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Abstract

A systematic computational study of the dynamics of gas bubbles rising in a viscous
liquid is presented. Both the dynamics of single bubbles and small groups of bubbles
(bubble swarms) are considered. This is a continuation of our previous studies on the
two-bubble coalescence and vortex shedding [32]. The proposed numerical method
allows us to simulate a wide range of flow regimes, accurately capturing the shape of
the deforming interface of the bubble and the surface tension effect, while maintaining
the mass conservation. The computed time-evolution of bubble’s position and rise
velocity shows a good agreement with the available experimental data. At the same
time, the results on the dynamics of bubble interface area, which are, up to our
knowledge, presented for the first time, show how much the overall mass transfer
would be affected by the interface deformation in the case of the bubble dissolution.
Another set of experiments that are of interest for chemical engineers modelling bubbly
flows concerns the bubble swarms and their behavior in different bubble-shape regimes.
The ellipsoidal and spherical shape regimes are considered to represent, respectively,
the coalescing and non-coalescing bubble swarms. The average rise velocities of the
bubble swarms are computed and analysed for both regimes.

Keywords: two-phase flow, bubble dynamics, free moving boundary, rise velocity, bubble
swarm

1 Introduction

Bubbly flows are central to many industrial and natural processes, and an inter-bubble
interaction plays a fundamental role in such flows. Coalescence and breakup can control
the interfacial area and mass transfer rate in bubble columns and gas-sparged chemical and
biological reactors. However, the actual mechanisms of bubble interactions are not well
understood; to find the main factors affecting these mechanisms in bubbly flows, one has
to analyze the flow patterns around single rising bubbles and small groups of bubbles. This
paper presents the results of a computational study that provides new insights into the
phenomena. We compare experimental observations with the simulation results and study,
to what extent the physical mechanisms may be explained by the model and numerical
methods employed.
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The rise of a gas bubble in a viscous liquid is usually accompanied by a significant defor-
mation of the bubble, indicating a complex interplay between fluid convection, viscosity
and surface tension. The diverse shapes of the bubble resulting from this deformation
cause a large variety of flow patterns around the bubble, and vice versa. A number of ex-
perimental studies have addressed this problem. Early studies include the rise of a bubble
in an inviscid and a viscous liquid, see [13], [41] [42], [44] and [2]. Approximate theoretical
solutions have been obtained for either low [38] or high [22] Reynolds numbers under the
assumption that the bubble remains nearly spherical.

Experimental investigations of homogeneous bubbly flows can be found, for example,
in [16] and [21], who also examined the turbulence generation in such flows. Earlier ex-
perimental work is discussed in both papers. Experiments using a homogeneous “quasi
two-dimensional” fluidized bed are described in [29]. In computational studies, a num-
ber of investigators (see, e.g., [34], [43], [5], [39]) used point particles to simulate dilute
multiphase flows without resolving the detailed flow field around each particle. In some
cases the influence of the particles on the flow was neglected, in other cases the force
exerted on the fluid by the particles was added to the right-hand side of the Navier-Stokes
equations. The force on each point particle was specified by analytical models for very
low and very high Reynolds numbers and by empirical correlations for finite values of the
Reynolds number. Recent computational studies have produced correlations for the forces
on spherical bubbles, see [20] and [18]. [23] and [19] have presented simulations where the
particle size and its wake are accounted for by distributing the effect of the particle over
a few grid cells.

When the flow at moderate and high Reynolds numbers is considered, one has to
solve the full Navier-Stokes equations for the unsteady flow around each moving particle,
resolving the details of boundary layers and wakes. One of the first attempts to compute
a detailed flow pattern around a single bubble was the work of [25],[26],[27] who computed
the steady-state shapes of axisymmetric bubbles. Later, many researchers conducted two-
and three-dimensional simulations of the unsteady motion of deformable bubbles (see, e.g.,
[36], [28], [40] and the references therein).

For the detailed dynamics of groups of bubbles or particles, the literature is rather
limited. The motion of a couple of hundreds of two-dimensional rigid particles was com-
puted in [14]. [9], [10] examined the settling of circular and elliptic particles in a verti-
cal channel, showing both steady-state settling at low Reynolds numbers as well as the
“drafting-kissing-tumbling” behavior identified earlier by [11] at higher Reynolds numbers.
The same behavior during the settling of hundreds of three-dimensional solid particles has
been revealed in the simulations of [12]. Three-dimensional simulations of up to a hundred
solid spheres have been also presented by [15]. As to groups of bubbles, [40] and [7], [8]
examined the dynamics of two- and three-dimensional bubble arrays at low and moderate
Reynolds numbers; earlier, [6] studied the energy transfer in a two-dimensional system of
a few hundred bubbles.

In this paper we employ the numerical approach presented in [32] to study in detail
the dynamics of a single rising bubble and bubble swarms in various flow regimes. The
paper is organized as follows. Section 2 contains the physical setting of the problem
and very briefly addresses the numerical algorithm. In section 3 we present the results
on typical characteristics of single rising bubbles in order to show the performance of
the method. To this end, diverse bubble shapes, terminal velocities and interfacial area
evolution are discussed. In section 4, the behavior of bubble swarms in different shape
regimes is addressed as well as the corresponding swarms’ average rise-velocities. Some
concluding remarks can be found in section 5.
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2 Physical setting and numerical algorithm

We consider an unsteady laminar flow of two immiscible fluids (this covers the flows of both
gas bubbles and liquid drops in another liquid). Both fluids are assumed to be viscous and
Newtonian. Moreover, we suppose that the flow is isothermal, thus neglecting the viscosity
and density variations due to changes of a temperature field. We also assume that the
fluids are incompressible. This view on the modelling of a gas inside of a bubble is standard
in the bubble dynamics, since the Mach number of the bubbly flows is always sufficiently
small to neglect the gas compressibility (see [1, §3.6] for a thorough discussion on the
incompressibility assumption). Presuming, in addition, the fluids to be homogeneous, we
may infer that the densities and viscosities are constant within each fluid. We utilize
the sharp-interface (zero interfacial thickness) approach; the density and viscosity have,
therefore, a jump discontinuity at the interface (see, e.g., [1]). We assume that the interface
has a surface tension. We also suppose that there is no mass transfer through the interface
(i.e. the interface is impermeable), and there are no surfactants present in the fluids (hence,
there is no species transport along the interface). The surface tension coefficient is, thus,
assumed constant.

As a simulation tool we employ a general computational strategy proposed in [30] (see
also [31]), that is capable of modelling diverse types of two-fluid interfacial flows. The
dynamics of a gas bubble in a liquid can, thus, be considered as a particular application
of this computational approach.

We refer to [31] for the mathematical setting of the problem and the details of the
numerical algorithm; we notice only that we solve the incompressible Navier-Stokes equa-
tions by the fractional-step method using finite element discretization in space and move
the bubble interface with the help of the finite element level-set approach.

3 Bubble rise velocity, position and interface area for dif-

ferent shape regimes

In this section, we are concerned with the dynamics of a single rising bubble. We start
with the simulation of different bubble-shapes, depending on the values of the physical
parameters, to illustrate the performance of our numerical approach and to highlight
the main shape-regimes used to classify the bubble behavior. Next, the quantitative
comparison of the bubble position and rise velocity as the functions of time with the
available experimental data is shown to confirm the ability of the algorithm to deliver the
correct information on the typical global characteristics of single rising bubbles. Finally, we
analyze the dynamics of the bubble interface area during the bubble rise; this information
can be very important for the evaluation of the mass transfer through the bubble surface
in the problem of bubble dissolution.

3.1 Bubbles in different shape regimes

The problem of a gas bubble rising due to the buoyancy force in an infinite liquid medium
may be characterized by the following eight independent dimensional quantities: the den-
sities ρ1 and ρ2, the viscosities µ1 and µ2, the gravitational acceleration g, the coefficient
of surface tension σ, and the space and time variables. Here the index ”1” corresponds to
the fluid surrounding the bubble, index ”2” to the fluid inside of the bubble. According to
the Π-theorem of dimensional analysis, five independent non-dimensional parameters can
be formed to completely describe the problem. Those are, usually, the density ρ1/ρ2 and
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viscosity µ1/µ2 ratios, the non-dimensional time T = tµ1/ρ1de
2, and two of the following

three quantities:

M =
gµ4

1

ρ1σ3
, Eo =

gd2
eρ1

σ
, Re =

ρ1deU

µ1

, (1)

which represent the Morton, the Eötvös and the Reynolds numbers, respectively. Here the

characteristic length de = 3

√

6V
π is the volume-equivalent diameter of a bubble of volume

V , and U denotes the characteristic rise velocity of the bubble. Another dimensionless

parameter, the Weber number We = ρ1U2de

σ , is often used instead of the Eötvös number.
It is obvious that Eo and M are the parameters known a priori, while Re and We require
a definition of U . If we set U =

√
gde, which is a common choice in the literature,

we immediately find the explicit relation M = Eo3/Re4 showing the dependence of the
Morton number on the Eötvös and Reynolds numbers.

Although the motion of a buoyant bubble through a viscous liquid always presents
an unsteady process, there is a possibility to divide all possible flow patterns into several
different groups, called “shape regimes”, characterized by the assumption that within each
regime the bubble retains nearly the same shape. A particular “representative” shape of
the bubble can be realized only some time after the initially spherical bubble starts its
evolution; on the other hand, at later stages of the motion, the bubble shape may change
so significantly that we may probably speak of a transition from one shape regime to
another. So, the notion of the shape regimes is somewhat rough, though it has been
proved extremely useful for classification of different types of bubble behavior. In light
of the above, the non-dimensional time T indicating an explicit temporal dependence can
be neglected for a time being; then, the whole problem remains governed by four non-
dimensional parameters, which we take, following [4], to be the density ratio, the viscosity
ratio, the Eötvös number and either the Morton or the Reynolds number.

(a) (b) (c) (d) (e) (f)

Figure 1: Different computed shapes of bubbles: (a) spherical: Re=1, Eo=0.6, (b) ellip-
soidal: Re=20, Eo=1.2, (c) dimpled ellipsoidal cap: Re=35, Eo=125, (d) skirted: Re=55,
Eo=875, (e) spherical cap: Re=94, Eo=115, (f) wobbling: Re=1100, Eo=3.0; ρ1/ρ2 = 103;
µ1/µ2 = 102.

The typical bubble shapes and velocity streamlines in the frame of reference of the
bubble are shown in Figure 1. These numerical bubble shapes are in a good agreement
with the experimental predictions of [2] and [4]. It is worth noting that all basic shapes are
successfully recovered with the physical parameter values lying exactly within the limits
given in [4].

4



3.2 Terminal velocity of the bubble

The notion of the terminal velocity of a rising bubble is, to some extent, vague. In reality,
the Archimedian force, the drag, the lift and the virtual mass forces exerted on the bubble
never balance each other, and, thus, the bubble motion always remains unsteady. However,
if the bubble motion is considered in an infinite fluid-medium, after some period of time
we may speak of a certain average “rise velocity”, whose change in time can be neglected.
The averaging is meant here over a time interval much shorter than the period of time
passed since the beginning of the bubble motion. Therefore, under the terminal velocity
we understand such a time-averaged (“smoothed”) rise velocity of the bubble.

The terminal velocity of a rising bubble has been experimentally measured by many
investigators. The measured terminal velocities differ widely, mainly due to the differences
in system’s purity. For instance, some researchers have noticed a strong influence of
system’s purity on the drag or terminal velocity, while the viscosity of internal fluid may be
of secondary importance in the presence of uncontrolled surfactant effects. For practical
predictions, it is useful to have the terminal velocity correlated explicitly in terms of
system variables. Clift et al. ([4]) determined the terminal velocity for a rising bubble as
UT = µ

ρde
M−0.149(J − 0.857), where J = 0.94H0.757 for 2 < H ≤ 59.4 and J = 3.42H0.441

for H > 59.4. Here H = 4

3
EoM−0.149( µ

µw
)−0.14 and µw is the viscosity of water, which

may be taken as 0.09 kg/m · s. It is important to note that the density and viscosity of
the fluid inside of the bubble are not included in the correlation; ρ and µ denote here the
parameters of the surrounding fluid.

A more recent equation for the terminal velocity has been reported by Rodrigue ([24])

as UT = V/(deρ2

σµ )1/3, where V = aF b

1+cF d and F = g(d8
eρ5

σµ4 )1/3 with fitted parameter values

a = 1/12, b = 1, c = 0.049, d = 3/4.
In Table 1 we have compared the results computed by the above mentioned formulae

of Clift et al. and of Rodrigue with the results of our calculations. We computed the
bubble rise velocity as the velocity of the top of the bubble.

Bubble shape Clift et al. Rodrigue our results

Spherical cap 0.3717 0.5349 0.58
Dimpled ellipsoidal 0.8271 0.9581 0.62
Skirted 0.5996 0.7957 0.71
Spherical 0.3253 0.0806 0.04
Ellipsoidal 0.6064 1.5011 0.42

Table 1: Terminal velocity for different shape regimes. The comparison with the formulae
of Clift et al. ([4]) and Rodrigue ([24]).

If compared to Rodrigue’s results, our terminal velocities differ most in ellipsoidal
and dimpled ellipsoidal shape regimes, where it is experimentally difficult to find accurate
predictions. Otherwise, the results seem to agree reasonably well. In all but one (spherical)
case the values of Clift et al. are also rather close to ours. It is worth noticing again that in
the formulae of Clift et al. and of Rodrigue the dependence of the terminal velocity on the
viscosity/density of the internal fluid is neglected; this is not the case in our simulations.

The smoothed rise velocities for different shape regimes are shown in Figure 2, indi-
cating that the smallest terminal velocity is exhibited by the spherical bubble, while the
greatest is demonstrated by the dimpled ellipsoidal-cap and by the skirted bubbles. Fig-
ure 3 illustrates the oscillating character of the rise velocity. The oscillations reflect the
complex interplay of diverse forces influencing the bubble motion; the magnitude of the
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Figure 2: Smoothed rise velocities vs. time for different shape regimes.

oscillations is larger for more “stiff” bubbles, i.e. for the bubbles which are more resistant
to the deformations.

3.3 The bubble position versus time

Figure 4 shows the height of the bubble top as a function of time. The considered shape
regimes are skirted, spherical-cap, dimpled ellipsoidal-cap and ellipsoidal. It is clearly
seen that in the case of higher Reynolds numbers (spherical-cap, skirted) the bubble rises
faster than in the regimes with lower Reynolds numbers (ellipsoidal-type shapes). We see
that, at the starting moment, the bubble position changes slowly, but, later, the height of
the bubble top grows almost linearly with time. Qualitatively, our results compare well
with the results of [37] (see Figure 11 in [37], where the same temporal dependence is
observed). [3] have also reported analogous numerical results (see Figures 5, 12, 16, 18 in
[3]), demonstrating the same linear dependence of the bubble position on time. Both [37]
and [3] found that their results agree with the available experimental data.

3.4 Interface area of a bubble

To our knowledge, there have been no investigations on the evolution of the bubble surface
area, although such results can be of primary importance, for example, in estimating the
total mass transfer across the surface of a dissolving gas bubble. While the bubble volume
is conserved in our model owing to the incompressibility assumption, the area (the length
in 2D) of the bubble interface may undergo rather dramatic changes during the bubble
motion.

In this section we study the behavior of the relative interfacial length as a function of
time. Under the relative length of the bubble interface we understand the length of the
interface at each time moment divided by the length of the initial, circular interface. As
it is seen in Figure 5, the relative interfacial length of the bubble remains close to 1 when
a spherical bubble is concerned. An ellipsoidal bubble has a very small increase in the
relative length. A dimpled ellipsoidal-cap bubble, first, has a bigger change in the relative
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(a) (b)

Figure 3: Rise velocity vs. time for (a) ellipsoidal and (b) skirted bubble: original and
smoothed.

interfacial length, then the surface length gets smaller and, finally, tends to a certain
limit value. This kind of oscillation occurs due to the fact that the bubble first tries to
achieve a skirted shape but, at later times, eventually reaches a dimpled ellipsoidal shape,
where it remains. In the skirted case, the breakup of the bubble is clearly observed on
the graph of the relative interfacial length. Right before the moment of the breakup the
relative length is almost 2, which means that the interface length is twice its initial value.
After the bubble breaks, the relative length goes closer to 1, then the bubble starts to
regain the skirted shape and the interfacial length increases again. With a spherical-cap
bubble the relative length first almost reaches the value 2 (at this point the bubble is
skirted and about to break) and then, after the breakage, the relative length goes back to
about 1.4, and the bubble recovers the spherical-cap shape. It is important to note that,
after each breakup, we obtain several “child” bubbles, and each of them has a volume
smaller than the volume of the “parent” bubble. This means that each “child” bubble has
a correspondingly smaller Eötvös number, i.e. its interface is more resistant to possible
deformation and stretching. Thus, the total interfacial length should always tend to some
limit value, as in the case of a nearly ellipsoidal bubble shape.

4 Bubble swarms

While the dynamics of a single bubble is important for understanding the processes in
bubbly flows, yet more useful information can be extracted from the analysis of the rise
of small groups of bubbles. Although the groups of approximately 10 bubbles are not,
of course, representative enough to model a bubbly flow, they can be used to evaluate
(at least, qualitatively) some macroscopic characteristics of the multiphase flow, like, e.g.,
the so-called “gas-slip velocity” (see [17], [33]). This velocity is used in the macroscopic
models for the multiphase flows, and some empirical correlations are usually invoked for
its estimation. In this section we try to make the first steps toward establishing the laws
governing the dynamics of the gas-slip velocity by analyzing the average rise velocity of
bubble swarms in two different shape regimes. We also thoroughly consider the behaviour
of individual bubbles in a swarm and of a bubble swarm as a whole, having in mind the
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Figure 4: Bubble position vs. time for ellipsoidal, dimpled ellipsoidal-cap, spherical-cap
and skirted shape regimes.

importance of the dynamics of this intermediate, bubble-swarm scale for understanding
the bubbly flows at the macro-level.

In the numerical experiments, we consider nine bubbles arranged in a sort of “array”:
the lower and the middle “rows” consist of three bubbles side by side, in the upper “row”
the central bubble is placed slightly above others to break the symmetry. All bubbles are
initially spherical and of equal size.

It is known (see, e.g., [35]) that the behavior of a bubble swarm essentially depends
on the Morton number (M) of the liquid: in “low-M” liquids the bubbles tend to coalesce
within a swarm, while in “high-M” liquids the bubbles form clusters but do not merge.
The transition between “coalescing” and “non-coalescing” regimes is not sharp and hard
to capture experimentally; in [35], the threshold M ≈ 4 · 10−4 was proposed. Below we
consider the ellipsoidal and spherical shape regimes corresponding to relatively small and
large Morton numbers, respectively. It is worth noting that, in the numerical simulations,
the effect of bubble coalescence strongly depends on the grid resolution. That is why in
both cases we compute on the grids with the same width h = 1/80.

4.1 Bubble swarms in ellipsoidal shape regime

Bubble swarm rising in ellipsoidal shape regime can be seen in Figures 6 – 8. Here, the
Reynolds and Eötvös numbers are 20 and 1.2, correspondingly, which yields the Morton
number M = 1.1 · 10−5. For such a small M one can expect multiple coalescences and
mergers of the bubbles in a swarm, and this is exactly what we are about to see.

First, the top bubble starts to rise fast and two other bubbles in the top row start
approaching each other. At the same time, the near-wall bubbles in the middle row begin
to rise faster, while the center bubble rises slower (Figure 6(c)); this effect is caused by
the wake of the top-row bubbles. In the lowest row an opposite phenomenon is observed:
the center bubble rises faster than the two other. After a short time, the center bubble
in the middle row becomes strongly influenced by its ’neighbors’ which have risen above
it and the lowest center bubble reaches its wake (see Figure 6(d)). In the next moment,
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Figure 5: Relative interfacial lengths for different shape regimes. The bubble evolves from
the spherical to its final rising shape.

the center bubble in the middle row stretches in the horizontal direction and merges with
the lowest center bubble. After the merging, the bubble still continues getting wider and
upper bubbles’ wakes cause it to form a neck-like shape and, finally, to break in the middle.
At this time-point, both upper and lower bubbles have come very close to each other, but
a merger does not occur when the bubbles are side by side: the bubbles rise steadily in
groups of two (except the most upper bubble that rises alone). In [35], it is reported that
“... when several bubbles were captured in the wake of another simultaneously or in a
rapid sequence, they formed a cluster”. At this point of our simulation we can clearly see
this effect (see Figures 6(i), 7(a),(b)). Such a type of cluster forming is also known to be
the basic foundation for the transition from bubbly to slug flow.

It is also noticed in [35] that “... if large number of bubbles (say 5 − −10) were
involved, they formed a ’chimney’ in which a cluster’s wake was strong enough to sustain
itself by continually gathering in new bubbles to replace possibly dispersed ones”. In our
simulations, the cluster of bubbles forming a “chimney” can be clearly seen (see Figure
7(c)). Now, the bubble groups form a pronounced wake behind them. A wake was not
observed in this regime when the rise of a single bubble was studied. When the lower
bubbles get closer to the upper ones, a bubble coalescence begins. First, the upper group of
two bubbles merges with the leading bubble and, at the same time, the group of six evolves
into a group of five, when two upper bubbles on the left-hand side merge together. Next, a
coalescence occurs on the right-hand side of this group of five when the two lowest bubbles
merge (see Figure 7(g) and note the non-symmetric character of the merger process). At
this moment, the leading bubble is reached by others; the coalescence with the “leader”
starts on the right-hand side of the bubble group (see Figures 7(h),(i) and 8(a)-(c)). This
unsymmetric coalescence process makes the final big bubble wobble from side to side,
which, in its turn, results in an unsymmetric wake behind the bubble (and vice versa,
the asymmetry of the wake causes the wobbling-type motion of the bubble, see Figures
8(d)-(h)). This kind of the bubble behavior agrees well with the experimental studies of
[35] where it is reported that “... as chimney grew, stronger coalescences encouraged by
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 6: Bubble swarm in ellipsoidal shape regime; Re = 20, Eo = 1.2, M = 1.1 · 10−5,
ρ1/ρ2 = 103, µ1/µ2 = 102.

the close proximity of bubbles in the cluster created large caps”.
Our results also compare well with the results of [40] at the point that, in some cases,

the nearly uniform bubble distribution undergoes a transition to a completely different
state where the bubbles accumulate in vertical streams, rising much faster than when they
are uniformly distributed.

In Figure 9 one can see average rise velocities of bubble swarms with four different
density ratios. Average velocities here are simply the arithmetic means of individual
bubble velocities in a swarm. Figures 6 – 8 represent the simulation with the density
ratio equal to 1000 that can be viewed as the case of the fastest rising bubble swarm. An
increase of the gas density (i.e. a decrease of the density ratio) lowers the bubble buoyancy,
which ultimately implies smaller rise velocities of bubble swarms. The velocity profiles in
Figure 9 differ from those of single rising bubbles (see Figure 2); one can also notice that
the average rise velocity of a swarm of ellipsoidal bubbles is clearly greater than the rise
velocity of any bubble from the swarm, if this bubble would rise alone (see Table 1). This
confirms the statement that the bubbles rise faster in a cluster. This effect can also be
seen in Figure 9 for density ratios equal to 20 and 100: the swarm rise velocity grows up
till the moment when the bubble mergers result in a creation of a large leading bubble; at
this moment, the rise velocity starts to fall down to the level of the terminal velocity of
the correspondingly large, single ellipsoidal bubble.

4.2 Bubble swarms in spherical shape regime

In this set of numerical experiments, we used the values of the Reynolds and Eötvös
numbers Re = 1 and Eo = 0.63, which results in the Morton number M = 0.25 that is
greater than the threshold value and, thus, must imply the “non-coalescing” rise of the
bubble swarm. The density ratio of liquid and gas was ρ1/ρ2 = 1000, the viscosity ratio
µ1/µ2 = 20.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 7: Bubble swarm in ellipsoidal shape regime (contin.); Re = 20, Eo = 1.2, M =
1.1 · 10−5, ρ1/ρ2 = 103, µ1/µ2 = 102.

As seen in Figure 10, the bubbles tend to form clusters but do not merge. The bubbles
at the center of the computational domain start rising much faster than the bubbles near
the boundaries (see Figure 10(b)). This is in contrast to the ellipsoidal shape regime
where the wake of the upper bubbles slowed down the initial acceleration of the bubbles
in the center. The uppermost bubble at the center rises faster than others, leaving them
behind. Also, other two center bubbles form a cluster and reach the upper bubbles near
the boundaries rather fast. Bubbles in clusters of two seem first to get closer, then again
take distance from each other. This kind of back and forth motion was observed with
several two-bubble clusters. When a two-bubble cluster reaches another one, they form
together a four-bubble cluster and start to rise as a whole (Figures 10(g),(h)). It is worth
noticing that, exactly as in the case of a single spherical bubble, no significant wake can
be observed behind the bubbles.

The individual bubble rise velocities are shown in Figure 11(a). The average rise
velocity of the swarm is indicated by a thick line. In Figure 11(b) we have fitted the
average swarm velocity to an exponential type curve to see the similarity of the velocity
behavior with that of a single spherical bubble. However, the terminal swarm velocity
(here, approximately, 0.44) is definitely greater than the terminal velocity of a single
spherical bubble having the same size as the bubbles in the swarm (see Table 1).

5 Concluding remarks

In this paper, we have continued our previous research on numerical modelling of bubble
dynamics. The work has been focused on the computation of typical global characteristics
of single rising bubbles (such as the time-evolution of the bubble interface area, bubble’s
position and rise velocity) as well as on the simulation of bubble groups in different shape
regimes. A good qualitative agreement with the experimental data has been always ob-
served, and the numerical results for the terminal velocities seem to be reasonably close to
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 8: Bubble swarm in ellipsoidal shape regime (contin.); Re = 20, Eo = 1.2, M =
1.1 · 10−5, ρ1/ρ2 = 103, µ1/µ2 = 102.

the available empirical correlations derived from the experimental values. Unfortunately,
we are unaware of any results on the dynamics of the bubble interface area, although these
results are important for the evaluation of total mass transfer through the surface of a
dissolving bubble. Our numerical predictions indicate that at moderate and high Reynolds
numbers (skirted and spherical-cap shape regimes) the total interface area exhibits large-
amplitude oscillations and may increase as much as in 2 times at some time moments.
The simulations of bubble swarms in ellipsoidal and spherical shape regimes confirm the
dependence of the swarm dynamics on the Morton number of the liquid: at low Morton
numbers the bubbles intensively coalesce in a swarm, tending to create a single large bub-
ble, while at high Morton numbers no mergers have been observed. This suggests that
the high Morton number regimes lead to a greater total interface area (i.e. the sum of
interface areas of all bubbles in the swarm) and, hence, might be more advantageous from
the viewpoint of mass transfer. Since the Morton number is inversely proportional to the
4th power of the Reynolds number, there is some trade-off here with our predictions of
a bigger interface area at high Reynolds numbers for individual bubbles. The quantita-
tive assessment of the average rise velocities of the swarms shows that these velocities are
always greater than the terminal velocities of single bubbles, thus, confirming that the
bubbles rise faster in clusters.

The presented computational studies demonstrate the abilities of numerical simula-
tions to deliver useful information on the dynamics of bubble swarms. However, further
work is needed to systematically study the swarms in all shape regimes and to derive the
corresponding correlation for the swarm average velocity.
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