HOMEWORK ASSIGNMENT 2

Exercise 1. (Bound on the Airy function A)
Recall from class that we are interested in bounding the expression

$$
\begin{equation*}
I(x)=\int_{-\infty}^{+\infty} \mathrm{e}^{\mathrm{i} x \xi+\mathrm{i} \xi^{3}} \phi_{0}(\xi) \mathrm{d} \xi \tag{1}
\end{equation*}
$$

uniformly in $x \in \mathbb{R}$. Here $\phi_{0} \in C^{\infty}(\mathbb{R})$ is chosen such that

$$
\phi_{0}(\xi)= \begin{cases}1 & \text { for }|\xi|>4 \tag{2}\\ 0 & \text { for }|\xi|<3\end{cases}
$$

Note that we can rewrite (1) as

$$
\begin{equation*}
I(x)=\int_{-\infty}^{+\infty} \mathrm{e}^{\mathrm{i} \Psi_{x}(\xi)} \phi_{0}(\xi) \mathrm{d} \xi \tag{3}
\end{equation*}
$$

where, for fixed $x \in \mathbb{R}$ we define

$$
\begin{equation*}
\Psi_{x}(\xi):=x \xi+\xi^{3} \tag{4}
\end{equation*}
$$

In other words, in the phase function defined in (4), x is treated as a parameter.
a) If $x>-3$, show that we have

$$
\begin{equation*}
\left|x+3 \xi^{2}\right| \geq|x|+|\xi|^{2} \tag{5}
\end{equation*}
$$

for all ξ in the support of ϕ_{0}. Explain how we can deduce the claim for $x>-3$ from (5) and integration by parts.
b) If $x \leq-3$ define the following sets.

$$
\begin{align*}
& A:=\left\{\xi \in \mathbb{R},\left|x+3 \xi^{2}\right| \leq \frac{|x|}{2}\right\} . \tag{6}\\
& B:=\left\{\xi \in \mathbb{R},\left|x+3 \xi^{2}\right|<\frac{|x|}{3}\right\} . \tag{7}
\end{align*}
$$

We know that there exist nonnegative functions $\phi_{1} \in C_{c}^{\infty}(\mathbb{R}), \phi_{2} \in C^{\infty}(\mathbb{R})$ such that

$$
\left\{\begin{array}{l}
\phi_{1}+\phi_{2}=1 \tag{8}\\
\operatorname{supp} \phi_{1} \subset A \\
\phi_{2}=0 \text { on } B .
\end{array}\right.
$$

(This fact can be used without proof). For $j=1,2$, we define the following quantities.

$$
\begin{equation*}
I_{j}(x):=\int_{-\infty}^{+\infty} \mathrm{e}^{\mathrm{i} x \xi+\mathrm{i} \xi^{3}} \phi_{0}(\xi) \phi_{j}(\xi) \mathrm{d} \xi \tag{9}
\end{equation*}
$$

In particular, we can write

$$
\begin{equation*}
I=I_{1}+I_{2} \tag{10}
\end{equation*}
$$

In what follows, we show that I_{1} and I_{2} are both bounded which by (10) implies the claim.
b1) Show that for $\xi \in A$ we have

$$
\begin{equation*}
\left|\Psi_{x}^{\prime \prime}(\xi)\right| \sim|x|^{\frac{1}{2}} \tag{11}
\end{equation*}
$$

In the proof of (11), it is helpful to note that for $\xi \in A$ we have

$$
\begin{equation*}
|\xi|^{2} \sim|x| \tag{12}
\end{equation*}
$$

Explain how one can combine (11) and the Van der Corput lemma and deduce that I_{1} is bounded.
Note: In order to do this properly, one should choose ϕ_{1} in the correct way. Observe that by (8) and (12) we have that ϕ_{1} can be chosen to be a function adapted to an annulus of size $\sim|x|^{1 / 2}$. In other words, it can be chosen as a rescaling of a function F independent of x supported on an annulus of size ~ 1 in such a way that the result is supported on an annulus of size $\sim|x|^{1 / 2}$.
b2) For $\xi \notin B$, show that we have

$$
\begin{equation*}
\left|x+3 \xi^{2}\right| \geq C\left(|x|+|\xi|^{2}\right) \tag{13}
\end{equation*}
$$

for some $C>0$. Conclude that I_{2} is bounded.
Exercise 2. (An alternative proof of the inhomogeneous Strichartz estimate)
We work on \mathbb{R}^{n}. We assume the homogeneous Strichartz estimate for all admissible pairs (q, r) in dimension n. Throughout the exercise, assume that $q>2$, i.e. that we are in the non-endpoint case. Define the operator Ψ by the following rule.

$$
\Psi: f \mapsto \Psi_{f}(x, t):=\int_{0}^{t} S(t-s) f(\cdot, s) \mathrm{d} s
$$

Here $S(\cdot)$ denotes the free Schrödinger evolution and we evaluate the expression on the right-hand side at x. We want to prove that

$$
\begin{equation*}
\left\|\Psi_{f}\right\|_{L_{t}^{q} L_{x}^{r}} \lesssim_{q, r, \tilde{q}, \tilde{r}, n}\|f\|_{L_{t}^{\tilde{q}^{\prime}} L_{x}^{\tilde{r}^{\prime}}} \tag{14}
\end{equation*}
$$

for all $(q, r),(\tilde{q}, \tilde{r})$ admissible in dimension n. In this exercise, we give a proof of (14) using duality. In order to do this, we define the following operators.

$$
\begin{equation*}
\Xi_{f}(x, t):=\int_{t}^{\infty} S(t-s) f(\cdot, s) \mathrm{d} s \tag{15}
\end{equation*}
$$

Furthermore, given $t_{0} \in \mathbb{R}$ we define

$$
\begin{equation*}
\Psi_{f, t_{0}}(x, t):=\int_{0}^{t_{0}} S(t-s) f(\cdot, s) \mathrm{d} s \tag{16}
\end{equation*}
$$

a) Show that for all (q, r) admissible in dimension n we have the following estimates.

$$
\begin{align*}
\left\|\Psi_{f}\right\|_{L_{t}^{q} L_{x}^{r}} \lesssim_{q, r, n}\|f\|_{L_{t}^{q^{\prime}} L_{x}^{r^{\prime}}} \tag{17}\\
\left\|\Xi_{f}\right\|_{L_{t}^{q} L_{x}^{r}} \lesssim_{q, r, n}\|f\|_{L_{t}^{q^{\prime}} L_{x}^{r^{\prime}}} \tag{18}\\
\left\|\Psi_{f, t_{0}}\right\|_{L_{t}^{q} L_{x}^{r}} \lesssim q, r, n\|f\|_{L_{t}^{q^{\prime}} L_{x}^{r^{\prime}}} \tag{19}
\end{align*}
$$

In particular, note that the implied constant in (19) is uniform in t_{0}.
b) Show that we have

$$
\begin{equation*}
\left\|\Psi_{f}\right\|_{L_{t}^{\infty} L_{x}^{2}} \lesssim_{q, r, n}\|f\|_{L_{t}^{q^{\prime}} L_{x}^{r^{\prime}}} \tag{20}
\end{equation*}
$$

for all (q, r) admissible in dimension n.
Here, it is helpful to write the expression

$$
\left\langle\Psi_{f}(t), \Psi_{f}(t)\right\rangle_{L_{x}^{2}}
$$

in terms of the operator $\Psi_{f, \star}$ defined in (16) and apply the result of a).
Note also that

$$
\begin{equation*}
\left\|\Xi_{f}\right\|_{L_{t}^{\infty} L_{x}^{2}} \lesssim_{q, r, n}\|f\|_{L_{t}^{q^{\prime}} L_{x}^{r^{\prime}}} \tag{21}
\end{equation*}
$$

(This follows from the same proof.)
c) Show that we have

$$
\begin{equation*}
\left\|\Psi_{f}\right\|_{L_{t}^{q} L_{x}^{r}} \lesssim q, r, n\|f\|_{L_{t}^{1} L_{x}^{2}} \tag{22}
\end{equation*}
$$

for all $(q, r) \neq(\infty, 2)$ admissible in dimension n.
Here, it is helpful to use duality and for $g \in L_{t}^{q^{\prime}} L_{x}^{r^{\prime}}$ write the pairing

$$
\int_{-\infty}^{\infty}\left\langle\Psi_{f}(t), g\right\rangle_{L_{x}^{2}} \mathrm{~d} t
$$

in terms of the operator Ξ defined in (15) and apply (21).
d) Check directly that

$$
\begin{equation*}
\left\|\Phi_{f}(t)\right\|_{L_{x}^{2}} \leq\|f\|_{L_{t}^{1} L_{x}^{2}} \tag{23}
\end{equation*}
$$

e) Note that parts a)-d) imply that

$$
\left\{\begin{array}{l}
\Psi: L_{t}^{q^{\prime}} L_{x}^{r^{\prime}} \rightarrow L_{t}^{q} L_{x}^{r} \tag{24}\\
\Psi: L_{t}^{q^{\prime}} L_{x}^{r^{\prime}} \rightarrow L_{t}^{\infty} L_{x}^{2} \\
\Psi: L_{t}^{1} L_{x}^{2} \rightarrow L_{t}^{q} L_{x}^{r}
\end{array}\right.
$$

as bounded operators for all (q, r) admissible in dimension n.
Conclude (14) from (24) and interpolation in mixed norm spaces. Here, one should consider two cases depending on the relative sizes of q and \tilde{q}.

