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Deterministic Systems

These systems is deterministic, they obey “rules”:

I laws of physics,
I mathematical equations...

“ An intellect which at a certain moment would know

all forces that set nature in motion, and all positions

of all items of which nature is composed, if this

intellect were also vast enough to submit these data

to analysis, [. . . ] for such an intellect nothing would

be uncertain and the future just like the past would

be present before its eyes.”

Laplace, A Philosophical Essay on Probabilities

Pierre-Simon Laplace

(1747-1827)
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Sensitive dependence: the “Butterfly effect”

A key feature of chaotic systems is
the Butterfly Effect:

“a butterfly flapping its wings in Brazil can
cause a tornado in Texas”

Edward Lorenz

(1917-2008)

aka in Mathematics as:
Sensitive dependence on Initial Conditions
a small variations in the initial conditions
can create very different evolutions.
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Fast versus slow Chaos
How quickly does divergence in the Butterfly Effect happen?

Fastly chaotic systems

(hyperbolic dynamical systems)

I divergence happens quickly
(exponential function of time)

Mathematical properties:

positive entropy, exponential decay
of correlations

I Well understood, mathematical
theory developed in the 1970s

Slowly chaotic systems

(parabolic dynamical systems)

I divergence happens slowly
(polynomial function of time)

Mathematical properties:
entropy zero, polynomial speed
of equidistribution

I Few well understood examples,
lack of general theory.

My research: understand mathematical properties of Slow Chaos



Fast versus slow Chaos
How quickly does divergence in the Butterfly Effect happen?

Fastly chaotic systems

(hyperbolic dynamical systems)

I divergence happens quickly
(exponential function of time)

Mathematical properties:

positive entropy, exponential decay
of correlations

I Well understood, mathematical
theory developed in the 1970s

Slowly chaotic systems

(parabolic dynamical systems)

I divergence happens slowly
(polynomial function of time)

Mathematical properties:
entropy zero, polynomial speed
of equidistribution

I Few well understood examples,
lack of general theory.

My research: understand mathematical properties of Slow Chaos



Fast versus slow Chaos
How quickly does divergence in the Butterfly Effect happen?

Fastly chaotic systems

(hyperbolic dynamical systems)

I divergence happens quickly

(exponential function of time)

Mathematical properties:

positive entropy, exponential decay
of correlations

I Well understood, mathematical
theory developed in the 1970s

Slowly chaotic systems

(parabolic dynamical systems)

I divergence happens slowly

(polynomial function of time)

Mathematical properties:
entropy zero, polynomial speed
of equidistribution

I Few well understood examples,
lack of general theory.

My research: understand mathematical properties of Slow Chaos



Fast versus slow Chaos
How quickly does divergence in the Butterfly Effect happen?

Fastly chaotic systems

(hyperbolic dynamical systems)

I divergence happens quickly
(exponential function of time)

Mathematical properties:

positive entropy, exponential decay
of correlations

I Well understood, mathematical
theory developed in the 1970s

Slowly chaotic systems

(parabolic dynamical systems)

I divergence happens slowly

(polynomial function of time)

Mathematical properties:
entropy zero, polynomial speed
of equidistribution

I Few well understood examples,
lack of general theory.

My research: understand mathematical properties of Slow Chaos



Fast versus slow Chaos
How quickly does divergence in the Butterfly Effect happen?

Fastly chaotic systems

(hyperbolic dynamical systems)

I divergence happens quickly
(exponential function of time)

Mathematical properties:

positive entropy, exponential decay
of correlations

I Well understood, mathematical
theory developed in the 1970s

Slowly chaotic systems

(parabolic dynamical systems)

I divergence happens slowly
(polynomial function of time)

Mathematical properties:
entropy zero, polynomial speed
of equidistribution

I Few well understood examples,
lack of general theory.

My research: understand mathematical properties of Slow Chaos



Fast versus slow Chaos
How quickly does divergence in the Butterfly Effect happen?

Fastly chaotic systems
(hyperbolic dynamical systems)

I divergence happens quickly
(exponential function of time)

Mathematical properties:

positive entropy, exponential decay
of correlations

I Well understood, mathematical
theory developed in the 1970s

Slowly chaotic systems

(parabolic dynamical systems)

I divergence happens slowly
(polynomial function of time)

Mathematical properties:
entropy zero, polynomial speed
of equidistribution

I Few well understood examples,
lack of general theory.

My research: understand mathematical properties of Slow Chaos



Fast versus slow Chaos
How quickly does divergence in the Butterfly Effect happen?

Fastly chaotic systems
(hyperbolic dynamical systems)

I divergence happens quickly
(exponential function of time)

Mathematical properties:

positive entropy, exponential decay
of correlations

I Well understood, mathematical
theory developed in the 1970s

Slowly chaotic systems
(parabolic dynamical systems)

I divergence happens slowly
(polynomial function of time)

Mathematical properties:
entropy zero, polynomial speed
of equidistribution

I Few well understood examples,
lack of general theory.

My research: understand mathematical properties of Slow Chaos



Fast versus slow Chaos
How quickly does divergence in the Butterfly Effect happen?

Fastly chaotic systems
(hyperbolic dynamical systems)

I divergence happens quickly
(exponential function of time)

Mathematical properties:

positive entropy, exponential decay
of correlations

I Well understood, mathematical
theory developed in the 1970s

Slowly chaotic systems
(parabolic dynamical systems)

I divergence happens slowly
(polynomial function of time)

Mathematical properties:
entropy zero, polynomial speed
of equidistribution

I Few well understood examples,
lack of general theory.

My research: understand mathematical properties of Slow Chaos



Fast versus slow Chaos
How quickly does divergence in the Butterfly Effect happen?

Fastly chaotic systems
(hyperbolic dynamical systems)

I divergence happens quickly
(exponential function of time)

Mathematical properties:
positive entropy, exponential decay
of correlations

I Well understood, mathematical
theory developed in the 1970s

Slowly chaotic systems
(parabolic dynamical systems)

I divergence happens slowly
(polynomial function of time)

Mathematical properties:
entropy zero, polynomial speed
of equidistribution

I Few well understood examples,
lack of general theory.

My research: understand mathematical properties of Slow Chaos



Fast versus slow Chaos
How quickly does divergence in the Butterfly Effect happen?

Fastly chaotic systems
(hyperbolic dynamical systems)

I divergence happens quickly
(exponential function of time)

Mathematical properties:
positive entropy, exponential decay
of correlations

I Well understood, mathematical
theory developed in the 1970s

Slowly chaotic systems
(parabolic dynamical systems)

I divergence happens slowly
(polynomial function of time)

Mathematical properties:
entropy zero, polynomial speed
of equidistribution

I Few well understood examples,
lack of general theory.

My research: understand mathematical properties of Slow Chaos



Fast versus slow Chaos
How quickly does divergence in the Butterfly Effect happen?

Fastly chaotic systems
(hyperbolic dynamical systems)

I divergence happens quickly
(exponential function of time)

Mathematical properties:
positive entropy, exponential decay
of correlations

I Well understood, mathematical
theory developed in the 1970s

Slowly chaotic systems
(parabolic dynamical systems)

I divergence happens slowly
(polynomial function of time)

Mathematical properties:
entropy zero, polynomial speed
of equidistribution

I Few well understood examples,
lack of general theory.

My research: understand mathematical properties of Slow Chaos



Fast versus slow Chaos
How quickly does divergence in the Butterfly Effect happen?

Fastly chaotic systems
(hyperbolic dynamical systems)

I divergence happens quickly
(exponential function of time)

Mathematical properties:
positive entropy, exponential decay
of correlations

I Well understood, mathematical
theory developed in the 1970s

Slowly chaotic systems
(parabolic dynamical systems)

I divergence happens slowly
(polynomial function of time)

Mathematical properties:
entropy zero, polynomial speed
of equidistribution

I Few well understood examples,
lack of general theory.

My research: understand mathematical properties of Slow Chaos



Fast versus slow Chaos
How quickly does divergence in the Butterfly Effect happen?

Fastly chaotic systems
(hyperbolic dynamical systems)

I divergence happens quickly
(exponential function of time)

Mathematical properties:
positive entropy, exponential decay
of correlations

I Well understood, mathematical
theory developed in the 1970s

Slowly chaotic systems
(parabolic dynamical systems)

I divergence happens slowly
(polynomial function of time)

Mathematical properties:
entropy zero, polynomial speed
of equidistribution

I Few well understood examples,
lack of general theory.

My research: understand mathematical properties of Slow Chaos





Mathematical Billiards

law of optics:

angle of incidence
=

angle of reflection

Mathematical idealization:

the ball is a point with no-mass,
there is no friction, consider
trajectories that never enter a
pocket: ⇒ motion is infinite.
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Motivation to study Mathematical Billiards
Billiards are models of many systems in mechanics, optics,
acoustics, termodynamics . . .

Periodic Lorentz Gas
1905, H. A. Lorentz

Ehrenfest Model, 1912
Tatjana and Paul Ehrenfest

Periodic version: Hardy-Weber

(image by V. Delecroix)
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Sensitive Dependence: circular vs rectangular scatters

defocusing mechanism:
fast chaos (hyperbolic billiard)

only corners create divergence:
slow chaos (parabolic billiard)
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Dense trajectories
Feature of chaotic systems: most “‘trajectories” explore all space

Billiard trajectories “bal” motion) can e.g.

I close up (periodic motion)

I get arbitrarily close to any point (dense)

A trajectory in a random direction is dense.
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Recent results on the Ehrenfest model

courtesy of V. Delecroix

I [Fraczek-Ulcigrai, Inventiones, 2014]

on the Ehrenfest model, for almost every
direction, NO trajectory is dense
(explore all parts of space).

I trajectories in a random direction come back (recurrence);
[Avila-Hubert, Ann. Scie. ENS, in press];

I largest distance reached in time t is order t2/3 (superdiffusion)
[Delecroix-Hubert-Lelievre, Ann. Scie. ENS, 2014]

Why only now? powerful novel tools from Teichmueller dynamics.
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Mixing and Arnold’s conjecture
Consider Novikov flows (motion of electrons on metal
Fermi surfaces)

[locally Hamiltonian flows on surfaces]

V. Arnold question (1990s): Are they mixing? i.e.

Courtesy of C. Dettmann

Take a cloud A of initial points.
Flow points in A for time t:
does ϕt(A) spreads uniformely?

[Mathematical formulation: for any sets A, B

Area(ϕt(A) ∩ B)

Area(A)
t→∞−−−→ Area(B)]
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I For bagels (genus one):
Yes (Khanin-Sinai, 1992)

I For pretzels with many holes (genus ≥ 2):
it depends,

on wheather there are traps:

I no traps: typically not mixing,
but weakly mixing

I traps: typically mixing (outside the traps);
also mixing of all orders; mixing speed is subpolynomial
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Mixing Mechanism

How does mixing happen?

I Near a trap, trajectories slow down
at different speeds.

I This creates shearing;

I ϕt(A) elongates and wraps around the surface.

This seems to be a key phenomenon for slow chaos!

Remark: even stronger chaotic properties can be deduced from shearing!

Eg: Katok-Thouvenot conjecture, on Lebesgue spectrum for certain parabolic

flows (time-changes of horocycle flows) [Forni-Ulcigrai, JMD 2012].
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The mathematical world behind...

Powerful and beautiful mathematical idea:

I space of all systems of the same type
(e.g. flows on surfaces):

I system studied (e.g. flow) is a point;

I flow it (deforming the original system);

I the flow acts as a zooming machine.

[Techniques from renormalization and Teichmueller dynamics]

I Why does it help?
the renormalization flow is a fast chaotic system!
It yields back information on the initial slowly chaotic system.
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