Billiards, Pretzels
... and Chaos

Inaugural lecture
Professor Corinna Ulcigrai
Wednesday 30 November 2016

Find out more about public events at the University of Bristol:
Web: bristol.ac.uk/events Twitter: @BrisUniEvents

Please note the building's fire exits. There are no planned fire alarms taking place today, so if you hear the alarm sound, please leave via the fire exits and gather at the meeting point outside the Merchant Venturers' Building.
Chaotic systems are everywhere:

the weather...

financial markets...

molecules of a gas,

electrons in a metal...
Chaotic systems are everywhere:

the weather...
Chaotic systems are everywhere:

the weather...

financial markets...
Chaotic systems are everywhere:

the weather... financial markets... molecules of a gas, electrons in a metal...
Deterministic Systems

These systems is **deterministic**, they obey "rules":

- laws of physics,
- mathematical equations...
Deterministic Systems

These systems are deterministic, they obey \textit{“rules”}:

- laws of physics,
- mathematical equations...
Deterministic Systems

These systems are deterministic, they obey “rules”:

- laws of physics,
- mathematical equations...
Deterministic Systems

These systems is deterministic, they obey “rules”:

- laws of physics,
- mathematical equations...

Pierre-Simon Laplace (1747-1827)

Laplace, A Philosophical Essay on Probabilities
Deterministic Systems

These systems are deterministic, they obey “rules”:

- laws of physics,
- mathematical equations...

“An intellect which at a certain moment would know all forces that set nature in motion, and all positions of all items of which nature is composed, if this intellect were also vast enough to submit these data to analysis, [...] for such an intellect nothing would be uncertain and the future just like the past would be present before its eyes.”

Laplace, *A Philosophical Essay on Probabilities*

Pierre-Simon Laplace (1747-1827)
Sensitive dependence: the “Butterfly effect”
Sensitive dependence: the “Butterfly effect”

A key feature of chaotic systems is the **Butterfly Effect**:

“a butterfly flapping its wings in Brazil can cause a tornado in Texas”
Sensitive dependence: the “Butterfly effect”

A key feature of chaotic systems is the Butterfly Effect:

“a butterfly flapping its wings in Brazil can cause a tornado in Texas”

Edward Lorenz
(1917-2008)
Sensitive dependence: the “Butterfly effect”

A key feature of chaotic systems is the Butterfly Effect:

“a butterfly flapping its wings in Brazil can cause a tornado in Texas”

Edward Lorenz
(1917-2008)
Sensitive dependence: the “Butterfly effect”

A key feature of chaotic systems is the Butterfly Effect:

“a butterfly flapping its wings in Brazil can cause a tornado in Texas”

aka in Mathematics as:
Sensitive dependence on Initial Conditions
a small variations in the initial conditions can create very different evolutions.

Edward Lorenz
(1917-2008)
Sensitive dependence: the “Butterfly effect”

A key feature of chaotic systems is the Butterfly Effect:

“a butterfly flapping its wings in Brazil can cause a tornado in Texas”

aka in Mathematics as:
Sensitive dependence on Initial Conditions
a small variations in the initial conditions can create very different evolutions.

Edward Lorenz (1917-2008)
Fast versus slow Chaos

How *quickly* does divergence in the Butterfly Effect happen?

My research: understand mathematical properties of *Slow Chaos*
Fast versus *slow* Chaos

How *quickly* does divergence in the Butterfly Effect happen?

My research: understand mathematical properties of *Slow Chaos*
Fast versus *slow* Chaos

How *quickly* does divergence in the Butterfly Effect happen?

Fastly chaotic systems

- divergence happens *quickly*

Slowly chaotic systems

- divergence happens *slowly*

My research: understand mathematical properties of *Slow Chaos*
Fast versus *slow* Chaos

How *quickly* does divergence in the Butterfly Effect happen?

Fastly chaotic systems
- divergence happens *quickly*
 (exponential function of time)

Slowly chaotic systems
- divergence happens *slowly*

My research: understand mathematical properties of *Slow Chaos*
Fast versus slow Chaos

How *quickly* does divergence in the Butterfly Effect happen?

Fastly chaotic systems

- divergence happens *quickly* (exponential function of time)

Slowly chaotic systems

- divergence happens *slowly* (polynomial function of time)

My research: understand mathematical properties of *Slow Chaos*
Fast versus *slow* Chaos

How *quickly* does divergence in the Butterfly Effect happen?

Fastly chaotic systems

(*hyperbolic* dynamical systems)

- divergence happens *quickly*
 (exponential function of time)

Slowly chaotic systems

- divergence happens *slowly*
 (polynomial function of time)

My research: understand mathematical properties of *Slow Chaos*
Fast versus *slow* Chaos

How *quickly* does divergence in the Butterfly Effect happen?

Fastly chaotic systems
(*hyperbolic* dynamical systems)

- divergence happens *quickly*
 (exponential function of time)

Slowly chaotic systems
(*parabolic* dynamical systems)

- divergence happens *slowly*
 (polynomial function of time)

My research: understand mathematical properties of *Slow Chaos*
Fast versus slow Chaos

How quickly does divergence in the Butterfly Effect happen?

Fastly chaotic systems
(hyperbolic dynamical systems)

- divergence happens quickly
(exponential function of time)

Mathematical properties:

Slowly chaotic systems
(parabolic dynamical systems)

- divergence happens slowly
(polyomial function of time)

My research: understand mathematical properties of Slow Chaos
Fast versus slow Chaos

How *quickly* does divergence in the Butterfly Effect happen?

Fastly chaotic systems
(*hyperbolic* dynamical systems)
- divergence happens *quickly* *(exponential function of time)*

Mathematical properties:
positive entropy, exponential decay of correlations

Slowly chaotic systems
(*parabolic* dynamical systems)
- divergence happens *slowly* *(polynomial function of time)*

My research: understand mathematical properties of *Slow Chaos*
Fast versus slow Chaos

How *quickly* does divergence in the Butterfly Effect happen?

Fastly chaotic systems
(*hyperbolic* dynamical systems)

- divergence happens *quickly* *(exponential function of time)*

Mathematical properties:
positive entropy, exponential decay of correlations

Slowly chaotic systems
(*parabolic* dynamical systems)

- divergence happens *slowly* *(polynomial function of time)*

Mathematical properties:
entropy zero, polynomial speed of equidistribution

My research: understand mathematical properties of *Slow Chaos*
Fast versus *slow* Chaos

How *quickly* does divergence in the Butterfly Effect happen?

Fastly chaotic systems
(*hyperbolic* dynamical systems)
- divergence happens *quickly* (exponential function of time)

Mathematical properties:
- positive entropy, exponential decay of correlations
- Well understood, mathematical theory developed in the 1970s

Slowly chaotic systems
(*parabolic* dynamical systems)
- divergence happens *slowly* (polynomial function of time)

Mathematical properties:
- entropy zero, polynomial speed of equidistribution

My research: understand mathematical properties of *Slow Chaos*
Fast versus slow Chaos

How quickly does divergence in the Butterfly Effect happen?

Fastly chaotic systems
(*hyperbolic* dynamical systems)
- divergence happens *quickly*
 (*exponential* function of time)

Mathematical properties:
positive entropy, exponential decay of correlations
- Well understood, mathematical theory developed in the 1970s

Slowly chaotic systems
(*parabolic* dynamical systems)
- divergence happens *slowly*
 (*polynomial* function of time)

Mathematical properties:
entropy zero, polynomial speed of equidistribution
- Few well understood examples, lack of general theory.

My research: understand mathematical properties of *Slow Chaos*
Fast versus *slow* Chaos

How *quickly* does divergence in the Butterfly Effect happen?

Fastly chaotic systems *(hyperbolic dynamical systems)*

- divergence happens *quickly* *(exponential function of time)*

Mathematical properties:

positive entropy, exponential decay of correlations

- Well understood, mathematical theory developed in the 1970s

Slowly chaotic systems *(parabolic dynamical systems)*

- divergence happens *slowly* *(polynomial function of time)*

Mathematical properties:

entropy zero, polynomial speed of equidistribution

- Few well understood examples, lack of general theory.

My research: understand mathematical properties of *Slow Chaos*
Mathematical Billiards

Law of Optics: angle of incidence = angle of reflection

Mathematical Idealization: the ball is a point with no mass, there is no friction, consider trajectories that never enter a pocket: ⇒ motion is infinite.
Mathematical Billiards

- **Law of Optics**: \[\text{angle of incidence} = \text{angle of reflection} \]

- **Mathematical Idealization**: The ball is a point with no mass, there is no friction, consider trajectories that never enter a pocket: \[\Rightarrow \text{motion is infinite} \]
Mathematical Billiards

law of optics:
\[\text{angle of incidence} = \text{angle of reflection} \]

Mathematical idealization:
the ball is a point with no-mass, there is no friction, consider trajectories that never enter a pocket: \(\Rightarrow \) motion is infinite.
Mathematical Billiards

Mathematical idealization: the ball is a point with no mass, there is no friction, consider trajectories that never enter a pocket: ⇒ motion is infinite.
Mathematical Billiards

law of optics:

angle of incidence = angle of reflection
Mathematical Billiards

law of optics: angle of incidence = angle of reflection

Mathematical idealization: the ball is a point with no-mass, there is no friction, consider trajectories that never enter a pocket: \(\Rightarrow\) motion is *infinite.*
Mathematical Billiards

law of optics:
angle of incidence = angle of reflection

Mathematical idealization:
the ball is a point with no-mass, there is no friction, consider trajectories that never enter a pocket: ⇒ motion is infinite.
Mathematical Billiards

law of optics: angle of incidence = angle of reflection

Mathematical idealization: the ball is a point with no-mass, there is no friction, consider trajectories that never enter a pocket: \(\Rightarrow \) motion is infinite.
Mathematical Billiards

law of optics:
angle of incidence = angle of reflection

Mathematical idealization:
the ball is a point with no-mass, there is no friction, consider trajectories that never enter a pocket: \(\Rightarrow \) motion is infinite.
Mathematical Billiards

law of optics:
angle of incidence = angle of reflection

Mathematical idealization:
the ball is a point with no-mass, there is no friction, consider trajectories that never enter a pocket: ⇒ motion is infinite.
Mathematical Billiards

law of optics:
angle of incidence = angle of reflection

Mathematical idealization:
the ball is a point with no-mass, there is no friction, consider trajectories that never enter a pocket: \(\Rightarrow \) motion is infinite.
Mathematical Billiards

law of optics:
angle of incidence = angle of reflection

Mathematical idealization:
the ball is a point with no-mass, there is no friction, consider trajectories that never enter a pocket: \Rightarrow motion is infinite.
Mathematical Billiards

law of optics:
angle of incidence = angle of reflection

Mathematical idealization:
the ball is a point with no-mass, there is no friction, consider trajectories that never enter a pocket: ⇒ motion is infinite.
Mathematical Billiards

law of optics:
angle of incidence = angle of reflection

Mathematical idealization:
the ball is a point with no-mass, there is no friction, consider trajectories that never enter a pocket: \(\Rightarrow\) motion is \textit{infinite}.
Mathematical Billiards

law of optics:
angle of incidence = angle of reflection

Mathematical idealization:
the ball is a point with no-mass, there is no friction, consider trajectories that never enter a pocket: ⇒ motion is infinite.
Mathematical Billiards

law of optics:
angle of incidence = angle of reflection

Mathematical idealization:
the ball is a point with no-mass, there is no friction, consider trajectories that never enter a pocket: ⇒ motion is infinite.
Mathematical Billiards

law of optics:
angle of incidence = angle of reflection

Mathematical idealization:
the ball is a point with no-mass, there is no friction, consider trajectories that never enter a pocket: \[\Rightarrow\] motion is infinite.
Mathematical Billiards

law of optics:
angle of incidence = angle of reflection

Mathematical idealization:
the ball is a point with no-mass, there is no friction, consider trajectories that never enter a pocket: ⇒ motion is infinite.
Mathematical Billiards

law of optics: angle of incidence = angle of reflection

Mathematical idealization: the ball is a point with no-mass, there is no friction, consider trajectories that never enter a pocket: ⇒ motion is *infinite.*
Mathematical Billiards

law of optics:
angle of incidence = angle of reflection

Mathematical idealization:
the ball is a point with no-mass, there is no friction, consider trajectories that never enter a pocket: ⇒ motion is infinite.
Mathematical Billiards

law of optics:

angle of incidence = angle of reflection

Mathematical idealization:

the ball is a point with no-mass, there is no friction, consider trajectories that never enter a pocket: \(\Rightarrow \) motion is infinite.
Mathematical Billiards

law of optics:
angle of incidence = angle of reflection

Mathematical idealization:
the ball is a point with no-mass, there is no friction, consider trajectories that never enter a pocket: ⇒ motion is infinite.
Mathematical Billiards

law of optics:
angle of incidence = angle of reflection

Mathematical idealization:
the ball is a point with no-mass, there is no friction, consider trajectories that never enter a pocket: \(\Rightarrow \) motion is infinite.
Mathematical Billiards

law of optics:
angle of incidence = angle of reflection

Mathematical idealization:
the ball is a point with no-mass, there is no friction, consider trajectories that never enter a pocket: ⇒ motion is infinite.
Mathematical Billiards

law of optics:
angle of incidence = angle of reflection

Mathematical idealization:
the ball is a point with no-mass, there is no friction, consider trajectories that never enter a pocket: ⇒ motion is *infinite*.
Tables can have various shapes... some examples
Tables can have various shapes... some examples

with barrier
Tables can have various shapes... some examples

- with barrier
- with obstacle
Tables can have various shapes... some examples

- with barrier
- with obstacle
- polygonal
Tables can have various shapes... some examples:

- with barrier
- with obstacle
- polygonal
- concave
Tables can have various shapes... some examples

- with barrier
- with obstacle
- polygonal
- concave
Tables can have various shapes... some examples

- with barrier
- with obstacle
- polygonal
- concave
Motivation to study Mathematical Billiards

Billiards are models of many systems in mechanics, optics, acoustics, thermodynamics ...
Motivation to study Mathematical Billiards

Billiards are models of many systems in mechanics, optics, acoustics, thermodynamics . . .
Motivation to study Mathematical Billiards

Billiards are models of many systems in mechanics, optics, acoustics, thermodynamics . . .

Periodic Lorentz Gas
1905, H. A. Lorentz
Motivation to study Mathematical Billiards

Billiards are models of many systems in mechanics, optics, acoustics, thermodynamics . . .

Periodic Lorentz Gas
1905, H. A. Lorentz

Ehrenfest Model, 1912
Tatjana and Paul Ehrenfest
Periodic version: Hardy-Weber

(image by V. Delecroix)
Sensitive Dependence: circular vs rectangular scatters

- Fast chaos (hyperbolic billiard)
 - Only corners create divergence:
 - Slow chaos (parabolic billiard)

Sinai billiard (Yakov Sinai, Abel Prize 2014)
Sensitive Dependence: circular vs rectangular scatters

defocusing mechanism:
fast chaos \((hyperbolic\ billiard)\)
Sensitive Dependence: circular vs rectangular scatters

defocusing mechanism:
fast chaos (*hyperbolic* billiard)
Sensitive Dependence: circular vs rectangular scatters

defocusing mechanism:
fast chaos (*hyperbolic* billiard)

Sinai billiard
Sensitive Dependence: circular vs rectangular scatters

defocusing mechanism:
fast chaos (\textit{hyperbolic} billiard)

Sinai billiard
(Yakov Sinai
Abel Prize 2014)
Sensitive Dependence: circular vs rectangular scatters

defocusing mechanism:
fast chaos (*hyperbolic* billiard)

Sinai billiard
(Yakov Sinai
Abel Prize 2014)
Sensitive Dependence: circular vs rectangular scatters

defocusing mechanism:
fast chaos (\textit{hyperbolic} billiard)

only corners create divergence:
slow chaos (\textit{parabolic} billiard)

Sinai billiard
(Yakov Sinai
Abel Prize 2014)
Sensitive Dependence: circular vs rectangular scatters

defocusing mechanism:
fast chaos (*hyperbolic* billiard)

only corners create divergence:
slow chaos (*parabolic* billiard)

Sinai billiard
(Yakov Sinai
Abel Prize 2014)
Ehrenfest vs Lorentz: fast vs slow chaos

Periodic Lorentz Gas, 1905

Ehrenfest Model, 1912

fast divergence (hyperbolic billiard)
much studied since the Seventies...

slow divergence (parabolic billiard)
almost no rigorous results until few years ago
Ehrenfest vs Lorentz: fast vs slow chaos

Periodic Lorentz Gas, 1905

fast divergence
\((hyperbolic\) billiard)\)

much studied since the Seventies...

Ehrenfest Model, 1912

slow divergence
\((parabolic\) billiard)\)

almost no rigorous results until few years ago
Ehrenfest vs Lorentz: fast vs slow chaos

Periodic Lorentz Gas, 1905

fast divergence
\((\text{hyperbolic billiard})\)

much studied since the Seventies...

Ehrenfest Model, 1912

slow divergence
\((\text{parabolic billiard})\)

almost no rigorous results until few years ago
Ehrenfest vs Lorentz: fast vs slow chaos

Periodic Lorentz Gas, 1905

Ehrenfest Model, 1912

fast divergence
(hyperbolic billiard)
much studied since the Seventies...

slow divergence
(parabolic billiard)
almost no rigorous results until few years ago
Ehrenfest vs Lorentz: fast vs slow chaos

Periodic Lorentz Gas, 1905

Ehrenfest Model, 1912

fast divergence

(*hyperbolic* billiard)

much studied since the Seventies...

slow divergence

(*parabolic* billiard)

almost no rigorous results until few years ago
Ehrenfest vs Lorentz: fast vs slow chaos

Periodic Lorentz Gas, 1905

Ehrenfest Model, 1912

fast divergence
(*hyperbolic* billiard)
much studied since the Seventies...

slow divergence
(*parabolic* billiard)
almost no rigorous results until few years ago
Dense trajectories

Feature of chaotic systems: *most “trajectories” explore all space*
Dense trajectories

Feature of chaotic systems: *most* "trajectories" explore *all space*

Billiard trajectories "bal" motion) can e.g.

- close up (*periodic motion*)
- get arbitrarily close to any point (*dense*)

A trajectory in a *random* direction is dense.
Dense trajectories

Feature of chaotic systems: *most* “trajectories” explore *all space*

Billiard trajectories “ball” motion) can e.g.

- close up (*periodic motion*)
- get arbitrarily close to any point (*dense*)

A trajectory in a *random* direction is dense.
Dense trajectories

Feature of chaotic systems: *most* “trajectories” explore *all space*

Billiard trajectories “bal” motion) can e.g.
- close up (*periodic motion*)
- get arbitrarily close to any point (*dense*)

A trajectory in a *random* direction is dense.
Dense trajectories

Feature of chaotic systems: *most* “trajectories” explore *all space*

Billiard trajectories “ball” motion) can e.g.

- close up *(periodic motion)*
- get arbitrarily close to any point *(dense)*

A trajectory in a *random* direction is dense.
Dense trajectories

Feature of chaotic systems: *most* “‘trajectories” explore *all space*

Billiard trajectories “bal” motion) can e.g.
- close up (*periodic motion*)
- get arbitrarily close to any point (*dense*)

A trajectory in a *random* direction is *dense.*
Dense trajectories

Feature of chaotic systems: most “trajectories” explore all space

Billiard trajectories “ball” motion can e.g.
- close up (periodic motion)
- get arbitrarily close to any point (dense)

A trajectory in a random direction is dense.
Dense trajectories

Feature of chaotic systems: *most* “‘trajectories’” explore *all space*

Billiard trajectories “bal’’ motion) can e.g.

- close up (*periodic motion*)
- get arbitrarily close to any point (*dense*)

A trajectory in a *random* direction is dense.
Dense trajectories

Feature of chaotic systems: *most* “trajectories” explore *all space*

Billiard trajectories “ball” motion) can e.g.
- close up (*periodic motion*)
- get arbitrarily close to any point (*dense*)

A trajectory in a *random* direction is dense.
Dense trajectories

Feature of chaotic systems: most “trajectories” explore all space

Billiard trajectories “ball” motion) can e.g.
- close up (periodic motion)
- get arbitrarily close to any point (dense)

A trajectory in a random direction is dense.
Dense trajectories

Feature of chaotic systems: *most* “trajectories” explore *all space*

Billiard trajectories “ball” motion) can e.g.
- close up (periodic motion)
- get arbitrarily close to any point (dense)

A trajectory in a random direction is dense.

Same is true for:
Dense trajectories

Feature of chaotic systems: most “trajectories” explore all space.

Billiard trajectories “ball” motion) can e.g.
- close up (periodic motion)
- get arbitrarily close to any point (dense)

A trajectory in a random direction is dense.

Same is true for:
Dense trajectories

Feature of chaotic systems: most “‘trajectories” explore all space.

Billiard trajectories “bal” motion) can e.g.
- close up (periodic motion)
- get arbitrarily close to any point (dense)

A trajectory in a random direction is dense.

Same is true for:
Dense trajectories

Feature of chaotic systems: *most* "trajectories" explore *all space*

Billiard trajectories "ball" motion) can e.g.

- close up (*periodic motion*)
- get arbitrarily close to any point (*dense*)

A trajectory in a *random* direction is *dense*.

Same is true for:
Dense trajectories

Feature of chaotic systems: *most* "trajectories" explore *all space*

Billiard trajectories "ball" motion) can e.g.

- close up (*periodic motion*)
- get arbitrarily close to any point (*dense*)

A trajectory in a *random* direction is *dense*.

Same is true for:
Recent results on the Ehrenfest model

[Fraczek-Ulcigrai, Inventiones, 2014]

on the Ehrenfest model, for almost every direction, NO trajectory is dense (explore all parts of space).

courtesy of V. Delecroix
Recent results on the Ehrenfest model

- [Fraczek-Ulcigrai, *Inventiones*, 2014] on the Ehrenfest model, for *almost every* direction, NO trajectory is dense (explore all parts of space).

courtesy of C. Dettman
Recent results on the Ehrenfest model

- [Fraczek-Ulcigrai, *Inventiones*, 2014] on the Ehrenfest model, for *almost every* direction, NO trajectory is dense (explore all parts of space).

courtesy of C. Dettman
Recent results on the Ehrenfest model

- [Fraczek-Ulcigrai, *Inventiones*, 2014] on the Ehrenfest model, for *almost every* direction, NO trajectory is dense (explore all parts of space).

Why only now? powerful novel tools from Teichmueller dynamics.
Recent results on the Ehrenfest model

- [Fraczek-Ulcigrai, *Inventiones, 2014*]

 on the Ehrenfest model, for *almost every* direction, **NO trajectory is dense** (explore all parts of space).
Recent results on the Ehrenfest model

- [Fraczek-Ulcigrai, *Inventiones*, 2014]
 on the Ehrenfest model, for *almost every* direction, NO trajectory is dense
 (explore all parts of space).

- trajectories in a random direction come back (*recurrence*);
Recent results on the Ehrenfest model

- [Fraczek-Ulcigrai, *Inventiones*, 2014] on the Ehrenfest model, for *almost every* direction, **NO trajectory is dense** (explore all parts of space).

- Trajectories in a random direction come back (**recurrence**); [Avila-Hubert, *Ann. Scie. ENS, in press*];

- Largest distance reached in time t is order $t^{2/3}$ (**superdiffusion**); [Delecroix-Hubert-Lelievre, *Ann. Scie. ENS, 2014*]
Recent results on the Ehrenfest model

- [Fraczek-Ulcigrai, *Inventiones*, 2014]
 on the Ehrenfest model, for *almost every* direction, **NO trajectory is dense** (explore all parts of space).

- trajectories in a random direction come back (**recurrence**);

- largest distance reached in time t is order $t^{2/3}$ (**superdiffusion**)

Why only now? powerful novel tools from *Teichmueller dynamics.*
Recent results on the Ehrenfest model

- [Fraczek-Ulcigrai, *Inventiones*, 2014]

 on the Ehrenfest model, for *almost every* direction, **NO trajectory is dense** (explore all parts of space).

- trajectories in a random direction come back (**recurrence**);

- largest distance reached in time t is order $t^{2/3}$ (**superdiffusion**)

Why only now? powerful novel tools from *Teichmueller dynamics.*
Pretzels
From a rectangular billiard to a bagel...

Unfolding:

Don't reflect the trajectory, REFLECT the TABLE!

4 copies are enough; glue opposite sides: surface of a bagel!
From a rectangular billiard to a bagel...

Unfolding: don’t reflect the trajectory, REFLECT the TABLE!
From a rectangular billiard to a bagel...

Unfolding: don’t reflect the trajectory, REFLECT the TABLE!
From a rectangular billiard to a bagel...

Unfolding: don’t reflect the trajectory, REFLECT the TABLE!
From a rectangular billiard to a bagel...

Unfolding: don’t reflect the trajectory, REFLECT the TABLE!
From a rectangular billiard to a bagel...

Unfolding: don’t reflect the trajectory, REFLECT the TABLE!
From a rectangular billiard to a bagel...

Unfolding: don’t reflect the trajectory, REFLECT the TABLE!
From a rectangular billiard to a bagel...

Unfolding: don’t reflect the trajectory, REFLECT the TABLE!

4 copies are enough;
From a rectangular billiard to a bagel...

Unfolding: don’t reflect the trajectory, **REFLECT** the TABLE!

4 copies are enough;
From a rectangular billiard to a bagel...

Unfolding: don’t reflect the trajectory, **REFLECT** the TABLE!

4 copies are enough;
From a rectangular billiard to a bagel...

Unfolding: don’t reflect the trajectory, REFLECT the TABLE!

4 copies are enough;
From a rectangular billiard to a bagel...

Unfolding: don’t reflect the trajectory, REFLECT the TABLE!

4 copies are enough; glue opposite sides:
From a rectangular billiard to a bagel...

Unfolding: don’t reflect the trajectory, REFLECT the TABLE!

4 copies are enough; glue opposite sides:
From a rectangular billiard to a bagel...

Unfolding: don’t reflect the trajectory, REFLECT the TABLE!

4 copies are enough; glue opposite sides:

surface of a bagel!
From a rectangular billiard to a bagel...

Unfolding: don’t reflect the trajectory, REFLECT the TABLE!

Gain: one can show trajectories are either closed or dense;

4 copies are enough; glue opposite sides:

Surface of a bagel!
From a rectangular billiard to a bagel...

Unfolding: don’t reflect the trajectory, REFLECT the TABLE!

4 copies are enough; glue opposite sides:

Gain: one can show trajectories are either closed or dense;
surface of a bagel!
From a billiard to a pretzel...
From a billiard to a pretzel...

Unfolding, then glueing sides...
From a billiard to a pretzel...

Unfolding, then glueing sides...
From a billiard to a pretzel...

Unfolding, then gluing sides...
From a billiard to a pretzel...

Unfolding, then glueing sides...
From a billiard to a pretzel...

Unfolding, then glueing sides...

...surface of pretzel with 5 holes!
From a billiard to a pretzel...

Unfolding, then glueing sides...

...surface of pretzel with 5 holes!
From a billiard to a pretzel...

Unfolding, then glueing sides...

...surface of pretzel with 5 holes!
From a billiard to a pretzel...

Unfolding, then glueing sides...

...surface of pretzel with 5 holes!
From a billiard to a pretzel...

Unfolding, then glueing sides...

...surface of pretzel with 5 holes!
From a billiard to a pretzel...

Unfolding, then glueing sides...

...surface of pretzel with 5 holes!
From a billiard to a pretzel...

Unfolding, then glueing sides...

...surface of pretzel with 5 holes!
From a billiard to a pretzel...

Unfolding, then glueing sides...

...surface of pretzel with 5 holes!
From a billiard to a pretzel...

Unfolding, then glueing sides...

...surface of pretzel with 5 holes!
From a billiard to a pretzel...

Unfolding, then gluing sides...

...surface of pretzel with 5 holes!
From a billiard to a pretzel...

Unfolding, then glueing sides...

...surface of pretzel with 5 holes!
From a billiard to a pretzel...

Unfolding, then gluing sides...

...surface of pretzel with 5 holes!
From a billiard to a pretzel...

Unfolding, then glueing sides...

...surface of pretzel with 5 holes!
From a billiard to a pretzel...

Unfolding, then glueing sides...

...surface of pretzel with 5 holes!
From a billiard to a pretzel...

Unfolding, then glueing sides...

...surface of pretzel with 5 holes!
From a billiard to a pretzel...

Unfolding, then glueing sides...

...surface of pretzel with 5 holes!
From a billiard to a pretzel...

Unfolding, then glueing sides...

...surface of pretzel with 5 holes!
From a billiard to a pretzel...

Unfolding, then gluing sides...

...surface of pretzel with 5 holes!
Surfaces

Unfolding (rational) polygonal billiards one gets surfaces:

...
Surfaces

Unfolding (rational) polygonal billiards one gets surfaces:

genus 1

...
Surfaces

Unfolding (rational) polygonal billiards one gets surfaces:

genus 1
genus 2
genus 3

...

Pretezels and bagels in the presentation by T. Hansson of the 2016 Physics Nobel Prize work by Thouless, Haldane and Kosterlitz
Flows on surfaces

Motion of a point p point on the surface:
Flows on surfaces

Motion of a point p point on the surface:
Flows on surfaces

Motion of a point \(p \) point on the surface:
after time \(t \), \(p \) "flows" to \(\varphi_t(p) \);
Flows on surfaces

Motion of a point p point on the surface:
after time t, p "flows" to $\varphi_t(p)$;
as t grows, $\varphi_t(p)$ describes the trajectory of p
(e.g. given by equations)
Flows on surfaces

Motion of a point p point on the surface: after time t, p "flows" to $\varphi_t(p)$; as t grows, $\varphi_t(p)$ describes the trajectory of p (e.g. given by equations)

H. Poincaré 1854-1912

Electrons in metals in solid state physics (Fermi surfaces)

Novikov model (1990s)
Flows on surfaces

Motion of a point p point on the surface: after time t, p "flows" to $\varphi_t(p)$; as t grows, $\varphi_t(p)$ describes the trajectory of p (e.g. given by equations)
Flows on surfaces

Motion of a point p point on the surface:
after time t, p "flows" to $\varphi_t(p)$;
as t grows, $\varphi_t(p)$ describes the trajectory of p
(e.g. given by equations)
Flows on surfaces

Motion of a point p point on the surface:
after time t, p "flows" to $\varphi_t(p)$;
as t grows, $\varphi_t(p)$ describes the trajectory of p
(e.g. given by equations)
Flows on surfaces

Motion of a point p point on the surface:
after time t, p "flows" to $\varphi_t(p)$;
as t grows, $\varphi_t(p)$ describes the trajectory of p
(e.g. given by equations)
Flows on surfaces

Motion of a point p point on the surface:
after time t, p "flows" to $\varphi_t(p)$;
as t grows, $\varphi_t(p)$ describes the trajectory of p
(e.g. given by equations)
Flows on surfaces

Motion of a point \(p \) point on the surface:

after time \(t \), \(p \) "flows" to \(\varphi_t(p) \);

as \(t \) grows, \(\varphi_t(p) \) describes the trajectory of \(p \)
(e.g. given by equations)
Flows on surfaces

Motion of a point p point on the surface: after time t, p "flows" to $\varphi_t(p)$; as t grows, $\varphi_t(p)$ describes the trajectory of p (e.g. given by equations)
Flows on surfaces

Motion of a point p point on the surface: after time t, p "flows" to $\varphi_t(p)$; as t grows, $\varphi_t(p)$ describes the trajectory of p (e.g. given by equations)
Flows on surfaces

Motion of a point p point on the surface: after time t, p "flows" to $\varphi_t(p)$; as t grows, $\varphi_t(p)$ describes the trajectory of p (e.g. given by equations)
Flows on surfaces

Motion of a point p point on the surface:
after time t, p "flows" to $\varphi_t(p)$;
as t grows, $\varphi_t(p)$ describes the trajectory of p
(e.g. given by equations)
Flows on surfaces

Motion of a point p point on the surface:
after time t, p "flows" to $\varphi_t(p)$;
as t grows, $\varphi_t(p)$ describes the trajectory of p
(e.g. given by equations)
Flows on surfaces

Motion of a point p point on the surface:
after time t, p "flows" to $\varphi_t(p)$;
as t grows, $\varphi_t(p)$ describes the trajectory of p
(e.g. given by equations)
Flows on surfaces

Motion of a point p point on the surface:
after time t, p "flows" to $\varphi_t(p)$;
as t grows, $\varphi_t(p)$ describes the trajectory of p
(e.g. given by equations)
Flows on surfaces

Motion of a point \(p \) point on the surface:
after time \(t \), \(p \) "flows" to \(\varphi_t(p) \);
as \(t \) grows, \(\varphi_t(p) \) describes the trajectory of \(p \)
(e.g. given by equations)
Flows on surfaces

Motion of a point p point on the surface: after time t, p "flows" to $\varphi_t(p)$; as t grows, $\varphi_t(p)$ describes the trajectory of p (e.g. given by equations)
Flows on surfaces

Motion of a point \(p \) point on the surface:
after time \(t \), \(p \) "flows" to \(\varphi_t(p) \);
as \(t \) grows, \(\varphi_t(p) \) describes the trajectory of \(p \)
(e.g. given by equations)
Flows on surfaces

Motion of a point p point on the surface: after time t, p "flows" to $\varphi_t(p)$; as t grows, $\varphi_t(p)$ describes the trajectory of p (e.g. given by equations)

Flows on surfaces describe e.g.:

- motion of bodies in celestial mechanics
- electrons in metals in solid state physics (Fermi surfaces)
- Novikov model (1990s)
Flows on surfaces

Motion of a point p point on the surface:
after time t, p "flows" to $\varphi_t(p)$;
as t grows, $\varphi_t(p)$ describes the trajectory of p
(e.g. given by equations)

Flows on surfaces describe e.g.:

motion of bodies
in celestial mechanis

H. Poincaré
1854-1912
Flows on surfaces

Motion of a point p point on the surface:
after time t, p "flows" to $\varphi_t(p)$;
as t grows, $\varphi_t(p)$ describes the trajectory of p
(e.g. given by equations)

Flows on surfaces describe e.g.:

- motion of bodies in celestial mechanics
- electrons in metals in solid state physics (Fermi surfaces)

H. Poincaré
1854-1912

Novikov model (1990s)
Mixing and Arnold’s conjecture

Consider **Novikov flows** (motion of electrons on metal Fermi surfaces)
Mixing and Arnold’s conjecture

Consider Novikov flows (motion of electrons on metal Fermi surfaces) [locally Hamiltonian flows on surfaces]
Mixing and Arnold’s conjecture

Consider Novikov flows (motion of electrons on metal Fermi surfaces) [locally Hamiltonian flows on surfaces]

V. Arnold question (1990s): Are they mixing? i.e.
Mixing and Arnold's conjecture

Consider **Novikov flows** (motion of electrons on metal Fermi surfaces)
[**locally Hamiltonian flows on surfaces**]

V. Arnold *question* (1990s): Are they **mixing**? i.e.
Mixing and Arnold’s conjecture

Consider Novikov flows (motion of electrons on metal Fermi surfaces) \[\text{[locally Hamiltonian flows on surfaces]}\]

V. Arnold question (1990s): Are they mixing? i.e.

Take a cloud A of initial points. Flow points in A for time t: does $\varphi_t(A)$ spreads uniformly?

Courtesy of C. Dettmann
Mixing and Arnold’s conjecture

Consider **Novikov flows** (motion of electrons on metal Fermi surfaces) [locally Hamiltonian flows on surfaces]

V. Arnold question (1990s): Are they mixing? i.e.

Take a *cloud* A of initial points. *Flow* points in A for time t:

Does $\varphi_t(A)$ spreads uniformly?

Courtesy of C. Dettmann
Mixing and Arnold’s conjecture

Consider **Novikov flows** (motion of electrons on metal Fermi surfaces) \([\text{locally Hamiltonian flows on surfaces}]\)

V. Arnold question (1990s): Are they mixing? i.e.

Take a *cloud* \(A\) of initial points. *Flow* points in \(A\) for time \(t\): does \(\varphi_t(A)\) spreads uniformly?

Courtesy of C. Dettmann
Mixing and Arnold’s conjecture

Consider Novikov flows (motion of electrons on metal Fermi surfaces) [locally Hamiltonian flows on surfaces]

V. Arnold question (1990s): Are they mixing? i.e.

Take a cloud A of initial points.
Flow points in A for time t:
does $\varphi_t(A)$ spreads uniformly?

Courtesy of C. Dettmann
Mixing and Arnold’s conjecture

Consider **Novikov flows** (motion of electrons on metal Fermi surfaces)
[\textit{locally Hamiltonian flows on surfaces}]

V. Arnold question (1990s): Are they **mixing**? i.e.

Take a cloud A of initial points.
Flow points in A for time t:
does $\varphi_t(A)$ **spreads uniformly**?

\[\text{Mathematical formulation: for any sets } A, B \]
\[\text{Area}(\varphi_t(A) \cap B) \to \text{Area}(B) \]
Mixing and Arnold’s conjecture

Consider Novikov flows (motion of electrons on metal Fermi surfaces) \([\text{locally Hamiltonian flows on surfaces}]\)

V. Arnold question (1990s): Are they \textit{mixing}? i.e.

Take a \textit{cloud} \(A\) of initial points.
Flow points in \(A\) for time \(t\): does \(\varphi_t(A)\) \textit{spreads uniformly}?
Mixing and Arnold’s conjecture

Consider **Novikov flows** (motion of electrons on metal Fermi surfaces) *locally Hamiltonian flows on surfaces*

V. Arnold question (1990s): Are they **mixing**? i.e.

Take a *cloud* A of initial points. Flow points in A for time t: does $\varphi_t(A)$ *spreads uniformly*?

Courtesy of C. Dettmann
Mixing and Arnold’s conjecture

Consider **Novikov flows** (motion of electrons on metal Fermi surfaces) \([\text{locally Hamiltonian flows on surfaces}]\)

V. Arnold question (1990s): Are they mixing? i.e.

Take a *cloud* \(A\) of initial points.

Flow points in \(A\) for time \(t\):

does \(\varphi_t(A)\) *spreads uniformly*?

Courtesy of C. Dettmann
Mixing and Arnold’s conjecture

Consider Novikov flows (motion of electrons on metal Fermi surfaces) [locally Hamiltonian flows on surfaces]

V. Arnold question (1990s): Are they mixing? i.e.

Take a cloud A of initial points. Flow points in A for time t: does $\varphi_t(A)$ spreads uniformly?

Courtesy of C. Dettmann
Mixing and Arnold’s conjecture

Consider Novikov flows (motion of electrons on metal Fermi surfaces) [locally Hamiltonian flows on surfaces]

V. Arnold question (1990s): Are they mixing? i.e.

Take a cloud A of initial points. Flow points in A for time t: does $\varphi_t(A)$ spreads uniformly?

Courtesy of C. Dettmann
Mixing and Arnold’s conjecture

Consider **Novikov flows** (motion of electrons on metal Fermi surfaces) [locally Hamiltonian flows on surfaces]

V. Arnold question (1990s): Are they mixing? i.e.

Take a *cloud* A of initial points.
Flow points in A for time t: does $\varphi_t(A)$ *spreads uniformly*

Courtesy of C. Dettmann
Mixing and Arnold’s conjecture

Consider Novikov flows (motion of electrons on metal Fermi surfaces)

\[\text{locally Hamiltonian flows on surfaces} \]

V. Arnold question (1990s): Are they mixing? i.e.

Take a cloud \(A \) of initial points. Flow points in \(A \) for time \(t \): does \(\varphi_t(A) \) spreads uniformly?

\[\text{Mathematical formulation: for any sets } A, B \]

\[\text{Area} (\varphi_t(A) \cap B) \rightarrow \text{Area} (A) \quad t \rightarrow \infty \]
Mixing and Arnold’s conjecture

Consider Novikov flows (motion of electrons on metal Fermi surfaces) [locally Hamiltonian flows on surfaces]

V. Arnold question (1990s): Are they mixing? i.e.

Take a cloud A of initial points. Flow points in A for time t: does $\varphi_t(A)$ spreads uniformly?

Courtesy of C. Dettmann
Mixing and Arnold’s conjecture

Consider Novikov flows (motion of electrons on metal Fermi surfaces) [locally Hamiltonian flows on surfaces]

V. Arnold question (1990s): Are they mixing? i.e.

Take a cloud A of initial points. Flow points in A for time t: does $\varphi_t(A)$ spreads uniformly?

Courtesy of C. Dettmann
Mixing and Arnold’s conjecture

Consider Novikov flows (motion of electrons on metal Fermi surfaces) [locally Hamiltonian flows on surfaces]

V. Arnold question (1990s): Are they mixing? i.e.

Take a cloud A of initial points. Flow points in A for time t: does $\varphi_t(A)$ spreads uniformly?

[Mathematical formulation: for any sets A, B

$$\frac{\text{Area}(\varphi_t(A) \cap B)}{\text{Area}(A)} \xrightarrow{t \to \infty} \text{Area}(B)$$]
Mixing and Arnold’s conjecture

Consider Novikov flows (motion of electrons on metal Fermi surfaces) [locally Hamiltonian flows on surfaces]

V. Arnold question (1990s): Are they mixing? i.e.

Take a *cloud* A of initial points. Flow points in A for time t: does $\varphi_t(A)$ spreads uniformly?

[Mathematical formulation: for any sets A, B

$$\frac{\text{Area}(\varphi_t(A) \cap B)}{\text{Area}(A)} \xrightarrow{t \to \infty} \text{Area}(B)$$]
Mixing and Arnold’s conjecture

Consider **Novikov flows** (motion of electrons on metal Fermi surfaces) \[\text{[locally Hamiltonian flows on surfaces]} \]

V. Arnold question (1990s): Are they mixing? i.e.

Take a *cloud* \(A \) of initial points. **Flow** points in \(A \) for time \(t \): does \(\varphi_t(A) \) *spreads uniformly*?

[Mathematical formulation: for any sets \(A, B \) \]

\[
\frac{\text{Area}(\varphi_t(A) \cap B)}{\text{Area}(A)} \xrightarrow{t \to \infty} \text{Area}(B)
\]

Courtesy of C. Dettmann
Mixing and Arnold’s conjecture

Consider Novikov flows (motion of electrons on metal Fermi surfaces) [locally Hamiltonian flows on surfaces]

V. Arnold question (1990s): Are they mixing? i.e.

Take a cloud A of initial points. Flow points in A for time t: does \(\varphi_t(A) \) spreads uniformly?

[Mathematical formulation: for any sets A, B

\[
\frac{\text{Area}(\varphi_t(A) \cap B)}{\text{Area}(A)} \xrightarrow{t \to \infty} \text{Area}(B)
\]
Mixing and Arnold’s conjecture

Consider Novikov flows (motion of electrons on metal Fermi surfaces) [locally Hamiltonian flows on surfaces]

V. Arnold question (1990s): Are they mixing? i.e.

Take a cloud A of initial points. Flow points in A for time t: does $\varphi_t(A)$ spreads uniformly?

[Mathematical formulation: for any sets A, B]

$$\frac{\text{Area}(\varphi_t(A) \cap B)}{\text{Area}(A)} \xrightarrow{t \to \infty} \text{Area}(B)$$
Mixing and Arnold’s conjecture

Consider Novikov flows (motion of electrons on metal Fermi surfaces) \[\text{locally Hamiltonian flows on surfaces}\]

V. Arnold question (1990s): Are they mixing? i.e.

Take a cloud \(A\) of initial points. Flow points in \(A\) for time \(t\): does \(\varphi_t(A)\) spreads uniformly?

Mathematical formulation: for any sets \(A, B\)

\[
\frac{\text{Area}(\varphi_t(A) \cap B)}{\text{Area}(A)} \xrightarrow{t \to \infty} \text{Area}(B)
\]

Courtesy of C. Dettmann
Mixing and Arnold’s conjecture

Consider Novikov flows (motion of electrons on metal Fermi surfaces) [locally Hamiltonian flows on surfaces]

V. Arnold question (1990s): Are they mixing? i.e.

Take a cloud A of initial points. Flow points in A for time t: does $\varphi_t(A)$ spreads uniformly?

[Mathematical formulation: for any sets A, B

$$\lim_{t \to \infty} \frac{\text{Area}(\varphi_t(A) \cap B)}{\text{Area}(A)} \to \frac{\text{Area}(B)}{\text{Area}(A)}$$]
Mixing and Arnold’s conjecture

Consider Novikov flows (motion of electrons on metal Fermi surfaces) [locally Hamiltonian flows on surfaces]

V. Arnold question (1990s): Are they mixing? i.e.

Take a cloud A of initial points. Flow points in A for time t: does $\varphi_t(A)$ spreads uniformly?

[Mathematical formulation: for any sets A, B

$$\lim_{t \to \infty} \frac{\text{Area}(\varphi_t(A) \cap B)}{\text{Area}(A)} = \frac{\text{Area}(B)}{\text{Area}(A)}$$]
Classification of mixing properties

Answer to Arnold’s question on mixing
(for motion of electrons on metal Fermi surfaces):

- For bagels (genus one):
 Yes (Khanin-Sinai, 1992)

- For pretzels with many holes (genus ≥ 2):
 it depends, on whether there are traps:
 - no traps: typically not mixing, but weakly mixing
 - traps: typically mixing (outside the traps); also mixing of all orders; mixing speed is subpolynomial

Classification of mixing properties

Answer to Arnold’s question on mixing
(for motion of electrons on metal Fermi surfaces):

- For bagels (*genus one*):
 Yes (Khanin-Sinai, 1992)
Classification of mixing properties

Answer to Arnold’s question on mixing
(for motion of electrons on metal Fermi surfaces):

- For bagels (genus one):
 Yes (Khanin-Sinai, 1992)

- For pretzels with many holes (genus ≥ 2): it depends,

Classification of mixing properties

Answer to Arnold’s question on mixing
(for motion of electrons on metal Fermi surfaces):

▶ For bagels (genus one):
 Yes (Khanin-Sinai, 1992)

▶ For pretzels with many holes (genus ≥ 2):
 it depends, on whether there are traps:
 - no traps: typically not mixing, but weakly mixing
 - traps: typically mixing (outside the traps); mixing of all orders; mixing speed is subpolynomial

Classification of mixing properties

Answer to Arnold’s question on mixing
(for motion of electrons on metal Fermi surfaces):

- For bagels (genus one):
 Yes (Khanin-Sinai, 1992)

- For pretzels with many holes (genus \(\geq 2 \)):
 it depends, on whether there are traps:

 - no traps: typically not mixing, but weakly mixing
 - traps: typically mixing (outside the traps); also mixing of all orders; mixing speed is subpolynomial

Classification of mixing properties

Answer to Arnold’s question on mixing
(for motion of electrons on metal Fermi surfaces):

- **For bagels (genus one):**
 Yes (Khanin-Sinai, 1992)

- **For pretzels with many holes (genus ≥ 2):**
 it depends, on whether there are traps:
 - no traps: typically not mixing,

Classification of mixing properties

Answer to Arnold’s question on mixing
(for motion of electrons on metal Fermi surfaces):

- For bagels (genus one):
 Yes (Khanin-Sinai, 1992)

- For pretzels with many holes (genus ≥ 2):
 it depends, on whether there are traps:
 - no traps: typically not mixing,
 - traps: typically mixing (outside the traps);

Classification of mixing properties

Answer to Arnold’s question on mixing
(for motion of electrons on metal Fermi surfaces):

- For **bagels** (*genus one*):
 Yes (Khanin-Sinai, 1992)

- For **pretzels** with many holes (*genus* ≥ 2):
 it depends, on whether there are **traps**:
 - **no traps**: typically not mixing, but *weakly mixing*
 - **traps**: typically *mixing* (outside the traps);

Classification of mixing properties

Answer to Arnold’s question on mixing
(for motion of electrons on metal Fermi surfaces):

- For bagels (*genus one*):
 Yes (Khanin-Sinai, 1992)

- For pretzels with many holes (*genus* ≥ 2):
 it depends, on whether there are *traps*:
 - no traps: typically *not mixing*,
 but *weakly mixing*
 - traps: typically *mixing* (outside the traps);
 also *mixing* of all orders;

Classification of mixing properties

Answer to Arnold’s question on mixing (for motion of electrons on metal Fermi surfaces):

- For bagels (genus one):
 Yes (Khanin-Sinai, 1992)

- For pretzels with many holes (genus \(\geq 2 \)):
 it depends, on whether there are traps:
 - no traps: typically not mixing, but weakly mixing
 - traps: typically mixing (outside the traps); also mixing of all orders; mixing speed is subpolynomial

Mixing Mechanism

How does mixing happen?

- Near a trap, trajectories slow down at different speeds.
- This creates shearing; \(\phi_t(A) \) elongates and wraps around the surface.
- This seems to be a key phenomenon for slow chaos!
- Remark: even stronger chaotic properties can be deduced from shearing! Eg: Katok-Thouvenot conjecture, on Lebesgue spectrum for certain parabolic flows (time-changes of horocycle flows) [Forni-Ulcigrai, JMD 2012].
Mixing Mechanism

How does mixing happen?

- Near a *trap*, trajectories *slow down* at different speeds.
- This creates *shearing*;
- $\varphi_t(A)$ *elongates* and *wraps* around the surface.
Mixing Mechanism

How does mixing happen?

- Near a *trap*, trajectories *slow down* at different speeds.
- This creates *shearing*;
- $\varphi_t(A)$ *elongates* and *wraps* around the surface.

Remark: even stronger chaotic properties can be deduced from shearing!

E.g.: Katok-Thouvenot conjecture, on Lebesgue spectrum for certain parabolic flows (time-changes of horocycle flows) [Forni-Ulcigrai, JMD 2012].
Mixing Mechanism

How does mixing happen?

- Near a *trap*, trajectories *slow down* at different speeds.
- This creates *shearing*;
- $\varphi_t(A)$ *elongates* and *wraps* around the surface.

Remark: even stronger chaotic properties can be deduced from shearing! Eg: Katok-Thouvenot conjecture, on Lebesgue spectrum for certain parabolic flows (time-changes of horocycle flows) [Forni-Ulcigrai, JMD 2012].
Mixing Mechanism

How does mixing happen?

- Near a *trap*, trajectories *slow down* at different speeds.
- This creates *shearing*;
- $\varphi_t(A)$ *elongates* and *wraps* around the surface.

Remark: even stronger chaotic properties can be deduced from shearing!

Eg: Katok-Thouvenot conjecture, on Lebesgue spectrum for certain parabolic flows (time-changes of horocycle flows) [Forni-Ulcigrai, JMD 2012].
Mixing Mechanism

How does mixing happen?

- Near a trap, trajectories *slow down* at different speeds.
- This creates *shearing*;
- $\varphi_t(A)$ elongates and *wraps* around the surface.
Mixing Mechanism

How does mixing happen?

- Near a trap, trajectories slow down at different speeds.
- This creates shearing;
- $\varphi_t(A)$ elongates and wraps around the surface.
Mixing Mechanism

How does mixing happen?

- Near a *trap*, trajectories *slow down* at different speeds.
- This creates *shearing*;
- $\varphi_t(A)$ *elongates* and *wraps* around the surface.

Remark: even stronger chaotic properties can be deduced from shearing! Eg: Katok-Thouvenot conjecture, on Lebesgue spectrum for certain parabolic flows (time-changes of horocycle flows) [Forni-Ulcigrai, JMD 2012].
Mixing Mechanism

How does mixing happen?

- Near a *trap*, trajectories *slow down* at different speeds.
- This creates *shearing*;
- $\varphi_t(A)$ *elongates* and *wraps* around the surface.

Remark: even stronger chaotic properties can be deduced from shearing!

Eg: Katok-Thouvenot conjecture, on Lebesgue spectrum for certain parabolic flows (time-changes of horocycle flows) [Forni-Ulcigrai, JMD 2012].
How does mixing happen?

- Near a trap, trajectories slow down at different speeds.
- This creates shearing;
- $\varphi_t(A)$ elongates and wraps around the surface.

Remark: even stronger chaotic properties can be deduced from shearing! Eg: Katok-Thouvenot conjecture, on Lebesgue spectrum for certain parabolic flows (time-changes of horocycle flows) [Forni-Ulcigrai, JMD 2012].
Mixing Mechanism

How does mixing happen?

- Near a trap, trajectories slow down at different speeds.
- This creates shearing;
- $\varphi_t(A)$ elongates and wraps around the surface.

Remark: even stronger chaotic properties can be deduced from shearing! Eg: Katok-Thouvenot conjecture, on Lebesgue spectrum for certain parabolic flows (time-changes of horocycle flows) [Forni-Ulcigrai, JMD 2012].
Mixing Mechanism

How does mixing happen?

- Near a *trap*, trajectories *slow down* at different speeds.
- This creates *shearing*;
- $\varphi_t(A)$ *elongates* and *wraps* around the surface.

Remark: even stronger chaotic properties can be deduced from shearing! Eg: Katok-Thouvenot conjecture, on Lebesgue spectrum for certain parabolic flows (time-changes of horocycle flows) [Forni-Ulcigrai, JMD 2012].
Mixing Mechanism

How does mixing happen?

- Near a trap, trajectories slow down at different speeds.
- This creates shearing;
- $\varphi_t(A)$ elongates and wraps around the surface.

Remark: even stronger chaotic properties can be deduced from shearing! Eg: Katok-Thouvenot conjecture, on Lebesgue spectrum for certain parabolic flows (time-changes of horocycle flows) [Forni-Ulcigrai, JMD 2012].
Mixing Mechanism

How does mixing happen?

- Near a *trap*, trajectories *slow down* at different speeds.
- This creates *shearing*;
- $\varphi_t(A)$ *elongates* and *wraps* around the surface.

Remark: even stronger chaotic properties can be deduced from shearing! Eg: Katok-Thouvenot conjecture, on Lebesgue spectrum for certain parabolic flows (time-changes of horocycle flows) [Forni-Ulcigrai, JMD 2012].
Mixing Mechanism

How does mixing happen?

- Near a trap, trajectories *slow down* at different speeds.
- This creates *shearing*;
- $\varphi_t(A)$ *elongates* and *wraps* around the surface.

Remark: even stronger chaotic properties can be deduced from shearing! Eg: Katok-Thouvenot conjecture, on Lebesgue spectrum for certain parabolic flows (time-changes of horocycle flows) [Forni-Ulcigrai, JMD 2012].
Mixing Mechanism

How does mixing happen?

- Near a *trap*, trajectories *slow down* at different speeds.
- This creates *shearing*;
- $\varphi_t(A)$ *elongates* and *wraps* around the surface.

Remark: even stronger chaotic properties can be deduced from shearing! Eg: Katok-Thouvenot conjecture, on Lebesgue spectrum for certain parabolic flows (time-changes of horocycle flows) [Forni-Ulcigrai, JMD 2012].
Mixing Mechanism

How does mixing happen?

» Near a *trap*, trajectories *slow down* at different speeds.
» This creates *shearing*;
» $\varphi_t(A)$ *elongates* and *wraps* around the surface.
Mixing Mechanism

How does mixing happen?

- Near a *trap*, trajectories *slow down* at different speeds.
- This creates *shearing*;
- $\varphi_t(A)$ *elongates* and *wraps* around the surface.

Remark: even stronger chaotic properties can be deduced from shearing! Eg: Katok-Thouvenot conjecture, on Lebesgue spectrum for certain parabolic flows (time-changes of horocycle flows) [Forni-Ulcigrai, JMD 2012].
Mixing Mechanism

How does mixing happen?

- Near a *trap*, trajectories *slow down* at different speeds.
- This creates *shearing*;
- $\varphi_t(A)$ *elongates* and *wraps* around the surface.

Remark: even stronger chaotic properties can be deduced from shearing! Eg: Katok-Thouvenot conjecture, on Lebesgue spectrum for certain parabolic flows (time-changes of horocycle flows) [Forni-Ulcigrai, JMD 2012].
Mixing Mechanism

How does mixing happen?

- Near a *trap*, trajectories *slow down* at different speeds.
- This creates *shearing*;
- $\varphi_t(A)$ *elongates* and *wraps* around the surface.

Remark: even stronger chaotic properties can be deduced from shearing!
Eg: Katok-Thouvenot conjecture, on Lebesgue spectrum for certain parabolic flows (time-changes of horocycle flows) \cite{Forni-Ulcigrai, JMD 2012}.
Mixing Mechanism

How does mixing happen?

- Near a trap, trajectories *slow down* at different speeds.
- This creates *shearing*;
- $\varphi_t(A)$ *elongates* and *wraps* around the surface.

This seems to be a *key phenomenon* for slow chaos!
Mixing Mechanism

How does mixing happen?

- Near a *trap*, trajectories *slow down* at different speeds.
- This creates *shearing*;
- $\varphi_t(A)$ *elongates* and *wraps* around the surface.

This seems to be a key phenomenon for slow chaos!

Remark: even stronger chaotic properties can be deduced from shearing!

Eg: Katok-Thouvenot conjecture, on Lebesgue spectrum for certain parabolic flows (time-changes of horocycle flows) [Forni-Ulcigrai, JMD 2012].
Mixing Mechanism

How does mixing happen?

- Near a *trap*, trajectories *slow down* at different speeds.
- This creates *shearing*;
- $\varphi_t(A)$ *elongates* and *wraps* around the surface.

This seems to be a key phenomenon for slow chaos!

Remark: even stronger chaotic properties can be deduced from shearing!

Eg: Katok-Thouvenot conjecture, on *Lebesgue spectrum* for certain parabolic flows (time-changes of horocycle flows) [Forni-Ulcigrai, JMD 2012].
The mathematical world behind...

Powerful and beautiful mathematical idea:

▶ space of all systems of the same type (e.g. flows on surfaces)

▶ system studied (e.g. flow) is a point;

▶ flow it (deforming the original system);

▶ the flow acts as a zooming machine.

[Techniques from renormalization and Teichmueller dynamics]

▶ Why does it help? the renormalization flow is a fast chaotic system! It yields back information on the initial slowly chaotic system.
The mathematical world behind…

Powerful and beautiful mathematical idea:

- space of all systems of the same type (e.g. flows on surfaces)
- system studied (e.g. flow) is a point
- flow it (deforming the original system)
- the flow acts as a zooming machine

Techniques from renormalization and Teichmüller dynamics

Why does it help? The renormalization flow is a fast chaotic system! It yields back information on the initial slowly chaotic system.
Powerful and beautiful mathematical idea:

- space of all systems of the same type (e.g. flows on surfaces):
- system studied (e.g. flow) is a point;
The mathematical world behind…

Powerful and beautiful mathematical idea:

- space of all systems of the same type
 (e.g. flows on surfaces):
- system studied (e.g. flow) is a *point*;
The mathematical world behind...

Powerful and beautiful mathematical idea:

- space of all systems of the same type (e.g. flows on surfaces):
- system studied (e.g. flow) is a *point*;

- Techniques from renormalization and Teichmüller dynamics

Why does it help? the renormalization flow is a fast chaotic system! It yields back information on the initial slowly chaotic system.
The mathematical world behind…

Powerful and beautiful mathematical idea:

- space of all systems of the same type (e.g. flows on surfaces):
- system studied (e.g. flow) is a *point*;

Techniques from renormalization and Teichmüller dynamics

Why does it help? the renormalization flow is a fast chaotic system! It yields back information on the initial slowly chaotic system.
The mathematical world behind...

Powerful and beautiful mathematical idea:

- space of all systems of the same type (e.g. flows on surfaces):
- system studied (e.g. flow) is a *point*;

Techniques from renormalization and Teichmüller dynamics

Why does it help? the renormalization flow is a fast chaotic system! It yields back information on the initial slowly chaotic system.
The mathematical world behind...

* Powerful and beautiful mathematical idea:
 - space of all systems of the same type (e.g. flows on surfaces):
 - system studied (e.g. flow) is a *point*;
The mathematical world behind...

Powerful and beautiful mathematical idea:

- space of all systems of the same type (e.g. flows on surfaces):
- system studied (e.g. flow) is a *point*;

Techniques from renormalization and Teichmueller dynamics

Why does it help?

the renormalization flow is a fast chaotic system!

It yields back information on the initial slowly chaotic system.
The mathematical world behind...

* Powerful and beautiful mathematical idea:
 * space of all systems of the same type (e.g. flows on surfaces):
 * system studied (e.g. flow) is a *point*;
 * *flow it* (*deforming* the original system);
 * the flow acts as a *zooming machine*.
The mathematical world behind...

Powerful and beautiful mathematical idea:

- space of all systems of the same type (e.g. flows on surfaces):
- system studied (e.g. flow) is a *point*;
- *flow it* (deforming the original system);
- the flow acts as a *zooming machine*.
The mathematical world behind...

Powerful and beautiful mathematical idea:

- space of all systems of the same type (e.g. flows on surfaces):
- system studied (e.g. flow) is a *point*;
- *flow it* (*deforming* the original system);
- the flow acts as a *zooming machine*.
The mathematical world behind...

* Powerful and beautiful mathematical idea:
 - space of all systems of the same type (e.g. flows on surfaces):
 - system studied (e.g. flow) is a *point*;
 - *flow it* (*deforming* the original system);
 - the flow acts as a *zooming machine*.

Techniques from renormalization and Teichmueller dynamics

Why does it help? the renormalization flow is a *fast chaotic system*! It yields back information on the initial slowly chaotic system.
The mathematical world behind...

Powerful and beautiful mathematical idea:

- space of all systems of the same type (e.g. flows on surfaces):
- system studied (e.g. flow) is a *point*;
- *flow it* (*deforming* the original system);
- the flow acts as a *zooming machine*.

Techniques from renormalization and Teichmueller dynamics

Why does it help? the renormalization flow is a fast chaotic system! It yields back information on the initial slowly chaotic system.
The mathematical world behind...

Powerful and beautiful mathematical idea:

- space of all systems of the same type (e.g. flows on surfaces):
- system studied (e.g. flow) is a *point*;
- *flow it* (*deforming* the original system);
- the flow acts as a *zooming machine*.

Techniques from renormalization and Teichmüller dynamics

Why does it help? the renormalization flow is a fast chaotic system! It yields back information on the initial slowly chaotic system.
The mathematical world behind...

Powerful and beautiful mathematical idea:

- space of all systems of the same type (e.g. flows on surfaces):
- system studied (e.g. flow) is a *point*;
- *flow it* (*deforming* the original system);
- the flow acts as a *zooming machine*.
The mathematical world behind...

Powerful and beautiful mathematical idea:

- space of all systems of the same type (e.g. flows on surfaces):
- system studied (e.g. flow) is a *point*;
- *flow it* (*deforming* the original system);
- the flow acts as a *zooming machine*.
The mathematical world behind...

Powerful and beautiful mathematical idea:

- space of all systems of the same type (e.g. flows on surfaces):
- system studied (e.g. flow) is a *point*;
- *flow it* (*deforming* the original system);
- the flow acts as a *zooming machine*.

Techniques from renormalization and Teichmueller dynamics

Why does it help? the renormalization flow is a *fast chaotic* system! It yields back information on the initial slowly chaotic system.
The mathematical world behind...

Powerful and beautiful mathematical idea:

- space of all systems of the same type (e.g. flows on surfaces):
- system studied (e.g. flow) is a *point*;
- *flow it* (*deforming* the original system);
- the flow acts as a *zooming machine.*
The mathematical world behind...

Powerful and beautiful mathematical idea:

- space of all systems of the same type (e.g. flows on surfaces):
- system studied (e.g. flow) is a *point*;
- *flow it* (deforming the original system);
- the flow acts as a *zooming machine*.

Techniques from renormalization and Teichmüller dynamics

Why does it help? the renormalization flow is a fast chaotic system! It yields back information on the initial slowly chaotic system.
The mathematical world behind…

Powerful and beautiful mathematical idea:

- space of all systems of the same type (e.g. flows on surfaces):
- system studied (e.g. flow) is a *point*;
- flow it (*deforming* the original system);
- the flow acts as a *zooming machine*.
The mathematical world behind...

Powerful and beautiful mathematical idea:

- space of all systems of the same type (e.g. flows on surfaces);
- system studied (e.g. flow) is a *point*;
- *flow it* (*deforming* the original system);
- the flow acts as a *zooming machine*.
The mathematical world behind...

Powerful and beautiful mathematical idea:

- space of all systems of the same type (e.g. flows on surfaces):
- system studied (e.g. flow) is a _point_;
- _flow it_ (deforming the original system);
- the flow acts as a _zooming machine._
The mathematical world behind...

Powerful and beautiful mathematical idea:

- space of all systems of the same type (e.g. flows on surfaces):
- system studied (e.g. flow) is a *point*;
- *flow it* (*deforming* the original system);
- the flow acts as a *zooming machine*.
The mathematical world behind...

Powerful and beautiful mathematical idea:

- space of all systems of the same type (e.g. flows on surfaces):
- system studied (e.g. flow) is a *point*;
- *flow it* (deforming the original system);
- the flow acts as a *zooming machine.*
The mathematical world behind…

Powerful and beautiful mathematical idea:

- space of all systems of the same type (e.g. flows on surfaces):
- system studied (e.g. flow) is a *point*;
- *flow it* (deforming the original system);
- the flow acts as a *zooming machine*.
The mathematical world behind...

Powerful and beautiful mathematical idea:

- space of all systems of the same type (e.g. flows on surfaces):
- system studied (e.g. flow) is a *point*;
- *flow it* (deforming the original system);
- the flow acts as a *zooming machine*.

[Techniques from renormalization and *Teichmüller dynamics*]
The mathematical world behind...

Powerful and beautiful mathematical idea:
- space of all systems of the same type (e.g. flows on surfaces):
- system studied (e.g. flow) is a *point*;
- *flow it* (*deforming* the original system);
- the flow acts as a *zooming machine*.

*Techniques from renormalization and *Teichmueller dynamics**

- *Why does it help?*
 the renormalization flow is a *fast chaotic* system!
 It yields back information on the initial slowly chaotic system.
The mathematical world behind...

Powerful and beautiful mathematical idea:

- space of all systems of the same type (e.g. flows on surfaces):
- system studied (e.g. flow) is a point;
- flow it (deforming the original system);
- the flow acts as a zooming machine.

[Techniques from renormalization and Teichmueller dynamics]

Why does it help?
the renormalization flow is a fast chaotic system!
It yields back information on the initial slowly chaotic system.
The mathematical world behind…

Powerful and beautiful mathematical idea:

- space of all systems of the same type (e.g. flows on surfaces):
- system studied (e.g. flow) is a *point*;
- *flow it* (*deforming* the original system);
- the flow acts as a *zooming machine*.

[Techniques from renormalization and Teichmüller dynamics]

Why does it help?

the *renormalization* flow is a *fast chaotic* system!
It yields back information on the initial slowly chaotic system.
My current research:

Goals:

▶ Identify common mechanisms for chaotic properties of slowly chaotic systems;
 (e.g. mixing by shearing, renormalization);

Achievements:
My current research:

Goals:

- Identify **common mechanisms** for chaotic properties of slowly chaotic systems; (e.g. *mixing by shearing, renormalization*);

Achievements:
My current research:

Goals:

▶ Identify common mechanisms for chaotic properties of slowly chaotic systems; (e.g. mixing by shearing, renormalization);

▶ Understand chaotic properties in new classes of slowly chaotic systems; (e.g. dense trajectories in infinite polygonal billiards)

Achievements:
My current research:

Goals:

- Identify common mechanisms for chaotic properties of slowly chaotic systems;
 (e.g. mixing by shearing, renormalization);
- Understand chaotic properties in new classes of slowly chaotic systems;
 (e.g. dense trajectories in infinite polygonal billiards)

Achievements:
My current research:

Goals:

- Identify common mechanisms for chaotic properties of slowly chaotic systems;
 (e.g. mixing by shearing, renormalization);
- Understand chaotic properties in new classes of slowly chaotic systems;
 (e.g. dense trajectories in infinite polygonal billiards)

Achievements:

- answer questions in physics (e.g. Ehrenfest or Novikov models of electrons) and in mathematics (e.g. Katok-Thouvenot conjecture);
My current research:

Goals:

- Identify common mechanisms for chaotic properties of slowly chaotic systems; (e.g. mixing by shearing, renormalization);
- Understand chaotic properties in new classes of slowly chaotic systems; (e.g. dense trajectories in infinite polygonal billiards)

Achievements:

- answer questions in physics (e.g. Ehrenfest or Novikov models of electrons) and in mathematics (e.g. Katok-Thouvenot conjecture);
My current research:

Goals:

- Identify **common mechanisms** for chaotic properties of slowly chaotic systems;
 (e.g. *mixing by shearing*, *renormalization*);
- Understand **chaotic properties** in **new classes** of slowly chaotic systems;
 (e.g. *dense trajectories in infinite polygonal billiards*)

Achievements:

- answer questions in physics (e.g. *Ehrenfest* or *Novikov* models of *electrons*) and in mathematics (e.g. *Katok-Thouvenot conjecture*);
My current research:

Goals:
- Identify common mechanisms for chaotic properties of slowly chaotic systems; (e.g. mixing by shearing, renormalization);
- Understand chaotic properties in new classes of slowly chaotic systems; (e.g. dense trajectories in infinite polygonal billiards)

Achievements:
- answer questions in physics (e.g. Ehrenfest or Novikov models of electrons) and in mathematics (e.g. Katok-Thouvenot conjecture);
My current research:

Goals:

- Identify common mechanisms for chaotic properties of slowly chaotic systems;
 (e.g. *mixing by shearing, renormalization*);
- Understand chaotic properties in new classes of slowly chaotic systems;
 (e.g. *dense trajectories in infinite polygonal billiards*);

Achievements:

- answer questions in physics (e.g. *Ehrenfest or Novikov models of electrons*) and in mathematics (e.g. *Katok-Thouvenot conjecture*);
- gain a better understanding of slow chaos, towards an universal theory;
My current research:

Goals:

▶ Identify common mechanisms for chaotic properties of slowly chaotic systems;
 (e.g. mixing by shearing, renormalization);
▶ Understand chaotic properties in new classes of slowly chaotic systems;
 (e.g. dense trajectories in infinite polygonal billiards)

Achievements:

▶ answer questions in physics (e.g. Ehrenfest or Novikov models of electrons) and in mathematics (e.g. Katok-Thouvenot conjecture);
▶ gain a better understanding of slow chaos, towards an universal theory;
▶ develop new abstract (beautiful!) mathematical tools...
Further reading

+plus magazine articles by Marianne Freiberg,
(based on interview at the British Math. Colloquium)

https://plus.maths.org/
Further reading

+plus magazine articles by Marianne Freiberg,
(based on interview at the British Math. Colloquium)

https://plus.maths.org/
Further reading

+plus magazine articles by Marianne Freiberg, (based on interview at the British Math. Colloquium)

Chaos on the billiard table

plus.maths.org/content/chaos-billiard-table
Further reading

+plus magazine articles by Marianne Freiberg, (based on interview at the British Math. Colloquium)

+plus.maths.org/content/chaos-billiard-table

+plus.maths.org/content/billiards-donuts
Further reading

+plus magazine articles by Marianne Freiberg,
(based on interview at the British Math. Colloquium)

Chaos on the billiard table
plus.maths.org/content/chaos-billiard-table

Playing billiards on doughnuts
plus.maths.org/content/billiards-donuts
Further reading

+plus magazine articles by Marianne Freiberg, (based on interview at the British Math. Colloquium)

Chaos on the billiard table
plus.maths.org/content/chaos-billiard-table

Playing billiards on doughnuts
plus.maths.org/content/billiards-donuts