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r(T):={f piecewise constant} C R?

> fy value on Iy, so f «— (fu,f5,...,f,) € RY;
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» M = M(m, A, 7) translation surface
(flat metric, conical singularities)

» M can be represented as a zippered - )
rectangle, i.e. union of rectangles R, '

with glueings;

Ao width, g, height of R,

T “zips heights"; (m,T) determine

9 = (a)a height vector (g = —4(r))

Remark: m “knows" about the genus g and
number of conical singularities k;

d=2g+k

> ©; : S — S vertical linear flow;
» Poincaré section is the i.e.m T = (m,\);
» Given f : S — R, consider ergodic integrals

/OT f(pe(x))dt, x e M.
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S,F(x) = o(n), (resp /0 f(@t(x))dt:o(T)>

» Deviations of ergodic averages (A. Zorich, 1997): Upper bounds:

For a.e. i.em. T, forall f € [o(T), — ’*

there exists 0 <y <1,C > 0 s.t. J
|Snf(x)| < Cn7, Vx € I.
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More in general, ¢, area-preserving flows on M,

7
f smooth function supported outside singularities: p /77/4/ ‘
» Forae M, 3v;>0,%,1<i<g invariant \ ~ Dg’/
\\;;—/ 4

distributions (21(f) := [,,f) s.t. Ve >0,

/Tf(gpt(x))dtw/ fdu- T+ Do(F)T? + -+ ZDg(f) T + O(T°),
0 M

or more precisely, if 21(f) =--- = 2;_1(f) = 0 but Z;(f)# 0,
T
 log (fy (pelx)at)
lim sup og T = Vj.

Reference: Giovanni Forni, (Annals Math., 2002)

» The exponents in the deviation spectrum, i.e.
1=uv1>wvy>---> 1, >0 are the positive Lyapunov exponents
of the (KZ cocycle over) Teichmueller geodesic flow,

» Simplicity was proved by Avila- Viana (Acta Math., 2007),
thus proving the Kontsevitch-Zorich conjecture.
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E.g. T i.em. with d =5 (pseudo-Anosov), plot of Q,(f, T,0), for f € [o(T).

Today: we will focus on describing the behaviour of f € Fo( T)\F_(T).
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» If be {T"(a),n € N},
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> Ex 2: IETs with k > 1 (so that dimFo/F- = k — 1> 0), f € Fo\F_

(eg 7= < ?5@55; ) with d odd).

» Ex 3: Corrected characteristic functions f, — , given by:

Lemma (Marmi—U'—Yoccoz)
Fora.e. T = (m, A7), given f, = 1o ), there exists x € T(T) such that

foi=fh—x€ F()(T, b), ie.

lim
n—+oo

Snfb(x)‘ < Clnff,  Ve>0, Wxel.
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» For T = R, (rotations), f = fp, there are many interesting
results on the behaviour of S,f(x), e.g.

» Discrepancy estimates (e.g. in terms of Ostrowsky expansion);
> Kesten Theorem:
1

IognSnfb(Ra,x) — Cauchy r.v., for(x,a) random (unif. distr.).

» Beck Theorem: (temporal CLT): a quadratic irrational; xo = 0

Sifo(x0) — Cilogn
Cv/logn

> Generalizations of Beck: Dolgopyat-Sarig: for non-zero xo, any b

rational (a bounded type); Bromberg-U’: for a bounded type, also for
a full Hdim set of irrational bs;

— Gaussian r.v., fork=1,...,n unif. distr.

» Question: Can we prove some of these results for corrected
characteristic functions over |[ETs? -

» Remark: Intersting examples arise for example from the
study of Z—covers of translation surfaces.



Limit shapes of Birkhoff sums with power deviations
> Take f € [(T) st. v:=limsup 8202 — > 0, e fe £ \E.

MMMMMMM

AA"AWATY,




Limit shapes of Birkhoff sums with power deviations
> Take f € [(T) st. v:=limsup 8202 — > 0, e fe £ \E.

MMMMMMM

AA"AWATY,




Limit shapes of Birkhoff sums with power deviations

> Take f € [(T) st v:=limsup 82I®) = > 0, ie. f € E,\E.

n

» The behaviour can be understood/described in terms of limit shapes:



Limit shapes of Birkhoff sums with power deviations
> Take f € T(T) s.t. v:=limsup 20 — . 0 je fe E \E.

log n

» The behaviour can be understood/described in terms of limit shapes:

» Marmi-Moussa-Yoccoz, “Affine IETs with a wondering interval™’,
Proceedings of the London Mathematical Society, 2005,
Key tool: “Limit shapes for Birkhoff sums”.



Limit shapes of Birkhoff sums with power deviations
> Take f € [(T) st v:=limsup 82I®) = > 0, ie. f € E,\E.

Pl e

» The behaviour can be understood/described in terms of limit shapes:

» Marmi-Moussa-Yoccoz, “Affine IETs with a wondering interval™’,
Proceedings of the London Mathematical Society, 2005,
Key tool: “Limit shapes for Birkhoff sums”.

1

» Bufetov, “Limit Theorem for Translation Flows"’,
Annals of Mathematics, 2014, Key object: “finitely-additive
transverse invariant measures” (or Holder cocycles).
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Convergence to a moving target

» The graphs €, have a fractal graph structure; is there convergence?
» NO: there are oscillations, since S,f(x) ~ n” (v > 0)
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» Rescale the y-axis by the oscillation size n”; is there convergence?

> NO: the shape typically changes as n grows... BUT:

» There is convergence to a moving target:
> Rescaled graphs of Birkhoff sums approach a moving limit shape
(moving under the Teichmueller geodesic flow/Rauzy-Veech
induction)
> Next: Construction of limit shapes (v > 0) using Rauzy-Veech
induction (following Marmi-Moussa-Yoccoz).

» SPOILER: If f € Fo(T)\F_(T), i.e. v =0, there is convergence to
a moving distribution (Marmi-U-Yoccoz).
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> Start with M© = (7@ \O (),

» The algorithm produces
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> Remark: on zippered rectangles, the Rauzy-Veech algorithm:
> acts by cutting and stacking;
» is invertible: the initial data (7@, A® 7)) determines
M = (7 A" () and heights ¢, ¥n € Z.
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Rauzy-Veech cocycle

’_r-_’_‘ » Define B(0, n),, 3 := number of pieces

of R[g") inside the rectangle R

» The matrices

B(n) := (B(0,n)a,5), gea are the
Rauzy-Veech cocycle.

» Use positive acceleration of
Rauzy-Veech induction: B(n) > 0 Vn;

» Oseledets Thm + B(n) symplectic = for a.e. (m, A, 7) has
M>- >y >0=--=0>v ;> - >v,

g k—1 g
RI=)E®) E®) Ej
i=1 i=1 i=1

log \vf")\
n

where v; € E; iff lim, = v;, where v(" .= ANy,

» Remark: the decomposition [(T) = F. D Fp D F_ comes from
here: F. =3 . _(E i, Fo= Eigo E;.
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Constructing Limit Shapes

> Let (7, A, 7) Oseledets generic.

log B(n)f
n

» Fix fe E, i>0,solim, =v; > 0.

» Renormalize backwards: consider T(="), q(_"), F= for —n < 0.

Il

» Fix a € A; q, is subdivided into q(_”) time increments.

> Plot Ql(.;") graph of Birkhoff sums of (=) over T(~") starting at

—

—n

=

x€lying times intervals.

> If —m < —n, time intervals are finer, and Q'™ refines Q\".
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Limit Shapes

Proposition (Marmi—l\/loussa—Yoccoz)
For a.e. (w, A\, 7) (Oseledets generic),

lim QE;") =Q =Q (f,m,\,7) (limit shape) p

n—o0 ’ ‘ W
in the Hausdorff topology, Vo € A.

(exponentially fast in —n).
Rk: the limit shape Q! is a v-Holder function on [0, qg))] Vv <

» Application to Birkhoff sums: (convergence to moving shape)

The graph of Sif; Birkoff sums over
T=TO for xo =0, for k:O,...,q((;;),
n>0,

rescaled, approches as n — 400 the
(moving) limit shape

Qay.i (f, )\("),Tr("),T(")) .

[here ag is the first interval]



Backward graphs of central Birkhoff sums

> Let (7, A, 7) Oseledets generic. Fix f € Eg\E_
(e.g. corrected characteristic function).




Backward graphs of central Birkhoff sums

> Let (7, A, 7) Oseledets generic. Fix f € Eg\E_
(e.g. corrected characteristic function).

» Consider T(=1, q(_"), F=n for —n < 0.

I

1



Backward graphs of central Birkhoff sums

> Let (7, A, 7) Oseledets generic. Fix f € Eg\E_
(e.g. corrected characteristic function).

» Consider T(=", g(=") (=" for —n < 0. Fix o € A.

=8



Backward graphs of central Birkhoff sums

> Let (7, A, 7) Oseledets generic. Fix f € Eg\E_
(e.g. corrected characteristic function).
» Consider T(=", g(=") (=" for —n < 0. Fix o € A.

» Plot Qé_") graph of Birkhoff sums of f(=") over T(=") starting at

,Q
x € I, in gC="5 times intervals.

=



Backward graphs of central Birkhoff sums

> Let (7, A, 7) Oseledets generic. Fix f € Eg\E_
(e.g. corrected characteristic function).

» Consider T(=", g(=") (=" for —n < 0. Fix o € A.

» Plot Qg_a") graph of Birkhoff sums of f(=") over T(=") starting at
X € Iy i;1 g(="5 times intervals.

Q

» Consider —m < —n.



Backward graphs of central Birkhoff sums

> Let (7, A, 7) Oseledets generic. Fix f € Eg\E_
(e.g. corrected characteristic function).
» Consider T(=", g(=") (=" for —n < 0. Fix o € A.
» Plot Qé_a") graph of Birkhoff sums of f(=") over T(=") starting at
n gC-ms times intervals.

—

X € ly ing

1]

W]

» Consider —m < —n. As before, Q(()Tam) refines nga").



Backward graphs of central Birkhoff sums

> Let (7, A, 7) Oseledets generic. Fix f € Eg\E_
(e.g. corrected characteristic function).

» Consider T(=", g(=") (=" for —n < 0. Fix o € A.

» Plot Qéja") graph of Birkhoff sums of f(=") over T(=") starting at
X € Iy in g\="

—

)8 times intervals.

1]

W]

» Consider —m < —n. As before, Q(()fam) refines Q(fn)

A

» Remark: S ") DO NOT converge as graphs as —n — —oc0
(OSC|IIant|ons of constant size).
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Convergence to central limit distributions

Theorem (Marmi-U’-Yoccoz)

There is a full measure condition on (w, A\, T) (dual Roth type) s.t.
for any f € Eg\E_, Va € A

lim / Q( ")¢ x)dx—/ Q()adx (limit distribution)
n— o0

for any ¢ ~y-Holder test function on [0, q,] with 0 < v < 1.
(exponentially in n positive time).

Remark: Here there is NO
rescaling in the y-coordinate.

» Application to Birkhoff sums:

Convergence of weighted Birkhoff sums for T = T(©) (w.r.t a Holder
weight function 1)) to a moving object;

» Limit object associated to central distributions/relative homology;
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Two New Diophantine conditions and Duality

Tools introduced and used for the proof of the Theorem:

» Key duality between space vs time
(equivalently, horizontal vs vertical flows on M,
or KZ cocycle vs dual cocycle);
» a new Diophantine Condition for i.e.m.s,
the dual Roth type Diophantine condition; which involves:

> the dual Rauzy-Veech cocycle;
> dual special Birkhoff sums, a dual version of the special Birkhoff
sums (a tool introduced by Marmi-Moussa-Yoccoz);

Remarks:
» The Theorem also holds under a milder absolute dual Roth type
Diophantine condtion;
» Motivation: given a characteristic f, the absolute Roth type
condition does NOT depend on b.
> We define also a absolute Roth type Diophantine condtion;
> all results proved by Marmi-Moussa-Yoccoz on the cohomological
equation for i.e.m.s are shown to hold also under this weaker
condition;
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Classical Roth type conditions

> Def: a rotation number a € R with continued fraction expansion
a=lay,az,...,an...] and convergences p,/q, is of Roth type if
3C > 0 such that
an =q,, Ve > 0.

» Marmi-Moussa-Yoccoz introduced a (restricted) Roth type
Diophantine condition for i.e.m.;
3 (resp. 4) conditions on the positive Rauzy-Veech acceleration:
(a) Matrices growth: 3C > 0 s.t.

|1B(n,n+1)| < C[B(O0,n)]  Ve>0

(b) Spectral gap
(c) Coherence
[(d) Hyperbolicity]

» The Roth type condition was used by Marmi-Moussa-Yoccoz to
solve the cohomological equation:
if T is of (restricted) Roth type, r > 1, for every f piecewise C" on each
I, there exists a correction x € ['(T) and a piecewise Holder continuous
solution g such that
f-x=g—goT.



Absolute Roth type

» B(0, n) act on R? which can be indentified with
Hi(M, Sing,R) relative homology.



Absolute Roth type

» B(0, n) act on R? which can be indentified with
Hi(M, Sing,R) relative homology.

» Focus on the absolute homology H;(M,R) C Hy(M, Sing,R);

» define positive acceleration only with respect to absolute homology;



Absolute Roth type

» B(0, n) act on R? which can be indentified with
Hi(M, Sing,R) relative homology.

» Focus on the absolute homology H;(M,R) C Hy(M, Sing,R);
» define positive acceleration only with respect to absolute homology;
> Rk: more natural geometrically, less visible from Ruazy-Veech
induction, but it can be defined considering Hr = ImQ;



Absolute Roth type

» B(0, n) act on R? which can be indentified with
Hi(M, Sing,R) relative homology.

» Focus on the absolute homology H;(M,R) C Hy(M, Sing,R);
» define positive acceleration only with respect to absolute homology;
> Rk: more natural geometrically, less visible from Ruazy-Veech
induction, but it can be defined considering Hr = ImQ;

» Modify condition (a) in (classical=relative) Roth type, to define
asbolute Roth type;,



Absolute Roth type

» B(0, n) act on R? which can be indentified with
Hi(M, Sing,R) relative homology.

» Focus on the absolute homology H;(M,R) C Hy(M, Sing,R);
» define positive acceleration only with respect to absolute homology;
> Rk: more natural geometrically, less visible from Ruazy-Veech
induction, but it can be defined considering Hr = ImQ;

» Modify condition (a) in (classical=relative) Roth type, to define
asbolute Roth type;,

» Marmi-U'-Yoccoz: the results by Marmi-Moussa-Yoccoz can be
reproved assuming only the absolute Roth type condition;



Absolute Roth type

» B(0, n) act on R? which can be indentified with
Hi(M, Sing,R) relative homology.

» Focus on the absolute homology H;(M,R) C Hy(M, Sing,R);

» define positive acceleration only with respect to absolute homology;
> Rk: more natural geometrically, less visible from Ruazy-Veech
induction, but it can be defined considering Hr = ImQ;

» Modify condition (a) in (classical=relative) Roth type, to define
asbolute Roth type;,

» Marmi-U'-Yoccoz: the results by Marmi-Moussa-Yoccoz can be
reproved assuming only the absolute Roth type condition;

» As a consequence, using
» Eskin-Chaika, any M is Oseledetes generic in a.e. direction 6;

for all translation surfaces M, one can solve the cohomological
equation under the absolute Roth type condition for a.e. direction 6;
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Dual Roth type
Assume (M, m, T) has no horizontal saddle connections. lterate Rauzy
Veech backward; (, T) determines a backward rotation number.
Lemma (Marmi-U-Yoccoz)

The backward rotation number is infinitely complete, i.e. for every
—n < 0 there exists —m < —n such that B°(—m, —n) > 0.

Remark: very involved combinatorial proof (by Yoccoz)!
Corollary The backward positive acceleration is well defined.
Let B°(—n) denote the positive acceleration.

Definition

(w, 7) satisfy the dual Roth type condition if it satisfies

(a) Matrices growth for the dual cocycle: 3C > 0 s.t.

|B°(n,n+1)] < C[B°(0,n)|  Ve>0
(b) Spectral gap for dual cocycle/dual Birkhoff sums
(c) Coherence for dual cocycle/dual Birkhoff sums

Proposition: [Marmi-U'-Yoccoz] dual Roth type has full measure.
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Dual Birkhoff sums in distributional convergence

» For —m < —n, compare Q(()Tam) - Qg)_;)i
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» Difference i |s a sum of rescaled versions of copies of

Qi (TEM), B e A.



Dual Birkhoff sums in distributional convergence

» For —m < —n, compare Q(()jam) - nga"):
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> DifFerence is a sum of rescaled versions of copies of
QS m(TEM), Be A.

> Sum over occurrences of a fixed subgraph ngﬁm_")(T(*”))
is a dual Birkhoff sum;



Dual Birkhoff sums in distributional convergence

» For —m < —n, compare Q((),iam) - ngan):

ai

| _
e

> DifFerence is a sum of rescaled versions of copies of
QS m(TEM), Be A.

> Sum over occurrences of a fixed subgraph ngﬁm_")(T(*”))
is a dual Birkhoff sum;

> to estimate [ (ngam) — Qéja")) 1) exploit estimates on dual special
Birkhoff sums of Holder functions, which hold under the dual Roth
type condition.



