HOMEWORK ASSIGNMENT 1: FOURIER TRANSFORM AND SOBOLEV SPACES

You need to solve only one of the exercises. A tentative due date is October 14.

Exercise 1. (Bernstein's Inequality)

Let $\psi \in \mathcal{S}(\mathbb{R}^n)$ be given. For $j \in \mathbb{Z}$, we define $\psi_j(\xi) := \psi(\frac{\xi}{2^j})$. Let $1 \le q \le p \le \infty$ be given.

a) Show that, for all $j \in \mathbb{Z}$ we have

$$\|\psi_j(D)f\|_{L^p(\mathbb{R}^n)} \le C \, 2^{nj \, (\frac{1}{q} - \frac{1}{p})} \, \|f\|_{L^q(\mathbb{R}^n)}$$

for some constant C > 0 which depends on ψ, n, p, q , but which is independent of j.

[HINT: Write $\psi_j(D)$ as a convolution.]

b) Suppose that $f \in L^p(\mathbb{R}^n)$ has the property that \hat{f} is supported on the set $B(0, c 2^j)$ for some c > 0. Show that

$$||f||_{L^{p}(\mathbb{R}^{n})} \leq C \, 2^{nj \, (\frac{1}{q} - \frac{1}{p})} \, ||f||_{L^{q}(\mathbb{R}^{n})} \, ,$$

for some constant C > 0 independent of j.

The results in parts a) and b) are called **Bernstein's Inequality**.

c) Suppose that $f \in H^{\frac{n}{2}}(\mathbb{R}^n)$ has the property that \widehat{f} is supported in an annulus

 $\mathcal{A}_{j} = \left\{ \xi \in \mathbb{R}^{n} : 2^{j-1} < |\xi| \le 2^{j} \right\}$

for some $j \in \mathbb{N} = \{1, 2, 3, \ldots\}$ or in the ball

$$\mathcal{A}_0 = \left\{ \xi \in \mathbb{R}^n : |\xi| \le 1 \right\}.$$

Show that

 $||f||_{L^{\infty}(\mathbb{R}^n)} \leq C ||f||_{H^{\frac{n}{2}}(\mathbb{R}^n)},$

for some constant C > 0 independent of j.

d) Compare the result of part c) with Proposition 1.4.3. from class.

Exercise 2. (Algebra property of $H^s(\mathbb{R}^n)$ for s > n/2.) Let s > n/2 be given. Show that for $f, g \in H^s(\mathbb{R}^n)$ one has

 $\|fg\|_{H^{s}(\mathbb{R}^{n})} \leq C \|f\|_{H^{s}(\mathbb{R}^{n})} \|g\|_{H^{s}(\mathbb{R}^{n})},$

for some constant C > 0 depending on s and n. In particular, $H^{s}(\mathbb{R}^{n})$ is closed under multiplication.

[HINT: Work on the Fourier side. Recall Young's inequality.]