊕
k−1∑
i=1

E0 ⊕
g∑

i=1

E−i ,

where vi ∈ Ei iff limn
log |v (n)

i |
n = νi , where v (n) := A(n)v .

I Remark: the decomposition Γ(T ) = F+ ⊃ F0 ⊃ F− comes from
here: F− =

∑
i<0 E−i , F0 =

∑
i≤0 Ei .
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Constructing Limit Shapes
I Let (π, λ, τ) Oseledets generic.

I Fix f ∈ Ei , i > 0, so limn
log B(n)f

n = νi > 0.

I Renormalize backwards: consider T (−n), q(−n), f (−n), for −n < 0.

I Fix α ∈ A; qα is subdivided into q
(−n)
β time increments.

I Plot Ω
(−n)
i,α graph of Birkhoff sums of f (−n) over T (−n) starting at

x ∈ Iα in q
(−n)
β times intervals.

I If −m < −n, time intervals are finer, and Ω
(−m)
i,α refines Ω

(−n)
i,α .
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Limit Shapes

Proposition (Marmi-Moussa-Yoccoz)

For a.e. (π, λ, τ) (Oseledets generic),

lim
n→∞

Ω
(−n)
i,α = Ωi

α = Ωi
α(f , π, λ, τ) (limit shape)

in the Hausdorff topology, ∀α ∈ A.
(exponentially fast in −n).

Rk: the limit shape Ωi
α is a ν-Holder function on [0, q

(0)
α ] ∀ν < νi

ν1
.

I Application to Birkhoff sums: (convergence to moving shape)

The graph of Sk fi Birkoff sums over

T = T (0) for x0 = 0, for k = 0, . . . , q
(n)
α0 ,

n > 0,
rescaled, approches as n→ +∞ the
(moving) limit shape

Ωα0,i

(
f , λ(n), π(n), τ (n)

)
.

[here α0 is the first interval]
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Backward graphs of central Birkhoff sums
I Let (π, λ, τ) Oseledets generic. Fix f ∈ E0\E−

(e.g. corrected characteristic function).

I Consider T (−n), q(−n), f (−n), for −n < 0. Fix α ∈ A.

I Plot Ω
(−n)
0,α graph of Birkhoff sums of f (−n) over T (−n) starting at

x ∈ Iα in q(−n)β times intervals.

I Consider −m < −n. As before, Ω
(−m)
0,α refines Ω

(−n)
0,α .

I Remark: Ω
(−n)
0,α DO NOT converge as graphs as −n→ −∞

(oscillantions of constant size).
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Convergence to central limit distributions

Theorem (Marmi-U’-Yoccoz)
There is a full measure condition on (π, λ, τ) (dual Roth type) s.t.
for any f ∈ E0\E−, ∀α ∈ A

lim
n→∞

∫ q(0)
α

0

Ω
(−n)
0,α ψ(x)dx =

∫ q(0)
α

0

Ω0,αdx (limit distribution)

for any ϕ γ-Holder test function on [0, qα] with 0 < γ < 1.
(exponentially in n positive time).

Remark: Here there is NO
rescaling in the y -coordinate.

I Application to Birkhoff sums:
Convergence of weighted Birkhoff sums for T = T (0) (w.r.t a Holder
weight function ψ) to a moving object;

I Limit object associated to central distributions/relative homology;
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Two New Diophantine conditions and Duality
Tools introduced and used for the proof of the Theorem:

I Key duality between space vs time
(equivalently, horizontal vs vertical flows on M,
or KZ cocycle vs dual cocycle);

I a new Diophantine Condition for i.e.m.s,
the dual Roth type Diophantine condition; which involves:

I the dual Rauzy-Veech cocycle;
I dual special Birkhoff sums, a dual version of the special Birkhoff

sums (a tool introduced by Marmi-Moussa-Yoccoz);

Remarks:

I The Theorem also holds under a milder absolute dual Roth type
Diophantine condtion;

I Motivation: given a characteristic fb, the absolute Roth type
condition does NOT depend on b.

I We define also a absolute Roth type Diophantine condtion;
I all results proved by Marmi-Moussa-Yoccoz on the cohomological

equation for i.e.m.s are shown to hold also under this weaker
condition;
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Classical Roth type conditions
I Def: a rotation number a ∈ R with continued fraction expansion

a = [a1, a2, . . . , an, . . . ] and convergences pn/qn is of Roth type if
∃C > 0 such that

an = qεn, ∀ε > 0.

I Marmi-Moussa-Yoccoz introduced a (restricted) Roth type
Diophantine condition for i.e.m.;
3 (resp. 4) conditions on the positive Rauzy-Veech acceleration:
(a) Matrices growth: ∃C > 0 s.t.

||B(n, n + 1)|| ≤ C ||B(0, n)|| ∀ε > 0

(b) Spectral gap
(c) Coherence

[(d) Hyperbolicity]

I The Roth type condition was used by Marmi-Moussa-Yoccoz to
solve the cohomological equation:
if T is of (restricted) Roth type, r > 1, for every f piecewise C r on each
Iα, there exists a correction χ ∈ Γ(T ) and a piecewise Holder continuous
solution g such that

f−χ = g − g ◦ T .
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Absolute Roth type

I B(0, n) act on Rd which can be indentified with
H1(M,Sing ,R) relative homology.

I Focus on the absolute homology H1(M,R) ⊂ H1(M,Sing ,R);
I define positive acceleration only with respect to absolute homology;
I Rk: more natural geometrically, less visible from Ruazy-Veech

induction, but it can be defined considering Hπ = ImΩπ;

I Modify condition (a) in (classical=relative) Roth type, to define
asbolute Roth type;

I Marmi-U’-Yoccoz: the results by Marmi-Moussa-Yoccoz can be
reproved assuming only the absolute Roth type condition;

I As a consequence, using
I Eskin-Chaika, any M is Oseledetes generic in a.e. direction θ;

for all translation surfaces M, one can solve the cohomological
equation under the absolute Roth type condition for a.e. direction θ;
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Dual Roth type
Assume (M, π, τ) has no horizontal saddle connections. Iterate Rauzy
Veech backward; (π, τ) determines a backward rotation number.

Lemma (Marmi-U-Yoccoz)
The backward rotation number is infinitely complete, i.e. for every
−n < 0 there exists −m < −n such that B◦(−m,−n) > 0.

Remark: very involved combinatorial proof (by Yoccoz)!

Corollary The backward positive acceleration is well defined.
Let B◦(−n) denote the positive acceleration.

Definition
(π, τ) satisfy the dual Roth type condition if it satisfies

(a) Matrices growth for the dual cocycle: ∃C > 0 s.t.

||B◦(n, n + 1)|| ≤ C ||B◦(0, n)|| ∀ε > 0

(b) Spectral gap for dual cocycle/dual Birkhoff sums

(c) Coherence for dual cocycle/dual Birkhoff sums

Proposition: [Marmi-U’-Yoccoz] dual Roth type has full measure.
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Dual Birkhoff sums in distributional convergence
I For −m < −n, compare Ω

(−m)
0,α − Ω

(−n)
0,α :

I Difference is a sum of rescaled versions of copies of

Ω
(−m−n)
0,β (T (−n)), β ∈ A.

I Sum over occurrences of a fixed subgraph Ω
(−m−n)
0,β (T (−n))

is a dual Birkhoff sum;

I to estimate
∫ (

Ω
(−m)
0,α − Ω

(−n)
0,α

)
ψ exploit estimates on dual special

Birkhoff sums of Holder functions, which hold under the dual Roth
type condition.
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Birkhoff sums of Holder functions, which hold under the dual Roth
type condition.



Dual Birkhoff sums in distributional convergence
I For −m < −n, compare Ω

(−m)
0,α − Ω

(−n)
0,α :

I Difference is a sum of rescaled versions of copies of

Ω
(−m−n)
0,β (T (−n)), β ∈ A.

I Sum over occurrences of a fixed subgraph Ω
(−m−n)
0,β (T (−n))

is a dual Birkhoff sum;

I to estimate
∫ (

Ω
(−m)
0,α − Ω

(−n)
0,α

)
ψ exploit estimates on dual special

Birkhoff sums of Holder functions, which hold under the dual Roth
type condition.


