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1 Introduction

In a public-key cryptosystem (PKC) we consider two people who want to ex-
change a secret key, we call the constructor Bob and the second person Alice.
Bob constructs a private key and public key, which he publishes. Alice who
wants to send a message to Bob, uses the public key to encrypt her message
and sends the cipher to Bob. Bob can decrypt the encrypted message with the
private key. Eve, the eavesdropper, only sees the public key and the encrypted
message. For the cryptosystem to be secure, it should be unfeasible for Eve to
reconstruct the message.

Example 1 (RSA). As an example for a PKC we want to look at RSA [33].
Bob takes two distinct prime numbers p and q, computes their product n = pq
and the Euler-totient function of the product φ(n) = (p− 1)(q− 1). He chooses
e a natural number smaller than φ(n), which is coprime to φ(n). Bob publishes
(n, e) and keeps private (p, q). Alice encrypts her message m by computing
c = me mod n. Bob can decrypt c by first computing d and b s.t.

de+ bφ(n) = 1

and since

cd = (me)d = m1−bφ(n) = m(mφ(n))−b = m1−b = m,

he can recover the message m. Eve sees n but there is no feasible algorithm to
compute p and q.

Recently, the National Security Agency (NSA) and the National Institute
of Standards and Technology (NIST) have announced [1, 2, 3] that it might be
possible that a quantum computer will be available in 2030 capable of breaking
a 1024 bits RSA key. As it is well known most public key cryptosystems used in
practice rely on the hardness of factoring integers or on the discrete logarithm
problem in a finite field or an elliptic curve. If a capable quantum computer
could be built then using Shor’s Algorithm [36] and its extensions all above used
systems would become insecure.

Hence there is a huge urge for research in so called post-quantum cryptogra-
phy. The most promising post-quantum candidates are lattice-based, code-based
or based on multivariate quadratic equations, since they are known to rely on
NP-hard problems. The book by Bernstein, Buchmann and Dahmen [7] gives
a good overview to the area of post-quantum cryptography. Other good back-
ground sources are a recent survey on lattice based cryptography by Peikert [29]
and a monograph by Ding, Gower and Schmidt [15] on multivariate cryptogra-
phy.

Code-based cryptography first came up in the 70’s by the work of McEliece.
A short description of the McEliece system [26] is provided, a full description
of the system can be found in Chapter 3.
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The McEliece system in its original version uses a binary irreducible Goppa
code Γ, which is represented by a generator matrix G and can correct up to
t errors. Instead of publishing the generator matrix directly, one publishes a
scrambled matrix G′ = SGP , where S is an invertible matrix and P is a permu-
tation matrix. The scrambling matrices and the original matrix are only known
to the constructor. One can encrypt the message m, by multiplying it with the
scrambled matrix G′ and adding an error vector e of weight less than or equal
to t, i.e. the cipher text is computed by c = mG′+ e. The constructor can take
away the permutation matrix, without changing the weight of the error vector,
thus he can use the decoding algorithm of the code and recovers the message
m.

The Niederreiter system [28] has a similar protocol using the parity check
matrix instead of the generator matrix and syndrome decoding for decryption.
The Niederreiter system and the McEliece system have equivalent security.

Niederreiter suggested to use generalized Reed-Solomon (GRS) codes, but
the Niederreiter system (and therefore also the McEliece system) is broken when
using GRS codes by the attack of Sidelnikov and Shestakov [37]. The McEliece
cryptosystem in its original version using Goppa codes is still unbroken, but has
the main drawback of having large key sizes.

As a solution towards this problem, one could take another family of codes
instead, like the GRS codes or other algebraic geometric (AG) codes. There have
been many attempts to use these families of codes in variants of the McEliece
cryptosystem, but their algebraic structure not only reduces the key size, it may
also help an attacker to reveal information of the secret code.

Baldi, Bianchi, Chiaraluce, Rosenthal and Schipani proposed in [4] a variant
of the McEliece cryptosystem, in order to reconsider the use of GRS codes. The
main idea of the proposal is to use, instead of a permutation matrix, the sum
T +R, where T is a sparse matrix of row weight m and R is a matrix of rank z.
This alternative scrambling is meant to hide the algebraic structure of the secret
code. This thwarts the attack of Sidelnikov and Shestakov. Nevertheless Cou-
vreur, Gaborit, Gauthier-Umaña, Otmani and Tillich presented in [13, 18, 14]
for some parameters a distinguisher attack on this cryptosystem.

In this master thesis we present a variant of the McEliece system, proposed
by Bolkema, Gluesing-Luerssen, Kelley, Lauter, Malmskog and Rosenthal in [9]
using GRS codes as secret code and a row weight two matrix instead of a per-
mutation matrix. Thus this variant is a special case of the proposal in [4], by
setting m = 2 and z = 0. The main part of this thesis relies on showing security
of this proposal against the distinguisher attacks in [13, 18, 14].

This thesis is ordered in the following way: The first part consists of a survey
on code-based cryptosystems and their attacks. In the second part we analyze
the new proposal [9], this consists of an argument for the security and a com-
parison of the key sizes. The chapters are structured as follows. In the first
chapter, the introduction, we explain the motivation to the new proposal. In
the second chapter we state the preliminaries, which are needed for the under-
standing, such as definitions of coding theory and some important properties
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of codes. In the third chapter we want to look at some selected variants of the
McEliece system and at their attacks. In the fourth chapter we present the new
proposal. The fifth chapter is the main part, in which we analyze the security
of the proposal by showing that none of the considered attacks apply. We will
also provide some experimental results. In chapter six we consider possible vul-
nerabilities of the proposal. In chapter seven we analyze other properties of the
cryptosystem such as its complexity and the key size. In the last chapter we
conclude the results and state possible improvements that could be considered
for future work.
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2 Preliminaries

We will recall the definitions and properties of codes we need for understanding,
such as Goppa codes, GRS codes, dual codes and square codes. We will start
with basic definitions of coding theory.

Definition 1. [e.g. [22], Chapter 1, page 3] An [n, k]-linear block code over a
finite field Fq is a k-dimensional linear subspace C ⊆ Fnq . There exists a k × n
generator matrix G and a (n − k) × n parity check matrix H defined by the
properties:

C =
{
uG

∣∣ u ∈ Fkq
}

=
{
x ∈ Fnq

∣∣ HxT = 0
}
.

Where 0 denotes the zero vector. We will sometimes write 〈G〉 = C.

Definition 2. [e.g. [22], Chapter 1, page 8] Let x, y ∈ Fnq . We define their
Hamming distance to be

dH(x, y) =
∣∣ {i ∈ {1, . . . , n} ∣∣ xi 6= yi

} ∣∣ .
Definition 3. [e.g. [22], Chapter 1, page 8] Let x ∈ Fnq . The weight of x is
defined as

wt(x) =
∣∣ {i ∈ {1, . . . , n} ∣∣ xi 6= 0

} ∣∣ .
Observe that wt(x) = dH(x,0).

Let in the following C be an [n, k]-linear block code over Fq.

Definition 4. [e.g. [22], Chapter 1, page 9] We define the minimum distance
of C to be

d(C) = min
{
dH(x, y)

∣∣ x, y ∈ C, x 6= y
}
.

Which is by above observation equivalent to

d(C) = min
{

wt(x)
∣∣ x ∈ C, x 6= 0

}
.

Definition 5. [e.g. [22], Chapter 1, page 26] We denote by C⊥ the dual code
of C, defined as

C⊥ =
{
x ∈ Fnq

∣∣ x · y = 0 ∀y ∈ C
}
.

Where throughout this thesis x · y denotes the scalar product

x · y =

n∑
i=1

xiyi.

Observe that the generator matrix of C⊥ is the parity check matrix of C. C⊥

is therefore an [n, n− k] linear code over Fq.

Lemma 1. [e.g. [22], Chapter 1, Theorem 10] Let H be a parity check matrix
of C of size (n− k)× n. Then C has minimum distance d, if, and only if every
d − 1 columns of H are linearly independent and some d columns are linearly
dependent.

We provide a proof of this lemma, which can also be found in [22], Chapter
1, Theorem 10.
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Proof. Recall that the minimum distance of C is given by the minimal weight
of the nonzero codewords, i.e.

d(C) = min
{

wt(c)
∣∣ c ∈ C, c 6= 0

}
.

Let c be a nonzero codeword of C, then by definition HcT = 0. Then c has
weight w if, and only if w columns of H are linearly dependent.

With this few definitions we can already state the first theorem, concerning
a bound for the minimum distance of a code, the Singleton bound.

Theorem 1 (Singleton Bound). [e.g. [22], Chapter 1, Theorem 11] Let C be
an [n, k]-linear block code. Then d(C) ≤ n− k + 1.

For the proof of the Singleton bound we follow the idea of [22], Chapter 1,
Theorem 11.

Proof. Let H be the (n − k) × n parity check matrix of C. By Lemma 1 we
have that the distance of a code is given by the minimal number d, s.t. there
exist d columns of H which are linearly dependent. Since H has rank n − k,
any n− k + 1 columns are linearly dependent and we get the claim.

There exist codes, which reach this bound and they are of a great interest
for coding theory.

Definition 6. [e.g. [22], Chapter 1, page 33] A [n, k]-linear block code C, with
d(C) = n− k + 1 is called a maximum distance separable (MDS) code.

Codes have an error correction capacity, which depends on their minimum
distance.

Theorem 2. [e.g. [22], Chapter 1, Theorem 2] Let C be an [n, k]-linear block
code with minimum distance d. Then C can correct up to bd−12 c errors.

For the proof of this theorem we follow the idea of [22], Chapter 1, Theorem
2.

Proof. For c ∈ C define the ball of radius r and center c to be

Br(c) =
{
c′ ∈ C

∣∣ dH(c, c′) ≤ r
}
.

Let t = bd−12 c. Since the minimum distance of the code is d, we know that
balls with radius t around a codeword do not overlap. Hence if we received x
and dH(x,C) ≤ t, then there exists a unique codeword c ∈ C, s.t. dH(x, c) ≤ t.
Since if there would exist another c′ ∈ C, which has dH(x, c′) ≤ t, then

dH(c, c′) ≤ dH(c, x) + dH(c′, x) ≤ 2t.

And since the minimum distance of two distinct codewords is d > 2t we conclude
c = c′.
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With this basic definitions we are ready to define GRS and Goppa codes and
state some of their properties.

Definition 7 (Reed-Solomon Code). [e.g. [22], Chapter 10, page 294] Let Fq
be a finite field and 1 ≤ k < n ≤ q integers. Let α ∈ Fnq be an n-tuple of distinct
elements, i.e. α = (α1, . . . , αn) with αi 6= αj ∀i 6= j ∈ {1, . . . , n}. The Reed-
Solomon code RSn,k(α) has dimension k and is the set of (p(α1), . . . , p(αn)),
where p ranges over all polynomials of degree less than k, having coefficients in
Fq. Thus

RSn,k(α) =
{

(p(α1), . . . , p(αn))
∣∣ p ∈ Fq[x], deg(p) < k

}
.

We can write the canonical generator matrix of RSn,k(α) as

G =


1 · · · 1
α1 · · · αn
...

...

αk−11 · · · αk−1n

 .

Definition 8 (Generalized Reed-Solomon Code). [e.g. [22], Chapter 10, page
303] Let Fq be a finite field and 1 ≤ k < n ≤ q integers. Let α ∈ Fnq be an n-tuple
of distinct elements, i.e. α = (α1, . . . , αn) with αi 6= αj ∀i 6= j ∈ {1, . . . , n}.
Let β ∈ Fnq be an n-tuple of nonzero elements, i.e. β = (β1, . . . , βn), with
βi 6= 0 ∀i ∈ {1, . . . , n}. The Generalized Reed-Solomon code GRSn,k(α, β) has
dimension k and is the set of (β1p(α1), . . . , βnp(αn)), where p ranges over all
polynomials of degree less than k, having coefficients in Fq. Thus

GRSn,k(α, β) =
{

(β1p(α1), . . . , βnp(αn))
∣∣ p ∈ Fq[x], deg(p) < k

}
.

We can write the canonical generator matrix of GRSn,k(α, β) as

G =


β1 · · · βn
β1α1 · · · βnαn

...
...

β1α
k−1
1 · · · βnα

k−1
n

 .

We observe that GRS codes differ from RS codes only in the weight β. GRS
codes build an interesting family of codes, since they reach the singleton bound
and have an efficient decoding algorithm.

Let GRSn,k(α, β) be a GRS code as in Definition 8.

Proposition 1. [e.g. [22], Chapter 10, page 304] GRS codes are MDS codes,
i.e. d(GRSn,k(α, β)) = n− k + 1.

For the proof of this proposition we follow the idea as found in [22], Chapter
10, page 304.

Proof. The distance of a code is equal to the minimum weight of the nonzero
codewords. Let c be a nonzero codeword of GRSn,k(α, β). We define p(x) ∈
Fq[x] to be the polynomial corresponding to c, which means that

c = (β1p(α1), . . . , βnp(αn)).
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By the definition of the GRS code, we have that the degree of p is strictly less
than k. Since β is an n-tuple of nonzero elements, a coordinate ci of c can only
be zero, if p(αi) = 0. Since p has at most k − 1 roots, we have that the weight
of c is at least n− (k − 1). With the Singleton bound, we get the claim.

GRS codes have an efficient decoding algorithm, if the number of the errors
t satisfies the following

t ≤ bd(GRSn,k)− 1

2
c = bn− k

2
c.

For example in [39], Chapter 6.7 the decoding algorithm is explained.

Proposition 2. [e.g. [22], Chapter 10, Theorem 4] The dual code of a GRS
code is again a GRS code, since

GRSn,k(α, β)⊥ = GRSn,n−k(α, γ).

Where

γi = β−1i

n∏
j=1
j 6=i

(αi − αj)−1.

For the proof of this proposition we follow the idea of [20], Proposition 1
using Lagrange interpolation.

Proof. Given an n-tuple c we want to reconstruct the unique polynomial p
associated to c, i.e.

c = (β1p(α1), . . . , βnp(αn)).

Define

L(x) =

n∏
i=1

(x− αi),

Li(x) =
∏
j 6=i

(x− αj).

Then by Lagrange interpolation we have that

p(x) =

n∑
i=1

Li(x)

Li(αi)
p(αi).

By the definition, we can write γi as

γi = β−1i Li(αi)
−1.

We want to show that c · c′ = 0 for all codewords c of GRSn,k(α, β) and all
codewords c′ of GRSn,n−k(α, γ). Let p be the polynomial associated to c and
p′ the polynomial associated to c′. Therefore p is of degree strictly less than k
and p′ is of degree strictly less than n− k, hence their product pp′ is of degree
strictly less than n− 1. By Lagrange interpolation we can write

p(x)p′(x) =

n∑
i=1

Li(x)

Li(αi)
p(αi)p

′(αi).
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If we compare the coefficient of xn−1 we get

0 =

n∑
i=1

1

Li(αi)
p(αi)p

′(αi)

=

n∑
i=1

(βip(αi))

(
β−1i
Li(αi)

p′(αi)

)

=

n∑
i=1

(βip(αi))(γip
′(αi)) = c · c′.

We have the following useful proposition.

Proposition 3. [e.g. [22], Chapter 10, page 305]

GRSn,k(α, β) = GRSn,k(aα+ b, cβ)

for any a, c ∈ F×q and b = (b, . . . , b) ∈ Fnq .

This allows us to fix for example α1 and α2 to be arbitrary distinct elements
of Fq.

Proof. Observe that for any a, c ∈ F×q and b = (b, . . . , b) ∈ Fnq

φ : Fq → Fq
x 7→ ax+ b

and

ψ : Fq → Fq
x 7→ cx

are both linear transformations. For the part

GRSn,k(α, β) = GRSn,k(α, cβ)

observe that the generator matrix of the left hand side can be denoted by G and
the generator matrix of the right hand side is then SG, where S is the invertible
matrix c 0

. . .

0 c

 .
Hence the code generated by G and the code generated by SG are the same.
For the second part a codeword of GRSn,k(α, β) has the form

g = (β1p(α1), . . . , βnp(αn)),

where p is a polynomial of degree less than k. If we take p′ = p ◦ φ, which is
still of degree less than k, then a codeword of GRSn,k(aα+ b, β) is of the form

h = (β1p
′(α1), . . . , βnp

′(αn)).

And by the Definition 8 of GRS codes, we observe that they are the same
code.
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For the Goppa code we will only state its definition and some properties like
its dimension and minimum distance, since we will only consider Goppa codes
in the original McEliece version.

Let m be a positive integer, n = qm and Fqm be a finite field. Let G ∈ Fqm [x].
Then define the quotient ring

Sm = Fqm [x]
/
〈G〉 .

Lemma 2. [e.g. [22], Chapter 12, page 339] Let α ∈ Fq be such that G(α) 6= 0.
Then (x− α) is invertible in Sm and

(x− α)−1 = − 1

G(α)

G(x)−G(α)

x− α
.

For the proof of this lemma we will follow the idea of [22], Chapter 12, page
339.

Proof. By Euclid we have that

G(x) = f(x)(x− α) +G(α).

We observe that

f(x) =
G(x)−G(α)

x− α
.

Therefore in Sm we have that

f(x)(x− α) ≡ −G(α) mod G(x).

With this we get the claim, since

(−G(α))
−1
f(x)(x− α) ≡ 1 mod G(x).

Which implies

(x− α)−1 ≡ − 1

G(α)

G(x)−G(α)

x− α
mod G(x).

For the uniqueness of the inverse, assume that f and f ′ are inverses of (x− α),
i.e.

(x− α)f ≡ (x− α)f ′ ≡ 1 mod G(x).

Then it follows that

(x− α)(f − f ′) ≡ 0 mod G(x).

And since by Euclid deg(f),deg(f ′) < deg(G), it follows that

f ≡ f ′ mod G(x).
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Definition 9 (Classical Goppa Code). [e.g. [22], Chapter 12, page 338] Let
L = {α1, . . . , αn} ⊆ Fnqm , be s.t. αi 6= αj ∀i 6= j ∈ {1, . . . , n} and G(αi) 6=
0 ∀i ∈ {1, . . . , n}. Then we can define the classical q-ary Goppa code as

Γ(L,G) =

{
a ∈ Fnq

∣∣∣∣ n∑
i=1

ai
x− αi

= 0 in Sm

}
.

Let Γ(L,G) be a classical q-ary Goppa code as in Definition 9.

Proposition 4. [e.g. [22], Chapter 12, page 339] The Goppa code has distance
d(Γ(L,G)) ≥ deg(G) + 1 and dimension k ≥ n−mdeg(G).

For the proof of this proposition we will follow the idea of [22], Chapter 12,
page 339.

Proof. Note that

deg

(
G(x)−G(αi)

x− αi

)
= deg(G)− 1.

c is a codeword of Γ(L,G), if, and only if

n∑
i=1

ci
G(x)−G(αi)

x− αi

(
1

−G(αi)

)
= 0.

To get the parity check matrix of Γ(L,G), we define deg(G) = r and write G as

G(x) = g0 + . . .+ grx
r.

Observe that

G(x)−G(αi)

x− αi
= gr(x

r + xr−1αi + · · ·+ αr−1i ) + · · ·+ g2(x+ αi) + g1.

So we can write the parity check matrix H as

H =


grG(α1)−1 · · · grG(αn)−1

(gr−1 + grα1)G(α1)−1 · · · (gr−1 + grαn)G(αn)−1

...
...

(g1 + · · ·+ grα
r−1
1 )G(α1)−1 · · · (g1 + · · ·+ grα

r−1
n )G(αn)−1

 .
Hence H = WXY , where W,X, Y are the following matrices.

W =


gr 0 · · · 0
gr−1 gr · · · 0

...
. . .

...
g1 g2 · · · gr

 , X =


1 · · · 1
α1 · · · αn
...

...
αr−11 · · · αr−1n

 , Y =

G(α1)−1 0
. . .

0 G(αn)−1

 .
And we have that c ∈ Γ(L,G) if, and only if HcT = 0 if, and only if XY cT = 0.
Since X is a Vandermonde matrix, we have that the rank of XY is r, hence
d(Γ(L,G)) ≥ r+ 1. Observing that H is a r× n matrix over Fqm , we can write
H as a rm × n matrix over Fq, and we have that the dimension of Γ(L,G) is
greater than or equal to n− rm.
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The next definitions are needed to understand the distinguisher attack.

Definition 10 (Schur Product). [e.g. [18], Definition 2] Let x, y ∈ Fnq . We
denote by the Schur product of x and y their componentwise product

x ? y = (x1y1, . . . , xnyn).

Remark 1. The Schur product is symmetric and bilinear.

Definition 11 (Schur Product of Codes and Square Code). [e.g. [18], Definition
3] Let A,B be two codes of length n. Then we can define their Schur product
to be the vector space spanned by all a ? b with a ∈ A and b ∈ B:

〈A ? B〉 = 〈{a ? b
∣∣ a ∈ A, b ∈ B}〉.

If A = B, then we call 〈A ? A〉 the square code of A and denote it by 〈A2〉.

Definition 12 (Schur Matrix). [e.g. [39], Chapter 6, Definition 6.6.7] Let G
be a k × n matrix, with rows gi for 1 ≤ i ≤ k. We denote by S(G) the Schur
matrix of G, which consists of the rows gi ? gj for 1 ≤ i ≤ j ≤ k. Thus S(G) is
of the size 1

2 (k2 + k)× n.

We observe that by the remark above the Schur matrix of the generator
matrix of a code is the generator matrix of the square code.

We want to take look at the dimension of the Schur product of codes, in
particular at the dimension of square codes.

Proposition 5. [e.g. [18], Proposition 4] Let A,B denote two codes of length
n. Then

dim(〈A ? B〉) ≤ dim(A)dim(B).

Proof. Let k = dim(A) and k′ = dim(B). Let the generator matrix of A have
rows ai for 1 ≤ i ≤ k and let the generator matrix of B have rows bj for
1 ≤ j ≤ k′. The generator matrix of 〈A ? B〉 has rows ai ? bj for 1 ≤ i ≤ k and
1 ≤ j ≤ k′. Thus the generator matrix of 〈A ? B〉 is of the size kk′ × n and
hence has at most rank

min {n, kk′} ≤ kk′ = dim(A)dim(B).

Proposition 6. [e.g. [18], Proposition 4] Let A be a code of length n and
dimension k, then

dim(〈A2〉) ≤ min

{
n,

(
k + 1

2

)}
(1)

Proof. The generator matrix of the square code is given by the Schur matrix of
the generator matrix of A. Since the Schur matrix is of size 1

2 (k2 +k)×n it has
at most rank min

{
n, 12 (k2 + k)

}
.

The right hand side of (1) is considered as the maximal square code di-
mension. If A is a random code, it was shown in [17, 25, 10] that with high
probability the square code of A will have maximal dimension. One can observe
that for GRS codes this dimension is much smaller.
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Proposition 7. [[18], Proposition 6] If 2k − 1 < n, then

〈GRSn,k(α, β)2〉 = GRSn,2k−1(α, β ? β).

This property can be adapted in the case 2k − 1 ≥ n, by considering the dual
of the GRS code, which is itself a GRS code. If 2k − 1 ≥ n, then

〈(GRSn,k(α, β)⊥)2〉 = 〈GRSn,n−k(α, γ)2〉 = GRSn,2n−2k−1(α, γ ? γ).

For the proof of this proposition we will follow the idea of [18], Proposition
6.

Proof. Let c and c′ be two codewords of the GRSn,k(α, β) code. Thus we can
write

c = (β1p(α1), . . . , βnp(αn)),

c′ = (β1q(α1), . . . , βnq(αn)).

Where p and q are in Fq[x] and have degree strictly less than k. Then their
Schur product has the following form.

c ? c′ = (β2
1p(α1)q(α1), . . . , β2

np(αn)q(αn))

= (β2
1r(α1), . . . , β2

nr(αn)),

where deg(r) ≤ 2k − 2.

Hence if 2k − 1 < n, then the square code of a GRSn,k(α, β) code is a
GRSn,2k−1(α, β) code, which has dimension 2k − 1.
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3 Variants and Attacks

In the 70’s McEliece was the first one to propose in [26] a cryptosystem using
coding theory. The original system uses Goppa codes and is still unbroken.
In the 80’s Niederreiter proposed in [28] a dual cryptosystem to the McEliece
system and was the first one to propose the use of GRS codes, which build an
interesting coding family due to nice properties, such as MDS and fast decoding.

But in 1992 Sidelnikov and Shestakov showed in [37] that the Niederreiter
system (and therefore also the McEliece system) is broken if GRS codes are used.

Bernstein, Lange and Peters [8] using Stern’s algorithm [38] of decoding an
arbitrary binary linear code by essentially brute force did demonstrate that the
originally proposed McEliece system based on a [1024,512] Goppa code can be
broken in reasonable time by modern computers. The attack [8] becomes how-
ever unfeasible for slightly larger code length.

Baldi, Bianchi, Chiaraluce, Rosenthal and Schipani proposed in [4] a variant
of the McEliece system to reconsider GRS codes by changing the scrambling
matrices. This thwarts the attack of Sidelnikov and Shestakov. Nevertheless
Couvreur, Gaborit, Gauthier-Umaña, Otmani and Tillich attacked in [18, 13, 14]
this proposal for some parameters. All these systems and attacks will now be
stated.

3.1 McEliece System

McEliece proposed in [26] a cryptosystem based on the error correction capa-
bility of codes. The original proposal works as follows.

Choose m ∈ N, n = 2m, t < n
m and a binary irreducible Goppa code Γ of

length n, dimension k ≥ n − mt, which can correct up to t errors. Γ has a
generator matrix G of size k×n. Choose a k× k matrix S with det(S) 6= 0 and
a n× n random permutation matrix P and compute G′ = SGP .

Public Key = (G′, t),

Private Key = (S,G, P ).

Encryption: Choose a message x ∈ Fk2 , and a random error vector e ∈ Fn2 with
weight less than or equal to t, i.e. wt(e) ≤ t, then the cipher is computed as

y = xG′ + e.

Decryption: Compute
yP−1 = xSG+ eP−1,

then xSG is a codeword of Γ and since wt(eP−1) ≤ t, we can apply the decoding
algorithm for Goppa codes to get xS and by multiplying with the inverse of S
we get the message x.

The McEliece code-based cryptosystem is still unbroken, but due to large
key sizes not used in practice.
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3.2 Niederreiter System

Niederreiter proposed in [28] a cryptosystem, which is similar to the McEliece
system using the parity check matrix instead of the generator matrix and syn-
drome decoding for decryption. The Niederreiter cryptosystem works as follows.

Let Fq be a finite field. Let 1 ≤ k < n ≤ q be integers. Construct a
[n, k]-linear code C, that can correct up to t errors and has an efficient decoding
algorithm. C has a parity check matrix H of size r×n, where r = n−k. Choose
a r × r matrix S with det(S) 6= 0 and a n × n random permutation matrix P
and compute H ′ = SHP .

Public Key = (H ′, t),

Private Key = (S,H, P ).

Encryption: Choose a message x ∈ Fnq of weight less than or equal to t, i.e.
wt(x) ≤ t, then the cipher is computed as

yT = H ′xT .

Decryption: Compute

S−1yT = HPxT = H(xPT )T .

Since wt(xPT ) ≤ t, we can apply syndrome decoding to get xPT and by mul-
tiplying with the inverse of PT we get the message x.

Observe that the Niederreiter system is dual to the McEliece system and
they have equivalent security.

Proposition 8. [[21], page 272] The Niederreiter system and the McEliece
system have equivalent security.

For the proof of this proposition we follow the idea of [21].

Proof. Let G be the k × n generator matrix of the linear code C and let H be
the r × n parity check matrix. In the McEliece system the cipher is given by
c = mG′ + e. If we multiply on both sides with H ′T , then this becomes

z = cH ′T = mG′H ′T + eH ′T = eH ′T ,

since G′H ′T = 0. This is the transposed of the Niederreiters encryption equa-
tion, thus if the Niederreiter system is broken, so is the McEliece system.

On the other hand, in the Niederreiter system the cipher is given by c =
H ′xT , thus cT = xH ′T . We can find a z of weight greater than or equal to t s.t.
cT = zH ′T . This z can be expressed as z = mG′ + x for some m ∈ Fkq . Which
we observe to be the McEliece encryption equation. Therefore if the McEliece
system is broken, so is the Niederreiter system.
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3.3 Attack of Sidelnikov and Shestakov

Niederreiter suggested to use the Niederreiter cryptosystem for C a GRS code,
but in [37] Sidelnikov and Shestakov came up with an attack, which reveals the

parity check matrix H̃ = HP , of a permutation equivalent code to the secret
code, by just knowing the scrambled matrix SHP .

We will provide a short description of this attack, which can be found in
[40].

Let H̃ = HP be a r × n generator matrix of a GRSn,r(α, β) code and S a

n × n invertible matrix. Given M = SH̃ we want to recover β and α which
determine the code completely. As first step we reconstruct α. Compute the
echelon form of M , i.e.1 0 b1,r+1 · · · b1,n

. . .
...

...
0 1 br,r+1 · · · br,n

 .

we call the ith row of this matrix bi and compute its associated polynomial fbi .
Which is defined as follows. Let c be a codeword of a GRSn,r(α, β) code, then
there exists a polynomial fc associated to c, s.t.

c = (β1fc(α1), . . . , βnfc(αn)).

We observe that fbi has degree at most r − 1, so it must be of the form

fbi(x) = cbi

r∏
j=1
j 6=i

(x− αj),

with cbi 6= 0. If we pick the rows, for example b1 and b2 and divide the entries
of the first row by the entries of the second row, if they are nonzero, we get for
r + 1 ≤ j ≤ n

b1,j
b2,j

=
βjfb1(αj)

βjfb2(αj)
=
cb1(αj − α2)

cb2(αj − α1)
.

By the Proposition 3 we can assume that α1 = 0 and α2 = 1. By this we know
the

b1,j
b2,j

, hence the αj can be reconstructed, if
cb1
cb2

is guessed correctly. For the

remaining α3, . . . , αn we take bi instead of b2 and we get for 3 ≤ i ≤ r
b1,j
bi,j

(αj − α1) =
cb1
cbi

(αj − αi).

By solving the system of linear equations one gets α.

The second step is to recover β.
Let c = (c1, . . . , cr+1) be a nontrivial solution to M ′cT = 0, where M ′

denotes the r × (r + 1) matrix consisting of the r + 1 leftmost columns of M .
Let H ′ be the r× (r+ 1) matrix consisting of the r+ 1 leftmost columns of the

unknown H̃, then M ′ = SH ′, we know that H ′cT = 0. Hence
c1 . . . cr+1

c1α1 . . . cr+1αr+1

...
...

c1α
r−1
1 . . . cr+1α

r−1
r+1




β1
β2
...

βr+1

 = 0.
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By the Proposition 3 we can assume that β1 = 1, then the solution is uniquely
determined, and H ′ is completely known.
To compute the remaining βi’s we consider G′′ the matrix consisting of the first
r columns of H ′ and M ′′ the matrix consisting of the first r columns of M .
Then S = M ′′(H ′′)−1 and H̃ = S−1M and we can compute the remaining βi’s.

The attack of Sidelnikov and Shestakov uses the vulnerability that the public
code is permutation equivalent to a GRS code.

This allows us to take away the influence of the scrambling matrix S. Then
knowing the permutation equivalent code to the secret code is enough to recover
the message. To avoid this attack, the public matrix should not be permutation
equivalent to the secret code.

3.4 BBCRS Scheme

Baldi, Bianchi, Chiaraluce, Rosenthal and Schipani presented in [4] a variant of
the McEliece cryptosystem, proposing to use GRS codes as secret code. To hide
the algebraic structure of the secret code, they use instead of the permutation
matrix the sum T +R, where T is a sparse matrix of row weight m and R is a
matrix of rank z. This thwarts the attack of Sidelnikov and Shestakov [37].

We will denote this variant throughout this thesis by the BBCRS scheme.
We will present the BBCRS scheme, following [4] in both the McEliece and the
Niederreiter version.

The BBCRS scheme in the McEliece version works as follows.
Let Fq be a finite field. Let 1 ≤ k < n ≤ q be integers. Choose a systematic

k × n generator matrix G of a linear block code C over Fq, with an efficient
decoding algorithm and the ability to correct up to t errors.

Choose a k × k invertible matrix S. Let R be a n × n matrix of rank z,
obtained as follows. Let ω ∈ N and choose a1, . . . , aω and b1, . . . , bω to be z× n
matrices, where z ≤ n. Define a =

∑ω
i=1 ai and

R =

a1...
aω


T

·

b1...
bω

 .

In this proposal they focus on two cases, both with ω = 2 :

1. a1 = a, a2 = 0, where 0 stands for the all zero matrix, which means

R =

(
a
0

)T
·
(
b1
b2

)
.

2. b1 = b, b2 = 1 + b, where 1 stands for the all one matrix, hence

R =

(
a1
a2

)T
·
(

b
1 + b

)
.

Choose T an n × n invertible sparse matrix over Fq with average row and
column weight m. So, if m ∈ Z, then T is the sum of m generalized permutation
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matrices, where the nonzero entries do not overlap. If m ∈ Q, then T is almost
a regular matrix with weight dme or bmc. R and T are chosen s.t. Q = R + T
is an n × n invertible matrix. Define tpub = b tmc. The error vector e can have
further constraints, i.e.

aeT = 0. (2)

This would require a to be public. In [4] it is shown how to avoid this possible
weakness.

Compute G′ = S−1GQ−1.

Public Key = (G′, tpub),

Private Key = (S,G,Q).

Encryption: Choose a message x ∈ Fkq , and a random error vector e ∈ Fnq
with weight less than or equal to tpub, i.e. wt(e) ≤ tpub. Then the cipher is
computed as

y = xG′ + e.

Decryption: Compute
yQ = xS−1G+ eQ,

where eQ = e(R+ T ) = eR+ eT . And by (2) we have

eR =

{
0 if a2 = 0, a = a1,

eaT2 1 if b1 = b, b2 = 1 + b.

One can show that eQ can be reduced to eT , which is clear in the first case. To
achieve this in the second case the receiver should know the value eaT2 = γ ∈ Fq,
so one needs to test at most q choices. Observe that xS−1G is a codeword of C
and since wt(eT ) ≤ t, we can apply the decoding algorithm of C to get xS−1

and by multiplying with S we get the message x.

It is reasonable to look at the parameters z = 1,m = 1, for key size and
complexity reason: If m increases, also the key size increases, if z increases, the
complexity of the decoding algorithm increases.

We give a short overview of the BBCRS scheme for the choice z = 1,m = 1.

G = k × n generator matrix of GRS code,

T = n× n permutation matrix,

R = n× n rank 1 matrix, R = αTβ,

Q = n× n invertible matrix, Q = R+ T,

S = k × k invertible matrix.

Compute: G′ = S−1GQ−1 and tpub = t = bn−k2 c.

Public Key = (G′, t),

Private Key = (G,T,R,Q, S).

Encryption: Choose a message x ∈ Fkq and a random error vector e ∈ Fnq ,
s.t. wt(e) ≤ t. Compute the cipher as y = xG′ + e.
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Decryption: Guess the value of eR. Since eR = eαTβ = γβ for some
γ ∈ Fq, it is enough to find γ and thus we test at most q values. Then compute
y′ = yQ − eR = xS−1G + eT . Since wt(eT ) ≤ t by the decoding algorithm of
the GRS code we get xS−1 and hence x.

Now we will state the BBCRS scheme in the Niederreiter version.
Let Fq be a finite field and 1 ≤ k < n ≤ q integers. Let H be a r × n parity

check matrix of a linear block code over Fq, where r = n − k. Choose a r × r
invertible matrix S and R, T,Q as in the McEliece version.

Compute H ′ = S−1HQT .

Public Key = (H ′, tpub),

Private Key = (S,H,Q).

Encryption: Choose a message x ∈ Fnq of weight less than or equal to tpub, i.e.
wt(x) ≤ tpub. Then the cipher is computed as

y = H ′xT .

Decryption: Compute

y′ = Sy = HQTxT = H(xQ)T ,

where xQ can again be reduced to xT , hence y′ = HTTxT . Observe that
HTTxT is a codeword and since wt(TTxT ) ≤ t, by syndrome decoding we get
TTxT . Thus by multiplying with the inverse of (TT ) we get the message x.

Please observe that the new proposal, presented in [9] is a special case of the
BBCRS scheme, since it takes the parameters z = 0 and m = 2.

3.5 Distinguisher Attack

Couvreur, Gaborit, Gauthier-Umaña, Otmani and Tillich presented in [18, 13]
for some parameters a distinguisher attack on the BBCRS scheme [4]. They
observed that the public matrix of the BBCRS scheme has unusual small square
code dimension.

The idea of the attack relies on finding a subcode of the public code of
codimension 1. This is also a subcode of a GRS code, which is permutation
equivalent to the secret code. One finds this subcode by using the small square
code dimension. The square code of the subcode is with high probability the
square code of the GRS code. The attack recovers this GRS code, which is
permutation equivalent to the secret code and with this one can recover the
message.

Since the attack in [18, 13] uses the square code dimension of the public code,
to distinguish if the secret code was a GRS code and not chosen randomly, we
will call this attack the distinguisher attack throughout this thesis.

The attack assumes that 2k+ 2 < n. If this is not the case, the same attack
can be applied to the dual of the public code, under the assumption 2k > n+ 2.
Hence the attack has a gap for n−2

2 ≤ k ≤ n+2
2 .
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We will now provide a description of the distinguisher attack, following
[18, 13], under the assumption that 2k + 2 < n.
We denote by Cpub the public code of the BBCRS scheme and by Csec the secret
code, which is a GRS code. Recall that in the BBCRS scheme the scrambling
matrix Q is given by Q = R+ Π, where R is a matrix of rank 1 and Π is a n×n
permutation matrix.

Define
C = CsecΠ−1.

Since C is permutation equivalent to a GRS code, it is again a GRS code, i.e.

C = GRSk(x, y).

Let a, b ∈ Fnq , s.t.

RΠ−1 = bTa.

Define

λ = − 1

1 + a · b
b.

Then the public code and C are connected by the following property.

Lemma 3. [[18], Lemma 1] For any c in Cpub, there exists p in C, such that

c = p+ (p · λ)a. (3)

For the proof of this lemma we follow the idea of [18], Lemma 1.

Proof. We first want to write Cpub in terms of C.

C = CsecΠ−1 = CpubQΠ−1 = Cpub (Π +R) Π−1 = Cpub
(
I +RΠ−1

)
= CpubP,

for
P = I +RΠ−1 = I + bTa.

Hence
Cpub = CP−1.

Now we want to compute P−1. We use the following lemma of [27].

Lemma 4. [[27], page 68] Let A and A + B be invertible matrices and B has
rank 1. Then

(A+B)−1 = A−1 − 1

1 + tr (BA−1)
A−1BA−1,

where tr(·) denotes the trace and tr(BA−1) 6= −1.

We apply this on A = I, B = bTa and since tr(bTa) = a · b we get

P−1 = I − 1

1 + a · b
bTa.
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Since Cpub = CP−1, for each c ∈ Cpub, there exists a p ∈ C, s.t.

c = pP−1 = p

(
I − 1

1 + a · b
bTa

)
= p− 1

1 + a · b
pbTa

= p+

(
p · b

(
− 1

1 + a · b

))
a

= p+ (p · λ)a.

If λ ∈ C⊥, then p · λ = 0 and the above lemma yields that Cpub = C =
GRSk(x, y).

Hence we can apply the attack of Sidelnikov and Shestakov [37] to the public
code to reveal x and y. This completely defines the GRS code and we can decode
any cipher by the decoding algorithm of GRSk(x, y). Hence we can assume that
λ 6∈ C⊥. Define the following code

Cλ⊥ = C ∩ 〈λ〉⊥,

where 〈λ〉 denotes the vector space spanned by λ. This code consists of the
codewords c = p + (p · λ)a with p ∈ C, s.t. p · λ = 0. Therefore this code is a
subcode of Cpub and also of C. Observe that Cpub and C are both of dimension
k and the subcode Cλ⊥ has dimension k − 1.

The public code of the BBCRS scheme has an unusual small square code
dimension, since

Proposition 9. [[18], Proposition 4] dim(〈C2pub〉) ≤ 3k − 1.

For the proof of this proposition we follow the idea of [13], Proposition 14.

Proof. Let bi for 1 ≤ i ≤ k be a basis of Cpub, s.t. bi for 1 ≤ i ≤ k− 1 is a basis
for the subcode Cλ⊥ . Since Cλ⊥ is also a subcode of C, which we recall is a GRS
code of dimension k, hence by Proposition 7, we have that

dim(〈C2〉) = 2k − 1,

therefore also
dim(〈C2λ⊥〉) ≤ 2k − 1.

〈C2pub〉 is generated by bi ? bj for 1 ≤ i, j ≤ k and 〈C2λ⊥〉 is generated by bi ? bj
for 1 ≤ i, j ≤ k− 1. So comparing 〈C2pub〉 to 〈C2λ⊥〉, only bi ? bk for 1 ≤ i ≤ k are

possibly not in 〈C2λ⊥〉, which span a space of dimension k. Therefore

dim(〈C2pub〉) ≤ 2k − 1 + k = 3k − 1.

We want to find the large subcode Cλ⊥ , for this we use the following obser-
vation.

Let g1, . . . , gk be basis of Cpub and take random other elements z1, z2, z3 from
Cpub. Then define

B = {zi ? gj
∣∣ 1 ≤ i ≤ 3, 1 ≤ j ≤ k}. (4)

We have the following proposition about the dimension of B.
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Proposition 10. [[18], Proposition 5] Let B be defined as in (4). Then dim(B) ≤
3k − 3.

For the proof of this proposition we follow the idea of [13], Proposition 15.

Proof. Since the gi for 1 ≤ i ≤ k are a basis of Cpub, we can write the zi in
terms of gi, i.e.

zi =
∑

1≤j≤k

aijgj .

There exist the following three independent relations between the zi ? gj :∑
1≤j≤k

a2jz1 ? gj −
∑

1≤j≤k

a1jz2 ? gj = z1 ? z2 − z2 ? z1 = 0,

∑
1≤j≤k

a3jz1 ? gj −
∑

1≤j≤k

a1jz3 ? gj = z1 ? z3 − z3 ? z1 = 0,

∑
1≤j≤k

a3jz2 ? gj −
∑

1≤j≤k

a2jz3 ? gj = z2 ? z3 − z3 ? z2 = 0.

For these relations to be independent, we refer to [13], Proposition 15.

If we have picked the random elements zi in Cλ⊥ , then we have a smaller
square code dimension.

Proposition 11. [[18], Proposition 6] Let B be defined as in (4). If zi ∈ Cλ⊥

for 1 ≤ i ≤ 3, then
dim(B) ≤ 2k + 2.

For the proof of this proposition we follow the idea of [18], Proposition 6.

Proof. Assume zi ∈ Cλ⊥ . Let gj for 1 ≤ j ≤ k build a basis of Cpub. By Lemma
3 there exists a pj ∈ C for every gj , s.t.

gj = pj + (λ · pj)a.

If we compute the Schur product of zi and gj we therefore get

zi ? gj = zi ? (pj + (λ · pj)a)

= zi ? pj + (λ · pj)zi ? a.

By this we have that

〈zi ? gj〉 ⊂ 〈C2〉+ 〈z1 ? a〉+ 〈z2 ? a〉+ 〈z3 ? a〉.

Since C is a GRS code of dimension k, we have by Proposition 7 that 〈C2〉 has
dimension 2k − 1. The vector space generated by zi ? a has dimension at most
3. Therefore we get

dim(B) ≤ 2k − 1 + 3 = 2k + 2.
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Thus by taking the basis g1, . . . , gk of Cpub and taking random other ele-
ments z1, z2, z3 from Cpub, and testing if the set B, generated by these elements
as in (4) has dimension less than or equal to 2k + 2, we can add the elements
z1, z2, z3 to the basis of Cλ⊥ and repeat this step to find a basis z1, . . . , zk−1 of
Cλ⊥ . A complete description of this algorithm can be found in [18], Algorithm 1.

Pellikaan et al. showed in [23] that a large subcode of a GRS code has with
high probability as square code the square code of the GRS code.

We can apply this on the code Cλ⊥ , which is a large subcode of GRSn,k(x, y).
By computing its square code we get with high probability GRSn,2k−1(x, y ? y).
We can apply the attack of Sidelnikov and Shestakov to recover x and y ? y
and therefore also x and y, which completely determine C, which we recall is
permutation equivalent to the secret GRS code.

As last step we want to find a, λ, which satisfy (3) and a · λ 6= −1. We take

a = a0 ∈ (C⊥pub ∩ C⊥)⊥\C,
b0 ∈ (Cpub ∩ C)⊥\C⊥ s.t. a0 · b0 = 0,

r1 ∈ C⊥pub\C⊥, s.t. a0 · r1 6= 0,

p1 ∈ C\Cpub,

γ =
−(p1 · r1)

(b0 · p1)(a0 · r1)
,

λ = γb0.

Observe that b0 · p1 6= 0 since p1 ∈ C\Cpub and since

Cpub ∩ C =
{
p ∈ C

∣∣ p · λ = 0
}
.

With this pair one can recover the message. Assume that we received
z = c+e, where c ∈ Cpub. We know that there exists a p ∈ C, s.t. c = p+(λ·p)a.
We compute for all α ∈ Fq the value z + αa. If we have chosen the correct
α = −λ · p, then z + αa = p+ e and by the decoding algorithm of C we get the
message.

Let us recap the distinguisher attack.

1. Take a basis gj of Cpub and compute {zi ? gj} for z1, z2, z3 ∈ Cpub. If the
dimension of this is smaller than 2k+2, then zi ∈ Cλ⊥ . This way we build
a basis of Cλ⊥ .

2. Compute the square code of Cλ⊥ , which will be with high probability
GRSn,2k−1(x, y ? y). We apply the attack of Sidelnikov and Shestakov to
get C = GRSn,k(x, y).

3. We want to find a, λ, s.t. for all c ∈ Cpub there exists a p ∈ C, s.t.
c = p+ (p · λ)a.

4. Knowing a, λ and the GRS code C we can decode any cipher.
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3.6 Extended Distinguisher Attack

Couvreur, Gaborit, Gauthier-Umaña, Otmani and Tillich presented in [14] a
second attack on the BBCRS scheme, which extends the choice of the the pa-
rameters to z = 1, m ≤ 1 + k

n +O( 1√
n

). Where we recall that the scrambling

matrix Q is given by Q = R+T , where R is a matrix of rank 1 and T is a n×n
matrix of weight m.

In the extended distinguisher attack it is observed that in the Niederreiter
version of the BBCRS scheme puncturing the public code gives a small square
code dimension. This helps to detect the weights of the rows of T and to reduce
the case z = 1, m ≤ 1 + k

n + O( 1√
n

) to the case z = 1 and m = 1, for which

one can apply the distinguisher attack [18, 13]. We first need the following no-
tations. Since m ≤ 1 + k

n < 2, we can assume that T has only rows of weight 1
and rows of weight 2.

J1 denotes the set of positions which correspond to rows of T of weight 1.
For a row i in J1, we denote by j(i) the unique column of T , s.t. Ti,j(i) 6= 0.

J2 denotes the set of positions which correspond to rows of T of weight 2. For
a row i in J2, we denote by j(i) = {j1, j2} the two columns of T , s.t. Ti,j1 6= 0
and Ti,j2 6= 0.

We want to recall the definitions of shortening and puncturing.

Definition 13. [e.g. in [22], Chapter 1, page 28] Let C be a [n, k] linear block
code over Fq. Let I ⊂ {1, . . . , n} . Then we define the punctured code PI(C)
and the shortened code SI(C) as

PI(C) =
{

(ci)i/∈I
∣∣ c ∈ C} ,

SI(C) =
{

(ci)i/∈I
∣∣ ∃c ∈ C, s.t. ci = 0 ∀i ∈ I

}
.

We have the following observations concerning the square code dimension of
the shortened code.

Remark 2. [[14], page 9] Let C be a [n, r] linear block code, and I ⊂ {1, . . . , n} .
Then

dim
(
〈SI(C)2〉

)
≤ min

{
n− |I|,

(
rI + 1

2

)}
,

where rI = dim(SI(C)), which is in general r − |I|.

This follows directly from Proposition 6 and observing that SI(C) is a
[n− |I|, rI ] code.

If C is a random [n, r] code, we expect the square code dimension of the
shortened code to reach this maximal dimension, as before we refer to [17, 10,
25]. Whereas for the public code of the BBCRS scheme in the Niederreiter
version, this dimension is much smaller, therefore with the next proposition one
can distinguish if a GRS code or a random code was used as secret code.

Proposition 12. [[14], Proposition 4] Let Cpub be the [n, r] public code of the
BBCRS scheme and I ⊂ J1. Then

dim
(
〈SI(Cpub)2〉

)
≤ 3r + |J2| − 3|I| − 1. (5)
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For the proof of this proposition we first need some other lemmata.

Lemma 5. [[14], Lemma 5] Let I1 ⊂ J1, s.t.
∣∣ I1 ∣∣= s ≤ r. Then there exist

a, u, v ∈ F
n−s−

∣∣J2∣∣
q , s.t.

PJ2 (SI1 (Cpub)) ⊆ ε+ 〈a〉, (6)

where ε is a subcode of a GRSn,r−s(u, v) code.

For the proof of this lemma we refer the interested reader to [14], Lemma 5.

Remark 3. Let A and B be [n, k] linear codes over Fq, then since

〈(A+B)2〉 = 〈A2〉+ 〈B2〉+ 〈A ? B〉,

we have that

dim
(
〈(A+B)2〉

)
≤ dim

(
〈A2〉

)
+ dim

(
〈B2〉

)
+ dim (〈A ? B〉) . (7)

Lemma 6. [[14], Lemma 6] Let C be an [n, k] linear code over Fq, let I ⊂
{1, . . . , n}. Then

dim
(
〈C2〉

)
≤ dim

(
〈PI(C)2〉

)
+
∣∣ I ∣∣ . (8)

For the proof of this lemma we follow the idea of [14], Lemma 6.

Proof. Let S(I) be the code which consists of all x ∈ Fnq , s.t. xi = 0 ∀i 6∈ I.

Therefore S(I) is an [n,
∣∣ I ∣∣] code over Fq. Let E(PI(C)) be the code, which

extends PI(C) by zeros to length n. Hence C ⊆ E(PI(C)) ⊕ S(I). We apply
(7), and get

dim(〈C2〉) = dim
(
〈(E(PI(C)) + S(I))2〉

)
≤ dim

(
〈E(PI(C))2〉

)
+ dim

(
〈S(I)2〉

)
+ dim (〈E(PI(C)) ? S(I)〉) .

Now observe that E(PI(C))?S(I) = {0}, dim
(
〈E(PI(C))2〉

)
= dim

(
〈PI(C)2〉

)
and dim

(
〈S(I)2〉

)
=
∣∣ I ∣∣. Hence we get

dim
(
〈C2〉

)
≤ dim

(
〈PI(C)2〉

)
+
∣∣ I ∣∣ .

For the proof of the Proposition 12 we follow the idea of [14], Proposition 4.

Proof. We apply Lemma 5 to I1 = I ⊂ J1, s =
∣∣ I ∣∣ and by (6) we get

PJ2 (SI (Cpub)) ⊆ ε+ 〈a〉,

where ε is a subcode of a GRS
n,r−

∣∣I∣∣(u, v) code. We apply the Remark 3 to

A = 〈a〉 and B = ε to get

dim
(
〈PJ2 (SI (Cpub))

2〉
)
≤ dim

(
〈ε2〉

)
+ dim (〈〈a〉 ? ε〉) + dim

(
〈〈a〉2〉

)
≤ dim

(
〈ε2〉

)
+ dim (ε) + 1.
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Since ε is a subcode of a GRS code of dimension r−
∣∣ I ∣∣, ε has dimension at

most r−
∣∣ I ∣∣ −1. By Proposition 7 we know that

dim
(
〈ε2〉

)
≤ dim

(
〈GRS

n,r−
∣∣I∣∣(u, v)2〉

)
≤ 2r − 2

∣∣ I ∣∣ −1.

Therefore we get

dim
(
〈PJ2 (SI (Cpub))

2〉
)
≤ 2r − 2

∣∣ I ∣∣ −1 + r−
∣∣ I ∣∣ −1 + 1

= 3r − 3
∣∣ I ∣∣ −1.

Now we apply Lemma 6 to C = SI (Cpub) and I = J2. We get by (8) the claim,
since

dim
(
〈SI(Cpub)2〉

)
≤ dim

(
〈PJ2 (SI (Cpub))

2〉
)

+
∣∣ J2 ∣∣

≤ 3r − 3
∣∣ I ∣∣ −1+

∣∣ J2 ∣∣ .
By using similar results, one can determine which positions come from rows

of weight 1 or 2. We puncture SI(Cpub) in a position i /∈ I, if the dimension of
the square code gets smaller, then we have that the position i is of degree 2.
Since then

dim
(
〈SI(Cpub)2〉

)
= dim

(
〈Pi (SI(Cpub))

2〉
)

+ 1. (9)

Whereas for a position of degree 1 one expects that the dimension stays the
same.

Therefore to compute the set J2 we choose random subsets I1, . . . , Is and
test if (5) is satisfied. Then we define J2(i) to be the set of positions, for which
(9) is satisfied for 1 ≤ i ≤ s. Then we set J2 to be J2(1) ∪ · · · ∪ J2(s).

Now we want to transform the degree 2 positions into positions of degree
1, by linear combinations of columns of weight 1. For a position i1 ∈ J1, we
compute the set of i2 which consists of positions in J2, s.t. j(i1) ∈ j(i2). We go
through all α ∈ F×q and multiply the public code to a matrix, which has on the
diagonal all ones and α in the entry (i1, i2). For the correct α this new code C
is

C = Csec(T ′ +R′)T ,

where the row i2 of T ′ has now weight 1. We iterate this for C instead of Cpub
and J1 ∪ {i2} instead of J1. If we are successful, we end up with a code, which
is of the form

C = Csec(T̃ + R̃)T ,

where T̃ is a matrix of weight 1 and R̃ a matrix of rank 1, so we can apply the
distinguisher attack of the case m = 1, z = 1. For a more detailed procedure,
we refer to [14].
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The attack can be summarized as follows.

1. The public matrix H ′ is assumed to have columns of weight 1 and 2,
which are detected, using the square code dimension when puncturing the
shortened public code.

2. We transform the columns of weight 2 into columns of weight 1 by linear
combinations of the columns of weight 1.

3. Now one can apply the distinguisher attack [13, 18].

3.7 ISD Attack

One possibility to attack a code-based cryptosystem is information set decoding
(ISD), which means to decode a random code without exploiting any structural
property of the code, hence it is non-polynomial in the dimension of the code.
In [31] they provide a generalization of Stern’s algorithm [38]. In the following
we shortly explain the idea of the ISD attack.

Let C be an [n, k] code over Fq, and let G denote the generator matrix of C.
For a nonempty subset I ⊂ {1, . . . , n}, we denote by GI the matrix consisting
of the columns indexed by I. If we take I s.t.

∣∣ I ∣∣= k and GI is invertible,
then we call the I-indexed entries of a codeword the information symbols and I
an information set. Let c ∈ Fnq with distance t from the code. The ISD attack

finds a vector e, which can be written as e = c + mG, for some m ∈ Fkq and
wt(e) = t.

We provide the algorithm of [31]. Let C be an [n, k] code over Fq, and let
G denote the generator matrix of C. Assume k is even. Let 0 ≤ p ≤ t and
0 ≤ l ≤ r = n − k be integers. We have as input the generator matrix G, and
the integers k < n ≤ q and c ∈ Fnq with distance t from the code.

1. Choose an information set I.

2. Replace c by c− cIG−1I G.

3. Choose a uniform random subset X ⊂ I, with
∣∣ X ∣∣= k

2 and set Y = I\X.

4. Choose a uniform random subset Z ⊂ {1, . . . , n}\I, with
∣∣ Z ∣∣= l.

5. For any A = {a1, . . . , ap} ⊂ X define

VA =

{
c−

p∑
i=1

migai
∣∣ m = (m1, . . . ,mp) ∈

(
F×q
)p}

.

For each v ∈ VA compute v(Z) ∈ Flq, which are the entries of v indexed
by Z.

6. For any B = {b1, . . . , bp} ⊂ Y define

VB =

c−
p∑
j=1

m′jgbj
∣∣ m′ = (m′1, . . . ,m

′
p) ∈

(
F×q
)p .
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For each v′ ∈ VB compute v′(Z) ∈ Flq, which are the entries of v′ indexed
by Z.

7. For each pair (A,B), s.t. there exists a pair of vectors v = c−
∑p
i=1migai

and v′ =
∑p
j=1m

′
jgbj and v(Z) = v′(Z), we compute e = v − v′. If

wt(e) ≤ t we are done, else we go back to 1.

These seven steps are one iteration of the algorithm. For the cost of one
iteration of the algorithm, we need to introduce two new parameters, 1 < d ≤
c < k which are introduced for speed up. If the choice of I in the first step does
not lead to a vector e of weight less than or equal to t, then we reuse k−c of the
columns of GI and choose c new linearly independent columns. The parameter
d is for faster pivoting by precomputing the sum of the d first rows. By this we
get that the cost of one iteration is, as computed in [31]:

w = (n− 1)

(
(k − 1)

(
1− 1

qd

)
+ (qd − d)

)
c

d

+

((
k

2
− p+ 1

)
+ 2

(
k/2

p

)
(q − 1)p

)
l

+
q

q − 1
(t− 2p+ 1)2p

(
1 +

q − 2

q − 1

) (k/2
p

)2
(q − 1)2p

ql
.

Since we reuse k − c columns of GI the iterations of the algorithm are not
independent. In [31] the number of needed iterations is computed as in [8], using
a Markov chain with the t+ 2 states:

• 0: The chosen information set contains 0 errors.

• . . .

• t: The chosen information set contains t errors.

• Done: The attack has succeeded.

For the new choice of the information set, we choose c positions of I and
change them with c positions which are not in I. An iteration moves from state
s to s+ a with the probability∑

i

(
t−s
i

)(
n−k−t+s

c−i
)(

s
a+i

)(
k−s
c−a−i

)(
n−k
c

)(
k
c

) .

In the state 2p we move to the state Done, with the probability(
k/2
p

)2(n−k−(t−2p)
l

)(
n−k
l

)(
k
2p

) .

In [32] a PARI/GP script is provided, which estimates the cost of the ISD
attack in [31].
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4 Proposal

We will present here a new variant of the McEliece cryptosystem using GRS
codes, proposed by Bolkema, Gluesing-Luerssen, Kelley, Lauter, Malmskog and
Rosenthal in [9]. Due to the distinguisher attacks [18, 14, 13], we want to change
the scrambling matrices, such that the square code of the public matrix does
not reveal any information of the secret code. To ensure this, we want the Schur
matrix of the public matrix to have full rank.

The idea of the proposed cryptosystem is to use instead of a permutation
matrix, an invertible matrix of row and column weight two. Note that q 6= 2
as there are no invertible matrices of row and column weight two over F2, since
the all one vector lies in the kernel of such a row and column weight two over F2.

Please note that the proposed cryptosystem is a special case of the BBCRS
scheme [4], by taking m = 2, z = 0 and hence R = 0.

We will state in the following the proposed cryptosystem in the McEliece
and in the Niederreiter version.

4.1 McEliece Version

Let Fq be a finite field and 1 ≤ k < n ≤ q integers. Let G be a k × n generator
matrix of GRSn,k(α, β) code over Fnq , which is able to correct up to bn−k2 c = t
errors. We choose a k × k invertible matrix S, and a n × n invertible matrix
Q, which is of row and column weight two, both over Fq. We define tpub = b t2c
and compute

G′ = S−1GQ−1.

Public Key = (G′, tpub),

Private Key = (G,S,Q).

Encryption: Choose a message x ∈ Fkq and a random error vector e ∈ Fnq , s.t.
wt(e) ≤ tpub and compute the cipher

y = xG′ + e.

Decryption: Compute
y′ = yQ = xS−1G+ eQ.

Since wt(eQ) ≤ t we can decode with decoding algorithm of of the GRSn,k(α, β)
code and get xS−1. By multiplication by S we get the message x.

The Niederreiter version is the dual of the McEliece version and has equiv-
alent security.
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4.2 Niederreiter Version

Let Fq be a finite field and 1 ≤ k < n ≤ q integers. Let H be a r × n parity
check matrix of GRSn,k(α, β) code over Fq, with r = n− k. We choose a r × r
invertible matrix S, and a n×n invertible matrix Q, which is of row and column
weight two, both over Fq. We define tpub = b t2c and compute

H ′ = S−1HQT .

Public Key = (H ′, tpub),

Private Key = (H,S,Q).

Encryption: Choose a message x ∈ Fnq , s.t. wt(x) ≤ tpub and compute the
cipher

y = H ′xT .

Decryption: Compute
y′ = Sy = HQTxT .

Since wt(QTxT ) ≤ t we can do syndrome decoding and get QTxT . By mul-
tiplication of the inverse of QT we get the message x.
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5 Security

In this chapter we will show security of the proposed cryptosystem in [9] against
the following selected attacks: The attack of Sidelnikov and Shestakov [37], the
distinguisher attack [18, 13], the extended distinguisher attack [14] and the ISD
attack [31].

5.1 Sidelnikov and Shestakov

This attack recovers for the public matrix SHP the matrix HP , where S is
an invertible matrix and HP is a generator matrix of a GRS code, which is
permutation equivalent to the secret GRS code. To know HP is enough to
decrypt. Hence this attacks takes away the influence of the invertible matrix,
for a public code which is permutation equivalent to the secret code. This
attack is not applicable on the proposed cryptosystem, since the public code is
not permutation equivalent to the secret GRS code.

5.2 Distinguisher Attack

The attack of Couvreur, Gaborit, Gauthier-Umaña, Otmani and Tillich is an
attack on the BBCRS scheme [4], which the proposed cryptosystem is a special
case of.

To avoid this attack is the main part of this thesis.
The attack uses that the public code of the BBCRS scheme has a low square

code dimension. The attack reveals a large subcode of the public code, which
has as square code a GRS code. With this code one finds a GRS code which is
permutation equivalent to the secret code. To avoid the distinguisher attack we
want to show that in the proposed cryptosystem the square code of the public
code has maximal dimension. Since then an attacker can not distinguish if a
GRS code or a random code was used as secret code.

5.2.1 Idea of the Argument

Observe that we will not consider the invertible matrix S, since multiplication
by S results in a linear combination of the rows, which generates the same code.

The generator matrix, resp. the parity check matrix of the GRS code is
fixed for the proposed cryptosystem. Unfortunately not every invertible matrix
of row and column weight two is such that if multiplied to the generator matrix
of a GRS code, the square code of the product has maximal dimension.
We include here an example computed with Sage [34].

Example 2. In the Niederreiter version, for the parameters q = 5, n = 3, r =
2. The public matrix is given by HQT , where H is a generator matrix of a
GRSn,r(α, β) code. If α = (1, 2, 4) and β = (4, 3, 3), then H is of the following
form:

H =

[
4 3 3
4 1 2

]
.

If we choose QT , the invertible n× n matrix of row and column weight two to
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be

QT =

1 0 4
1 1 0
0 2 1

 ,
then the Schur matrix of HQT is the following matrix:

S(HQT ) =

4 1 1
0 0 2
0 0 4

 .
And we can observe that det(S(HQT )) = 0. S(HQT ) is thus not of full rank
and hence the square code of the public matrix is not of maximal dimension.

The argument, why the proposed cryptosystem is secure against the distin-
guisher attack is in proving the following two points:

• For each generator matrix of a GRS code there exists an invertible matrix
of row and column weight two, s.t. the public matrix will have maximal
square code dimension.

• For each generator matrix of a GRS code the probability of a random
invertible matrix of row and column weight two, to satisfy that the public
matrix is of maximal square code dimension tends to one for q →∞.

In this argument we want to fix a special form of the row and column weight
two matrices.

Remark 4. Note that every n×n matrix R over Fq of row and column weight
two can be written as

R = PX + P ′Y,

where P, P ′ are two n×n permutation matrices of disjoint support, correspond-
ing to permutations σ, σ′. X is the diagonal matrix of x = (x1, . . . , xn) ∈ (F×q )n

and Y is respectively the diagonal matrix of y = (y1, . . . , yn) ∈ (F×q )n.

Let Qn be a n × n matrix of row and column weight two of the following
form

Qn =


x1 yn
y1 x2

. . .
. . .

yn−1 xn

 , (10)

i.e.
Q = PX + P ′Y,

with σ = id, σ′ = (n · · · 1).

Unfortunately not every row and column weight two matrix is permutation
equivalent to a matrix of the form (10), but to a matrix, which has in the
diagonal block matrices of this form.
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Remark 5. For every n× n matrix R over Fq of row and column weight two,
there exist permutation matrices P, P ′, s.t.

PRP ′ =

Q
1
n1

. . .

Qlnl

 (11)

where Qini
are ni × ni matrices of the form (10) for 1 ≤ i ≤ l and 1 ≤ l < n.

The idea of the algorithm, which proves this remark, is to go through a row
after a column j and take the first nonzero entry and set the entire column to be
the jth column. Then we go through the jth column after the j + 1th row and
take the first nonzero entry and set the entire row as j + 1th row. We provide
here the pseudo code of this algorithm.

Input: R a row and column weight 2 matrix with the entries ai,j . We denote
the rows by ri and the columns by cj for 1 ≤ i, j ≤ n.
Output: PRP ′ of the form (11).
Algorithm:

i← 1
while i ≤ n do

take l ≥ i the smallest integer, s.t. ai,l 6= 0
switch cl and ci
if exists k > i, s.t. ak,i 6= 0 and ak′,i = 0 ∀ i < k′ < k then

switch ri+1 and rk
i← i+ 1

else
i← i+ 1

end if
end while

Hence in each column j of PRP ′ we have the nonzero entries xj , yj . We
have chosen the form of the row and column weight two matrices, s.t. we can
write down the determinant and the adjoint explicitly.

We have the following properties of Q in the considered form (10).
The determinant of Q is given by the following lemma.

Lemma 7. Let Fq be a finite field and 2 ≤ n ≤ q be an integer. Let Q be of
the form (10), then

det(Q) =

n∏
i=1

xi + (−1)n+1
n∏
i=1

yi.

Proof. We compute the determinant of Q by Laplace expansion in the nth
column. We denote by Mi,j the (n − 1) × (n − 1) submatrix of Q by deleting
the ith row and the jth column, hence

M1,n =


y1 x2

. . .
. . .

yn−2 xn−1
yn−1


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is an upper triangular matrix and

Mn,n =


x1
y1 x2

. . .
. . .

yn−2 xn−1


is a lower triangular matrix. Hence we have the following for their determinants.

det(M1,n) = y1 · · · yn−1,
det(Mn,n) = x1 · · ·xn−1.

Hence

det(Q) = (−1)n+1yndet(M1,n) + (−1)n+ndet(Mn,n)

= (−1)n+1
n∏
i=1

yi +

n∏
i=1

xi.

The adjoint of Q, which is the transpose of the cofactor matrix, is given by
the following lemma.

Lemma 8. Let Fq be a finite field and 2 ≤ n ≤ q be an integer. Let Q be of

the form (10), then the adjoint of Q denoted by Q̃ can be written as

Q̃ = (q̃i,j)1≤i,j≤n, (12)

with

i)

q̃i,i =

n∏
k=1
k 6=i

xk,

ii) for j < i

q̃i,j = (−1)i+j
j−1∏
l=1

xl

i−1∏
k=j

yk

n∏
m=i+1

xm,

iii) for j > i

q̃i,j = (−1)i+j(−1)n
i−1∏
k=1

yk

j−1∏
l=i+1

xl

n∏
m=j

ym.

Hence every entry of Q̃ is a polynomial in Fq[x1, . . . , xn, y1, . . . , yn] of total
degree n− 1 and in n− 1 variables.

Proof. Let Q̄ denote the cofactor matrix of Q, i.e. Q̃T = Q̄. Q̄ has entries
q̄i,j = (−1)i+jdet(Mi,j), where Mi,j is the (n− 1)× (n− 1) submatrix of Q by
deleting the ith row and jth column.
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i) Hence
q̄i,i = (−1)i+idet(Mi,i).

Observe that Mi,i has the following form:

Mi,i =



x1 yn
y1 x2

. . .
. . .

yi−2 xi−1
0 xi+1

yi+1 xi+2

. . .
. . .

yn−1 xn


.

We compute its determinant as in Lemma 7, hence

det(Mi,i) =

n∏
k=1
k 6=i

xk.

ii) Let j < i, hence in the cofactor matrix Q̄ we have i < j by switching j
and i. If i = n, thus in the cofactor matrix we have j = n, we observe
that Mi,n has the following form.

Mi,n =



x1

y1
. . .

. . . xi−2
yi−2 xi−1

0 yi xi+1

. . .
. . .

yn−2 xn−1
yn−1


.

Thus the matrix Mi,n can be written as

Mi,n =

(
A 0
0 B

)
,

where 0 denotes the zero matrix. Hence

det(Mi,n) = det(A)det(B)

The matrix A is a lower triangular matrix, having the determinant

i−1∏
k=1

xk.

And the matrix B is an upper triangular matrix having the determinant

n−1∏
k=i

yk.
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By switching i and j we get the claim for i = n.

If i 6= n, then we observe that Mi,j = M̄ has the following form.

M̄ =



x1 yn

y1
. . .

. . . xi−2
yi−2 xi−1

0 yi xi+1

. . .
. . .

yj xj−1
yj−1 0

0 xj+1

yj+1 xj+2

. . .
. . .

yn−1 xn



.

We compute the determinant of M̄ by Laplace expansion in the last col-
umn, hence

det(M̄) = (−1)nyndet(M̄1,n−1) + xndet(M̄n−1,n−1).

Where M̄1,n−1 is given by the matrix M̄ deleting the first row and the last
column, this makes the matrix upper triangular and since it has zeros on
its diagonal, the determinant of M̄1,n−1 is zero.

M̄1,n−1 =



y1 x2
. . .

. . .

yi−2 xi−1
0 yi xi+1

. . .
. . .

yj xj−1
yj−1 0

0 xj+1

yj+1
. . .

. . . xn−1
yn−1



.
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Whereas the matrix M̄n−1,n−1 is given by the following matrix

M̄n−1,n−1 =



x1

y1
. . .

. . . xi−2
yi−2 xi−1

0 yi xi+1

. . .
. . .

yj xj−1
yj−1 0

0 xj+1

yj+1 xj+2

. . .
. . .

yn−2 xn−1



.

Thus the matrix M̄n−1,n−1 can be written as

M̄n−1,n−1 =

A 0 0
0 B 0
0 0 C

 ,

where 0 denotes the zero matrix. Hence

det(M̄n−1,n−1) = det(A)det(B)det(C).

The matrix A is a lower triangular matrix, having the determinant

i−1∏
k=1

xk.

And the matrix B is an upper triangular matrix having the determinant

j−1∏
k=i

yk.

The matrix C is a lower triangular matrix, having the determinant

n−1∏
k=j+1

xk.

And therefore we have that

det(Mi,j) = xndet(M̄n−1,n−1) =

i−1∏
l=1

xl

j−1∏
k=i

yk

n∏
m=j+1

xm.

To get Q̃ we have to switch i and j.
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iii) Let j > i, hence in the cofactor matrix Q̄ we have i > j by switching j
and i. We observe that Mi,j = M̄ has the following form.

M̄ =



x1 yn

y1
. . .

. . . xj−1
yj−1 0

xj+1

yj+1
. . .

. . . xi−2
yi−2 xi−1

0 yi xi+1

yi+1 xi+2

. . .
. . .

yn−1 xn



.

We compute the determinant of M̄ by Laplace expansion in the last col-
umn, hence

det(M̄) = (−1)nyndet(M̄1,n−1) + xndet(M̄n−1,n−1).

Where M̄n−1,n−1 is given by the matrix M̄ deleting the last row and the
last column, this makes the matrix lower triangular and since it has zeros
on its diagonal, the determinant of M̄n−1,n−1 is zero.

M̄n−1,n−1 =



x1

y1
. . .

. . . xj−1
yj−1 0

xj+1

yj+1
. . .

. . . xi−2
yi−2 xi−1

0 yi xi+1

yi+1 xi+2

. . .
. . .

yn−2 xn−1



.
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Whereas the matrix M̄1,n−1 is given by the following matrix

M̄1,n−1 =



y1 x2
. . .

. . .

yj−2 xj−1
yj−1 0

xj+1

yj+1
. . .

. . . xi−2
yi−2 xi−1

0 yi xi+1

yi+1
. . .

. . . xn−1
yn−1



.

Thus the matrix M̄1,n−1 can be written as

M̄n−1,n−1 =

A 0 0
0 B 0
0 0 C

 ,

where 0 denotes the zero matrix. Hence

det(M̄1,n−1) = det(A)det(B)det(C).

The matrix A is an upper triangular matrix, having the determinant

j−1∏
k=1

yk.

The matrix B is a lower triangular matrix having the determinant

i−1∏
k=j+1

xk.

The matrix C is an upper triangular matrix, having the determinant

n−1∏
k=i

yk.

And therefore we have that

det(Mi,j) = (−1)nyndet(M̄1,n−1) = (−1)n
j−1∏
k=1

yk

i−1∏
l=j+1

xl

n∏
m=i

ym.

To get Q̃ we have to switch i and j.
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Theorem 3. Let Fq be a finite field. Let 2 ≤ n ≤ q be an integer. Let Q be of
the form (10), s.t. Q is invertible. Then

Q−1 =
1

det(Q)
Q̃ = (ri,j)1≤i,j≤n,

with

i)

ri,i =
1∏n

i=1 xi + (−1)n+1
∏n
i=1 yi

n∏
k=1
k 6=i

xk,

ii) for j < i

ri,j =
1∏n

i=1 xi + (−1)n+1
∏n
i=1 yi

(−1)i+j
j−1∏
l=1

xl

i−1∏
k=j

yk

n∏
m=i+1

xm,

iii) for j > i

ri,j =
1∏n

i=1 xi + (−1)n+1
∏n
i=1 yi

(−1)i+j(−1)n
i−1∏
k=1

yk

j−1∏
l=i+1

xl

n∏
m=j

ym.

Proof. By Lemma 7 and Lemma 8 we have the formula for the determinant of
Q and the formula for the adjoint of Q, denoted by Q̃. We get the claim since
Q−1 = 1

det(Q) Q̃.

Hence for R of the form (11), i.e.Q
1
n1

. . .

Qlnl

 ,
we have that the adjoint of R is of the following form

R̃ =

Q̃
1
n1

. . .

Q̃lnl

 ,
where Q̃ini

denotes the adjoint of Qini
.

And the determinant of R can be computed as

det(R) =

l∏
i=1

det(Qini
).

Please observe that R̃n has in each column all 2n variables of Rn but two
and each entry is a polynomial in n−1 variables. This is also true for the inverse
of Rn.
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We want to state some remarks on parameters we do not consider.

• If r = 1 in the Niederreiter version, resp. k = 1 in the McEliece version it
is easy to see, that for all invertible row and column weight two matrices
Rn the Schur matrix of the public matrix will have maximal rank 1, hence
we will assume r > 1, resp. k > 1.

• We have excluded q = 2 as there exist no invertible matrices of row and
column weight two over F2. Since the all one vector lies in the kernel of a
row and column weight two matrix over F2.

• The following results will not hold for q = 3, which implies n = 3, r = 2
in the Niederreiter version, resp. k = 2 in the McEliece version. One
can compute by Sage [34] that 1

4 of all invertible matrices of row and
column weight two are s.t. the Schur matrix of the public matrix will
have maximal rank. Hence we can assume from now on q > 3.

5.2.2 Niederreiter Version

We will need the following notations.

In the Niederreiter version the public matrix is given by Hn,rR
T
n .

Where Hn,r is a generator matrix of a GRSn,r(α, β) code, with r = n− k, thus
we can write Hn,r as

Hn,r =


β1 · · · βn
β1α1 · · · βnαn

...
...

β1α
r−1
1 · · · βnα

r−1
n

 , (13)

with α = (α1, . . . , αn) s.t. αi 6= αj ∀i, j ∈ {1, . . . , n} with i 6= j and β =
(β1, . . . , βn) s.t. βi 6= 0 ∀i ∈ {1, . . . , n}.

Let RTn be of the form (11), with xi, yi ∈ F×q for 1 ≤ i ≤ n s.t. det(Rn) 6= 0.
Whereas Hn,r is considered to be fixed, we want to examine the choice of

the matrices Rn of row and column weight two.

We recall that for A a r × n matrix, we denote by S(A) the Schur matrix
of A, which is of size 1

2 (r2 + r) × n, hence the maximal rank of S(A) is by
Proposition 6

m = min

{
n,

1

2
(r2 + r)

}
. (14)

Define

An = {Rn ∈ GLn(Fq)
∣∣ Rn is of the form (11)},

GHn,r
=

{
RTn ∈ An

∣∣ S(Hn,rR
T
n ) is of full rank m

}
.

Please observe that in our computations we do the following. We take a ran-
dom row and column weight two matrix R, we find the permutation matrices
P and P ′, s.t. PRP ′ is of the form (11). This form is now fixed and we want
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to examine the amount of choices for the nonzero entries of the matrix.

We want to compute the size of An, which is the total amount of invertible
n × n matrices of the form (11). Since these matrices are defined by their 2n
nonzero entries, we can fix all of them but one, and choose the last variable
s.t. the determinant which is linear in this variable, is nonzero. Thus we get∣∣ An ∣∣= (q − 1)2n − (q − 1)2n−1. We observe that the probability for a random
Rn ∈ An to be in GHn,r

can be computed as∣∣ GHn,r

∣∣∣∣ An ∣∣ =

∣∣ GHn,r

∣∣
(q − 1)2n − (q − 1)2n−1

=

∣∣ GHn,r

∣∣
(q − 1)2n

(
q − 1

q − 2

)
≥
∣∣ GHn,r

∣∣
(q − 1)2n

.

Thus it is enough to consider ∣∣ GHn,r

∣∣
(q − 1)2n

to give a lower bound on the probability, that Rn is in GHn,r
. Therefore we set

the nonzero entries of Rn as variables.

For fixed 1 ≤ r < n ≤ q we have a fixed Hn,r as in (13) and want to compute
a lower bound on the size of GHn,r .

1. case: n ≤ 1
2 (r2 + r)

Please observe that in practice, we mostly take r = bn2 c, hence this case is
the most common one in practice. We state in the following a lower bound on
the size of GHn,r .

Theorem 4. Let Fq be a finite field and 1 ≤ r < n ≤ q be integers, s.t.
n ≤ 1

2 (r2 + r). Under the assumption that there exists a nontrivial minor of
S(Hn,rR

T
n ), then we have the following lower bound on the size of GHn,r

.∣∣ GHn,r

∣∣≥ ((q − 1)2 − 2(q − 1))n.

With this we can state the following two corollaries, about the existence of
Rn in GHn,r

and the probability that a random Rn ∈ An is in GHn,r
.

Corollary 1. We have the existence of Rn in GHn,r . Since
∣∣ GHn,r

∣∣≥ 1 for
q > 3.

Corollary 2. The probability of Rn ∈ An to be in GHn,r
is greater than or

equal to

((q − 1)2 − 2(q − 1))n

(q − 1)2n
=

(
1− 2

q − 1

)n
.

And we can observe that for fixed n this quantity tends to one for q →∞.

For the proof of the theorem we need the following lemma.
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Lemma 9. Let Fq be a finite field and 1 ≤ n ≤ q integers. Let p be a nontrivial
homogeneous polynomial in Fq[x1, . . . , xn, y1, . . . , yn], of total degree 2n, in each
variable of degree at most 2, which has that each monomial is of the form

n∏
i=1

xdii y
2−di
i ,

for 0 ≤ di ≤ 2, ∀ 1 ≤ i ≤ n. Then there exist at least

((q − 1)2 − 2(q − 1))n

choices for the variables x1, . . . , xn, y1, . . . , yn in F×q , s.t. p evaluated in these
choices is nonzero.

Proof. We prove this by induction over n.

For n = 1 we can write

p(x1, y1) = x21a+ x1y1b+ y21c,

with a, b, c ∈ Fq and p is nontrivial in Fq[x1, y1]. We can fix y1 to be in F×q and
get that we have for x1 at most two roots. Thus we have to take away from the
total amount of possibilities for x1, y1 in F×q for each choice of y1 two choices of
x1. Hence we get ((q − 1)2 − 2(q − 1)).

The induction hypothesis states that for a polynomial p, which is homoge-
neous and nontrivial in Fq[x1, . . . , xn−1, y1, . . . , yn−1], of total degree 2(n − 1),
in each variable of degree at most 2 and has that each monomial is of the form

n−1∏
i=1

xdii y
2−di
i ,

for 0 ≤ di ≤ 2, ∀ 1 ≤ i ≤ n− 1, there exist at least

((q − 1)2 − 2(q − 1))n−1

choices for the variables x1, . . . , xn−1, y1, . . . , yn−1 in F×q , s.t. p evaluated in
these choices is nonzero.

Let us assume we have p as in the lemma. We observe that we can write p
as

x2na+ xnynb+ y2nc.

with a, b, c ∈ Fq[x1, . . . , xn−1, y1, . . . , yn−1]. By the assumption we have that at
least one of the polynomials a, b, c is nontrivial. Let us assume w.l.o.g. that
a is nontrivial and we observe that a satisfies all conditions of the induction
hypothesis. Thus we have

((q − 1)2 − 2(q − 1))n−1

choices of the variables x1, . . . , xn−1, y1, . . . , yn−1 in F×q , s.t. a evaluated in
these choices is nonzero. Let us fix one of these choices and define ā to be the
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evaluation of a in this choice and define b̄ and c̄ respectively. With this we can
write p as

x2nā+ xnynb̄+ y2nc̄,

with ā ∈ F×q and p is by assumption nontrivial. Thus by the case of n = 1,
we have ((q − 1)2 − 2(q − 1)) choices for xn, yn in F×q s.t. p evaluated in these
choices is nonzero. Hence we get in total

((q − 1)2 − 2(q − 1))n−1((q − 1)2 − 2(q − 1)) = ((q − 1)2 − 2(q − 1))n.

Now we can prove Theorem 4.

Proof. By the assumption there exists a nontrivial minor of S(Hn,rR
T
n ) in

Fq[x1, . . . , xn, y1, . . . , yn]. Let us fix a nontrivial minor of S(Hn,rR
T
n ), by choos-

ing n rows. Observe that this minor is a polynomial in Fq[x1, . . . , xn, y1, . . . , yn],
which satisfies the properties of Lemma 9. Hence there exist

((q − 1)2 − 2(q − 1))n

choices of the variables x1, . . . , xn, y1, . . . , yn in F×q , s.t. the minor evaluated in
these choices is nonzero. Hence we get the claim.

2. case: n ≥ 1
2 (r2 + r)

We state in the following a lower bound on the size of GHn,r .

Theorem 5. Let Fq be a finite field and 1 ≤ r < n ≤ q be integers, s.t.
n ≥ 1

2 (r2 + r) = m. Under the assumption that there exists a nontrivial minor
of S(Hn,rR

T
n ), we have the following lower bound on the size of GHn,r

.∣∣ GHn,r

∣∣≥ ((q − 1)2 − 2(q − 1))m(q − 1)2(n−m).

With this we can state the following two corollaries, about the existence of
Rn in GHn,r

and the probability that a random Rn ∈ An is in GHn,r
.

Corollary 3. We have the existence of Rn in GHn,r
. Since

∣∣ GHn,r

∣∣≥ 1 for
q > 3.

Corollary 4. The probability of Rn ∈ An to be in GHn,r
is greater than or

equal to

((q − 1)2 − 2(q − 1))m(q − 1)2(n−m)

(q − 1)2n
=

(
1− 2

q − 1

)m
,

where m = 1
2 (r2 + r). And we can observe that for fixed n, r this quantity tends

to one for q →∞.

Proof. By assumption there exists a nontrivial minor of S(Hn,rR
T
n ). Let us fix

a nontrivial minor of S(Hn,rR
T
n ), by choosing m columns. Observe that this

minor is a polynomial in Fq[x1, . . . , xm, y1, . . . , ym], which satisfies the properties
of Lemma 9. Hence there exist

((q − 1)2 − 2(q − 1))m

choices of the variables x1, . . . , xm, y1, . . . , ym in F×q , s.t. the minor evaluated
in these choices is nonzero. For the rest of the 2(n−m) variables we have only
the condition to be in F×q . Hence we get the claim.
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Comparing the different cases we can summarize in the Niederreiter version
that the probability of Rn ∈ An to be in GHn,r

is greater than or equal to(
1− 2

q − 1

)m
.

With m as in (14). We can observe that for fixed n, r this quantity tends to one
for q →∞.

Thus we have achieved to show in the Niederreiter version, under the as-
sumption of the existence of a nontrivial minor, the existence of Rn ∈ GHn,r

for
each 1 ≤ r < n ≤ q and each Hn,r and that for large q, the probability that
Rn ∈ An is in GHn,r tends to one.

To make the proposed cryptosystem in the Niederreiter version secure against
the distinguisher attack, one can test if the Schur matrix of the public matrix
has full rank and then use this matrix Q to scramble the secure code. The
complexity of this can be found in the Chapter 7.

Please observe that one could have also used this theorem.

Theorem 6. [Lemma of Schwartz-Zippel][[35], Corollary 1] Let Fq be a finite
field and Fqn be an extension field. Let p ∈ Fq[x1, . . . , xn] be a nontrivial
polynomial of total degree d ≥ 0. Let S be a finite subset of Fqn . Let a1, . . . , an
be chosen randomly, uniformly and independent in S. Then

P[p(a1, . . . , an) = 0] ≤ d∣∣ S ∣∣ .
If we apply this to the case n = 1

2 (r2 + r), we set p = det(S(Hn,rR
T
n )) ∈

Fq[x1, . . . , xn, y1, . . . , yn] of total degree d = 2n and S = F×q . Then Theorem 6
gives the following result.

P[p(a1, . . . , an, b1, . . . , bn) = 0] ≤ 2n

q − 1
.

Thus this argument also shows, that for fixed n the probability of Rn ∈ An
to be in GHn,r

tends to one for q →∞.
One has existence of Rn in GHn,r

, whenever

2n

q − 1
< 1⇒ 2n < q − 1.

Whereas with our argument we have existence of Rn in GHn,r for any n ≤ q.
Comparing the probability of Rn ∈ An to be in GHn,r

achieved with our
argument, and the probability achieved by using the lemma of Schwartz-Zippel,
we note that we have a stronger argument. Since for n ≥ 2(

1− 2

q − 1

)n
> 1− 2n

q − 1
.

The reason for this, is that the lemma of Schwartz-Zippel applies to any poly-
nomial and does not use the fact, that p has in in each variable degree at most
2.
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5.2.3 McEliece Version

In the McEliece version the public matrix is given by GQ−1, where G is a gener-
ator matrix of a GRSn,k(α, β) code and Q is a matrix of row and column weight
two. Whereas G is considered to be fixed, we want to examine the choice of the
matrix Q, which we choose to be of the form (11), denoted by Rn.

We have the following property of the Schur matrix.

Remark 6. Let A be a k×n matrix over Fq and λ ∈ Fq. Then S(λA) = λ2S(A).

Due to this property and the assumption thatRn is invertible, hence det(Rn) 6=
0, it is enough to consider the adjoint of Rn as in (12), denoted by R̃n, instead
of the inverse.

We need the following notations.

In the McEliece version the public matrix is given by Gn,kR̃n.
Where Gn,k is a generator matrix of a GRSn,k(α, β) code, thus we can write
Gn,k as

Gn,k =


β1 · · · βn
β1α1 · · · βnαn

...
...

β1α
k−1
1 · · · βnα

k−1
n

 , (15)

with α = (α1, . . . , αn) s.t. αi 6= αj ∀i, j ∈ {1, . . . , n} with i 6= j and β =
(β1, . . . , βn) s.t. βi 6= 0 ∀i ∈ {1, . . . , n}. Rn is an invertible n× n matrix of row
and column weight two, which is of the form (11).

We define

GGn,k
=

{
Rn ∈ An

∣∣ S(Gn,kR̃n) has full rank m
}
.

By Proposition 6 we recall that the maximal rank is

m = min

{
n,

1

2
(k2 + k)

}
.

For fixed 1 ≤ k < n ≤ q we have a fixed Gn,k as in (15) and want to compute
a lower bound on the size of GGn,k

.

We want to apply the same argument in the McEliece version, as we did in
the Niederreiter version.

1. case: n ≤ 1
2 (k2 + k)

Please observe that in practice, we mostly take k = bn2 c, hence this case is
the most common one in practice. We state in the following a lower bound on
the size of GGn,k

, for q > 2n− 2.

Theorem 7. Let Fq be a finite field and 1 ≤ k < n ≤ q be integers, s.t.
n ≤ 1

2 (k2 + k) and q > 2n − 2. Under the assumption, that there exists a
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nontrivial minor of S(Gn,kR̃n), we have the following lower bound on the size
of GGn,k

. ∣∣ GGn,k

∣∣≥ ((q − 1)2 − 2(n− 1)(q − 1))n.

With this we can state the following two corollaries, about the existence of
Rn in GGn,k

and the probability that a random Rn ∈ An is in GGn,k
.

Corollary 5. We have the existence of Rn in GGn,k
. Since

∣∣ GGn,k

∣∣≥ 1 for
q > 3.

Corollary 6. The probability of Rn ∈ An to be in GGn,k
is greater than or

equal to

((q − 1)2 − 2(n− 1)(q − 1))n

(q − 1)2n
=

(
1− 2(n− 1)

q − 1

)n
.

And we can observe that for fixed n this quantity tends to one for q →∞.

For the proof of the theorem we need the following lemma.

Lemma 10. Let Fq be a finite field and 1 ≤ m < n ≤ q integers with q > 2m.
Let p be a nontrivial homogeneous polynomial in Fq[x1, . . . , xn, y1, . . . , yn], of
total degree 2m(n− 1), in each variable of degree at most 2m. Then there exist
at least

((q − 1)2 − 2m(q − 1))n

choices for the variables x1, . . . , xn, y1, . . . , yn in F×q , s.t. p evaluated in these
choices is nonzero.

Proof. We prove this by induction over the number of variables n.

For n = 1 the polynomial is of total degree zero, and nontrivial hence
p(x1, y1) = c ∈ F×q .

The induction hypothesis states that for a polynomial p, which is homo-
geneous and nontrivial in Fq[x1, . . . , xn−1, y1, . . . , yn−1], and has total degree
2m(n− 2) and in each variable of degree at most 2m, there exist at least

((q − 1)2 − 2m(q − 1))n−1

choices for the variables x1, . . . , xn−1, y1, . . . , yn−1 in F×q , s.t. p evaluated in
these choices is nonzero.

Let us assume we have a polynomial p as in the lemma. Let us look at
p as a polynomial in Fq[x1, . . . , xn−1, y1, . . . , yn−1][xn, yn]. W.l.o.g. we can
assume that there exists a monomial with xn which has nonzero coefficient in
Fq[x1, . . . , xn−1, y1, . . . , yn−1]. The nonzero coefficient of the monomial with
xn is a nontrivial polynomial in Fq[x1, . . . , xn−1, y1, . . . , yn−1], and has total
degree 2m(n− 2) and in each variable degree at most 2m. Hence by induction
hypothesis, there exist at least

((q − 1)2 − 2m(q − 1))n−1

choices of the variables x1, . . . , xn−1, y1, . . . , yn−1 in F×q , s.t. the coefficient
evaluated in these choices is nonzero. Let us fix one of these choices, now the
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polynomial is nontrivial in Fq[xn, yn]. Let yn be any element of F×q , then we
have at most 2m roots for xn in F×q . With the choices for xn, yn we get in total

((q − 1)2 − 2m(q − 1))n−1((q − 1)2 − 2m(q − 1)) = ((q − 1)2 − 2m(q − 1))n.

Please note that an exception for this is when q ≤ 2m, in this case we could
exclude all of the values, e.g. xq−1 − 1 annihilates all elements of F×q . Thus we
want to assume here that q is large enough, more precisely, that q > 2m.

Now we can prove Theorem 7.

Proof. By the assumption there exists a nontrivial minor of S(Gn,kR̃n). Let us

fix such a nontrivial minor of S(Gn,kR̃n), by choosing n rows. Observe that this
minor is a polynomial in Fq[x1, . . . , xn, y1, . . . , yn], which satisfies the properties
of Lemma 10 for m = n− 1. Hence there exist

((q − 1)2 − 2(n− 1)(q − 1))n

choices of the variables x1, . . . , xn, y1, . . . , yn in F×q , s.t. the minor evaluated in
these choices is nonzero. Hence we get the claim.

2. case: n ≥ 1
2 (k2 + k)

We state in the following a lower bound on the size of GGn,k
.

Theorem 8. Let Fq be a finite field and 1 ≤ k < n ≤ q be integers, s.t.
n ≥ 1

2 (k2 + k) = m and q > 2m. Under the assumption that there exists a

nontrivial minor of S(Gn,kR̃n), we have the following lower bound on the size
of GGn,k

. ∣∣ GGn,k

∣∣≥ ((q − 1)2 − 2m(q − 1))n.

With this we can state the following two corollaries, about the existence of
Rn in GGn,k

and the probability that a random Rn ∈ An is in GGn,k
.

Corollary 7. We have the existence of Rn in GGn,k
. Since

∣∣ GGn,k

∣∣≥ 1 for
q > 3.

Corollary 8. The probability of Rn ∈ An to be in GGn,k
is greater than or

equal to

((q − 1)2 − 2m(q − 1))n

(q − 1)2n
=

(
1− 2m

q − 1

)n
,

where m = 1
2 (k2 +k). And we can observe that for fixed n, k this quantity tends

to one for q →∞.

Proof. Define m = 1
2 (k2 + k). By assumption there exists a nontrivial minor of

S(Gn,kR̃n). Observe that this minor is a polynomial in Fq[x1, . . . , xn, y1, . . . , yn],
which satisfies the properties of Lemma 10, with total degree 2m(n− 1) and in
each variable of degree at most 2m. Hence there exist at least

((q − 1)2 − 2m(q − 1))n

choices of the variables x1, . . . , xn, y1, . . . , yn in F×q , s.t. the minor evaluated in
these choices is nonzero. Hence we get the claim.
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Comparing the different cases we can summarize that the probability of
Rn ∈ An to be in GGn,k

is greater than or equal to(
1− 2m

q − 1

)n
,

where m = min
{
n, 12 (k2 + k)

}
. We can observe that for fixed n, k this quantity

tends to one for q →∞.

Thus we have achieved to show in the McEliece version, under the assump-
tion of the existence of a nontrivial minor, the existence of Rn ∈ GGn,k

for each
1 ≤ k < n ≤ q with q > 2n − 2 and each Gn,k and that for large q, the proba-
bility that Rn ∈ An is in GGn,k

tends to one.

To make the proposed cryptosystem in the McEliece version secure against
the distinguisher attack, one could test if the Schur matrix of the public matrix
has full rank and then use the matrix Q to scramble the secure code. The com-
plexity of this can be found in the Chapter 7.

Please observe that one could have also used Theorem 6, the Lemma of
Schwartz-Zippel.

If we apply this lemma to the case n = 1
2 (k2+k), we set p = det(S(Gn,kR̃n)) ∈

Fq[x1, . . . , xn, y1, . . . , yn] of total degree d = 2n(n − 1) and S = F×q . Then this
gives the following result.

P[p(a1, . . . , an, b1, . . . , bn) = 0] ≤ 2n(n− 1)

q − 1
.

Thus this argument also shows, that for fixed n the probability of Rn ∈ An
to be in GGn,k

tends to one for q →∞.
One has existence of Rn in GGn,k

, whenever

2n(n− 1)

q − 1
< 1⇒ 2n(n− 1) < q − 1.

Whereas with our argument we have existence of Rn in GGn,k
for 2n− 2 < q.

Comparing the probability of Rn ∈ An to be in GGn,k
achieved with our

argument, and the probability achieved by using the lemma of Schwartz-Zippel,
we note that we have a stronger argument. Since for n ≥ 2(

1− 2(n− 1)

q − 1

)n
> 1− 2n(n− 1)

q − 1
.

The reason for this, is that the lemma of Schwartz-Zippel applies to any poly-
nomial and does not use the fact, that p has in each variable degree at most
2(n− 1).
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5.2.4 Experimental Results

In this section we provide some experimental results to the probability bounds,
we will refer to the Niederreiter version.

We fix values for q, n, r and a generator matrix Hn,r and make a Monte Carlo
test, how many Rn ∈ An are in GHn,r

. And we compare these results with the
provided probability bounds.

In [9] they suggest to use the proposed cryptosystem in the parameters q = 29

and q = 28. We also tested the parameters q = 151 and q = 128.

q n r Monte Carlo test with 1000 tries probability bound
512 500 250 1 ≥ 1/8
256 255 100 1 ≥ 1/8
151 100 50 1 ≥ 1/4
128 100 50 1 ≥ 1/5

This result shows, that each invertible row and column weight two matrix we
have chosen randomly, satisfies the property, that the public matrix has max-
imal square code dimension. This especially also shows, for these parameters
and for the chosen generator matrices of GRS codes, that the assumption of the
nontrivial minor is satisfied.

These experimental results were made with Sage [34]. The used Sage func-
tions can be found in the appendix.

5.3 Extended Distinguisher Attack

The extended distinguisher attack [14] uses that the public code of the Nieder-
reiter version of the BBCRS scheme has unusual small square code dimension,
when shortened in a subset of J1, i.e. positions which come from rows of weight
1, as observed in Proposition 11.

In the proposed cryptosystem we have that J1 = ∅ and J2 = {1, . . . , n}.
Therefore if the public code is shortened in a subset of J1, we still have the
public code, for which we have shown that with high probability the square
code has maximal dimension. Therefore an attacker can not distinguish with
this method if the secret code was chosen random or a GRS code.

In the extended distinguisher attack, if the resulting code C, which is in the
case of the proposed cryptosystem the public code, contains remaining positions
of weight 2, the code gets punctured in the positions of J2. Which in the
case of the proposed cryptosystem would mean to delete all coordinates of the
codewords, and this clearly provides no information to an attacker.

5.4 ISD Attack

The ISD attack is a non-structural attack, which aims to decode a random
code without exploiting any structural property of the code, hence it is non-
polynomial in the dimension of the code. We refer to the ISD attack presented
in [31], which is a generalization of Stern’s algorithm [38].
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To secure the cryptosystem against the ISD attack, one has to choose the
parameters large enough, such that a given work factor for the ISD attack is
achieved, which is considered to be unfeasible and hence makes the system
secure. This clearly will influence the key size of the cryptosystem. In Chapter
7 we will use [32] to give an estimate on the cost of the ISD attack for the
parameters we suggested in Section 5.2.4 and we estimate the key size for a
given work factor for the ISD attack.
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6 Vulnerabilities

As for the security against the distinguisher attack [18, 13] we were only able
to prove that the probability of the scrambling matrices to avoid this attack is
high, there is also a small probability that the attack could still reveal informa-
tion of the secret code. This result was also stated under an assumption, which
is not proven yet. In Chapter 7 we provide the complexity cost of testing that
the Schur matrix of the public matrix is of full rank. With this one can test the
security against the distinguisher attack, but this certainty comes with a cost
of complexity.

In the Niederreiter version, we have that the public matrix is a sum of two
GRS codes, this could exploit some information on the secret GRS code, if one
would be able to extend the attack of Sidelnikov and Shestakov [37].
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7 Complexity and Key Size

We will estimate in this chapter the key size and the complexity of the cryp-
tosystem proposed in [9], which we presented in Chapter 4.

As stated in the BBCRS Scheme [4], increasing the choice of m increases
the key size and increasing z increases the complexity of the decryption. For
the following computations and comparisons of key sizes and complexity we will
refer to the Niederreiter version.

7.1 Key Size

The public key of the proposed system is a r × n matrix over Fq, and the
weight of the error vector, which is negligible. We can write the public matrix
in systematic form to bring the size down to a r × (n − r) matrix. Thus we
consider the key size to be qrn, resp. qrk.

The key size can be considered as a large when compared to other cryptosys-
tem, such as RSA with a key size of 2n, twice the block size.

But the key size of the proposed cryptosystem is considered to be smaller
than the key size of the original McEliece system using Goppa codes, for the
following reason. To have similar security against a brute-force attack, we need
in the Goppa-based system a bigger public matrix, than in the GRS-based
system. The intuitional idea of a brute-force attack would be to go through all
words which have at most distance t of the received word in Fnq . Hence there
are

t∑
i=0

(
n

i

)
(q − 1)i

many words to check in a brute-force attack. Where
(
n
i

)
is for the error position

and (q − 1)i is for the magnitude of the error. In the Goppa-based system, we
usually choose n = 2m, therefore the received codeword is in Fn2 and there is
no influence of the error magnitude. This allows us to take in the proposed
cryptosystem smaller key sizes and to get similar security against this brute-
force attack as in the original McEliece cryptosystem with larger key size.

Example 3. For example, take in the Goppa-based system

n = 210 = 1024, k = 524, t = 50,

and in the proposed cryptosystem

q′ = 211, n′ = 210, k′ = 105, t = 52, tpub = 26.

Then we get better brute-force security using the proposed cryptosystem, since
by the computations above, we have

26∑
i=0

(
210

i

)
210i >

50∑
i=0

(
1024

i

)
.

But in the proposed cryptosystem we get smaller key sizes. Since the key size of
the Goppa-based system is 2k

2

, whereas the key size of the proposed cryptosys-
tem is q′k

′2
. So in the example we get in the Goppa-based system a 274576 bit

key, and in the GRS-based system a 85126 bit key.

54



The key size of a code-based cryptosystem is highly influenced by the ISD
attack, which aims to decode a random code. We use the provided PARI/GP
script of [32] to give an estimate on the cost of the ISD attack for the parameters
we suggested in Section 5.2.4 and we estimate the key size to achieve a work
factor of 280 and 2128 for the ISD attack.

q n r Key Size Cost of ISD in binary logarithm
1024 1000 500 2500000 157
797 790 400 1560000 128
512 500 250 562500 87
457 450 225 455625 80

We want to compare the key size of the proposed cryptosystem with the orig-
inal McEliece cryptosystem and the BBCRS scheme regarding security against
the ISD attack.

In [8] they suggest to use in the original McEliece version the parameters
n = 1632, k = 1269 in order to reach a work factor greater than 280, which
results in a public key of size 460647 bits. And for a work factor greater than
2128, they suggest the parameters n = 2960, k = 2288, which gives a public key
of size 1537536 bits.

In [4] they suggest to use the BBCRS scheme with the parameters q =
347, n = 346, k = 252 to reach a work factor of 290 and obtain a public key of
size 199899 bits. And for a work factor greater than 2137, they suggest to use
the parameters q = 547, n = 546, k = 396, which results in a public key of size
540267 bits.

Regarding the cost of the ISD attack computed by [32], for the proposed
cryptosystem to reach a work factor greater than 280, one can use for example
the parameters q = 457, n = 450, k = 225, which gives in the Niederreiter ver-
sion a public key of size 455625 bits. For a work factor greater than 2128, one
can use the parameters q = 773, n = 770, k = 410, which results in a public key
of size 1476000 bits.

To compare these stated suggestions we provide the following two tables.

For a work factor of 280

q n k Key Size
Original McEliece 2048 1632 1269 460647
BBCRS scheme 347 346 252 199899

Proposed Cryptosystem 457 450 225 455625
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For a work factor of 2128

q n k Key Size
Original McEliece 4096 2960 2288 1537536
BBCRS scheme 547 546 396 540267

Proposed Cryptosystem 773 770 410 1476000

We observe that the key sizes of the proposed cryptosystem are quite close
to, but smaller than the key sizes of the original McEliece cryptosystem.

7.2 Complexity

We follow the computations of [11], as it is also done in [4]. We will use the
following Notation.

In the sequel denote byM the number of bit operations required to multiply
two field elements of Fq and by S the number of bit operations required to add
two field elements of Fq.

Where the cost S of one addition over a finite field Fq is considered equal to
l = dlog2(q)e binary operations and the cost of one multiplication M equals to
2l additions, thusM = 2l2 binary operations. Inversion over a finite field comes
with the same cost as multiplication. If we multiply matrices, we multiply the
matrix to each column vector. Whereas right multiplication of a m× n matrix
with a vector with w nonzero elements means to sum w columns, which costs
(w − 1)mS binary operations. Similarly left multiplication costs (w − 1)nS
binary operations. This quantity must be added with the operations needed
to multiply each element of the vector by the corresponding matrix column,
further wmM, resp. wnM binary operations.

We will give in the following an upper bound for total number of bit opera-
tions required for the Niederreiter version of the proposed cryptosystem.

Lemma 11. An upper bound for the total number of bit operations required
for encryption in the Niederreiter version is given by

(tpub − 1)rS + tpubrM.

Proof. For encryption in the Niederreiter version, we need to compute H ′xT .
Where H ′ is a r × n matrix and xT has weight tpub ≤ b r4c. Therefore the
encryption step requires (tpub − 1)rS + tpubrM binary operations.

Lemma 12. An upper bound for the total number of bit operations required
for decryption in the Niederreiter version is given by

M
{
r2 + 10t2 + t(n+ 9)− n+ tn

}
+ S

{
r(r − 1) + 6t2 + t(n+ 1) + (t− 1)n

}
.

Proof. For decryption we first need to compute for the given cipher y the quan-
tity Sy, which requires (r−1)rS+r2M binary operations. For syndrome decod-
ing the codeword we refer to the standard GRS syndrome decoding algorithm,
whose complexity can be found in [11], which results in

S
{

6t2 + t(n+ 1)
}

+M
{

10t2 + t(n+ 9)− n
}
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binary operations. As last step when we are given QTxT , which is of weight
t ≤ b r2c, we need to multiply (QT )−1 by this vector, thus we have further
(t− 1)nS + tnM binary operations. Which gives us a complexity estimation of

M
{
r2 + 10t2 + t(n+ 9)− n+ tn

}
+ S

{
r(r − 1) + 6t2 + t(n+ 1) + (t− 1)n

}
binary operations.

As comparison we can look at the decryption complexity of the BBCRS
scheme [4], which results in

M
{

(4t(2t+ 2) + r)
qz

2
+ 2t2 + (2n+ 1)t+ r2 − n

}
+

S
{

(2t(2t+ 1) + r)
qz

2
+ 2t2 + (2n− 1)t+ (r − 1)r − n

}
binary operations. We can observe that this complexity is greater than the de-
cryption complexity of the proposed cryptosystem. Since the BBCRS scheme
is proposed for z ≥ 1, hence qz

2 ≥ 1. Therefore is the decryption complexity of
the new variant an improvement to the BBCRS scheme.

By Lemma 11 and Lemma 12, the complexity of the Niederreiter version of
the proposed cryptosystem can be estimated as follows.

Corollary 9. An upper bound for the total number of bit operations required
for the Niederreiter version is given by

M
{
tpubr + r2 + 10t2 + t(n+ 9)− n+ tn

}
+

S
{

(tpub − 1)r + r(r − 1) + 6t2 + t(n+ 1) + (t− 1)n
}
.

7.2.1 Complexity of Testing Security

For the security of the cryptosystem proposed in [9] to be established, we would
like to add here the cost of testing if the Schur matrix of the public matrix has
full rank.

Lemma 13. An upper bound for the total number of bit operations required
for testing the security of the cryptosystem is given by

M

(
nr2 + 2nr +

m−2∑
i=0

((n− i)(m− i)) + (n−m+ 1)

)
+

S

(
n(r − 1)r + nr +

m−2∑
i=0

(n− i)(m− i− 1)

)
.

Proof. First we need to compute the public matrix, which is given by SHQT .
Where S is a r × r matrix, H is an r × n matrix and QT is a n × n matrix,
s.t. each column has two nonzero elements. The computation of SH costs
n((r − 1)rS + r2M) binary operations. The computations of (SH)QT costs
n(rS + 2rM) binary operations.
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As a second step we want to compute the Schur matrix of the r × n public
matrix. For this we need to compute the Schur product of each row with each
other row. The cost of computing the Schur product of two vectors of length
n is nM. We do this 1

2 (r2 + r) many times, resulting in 1
2 (r2 + r)nM binary

operations.

As last step we want to use Gauss elimination, to bring the Schur matrix of
size 1

2 (r2+r)×n in echelon form. We can assume that 1
2 (r2+r) = m < n, if this

is not the case, we look at the transposed of the Schur matrix. The computation
consists of two steps, we consider to be in the i + 1th row. The first step is to
set the pivot element to one. For this we multiply a scalar to a row, consisting
of (n− i) nonzero elements, which results in (n− i) multiplications. As second
step we want to set all elements of the column below the pivot to zero, which
are (m − i − 1) many elements, this consists in multiplying a row with (n − i)
nonzero elements by a scalar and then adding two rows with (n − i) elements,
hence (m − i − 1) times (n − i) multiplications and (n − i) additions. We do
these steps up to the last row, since in the last row it is enough to do the first
step which costs (n − m + 1) multiplications. Hence we get for the Gaussian
elimination the following cost.

M

(
m−2∑
i=0

((n− i) + (n− i)(m− i− 1)) + (n−m+ 1)

)
+

S

(
m−2∑
i=0

(n− i)(m− i− 1)

)
.

Therefore the total complexity for the security test can be estimated as

M

(
nr2 + 2nr +

m−2∑
i=0

((n− i)(m− i)) + (n−m+ 1)

)
+

S

(
n(r − 1)r + nr +

m−2∑
i=0

(n− i)(m− i− 1)

)
.
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8 Conclusion

In this Master thesis we presented a new code-based cryptosystem, proposed
by Bolkema, Gluesing-Luerssen, Kelley, Lauter, Malmskog and Rosenthal in [9],
we analyzed the security of the proposed cryptosystem against the distinguisher
attacks based on the Schur product [14, 18, 13] and compared its key size to the
original McEliece system.

The key sizes of the proposed cryptosystem are not as low as for example the
highly used RSA. But the key sizes are comparable and slightly smaller than in
the original McEliece cryptosystem [26] using Goppa codes.

There is still the open question, if one can find a construction of the invert-
ible row and column weight two matrix, which for a given GRS code will satisfy
that the public code has maximal dimension under the square code. We remark
here that the entries of the row and column weight two matrix must depend on
q and the α, β of the secret GRSn,r(α, β) code.

Seeing the proposed cryptosystem as a special case of the BBCRS scheme
in [4], an improvement of the proposed cryptosystem could be setting z = 1.

We also want to prove the assumption we used in the argument for the secu-
rity, that there exists a nontrivial minor of the Schur matrix of the public matrix.

But the proposed cryptosystem has another property in his favor, it resists
with high probability a distinguisher attack, which is based on the Schur matrix.

There are also other code-based cryptosystems, which have been attacked
by similar distinguisher attacks. Janwa and Moreno proposed in [19] the use of
AG codes, or codes derived from them by subfield restriction or concatenation,
for a code-based cryptosystem.

Couvreur, Márquez-Corbella and Pellikaan presented in [12] an attack on this
cryptosystem, by deriving a t-error correcting pair with the aid of a filtration
that is based on the Schur product.

One could investigate if one can find a set of scrambling transformations
where the best known distinguisher attacks (as described above coming from
the Schur product) will fail. This then hopefully will provide post-quantum
cryptosystems with reasonable key sizes.
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10 Appendix

10.1 Sage Functions

We will provide here the Sage functions used in Section 5.3.4.

def check_weight(A,n,ww):

w=zero_vector(n)

for i in range(n):

for j in range(n):

if(A[i][j]!=0):

w[i]=w[i]+1

counter=0

for l in range(n):

if(w[l]==ww):

counter=counter+1

if(counter==n):

return True

if(counter!=n):

return False

def distinctvector(V):

x=V.zero_vector()

F=V.base_field()

for i in range(1,V.dimension()):

t=F.random_element()

while(t in x):

t=F.random_element()

x[i]=t

return x

def construct_G(q,k,n):

F=GF(q, ’a’)

a=F.multiplicative_generator()

y=rand_vec(q,n)

V=VectorSpace(F,n)

x=distinctvector(V)

G=zero_matrix(F,k,n)

for m in range(k):

G[m]=(y.pairwise_product(vector(F, [x[j]^m for j in range(n)])))

return G
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def construct_prerequisites(q,n,r, base_path=’.’):

F=GF(q, ’a’)

a=F.multiplicative_generator()

badn=0

goodn=0

H=construct_G(q,r,n)

S=SymmetricGroup(n)

f=S.random_element()

h=S.random_element()

Q=h.matrix()

P=f.matrix()

while(check_weight(P+Q, n,2)== False):

h=S.random_element()

Q=h.matrix()

Q.save(base_path + ’/Q.{q}-{n}-{r}-sage-save’.format(q=q,n=n,r=r))

P.save(base_path + ’/P.{q}-{n}-{r}-sage-save’.format(q=q,n=n,r=r))

H.save(base_path + ’/H.{q}-{n}-{r}-sage-save’.format(q=q,n=n,r=r))

import argparse

def rand_vec(q,n):

x=zero_vector(n)

F=GF(q, ’a’)

a=F.multiplicative_generator()

v = vector([randint(0,q-2) for i in range(n)])

x = vector([a^v[i] for i in range(n)])

return x

def schur_product(x,y,q):

F=GF(q, ’a’)

n=x.length()

z=vector(F, [x[i]*y[i] for i in range(n)])

return z

def square_matrix(G,q):

F=GF(q, ’a’)

k=G.nrows()

n=G.ncols()

M=zero_matrix(F,0,n)

for i in range(k):

Mi=zero_matrix(F,(k-i),n)

for l in range(k-i):

Mi[l]=schur_product(G[i],G[l+i],q)

M=M.stack(Mi)

return M
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def MonteCarloNiederreiterR(q,n,r, bound, base_dir=’.’):

badn=0

goodn=0

Q = load(base_dir + ’/Q.{q}-{n}-{r}-sage-save’.format(q=q,n=n,r=r))

P = load(base_dir + ’/P.{q}-{n}-{r}-sage-save’.format(q=q,n=n,r=r))

H = load(base_dir + ’/H.{q}-{n}-{r}-sage-save’.format(q=q,n=n,r=r))

print "Loading done"

m=min(n,1/2*(r^2+r))

for l in range(bound):

v=rand_vec(q,n)

w=rand_vec(q,n)

A=diagonal_matrix(v);

B=diagonal_matrix(w);

R=P*A+Q*B

if(R.is_invertible()):

GG=H*R

SM=square_matrix(GG,q)

r=SM.rank()

if(r==m):

goodn+=1

else:

badn+=1

return badn, goodn

if __name__==’__main__’:

parser = argparse.ArgumentParser()

parser.add_argument(’q’, help=’base field dim’, type=int)

parser.add_argument(’n’, help=’number of columns’, type=int)

parser.add_argument(’r’, help=’number of rows’, type=int)

parser.add_argument(’bound’, help=’number of monte carlo trials’, type=int)

parser.add_argument(’run_id’, help=’identify this run’, type=int)

args = parser.parse_args()

bad, good = MonteCarloNiederreiterR(args.q, args.n, args.r, args.bound)

with open(’bad-{id}’.format(id=args.run_id), ’w’) as f:

f.write(str(bad)+’\n’)

with open(’good-{id}’.format(id=args.run_id), ’w’) as f:

f.write(str(good)+’\n’)
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