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Abstract. In this paper we prove a renewal-type limit theorem. Given α ∈ (0, 1)\Q and
R > 0, let qnR be the first denominator of the convergents of α which exceeds R. The main
result in the paper is that the ratio qnR /R has a limiting distribution as R tends to infinity.
The existence of the limiting distribution uses mixing of a special flow over the natural
extension of the Gauss map.

1. Introduction
1.1. Main result. For α ∈ (0, 1)\Q, denote the continued fraction expansion of α by

α =
1

a1 +
1

a2+
1
...

= [a1, a2, . . . , an, . . .]

where an ∈ N+ are the entries of the continued fraction and {pn/qn}n∈N+
are the

convergents of α, i.e. pn/qn = [a1, a2, . . . , an] with (pn, qn) = 1.
We prove the following theorem.

THEOREM 1.1. Given R > 0, introduce

nR = min{n ∈ N | qn > R}.

Also fix N ≥ 0. Then the ratio qnR /R and the entries anR−k for 0 ≤ k < N have a joint
limiting distribution, as R tends to infinity, with respect to the Gauss measure µ1 given by
the density dµ1/dα = (ln 2(1 + α))−1.

Theorem 1.1 means that for each N ≥ 0 there exists a probability measure PN on
(1, ∞) × NN

+ such that, for all a, b > 1, ck ∈ N+, 0 ≤ k < N ,

µ1

{
α : a <

qnR

R
< b, anR−k = ck, 0 ≤ k < N

}
R→∞
−−−→ PN ((a, b) × {c0} × · · · × {cN−1}).

(1)
In Theorem 1.1, instead of µ1, one can consider any absolutely continuous measure, but
we do not dwell on this.
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1.2. Applications. Theorem 1.1 is useful in many applications. As an example, we
refer to the following two papers. In [1], the authors consider the problem of the
limiting behavior of large Frobenius numbers, initially investigated by Arnold [8]. If
a = (a1, . . . , an) is an n-tuple of positive integers which are coprime, the Frobenius
number F(a) is the smallest F such that any integer t ≥ F can be written in the form
t =

∑n
j=1 x j a j where x j are non-negative integers. Let �N be the ensemble of all coprime

n-tuples with entries less than N with uniform probability distribution. In the case n = 3,
the existence of the limiting distribution of (1/N 3/2)F(a) as N tends to infinity is proved
using a discrete version of Theorem 1.1.

In [7], the following trigonometric sums are considered:

1
N

N−1∑
n=0

1

1 − e2π i(nα+x)
, (x, α) ∈ (0, 1) × (0, 1),

where (0, 1) × (0, 1) is endowed with uniform probability distribution. The authors prove
that such trigonometric sums (and, more generally, the Birkhoff sums of a function with
a singularity of type 1/x over a rotation) have a non-trivial joint limiting distribution in x
and α as N tends to infinity. Also in this case the proof of the existence of the limiting
distribution is based on the existence of the limiting distribution in Theorem 1.1.

1.3. Outline. The main idea of the proof of Theorem 1.1 is to reformulate the problem
in terms of a certain special flow over the natural extension of the Gauss map and to exploit
mixing of the flow to prove the existence of the limiting distribution. The definitions of the
natural extension of the Gauss map and of special flows are recalled in §2. The reduction
to a special flow is shown in §3 and the existence of the limiting distribution is proved in
§4. The same special flow was also considered in [3] and the proof that the special flow is
mixing is recalled in §5.

2. Definitions
2.1. Gauss map. Let G be the Gauss map, i.e. the transformation on (0, 1) given
by α 7→ G (α) = {1/α}, where {·} denotes the fractional part. The Gauss measure µ1 is
invariant under G . The sequence {an}n∈N+

can be seen as a symbolic coding for the
orbit {G nα}n∈N, since an = [(G n−1(α))−1

] where [·] denotes the integer part. A point
α ∈ (0, 1)\Q will often be identified with the infinite sequence {an}n∈N+

in N+
N+ .

For convenience, we will use also the following notation:

[a0; a1, . . . , an, . . .] = a0 +
1

a1 +
1
. . .

, [a0; a1, . . . , an] = a0 +
1

a1 +
1

. . .+ 1
an

.

2.2. Natural extension of the Gauss map. The natural extension Ĝ of the Gauss map G

acts on infinite bi-sided sequences {an}n∈Z ∈ N+
Z as the two-sided shift, i.e. Ĝ {an}n∈Z =

{a′
n}n∈Z where a′

n = an+1. The map Ĝ admits the following geometric interpretation.
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Consider the domain D(Ĝ ) = (0, 1)\Q × (0, 1)\Q. Let us identify the sequence {an}Z
with the point α̂ = (α̂−, α̂+) ∈ D(Ĝ ), which is given by

α̂+
= [a1, a2, . . . , an, . . .]; α̂−

= [a0, a−1, . . . , a−n, . . .]. (2)

Then Ĝ (α̂) = β̂ where β̂ = (β̂−, β̂+) and

β̂+
= G (α̂+) =

{
1

α̂+

}
=

1
α̂+

− a1; β̂−
=

1
[1/α̂+] + α̂−

=
1

a1 + α̂−
.

Clearly, denoting by π the projection π(α̂) = α̂+ or equivalently π({an}n∈Z) = {an}n∈N+
,

we have π Ĝ = G π . The sequence {an}n∈Z is the symbolic coding of α̂ ∈ D(Ĝ ) under Ĝ

in the sense that an = [(π Ĝ n−1α̂)−1
].

The map Ĝ admits a natural invariant probability measure µ2 on D(Ĝ ) which is given
by the density

ρ2(α
−, α+) =

1

ln 2(1 + α−α+)2 .

Remark 2.1. The Gauss measure µ1 can be recovered as π∗µ2, i.e. for each measurable
set A ⊂ (0, 1), we have µ1(A) = µ2(π

−1 A).

Given any α̂ = {an}n∈Z ∈ D(Ĝ ), α̂− and α̂+ will always denote the two components of
α̂ ∈ D(Ĝ ) which are given explicitly in terms of the an by (2).

Let qn = qn(α̂) = qn(α̂+), n ∈ N+, be the sequence of denominators of the convergents
of α̂+. Also, given R > 0, nR(α̂) and qnR (α̂) are set equal to the analogous quantities
defined for α = α̂+.

Remark 2.2. By construction, the functions qn (for any n ∈ N+), nR and qnR (for any
R > 0) on D(Ĝ ) are constant on fibers π−1α, α ∈ (0, 1)\Q.

2.3. Cylinders. For bk ∈ N+, k = 1, . . . , n, denote by C([b1, . . . , bn]) the cylinder

C([b1, . . . , bn]) = {α = {an}n∈N+
∈ (0, 1)\Q : ak = bk, 1 ≤ k ≤ n}.

We will denote by C +
n the set of all cylinders of length n, i.e. the set of all C([b1, . . . , bn])

with bk ∈ N+ for 1 ≤ k ≤ n. Moreover, if C ∈ C +
n , we will denote by Ĉ the set

π−1C ⊂ D(Ĝ ).
More generally, given bk ∈ N+, k = 0, ±1, . . . , ±n, let

C([b−n, . . . , b0; b1, . . . , bn]) = {α = {an}n∈Z ∈ D(Ĝ ) : ak = bk, −n ≤ k ≤ n}

and let Cn be the set of all bi-sided cylinders of length n, i.e. the set, as bk ∈ N+ for
−n ≤ k ≤ n, of all C([b−n, . . . , b0; b1, . . . , bn]).

Remark 2.3. From the expression of the Gauss density and Remark 2.1, we get that
µ2(Ĉ([n])) = µ1(C([n])) = µ1(1/(n + 1), 1/n) = O(1/n2).
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2.4. Special flows. Consider a probability space (D, B, µ2) and an invertible map
F : D → D which preserves µ2. Let ϕ : D → R+ be a strictly positive function such that∫

D ϕ(α) dµ2 < ∞. The phase space D8 of the special flow is the subset of D × R given by

D8 = {(x, y)| x ∈ D : 0 ≤ y < ϕ(x)}

and can be depicted as the set of points below the graph of the roof function ϕ. Consider
the normalized measure µ3 which is the restriction to D8 of the product measure( ∫

D ϕ(α) dµ2
)−1

µ2 × λ, where λ denotes the Lebesgue measure on R.
The special flow {8t }t∈R built over F with the help of the roof function ϕ is a

one-parameter group of µ3-measure-preserving transformations of D8 whose action is
generated by the following two relations:{

8t (x, y) = (x, y + t) if 0 ≤ y + t < ϕ(x);

8ϕ(x)(x, 0) = (F(x), 0).
(3)

Under the action of the flow, a point of (x, y) ∈ D8 moves with unit velocity along the
vertical line up to the point (x, ϕ(x)), then jumps instantly to the point (F(x), 0), according
to the base transformation. Afterwards it continues its motion along the vertical line until
the next jump and so on (see e.g. [2]). Abusing the notation, we will often identify any set
C ⊂ D with C × {0} ⊂ D × {0} ⊂ D8.

We will denote by

S0(ϕ, F)(x) := 0; Sr (ϕ, F)(x) = Sr (ϕ)(x) :=

r−1∑
i=0

ϕ(F i (x)), x ∈ D, r ∈ N+,

the r th non-renormalized Birkhoff sum of ϕ along the trajectory of x under F .
Let t > 0. Given x ∈ D denote by r(x, t) the integer uniquely defined by

r(x, t) := min{r ∈ N| Sr (ϕ)(x) > t}. (4)

Then r(x, t) − 1 gives the number of discrete iterations of F which the point (x, 0)

undergoes before time t . According to this notation, the flow 8t defined by (3) acts as

8t (x, 0) = (Fr(x,t)−1(x), t − Sr(x,t)−1(ϕ)(x)). (5)

For t < 0, the action of the flow is defined as the inverse map.

3. Reduction to a special flow
Let us first define the special flow that we are going to consider.

3.1. Roof function. Consider the following positive real-valued function on D(Ĝ ):

ϕ(α̂) = ln
(

a1 +
1

a0 +
1

a−1+···

)
= −ln(Ĝ α̂)−. (6)

The reason for this definition will be clear after Lemma 3.1. It is easy to see, from
Remark 2.3, that the function ϕ is integrable with respect to µ2.
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Remark 3.1. Let C ∈ Cn , n ≥ 1, be any cylinder. Then there exists δ = δ(C) > 0 and
M = M(C) > 0 such that infα̂∈C ϕ(α̂) ≥ δ and supα̂∈C ϕ(α̂) ≤ M . It follows by noting
that ϕ(α̂) ≥ ln(1 + (1/(a0 + 1))), and ϕ(α̂) ≤ ln(a1 + 1).

Let us consider the special flow {8t }t∈R built over Ĝ under the function ϕ and let
µ3 =

( ∫
ϕ dµ2

)−1
µ2 × λ be the 8t -invariant probability measure. Let us recall that

{8t }t∈R is said to be mixing if, for all Borel subsets A, B of D8, we have

lim
t→∞

µ3(8−t (A) ∩ B) = µ3(A)µ3(B).

PROPOSITION 3.1. The flow {8t }t ∈ R is mixing.

Proposition 3.1 was proved in [3]. We recall the proof in §5.

3.2. Denominators growth and Birkhoff sums. Let us show that ln qn can be
approximated by Birkhoff sums of ϕ. Indeed, put

fn(α̂) = ln qn(α̂) − Sn(ϕ)(α̂). (7)

LEMMA 3.1. There exists a function f on D(Ĝ ) such that fn converges to f uniformly in
α̂ and exponentially fast in n, i.e.

ln qn(α̂) = Sn(ϕ)(α̂) + f (α̂) + εn(α̂), sup
α̂∈D(Ĝ )

|εn(α̂)| = O(2−n). (8)

Proof. Let q0 = 1, q−1 = 0 and rn = qn/qn−1 for n ∈ N+, so that qn =
∏n

k=1 rk . From the
well-known relation qk+1 = ak+1qk + qk−1 which holds for k ≥ 0 (see e.g. [5]), we get by
recursion that, for k ≥ 1,

rk+1 = ak+1 +
1
rk

= [ak+1; ak, . . . , a1] (9)

and hence

log qn =

n∑
k=1

ln[ak; ak−1, . . . , a1]. (10)

Since (Ĝ k α̂)− = [ak, ak−1, . . .], from the definition (6) of ϕ we get

Sn(ϕ)(α̂) =

n∑
k=1

ln
1

(Ĝ k α̂)−
=

n∑
k=1

ln[ak; ak−1, . . .]. (11)

Thus, from (7) and (9),

( fk+1 − fk)(α̂) = ln rk+1 − ϕ(Ĝ k α̂) = ln rk+1 − ln
1

(Ĝ k+1α̂)−
= ln

[ak+1; ak, . . . , a1]

[ak+1; ak, . . .]
.

In order to estimate the last term, consider βk = [ak, ak−1, . . .] and let {pk,m/qk,m}m be
the convergents of βk , so that in particular pk,k/qk,k = [ak, . . . , a1]. Recalling the well-
known formula (see [5]) ∣∣∣∣βk −

pk,m

qk,m

∣∣∣∣ ≤
1

(qk,m)2 (12)



648 Ya. G. Sinai and C. Ulcigrai

and using the fact that for all sequences of denominators of convergents qk,m ≥ 2(m−1)/2

[5, Theorem 12] and the fact that [ak+1; ak, . . .] ≥ 1, we get∣∣∣∣ln [ak+1; ak, . . . , a1]

[ak+1; ak, . . .]

∣∣∣∣ ≤

∣∣∣∣ln(
1 +

(pk,k/qk,k) − βk

[ak+1; ak, . . .]

)∣∣∣∣ ≤ 2

∣∣∣∣βk −
pk,k

qk,k

∣∣∣∣ ≤ 22−k . (13)

Hence, (13) shows that we can well define

f (α̂) =

∞∑
k=0

( fk+1 − fk)(α̂) (14)

and (8) clearly follows from the geometric bound of the series, with εn = 23−n . 2

LEMMA 3.2. If α1, α2 ∈ C([a−n, . . . , a0; a1, . . . , an]), then

| f (α̂1) − f (α̂2)| ≤ C2−n, (15)

where C > 0 is an absolute constant.

Proof. First, by Lemma 3.1, we have, for some C1 > 0,

| f (α̂1) − f (α̂2)| ≤ C12−n
+ | fn(α̂1) − fn(α̂2)|. (16)

Let us estimate the second term of the right-hand side. Let α̂1 = {a′
m}m∈Z, α̂2 = {a′′

m}m∈Z,
where by assumption a′

m = a′′
m = am for −n ≤ m ≤ n. From (11),

Sn(ϕ)(α̂1) − Sn(ϕ)(α̂2) =

n∑
k=1

ln
[ak; ak−1, . . . , a−n, a′

−n−1, a′

−n−2 . . .]

[ak; ak−1, . . . , a−n, a′′

−n−1, a′′

−n−2, . . .]
. (17)

Arguing as in Lemma 3.1, for k = 1, . . . , n, consider

β ′

k= [ak−1, ak−2, . . . , a−n, a′

−n−1, . . .] and β ′′

k = [ak−1, ak−2, . . . , a−n, a′′

−n−1, . . .]

and denote by {p′

k,n/q ′

k,n}n and {p′′

k,n/q ′′

k,n}n their respective convergents. Since

p′

k,k+n/q ′

k,k+n = p′′

k,k+n/q ′′

k,k+n , from (12) and qm ≥ 2(m−1)/2 we get

|β ′

k − β ′′

k | ≤

∣∣∣∣β ′

k −
p′

k,k+n

q ′

k,k+n

∣∣∣∣ +

∣∣∣∣β ′′

k −
p′′

k,k+n

q ′′

k,k+n

∣∣∣∣ ≤
1

(q ′

k,k+n)2 +
1

(q ′′

k,k+n)
2 ≤ 22−k−n .

Hence, as in (13), for some C2 > 0,∣∣∣∣ n∑
k=1

ln
[ak; . . . , a−n, a′

−n−1, . . .]

[ak; . . . , a−n, a′′

−n−1, . . .]

∣∣∣∣ ≤

n∑
k=1

2|β ′

k − β ′′

k | ≤

n∑
k=1

23−k−n
≤ C22−n .

Hence, by (7), noting that we also have qn(α̂+

1 ) = qn(α̂+

2 ), this implies that | fn(α̂1) −

fn(α̂2)| ≤ C22−n and gives the desired estimate of (16). 2
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3.3. Comparing renewal times. Given α̂ and R > 0, we want to choose T as a function
of R so that we can compare nR(α̂) and r(α̂, T ), where r(α̂, T ) − 1 is the discrete number
of iterations undergone by 8t (α̂, 0) for t ≤ T , see (4). Let us recall that nR(α̂) is uniquely
determined by

ln qnR(α̂)−1 ≤ ln R < ln qnR(α̂).

By (7), the previous inequality can be rewritten as

SnR(α̂)−1(ϕ)(α̂) + fnR(α̂)−1(α̂) ≤ ln R < SnR(α̂)(ϕ)(α̂) + fnR(α̂)(α̂). (18)

To avoid the dependence of the time on α̂, let us localize to a set of C ⊂ D(Ĝ ) and denote
fC = supα̂∈C f (α̂). Assume that for all α̂ ∈ C we have | f (α̂) − fC| ≤ ε/2 (such sets will
be constructed in the Proof of Theorem 1.1).

Let us first show that on large measure sets the growth of nR is guaranteed by the growth
of R.

LEMMA 3.3. For each measurable C ⊂ D(Ĝ ) and ε > 0 there exits a measurable C′
⊂ C

such that µ2(C\C′) ≤ εµ2(C) and minα̂∈C ′ nR(α̂) tends to infinity uniformly as R tends to
infinity.

Similarly, given ε > 0 there exits a measurable Cε ⊂ (0, 1) such that µ1((0, 1)\Cε) ≤ ε

and minα∈Cε
nR(α) tends to infinity uniformly as R tends to infinity.

Proof. By the Lévy–Khinchin theorem, for µ1-a.e. α ∈ (0, 1), there exists an absolute
constant l > 0 such that limn→∞(ln qn/n) = l. By Remarks 2.1 and 2.2, the same holds
for µ2-a.e. α̂ ∈ D(Ĝ ). By Egorov’s theorem, we can find for each ε > 0 a measurable
subset C1 ⊂ C with µ2(C\C1) ≤ (ε/2)µ2(C) on which the convergence is uniform, so
that for some n, (ln qn)/n ≤ 2l for each n ≥ n. Moreover, there exists C2 ⊂ C with
µ2(C\C2) ≤ (ε/2)µ2(C) such that, on C2, the functions (ln qn)/n for n = 1, . . . , n are
uniformly bounded. Hence, setting C′

= C1 ∩ C2, µ2(C\C′) ≤ εµ2(C) and there exists a
constant c = c(C, ε) > 0 such that for all α̂ ∈ C′ and all n ∈ N+ we have ln qn ≤ cn. Since
by definition qnR(α̂) > R, this implies that minα̂∈C ′ nR(α̂) ≥ (c)−1 ln qnR(α̂) ≥ (c)−1 ln R,
from which the lemma follows. The proof of the second part proceeds in exactly the same
way. 2

LEMMA 3.4. Assume that C ∈ Cn and for all α̂ ∈ C we have | f (α̂) − fC| ≤ ε/2. There
exists R0 = R0(C) > 0 such that, whenever R ≥ R0, if we set T = T (R, C) = ln R − fC
and consider

U = UC := {α̂ ∈ C : nR(α̂) 6= r(α̂, T )},

we have µ2(U ) ≤ 7εµ2(C).

Hence, outside of a subset of C of arbitrarily small proportion and for large R, the
function T = T (R, C) is such that nR(·) = r(·, T ).

Proof. Let T = T (R, C) = ln R − fC. By definition, we have

Sr(α̂,T )−1(ϕ)(α̂) ≤ T = ln R − fC < Sr(α̂,T )(ϕ)(α̂). (19)
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Let C′
⊂ C be given by Lemma 3.3. Let us show, by comparing (19) to (18), that, as long

as R ≥ R0 for some R0 defined below, we have

U ∩ C′
⊂ Uε ∪ U−ε ∩ C′ (20)

where U±ε ⊂ D(Ĝ ) are defined as

U−ε = {α̂ : T < Sr(α̂,T )(ϕ)(α̂) ≤ T + ε}, Uε = {α̂ : T − ε < Sr(α̂,T )−1(ϕ)(α̂) ≤ T }.

(21)
To show the inclusion (20), assume that α̂ ∈ C′, but α̂ /∈ Uε ∪ U−ε . Then, by (21) and (19),
we have

Sr(α̂,T )−1(ϕ)(α̂) ≤ T − ε, Sr(α̂,T )(ϕ)(α̂) > T + ε. (22)

Choose n0 � 1 so that by Lemma 3.1, for all n ≥ n0 − 1, | fn − f | ≤ ε/2. By Lemma 3.3
we can choose R0 so that, if R ≥ R0, then nR(α̂) ≥ n0 for all α̂ ∈ C′. This, together
with the assumptions on C, implies that, since α̂ ∈ C′, | fi (α̂) − fC| < ε for i = nR(α̂), i =

nR(α̂) − 1. Hence, (18) gives

SnR(α̂)(ϕ)(α̂) > ln R − fnR(α̂)(α̂) > T − ε,

SnR(α̂)−1(ϕ)(α̂) ≤ ln R − fnR(α̂)−1(α̂) < T + ε,

which, compared with (22), since Sn(ϕ)(α̂) is increasing in n, implies that

r(α̂, T ) − 1 < nR(α̂) and nR(α̂) − 1 < r(α̂, T ).

Since both nR(α̂) and r(α̂, T ) are integers, these inequalities imply nR(α̂) = r(α̂, T ), i.e.
α̂ /∈ U , proving (20) as desired.

Recalling the definition (5) of the special flow action, we can rewrite the sets U±ε as

Uε = {α̂ : 0 ≤ T − Sr(α̂,T )−1(ϕ)(α̂) < ε} = {(α̂, 0) : 8T (α̂, 0) ∈ Dε
8},

U−ε = {α̂ : ϕ(Ĝ r(α̂,T )−1α̂) − ε ≤ T − Sr(α̂,T )−1(ϕ)(α̂) < ϕ(Ĝ r(α̂,T )−1α̂)}

= {(α̂, 0) : 8T (α̂, 0) ∈ D−ε
8 },

where Dε
8 = D(Ĝ ) × [0, ε) and D−ε

8 = {(α̂, y) : ϕ(α̂) − ε ≤ y < ϕ(α̂)}.
We want to use mixing of {8t }t∈R to estimate the measures of the last two sets. In

order to do this, we need to ‘thicken’ them as follows. Choose 0 < δ ≤ ε such that, by
Remark 3.1, δ < minα̂∈C ϕ(α̂) and consider the following two subsets of D8:

U δ
±ε = {(α̂, z) : 0 ≤ z < δ; 8T (α̂, z) ∈ D±ε

8 } = Dδ
8 ∩ 8−T D±ε

8 .

Let us show that if α̂ ∈ Uε ∩ C, then, for each 0 ≤ z < δ, we have (α̂, z) ∈ U δ
ε+δ . Indeed,

by choice of δ,

8T (α̂, z) = 8T +z(α̂, 0) = 8z(Ĝ
r(α̂,T )−1α̂, T − Sr(α̂,T )−1(ϕ)(α̂))

=


(Ĝ r(α̂,T )−1α̂, T + z − Sr(α̂,T )−1(ϕ)(α̂))

{
if Sr(α̂,T )(ϕ)(α̂) > T + z

and r(α̂, T ) = r(α̂, T + z),

(Ĝ r−1α̂, T + z − Sr−1(ϕ)(α̂))

{
if Sr(α̂,T )(ϕ)(α̂) ≤ T + z

and r = r(α̂, T + z) > r(α̂, T ).

(23)
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Since r > r(α̂, T ) and Sr (ϕ) is increasing in r and by definition of Uε , both T + z −

Sr−1(ϕ) ≤ T + δ − Sr(α̂,T )−1(ϕ)(α̂) ≤ ε + δ, and hence (α̂, z) ∈ U δ
ε+δ .

Reasoning in a similar way, let us also show that, if α̂ ∈ U−ε ∩ C, then for each
0 ≤ z < δ, we have (α̂, z) ∈ U δ

−ε ∪ U δ
δ . Indeed, from (23), in the first case T + z −

Sr(α̂,T )−1(ϕ)(α̂) < ϕ(Ĝ r(α̂,T )−1)(α̂) and since α̂ ∈ U−ε , also T + z − Sr(α̂,T )−1(ϕ)(α̂) ≥

T − Sr(α̂,T )−1(ϕ)(α̂) ≥ ϕ(Ĝ r(α̂,T )−1)(α̂) − ε, so (α̂, z) ∈ U δ
−ε ; in the second case, since

r − 1 ≥ r(α̂, T ), we have Sr−1(ϕ)(α̂) ≥ Sr(α̂,T )(ϕ)(α̂) > T and hence 0 ≤ T + z −

Sr−1(ϕ)(α̂) < z < δ, so (α̂, z) ∈ U δ
δ .

Let C′
δ = C′

× [0, δ). Hence, recalling also (20), we have proved that

(U ∩ C′) × [0, δ) ⊂ ((Uε ∪ U−ε) ∩ C′) × [0, δ) ⊂ C′
δ ∩ (U δ

−ε ∪ U δ
δ+ε)

= C′
δ ∩ 8−T (D−ε

8 ∪ Dδ+ε
8 ).

Considering the measures of the above sets and using mixing (Proposition 3.1), one can
find T0 such that, as soon as T ≥ T0, we have

µ2(U ∩ C′)δ = µ3(U ∩ C′
× [0, δ))

≤ µ3(C
′
δ ∩ 8−T (D−ε

8 ∪ Dδ+ε
8 ))

≤ 2µ2(C
′)δµ3(D−ε

8 ∪ Dδ+ε
8 ) ≤ 2µ2(C

′)δ(3ε), (24)

where the last inequality follows from the fact that µ3(D±ε
8 ) ≤ ε and gives µ2(U ∩ C′) ≤

6εµ2(C
′). Enlarging R0 if necessary so that ln R0 − fC ≥ T0, if R ≥ R0 then also T ≥ T0

and (24) holds. Hence µ2(U ) ≤ µ2(U\C′) + 6εµ2(C) ≤ 7εµ2(C), concluding the proof
of the lemma. 2

4. Existence of the limiting distribution

Proof of Theorem 1.1. Assume b > a > 1 and ck ∈ N+, 0 ≤ k < N . We want to estimate
the expression (1). Recalling Remark 2.2, as soon as nR(α) > N we can rewrite the
condition anR(α)−k = ck, 0 ≤ k < N , in an equivalent way as

Ĝ nR(α̂)−1α̂ ∈ CN where α̂+
= α, CN := Ĝ N−1Ĉ([cN−1,cN−2 . . . , c0]), (25)

since, if (25) holds, {a′

j } j∈Z := Ĝ nR(α̂)−N α̂ = Ĝ −(N−1)Ĝ nR(α)−1α̂ ∈ Ĉ([cN−1 . . . , c0]), so
a′

k = cN−k for 1 ≤ j ≤ N and a′

j = anR(α)−N+ j by definition of Ĝ ; hence anR(α)−N+ j =

cN−k for 1 ≤ j ≤ N gives the desired set of equalities for k = N − l.
Given two functions g1, g2 on D(Ĝ ), g1 ≤ g2, let us denote by D8(g1, g2) the

following subsets:

D8(g1, g2) = {(α̂, y) ∈ D8 : ϕ(α̂) − g2(α̂) < y < ϕ(α̂) − g1(α̂)}.

Notice that for some values of g1(α̂), g2(α̂), the corresponding set of y can be empty. Also,
let p(x, y) = x be the projection to the base of the special flow.

Remark 4.1. If g′

1 ≤ g1 and g′

2 ≥ g2, then D8(g1, g2) ⊂ D8(g′

1, g′

2).

We will show that the limiting distribution (1) exists and is given by

PN ((a, b) × {c0} × · · · × {cN−1}) = µ3(D8(ln a, ln b) ∩ p−1CN ). (26)
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Take ε > 0. For each n ∈ N, the cylinders {C : C ∈ Cn} constitute a countable partition of
D(Ĝ ). Choose n so large that, by Lemma 3.2, we have | f (α̂1) − f (α̂2)| ≤ ε/2 for all
α̂1, α̂2 ∈ C. Let

AC :=

{
α̂ ∈ C : a <

qnR(α̂)(α̂)

R
< b, Ĝ nR(α̂)−1α̂ ∈ CN

}
.

By the second part of Lemma 3.3, there exists R1 > 0 such that if R ≥ R1 we have
nR(α) > N for any α outside a set of µ1-measure less than ε. Hence, by (25) (and
Remarks 2.1 and 2.2), we have∣∣∣∣µ1

(
α : a <

qnR(α)

R
< b, anR(α)−k = ck, 0 ≤ k < N

)
−

∑
C∈Cn

µ2(AC)

∣∣∣∣ ≤ 2ε. (27)

Let us first reduce to a finite sum. Consider the finite subset C m
n of cylinders C =

C([a−n, . . . ; . . . , an]) such that ai < m for −n ≤ i ≤ n. Since, if C ∈ Cn\C m
n , there exists

−n ≤ i ≤ n and k ≥ m such that ai = k, we have, using Remark 2.3 and invariance of µ2,∑
C∈Cn\C m

n

µ2(C) ≤

n∑
i=−n

∞∑
k=m

µ2(Ĝ
i Ĉ([k])) ≤ (2n + 1)

∞∑
k=m

O

(
1

k2

)
= O

(
1
m

)
. (28)

Hence, choosing m large enough, we can make (28) less than ε. To each C ∈ C m
n we can

apply Lemma 3.4 and, hence, for R ≥ maxC∈C m
n

R0(C) (where R0(C) and UC are as in
Lemma 3.4) we get, from (27),∣∣∣∣µ1

(
α : a <

qnR(α)

R
< b, anR(α)−k = ck, 0 ≤ k < N

)
−

∑
C∈C m

n

µ2(AC\UC
)

∣∣∣∣
≤ 2ε +

∣∣∣∣ ∑
C∈Cn\C m

n

µ2(AC) +

∑
C∈C m

n

µ2(AC∩UC
)

∣∣∣∣ ≤ 3ε + 7ε
∑

C∈C m
n

µ2(C) ≤ 10ε,

where the second but last inequality follows from the observation that AC ⊂ C, (28) and
Lemma 3.4.

To conclude the proof and to get (26), it is enough to prove that, for each C ∈ C m
n , as

long as R is sufficiently large, we have, for some C > 0,∣∣∣∣µ2(AC \UC
)

µ2(C\UC)
− µ3(D8(ln a, ln b) ∩ p−1CN )

∣∣∣∣ ≤ Cε. (29)

Fix C ∈ C m
n and consider on C the function T = T (R) = ln R − fC (recall that fC =

supC f ) and let U = UC be given by Lemma 3.4. Since by Lemma 3.4, for R ≥ R0(C), on
C\U we have nR(α̂) = r(α̂, T ), applying (8) of Lemma 3.1 we get{
α̂ ∈ C\U : a <

qnR(α̂)

R
< b

}
= {α̂ ∈ C\U : ln a < ln qr(α̂,T )(α̂) − ln R < ln b}

= {α̂ ∈ C\U : ln a < Sr(α̂,T )(ϕ)(α̂) − T + εR,C(α̂) < ln b},

where we denote εR,C(α̂) = εnR(α̂)(α̂) − fC + f (α̂). Let us show that |εR,C| ≤ 2ε

uniformly on C\U . Indeed, by construction of C, | f (α̂) − fC| ≤ ε; moreover, since
by (19) and Remark 3.1, ln R − fC < Sr(α̂,T )(ϕ)(α̂) ≤ M(C)r(α̂, T ), on C\U we have
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nR(α̂) = r(α̂, T ) ≥ (ln R − fC)/M(C). So enlarging R0(C) we can ensure that, for each
α̂ ∈ C\U and R ≥ R0, nR(α̂) is so large that, by Lemma 3.1, also |εnR(α̂)(α̂)| ≤ ε.

Let us denote by (8t (x, y))v the vertical component y′ of 8t (x, y) = (x ′, y′). Using
the definition of the flow action (5) and the equality nR(α̂) = r(α̂, T ), we can rewrite

Sr(α̂,T )(ϕ)(α̂) − T = ϕ(Ĝ nR(α̂)−1α̂) − (8T (α̂, 0))v. (30)

Note that Ĝ nR(α̂)−1α̂ = p(8T (α̂, 0)) and that condition (25) can be expressed as
p(8T (α̂, 0)) ∈ CN . The quantity (30) represents geometrically the vertical distance of
8T (α̂, 0) from the roof function.

Hence, recalling the definitions of the sets D8(g1, g2) and CN given at the beginning
of the proof, using also Remark 4.1 combined with |εR,C| ≤ 2ε, we have shown that

AC \U ⊂ C\U × {0} ∩ 8−T (D8(ln a − 2ε, ln b + 2ε) ∩ p−1CN );

AC \U ⊃ C\U × {0} ∩ 8−T (D8(ln a + 2ε, ln b − 2ε) ∩ p−1CN ).

Let us ‘thicken’ the sets in order to apply mixing of {8t }t∈R as in the proof of Lemma 3.4.
If we choose 0 < δ < min{minα̂∈C ϕ(α̂), ε} (well defined by Remark 3.1), for each α̂ ∈

AC\U and 0 ≤ z < δ, reasoning as in the proof of Lemma 3.4 (see e.g. (23)), we get
(α̂, z) ∈ 8−T (D8(ln a − 2ε − δ, ln b + 2ε) ∩ p−1CN ∪ Dδ

8). Hence, using also Remark
4.1, combined with δ ≤ ε,

δµ2(AC\U ) ≤ µ3(C\U × [0, δ) ∩ 8−T (D8(ln a − 3ε, ln b + 2ε) ∩ p−1CN ∪ Dδ
8)).

Note that µ3(Dδ
8) ≤ ε. Enlarging R0, so that if R ≥ R0 then also T (R) is sufficiently large,

we can use mixing (see Proposition 3.1) to get

δµ2(AC\U ) ≤ δµ2(C\U )(µ3(D8(ln a − 3ε, ln b + 2ε) ∩ p−1CN ) + 2ε). (31)

In order to get the opposite inequality, one can show, reasoning again as in the proof of
Lemma 3.4, that if (α̂, z) ∈ C\U × [0, δ) is such that

(α̂, z) ∈ 8−T (D8(ln a + 2ε, ln b − 2ε − δ) ∩ p−1CN \Dδ
8),

we have that α̂ ∈ AC\U . This means, also using again Remark 4.1, that

C\U × [0, δ) ∩ 8−T (D8(ln a + 2ε, ln b − 3ε) ∩ p−1CN \Dδ
8) ⊂ AC\U × [0, δ).

Again applying mixing, again enlarging R0 if necessary, for R ≥ R0, and using the fact
that for any measurable D ⊂ D8 we have µ3(D\Dδ

8) ≥ µ3(D) − ε, we get

δµ2(AC\U ) ≥ δµ2(C\U )(µ3(D8(ln a + 2ε, ln b − 3ε) ∩ p−1CN ) − 2ε). (32)

Since, moreover, by the Fubini theorem

|µ3(D8(ln a ± ε1, ln b ∓ ε1) ∩ p−1CN ) − µ3(D8(ln a, ln b) ∩ p−1CN )| ≤ 2ε1,

combining (31) and (32) we get (29) and hence conclude the proof of the existence of the
limiting distribution. 2

5. Mixing of the special flow
In what follows we briefly outline the proof of Proposition 3.1 given in [3].
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Proof of Proposition 3.1. Given a point (α̂0, y0) ∈ D8, let us construct the local stable
and unstable leaves through it, denoted by 0

(s)
loc(α̂0, y0) and 0

(u)
loc (α̂0, y0) respectively (as a

general reference, see e.g. [6]).
Since the roof function ϕ(α̂) depends only on (Ĝ α̂)−, it is easy to construct the local

unstable leaf, which is given by a piece of a ‘horizontal’ segment:

0
(u)
loc (α̂0, y0) ⊂ {(α̂, y) : α̂−

= α̂−

0 , y = y0}. (33)

The local stable leaf through (α̂0, y0) is given locally by the following curve parametrized
by α−:

0
(s)
loc(α̂0, y0) ⊂

{
(α̂, y) : α̂+

= α̂+

0 , y = y0 + ln
1 + α̂−α̂+

0

1 + α̂−

0 α̂+

0

}
. (34)

In order to see it, one can construct it as follows. Let us denote (α̂t , yt ) = 8t (α̂0, y0).
Consider a small ‘vertical’ segment at (α̂t , yt ), i.e.

0t
δt

= {(α̂, yt ) : α̂+
= α̂+

t , |α̂−
− α̂−

t | < δt },

where δt is chosen sufficiently small so that, for some δ > 0,

8−t (0
t
δt
) ⊂ {(α̂, y) : α̂+

= α̂+

0 , |y − y0| < δ, 0 < y0 − δ < y < ϕ(α̂0) − δ}.

Then, if (α̂, y) ∈ 8−t (0
t
δt
), by definition of a special flow, since r(α̂, t) = r(α̂0, t) =

r(t) by construction, we have y − Sr(t)−1(ϕ)(α̂) = yt − t = y0 − Sr(t)−1(ϕ)(α̂0). Denote
α+

0 = {a0
k }k∈N+

and pn/qn its convergents. Let

β ′
:= [a0

1 + α̂−

0 , a0
2, . . . , a0

r(t)−1] =
1

α̂−

0 + (qr(t)−1/pr(t)−1)
,

β ′′
:= [a0

1 + α̂−, a0
2, . . . , a0

r(t)−1] =
1

α̂− + (qr(t)−1/pr(t)−1)
,

(35)

and p′
n/q ′

n and p′′
n/q ′′

n be their respective convergents. Note that p′
n = p′′

n = pn for
1 ≤ n ≤ r(t) since they satisfy the same recursive equations pk+1 = ak+1 pk + pk−1 for
2 ≤ k + 1 ≤ r(t) with initial data p0 = 0, p1 = 1. Hence, β ′

= pr(t)−1/q ′

r(t)−1 and β ′′
=

pr(t)−1/q ′′

r(t)−1. Using (10), (11) and (35), one gets

y = y0 + Sr(t)−1(ϕ)(α̂) − Sr(t)−1(ϕ)(α̂0) = y0 + ln
q ′′

r(t)−1

q ′

r(t)−1

= y0 + ln
1 + α̂−(pr(t)−1/qr(t)−1)

1 + α̂−

0 (pr(t)−1/qr(t)−1)
. (36)

As t , and hence r(t), tend to infinity, pr(t)−1/qr(t)−1 converge to α+

0 and we get (34).
The global unstable and stable leaves can be obtained as

0(u)(α̂0, y0) =

⋃
t

8t0
(u)
loc (α̂−t , y−t ), 0(s)(α̂0, y0) =

⋃
t

8−t0
(s)
loc(α̂t , yt ).

To prove mixing, it is enough to show that the stable and unstable foliations form a non-
integrable pair. From their non-integrability, it follows from the general theory (see [6])
that the Pinsker partition is trivial and hence that {8t }t∈R is a K -flow and, in particular, is
mixing.

Consider a sufficiently small neighborhood U (α̂0, y0) ⊂ D8 of (α̂0, y0). It is enough
to show that, for a positive measure set of (α̂, y) ∈ U (α̂0, y0), (α̂, y) can be connected
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to (α̂0, y0) through segments of local stable and unstable leaves, in particular it is enough
to show that there exists (α̂i , yi ) ∈ U (α̂0, y0), i = 1, 2, such that (α̂1, y1) ∈ 0(s)(α̂0, y0),
(α̂2, y2) ∈ 0(u)(α̂1, y1) and (α̂, y) ∈ 0(s)(α̂2, y2).

Using explicitly equations (33) and (34), one can check that these points exist as soon
as we can find y1 and α̂−

1 such that ((α̂−

1 , α̂+

0 ), y1) ∈ U (α̂0, y0) and

y1 = y0 + ln
1 + α̂−

1 α̂+

0

1 + α̂−

0 α̂+

0

, y = y1 + ln
1 + α̂−α̂+

1 + α̂−

1 α̂+
, (37)

since in this case we can take (α̂1, y1) = ((α̂−

1 , α̂+

0 ), y1) and (α̂2, y2) = ((α̂−

1 , α̂+), y1).
Equations (37) can be solved if

α̂+

1 + α̂−α̂+
ey

6=
α̂+

0

1 + α̂−

0 α̂+

0

ey0 . (38)

The points (α̂, y) for which there is an equality in (38) lie on a surface in D8 and hence
have measure zero. This concludes the proof of the non-integrability. 2

6. Concluding remarks
Let T be an ergodic automorphism of the measure space (M, M , µ) and f ∈

L1(M, M , µ),
∫

f dx > 0. The following problem is a generalization of a classical
renewal problem in probability theory. Take R > 0 and consider the first nR such that

f (x) + f (T x) + · · · + f (T nR x) > R.

What will be the limiting distribution of f (x) + f (T x) + · · · + f (T nR x) − R as R tends
to infinity? The answer can be given in terms of a special flow which is similar to the one
considered above. Interesting aspects of this problem appear when

∫
| f | dx = ∞.

Results concerning the limiting distribution when considering the Gauss map and the
sum of the entries of the continued fraction expansion can be found in [4].
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