HOMEWORK ASSIGNMENT 3

Exercise 1. (Blow-up solutions for the NLS)
Throughout this problem, we consider $p \in\left[1+\frac{4}{n}, 1+\frac{4}{n-2}\right)$ and the focusing $\boldsymbol{N L S}$ on \mathbb{R}^{n}.

$$
\left\{\begin{array}{l}
\mathrm{i} \partial_{t} u+\Delta u=-|u|^{p-1} u \\
\left.u\right|_{t=0}=\Phi \in H^{1}\left(\mathbb{R}^{n}\right)
\end{array}\right.
$$

i) Consider first the mass-critical case $p=1+\frac{4}{n}$.
a) Integrate by parts and show that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \int|x|^{2}|u(x, t)|^{2} \mathrm{~d} x=4 \operatorname{Im} \int\left\{\sum_{j=1}^{n} x_{j} \bar{u} \partial_{x_{j}} u\right\} \mathrm{d} x \tag{1}
\end{equation*}
$$

b) Furthermore, show that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{Im} \int\left\{\sum_{j=1}^{n} x_{j} \bar{u} \partial_{x_{j}} u\right\} \mathrm{d} x=4 E(\Phi) \tag{2}
\end{equation*}
$$

[HINT: Part b) is a bit involved. One would like to prove the following claim, for general $p \in\left[1+\frac{4}{n}, 1+\frac{4}{n-2}\right)$.
$\frac{\mathrm{d}}{\mathrm{d} t} \operatorname{Im} \int\left\{\sum_{j} x_{j} \bar{u} \partial_{x_{j}} u\right\} \mathrm{d} x=2 \int|\nabla u(x, t)|^{2} \mathrm{~d} x+\left(\frac{2 n}{p+1}-n\right) \int|u(x, t)|^{p+1} \mathrm{~d} x$.
A possible way to prove it is to use integration by parts and write
$\frac{\mathrm{d}}{\mathrm{d} t} \operatorname{Im} \int\left\{\sum_{j=1}^{n} x_{j} \bar{u} \partial_{x_{j}} u\right\} \mathrm{d} x=\sum_{j=1}^{n} \operatorname{Re}\left(\mathrm{i} \int x_{j}\left(\bar{u}_{x_{j}} u_{t}-\bar{u}_{t} u_{x_{j}}\right) \mathrm{d} x\right)+n \operatorname{Re}\left(-\mathrm{i} \int \bar{u}_{t} u \mathrm{~d} x\right)$.
One can use the equation to evaluate the expression on the right-hand side. A notational convenience in these calculations is

$$
r v_{r}:=\sum_{j=1}^{n} x_{j} \partial_{x_{j}} v
$$

]
c) Use parts a) and b) to deduce that there exists $T_{*} \in(0, \infty)$ such that

$$
\begin{equation*}
\lim _{t \rightarrow T_{*}} \int|x|^{2}|u(x, t)|^{2} \mathrm{~d} x=0 \tag{4}
\end{equation*}
$$

provided that the initial data Φ is chosen such that

$$
\begin{equation*}
E(\Phi)<0 \tag{5}
\end{equation*}
$$

d) Prove the Weyl-Heisenberg inequality, which states that

$$
\begin{equation*}
\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} \leq C(n)\||x| f\|_{L^{2}\left(\mathbb{R}^{n}\right)}\|\nabla f\|_{L^{2}\left(\mathbb{R}^{n}\right)} \tag{6}
\end{equation*}
$$

[HINT: It suffices to argue by density and assume that $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. Then, one can integrate by parts and write $\int|f|^{2} \mathrm{~d} x=-\frac{1}{n} \sum_{j} \int x_{j} \partial_{x_{j}}\left(|f|^{2}\right) \mathrm{d} x$.]
e) Use parts c) and d) to deduce that, for T_{*} as in part c) we have

$$
\begin{equation*}
\lim _{t \rightarrow T_{*}}\|\nabla u(t)\|_{\dot{H}^{1}\left(\mathbb{R}^{n}\right)}=\infty \tag{7}
\end{equation*}
$$

f) Explain how one can choose $\Phi \in H^{1}\left(\mathbb{R}^{n}\right)$ in such a way that $E(\Phi)<0$. [HINT: Use scaling.]
ii) Explain briefly why the above analysis extends to show existence of solutions satisfying (7) for some $T_{*} \in(0, \infty)$ whenever $p \in\left[1+\frac{4}{n}, 1+\frac{4}{n-2}\right)$.
(As was mentioned in class, this construction is due to Robert Glassey in 1977).
Exercise 2. (Bilinear Strichartz estimates on \mathbb{R}^{n} for $n \geq 2$)
Let $N_{1} \geq N_{2} \in 2^{\mathbb{N}_{0}}$ be dyadic integers. Suppose that $\psi_{1}, \psi_{2} \in L^{2}\left(\mathbb{R}^{n}\right)$ are functions such that $\operatorname{supp} \widehat{\psi}_{j} \subset\left\{\xi, N_{j} / 2 \leq|\xi| \leq 2 N_{j}\right\}$ if $N_{j}>1$ and $\operatorname{supp} \widehat{\psi}_{j} \subset\{\xi,|\xi| \leq 1\}$ if $N_{j}=1$. Show that the following bilinear Strichartz estimate holds.

$$
\begin{equation*}
\left\|S(t) \psi_{1} S(t) \psi_{2}\right\|_{L_{t, x}^{2}} \lesssim n \frac{N_{2}^{\frac{n-1}{2}}}{N_{1}^{\frac{1}{2}}}\left\|\psi_{1}\right\|_{L_{x}^{2}}\left\|\psi_{2}\right\|_{L_{x}^{2}} \tag{8}
\end{equation*}
$$

[HINT:
i)First consider the case when the frequencies N_{1} and N_{2} are comparable. In this case apply Hölder's inequality and estimate the expression as a product of $L_{t, x}^{4}$ norms. Reduce to the Strichartz inequality by Bernstein's inequality (recall Homework assignment 1).
ii) When N_{1} is much bigger than N_{2}, argue by duality on the Fourier side (in both x and t). Compute

$$
\left(S(t) \psi_{1} S(t) \psi_{2}\right) \sim(\xi, \tau)
$$

and note that it suffices to estimate an expression of the form

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} F\left(\xi_{1}+\xi_{2},-2 \pi\left|\xi_{1}\right|^{2}-2 \pi\left|\xi_{2}\right|^{2}\right) \widehat{\psi}_{1}\left(\xi_{1}\right) \widehat{\psi}_{2}\left(\xi_{2}\right) \mathrm{d} \xi_{1} \mathrm{~d} \xi_{2} \tag{9}
\end{equation*}
$$

Use a change of variables of the form which simplifies the arguments of F.

$$
s:=\xi_{1}+\xi_{2}, \quad r:=-2 \pi\left|\xi_{1}\right|^{2}-2 \pi\left|\xi_{2}\right|^{2}, \quad \omega:=\left(\xi_{2,2}, \xi_{2,3}, \ldots, \xi_{2, n}\right)
$$

Explain that this makes sense if $\left|\xi_{1,1}-\xi_{2,1}\right|$ is large, i.e. that this is an invertible change of variables. Compute the jacobian J of this change of variables. How large is the jacobian in absolute value in terms of N_{1} ? What bounds does $|\omega|$ satisfy? Rewrite the integral in (9) in the new variables. Apply Cauchy-Schwarz in all of the new variables s, r, ω. Bound $\frac{1}{J^{2}}$ in the obtained integral in terms of $\frac{1}{J}$ using the previously obtained estimate for J. What factor do we obtain from the ω integration? Undo the change of variables and conclude the claim.]

