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Introduction

In the last decade, it has been of interest the computation of the natural densities of both
monic Eisenstein polynomials and non-monic Eisenstein polynomials with coefficients
over Z and of degree at most d. For this we first recall that a subset A ⊆ Zn is said to
have density δ if

δ = lim
B→∞

|A ∩ [−B,B[n|
(2B)n

.

As was first proved by Dubickas in [3], the natural density of monic Eisenstein polyno-
mials over Z of fixed degree d is

1−
∏

p prime

(
1− p− 1

pd+1

)
. (1)

Heyman and Shparlinski extended the results of Dubickas to non-monic Eisenstein poly-
nomials computing also the error term of the densities [4, Theorem 1, Theorem 2],
obtaining for the density of the non-monic case

1−
∏

p prime

(
1− (p− 1)2

pd+2

)
. (2)

The main aspect of this thesis is the establishing of the function field analogue of these
results, when the coefficients of the polynomials are taken in an integrally closed subring
of a function field of a curve (i.e. a holomorphy ring) over a finite field.

In the first chapter of this thesis we develop all the theory about algebraic function
fields that we need in order to understand the setting that we are dealing with and to
explicitly compute the densities. All the theory concerning algebraic function fields is
taken from [7].
In the second chapter we explicitly compute the densities of Eisenstein polynomials
and monic Eisenstein polynomials. These computations come directly from the paper
written with Giacomo Micheli, see [2].
In the last chapter, as completion, we develop the theory a little more, talking about
algebraic extensions of function fields and totally ramified places in order to conclude
by giving a function field analogue of the work of Keith Conrad in [1], finding a link
between Eisenstein polynomials over function fields and totally ramified places.
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Chapter 1. Basic Theory of Algebraic Function Fields

Chapter 1

Basic Theory of Algebraic
Function Fields

1.1 Algebraic Function Fields

In this chapter we give the definitions and state the results that will be needed for the
rest of the thesis.

We start by giving the definition of an algebraic function field.

Definition 1.1.1. Let K denotes a field. An extension field F ⊇ K is said to be an
algebraic function field of one variable over K if F is a finite algebraic extension of K(z),
for some z ∈ F trascendental over K.

From now on we just say function field for brevity.
We also define K̃ := {z ∈ F | z is algebraic over K}, which is a subfield of F , called the
field of constants. F is a function field also for K̃. Moreover we have K ⊆ K̃ $ F , and
if K = K̃ we say that K is the full constant field of F .

Definition 1.1.2. A ring O is said to be a valuation ring of the function field F if

i) K ( O ( F ,

ii) for every z ∈ F we have that z ∈ O or z−1 ∈ O.

A valuation ring O is a local ring having unique maximal ideal P = O \ O×, where
O× denotes the set of units of O. P is called a place of the function field F and we
define the set of all places of F by PF := {P | P is a place of F}.
The maximal ideal P is also principal, and following from this fact, every element t ∈ P
such that P = tO is called prime element for P . More precisely, O is a principal
ideal domain. Moreover, when P = tO, we have that every 0 6= z ∈ F has a unique
representation of the form z = tnu for some n ∈ Z and some u ∈ O×.

We also have that a valuation ring O is uniquely determined by its maximal ideal
P , hence we can set OP := O to be the valuation ring of the place P .
Finally notice that the field of constant K̃ is contained in every valuation ring O ⊆ F .

We now give the definition of discrete valuation, which gives us another useful way
to describe places and valuation rings.

Definition 1.1.3. Let F be a function field. A function v : F → Z ∪ {∞} is called a
discrete valuation of F if it satisfies the following proprieties:

i) v(x) =∞⇔ x = 0,
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1.1. Algebraic Function Fields 3

ii) v(x · y) = v(x) + v(y) for all x, y ∈ F ,

iii) v(x+ y) ≥ min{v(x), v(y)} for all x, y ∈ F ,

iv) there exists an element z ∈ F such that v(z) = 1,

v) v(x) = 0 for all 0 6= x ∈ K.

Notice also that a discrete valuation of F fulfils the strict triangle inequality, that is
to say: v(x+ y) = min{v(x), v(y)} for all x, y ∈ F with v(x) 6= v(y).

Definition 1.1.4. Let F be a function field. Let P ∈ PF be a place of F . We can
associate to P the well defined map vP : F → Z ∪ {∞} defined in this way: let t be
a prime element for P . For an element 0 6= z ∈ F consider the unique representation
z = tnu. Now define vP (z) := n and vP (0) :=∞.

The map vP is a discrete valuation and we also have

OP = {z ∈ F | vP (z) ≥ 0},

O×P = {z ∈ F | vP (z) = 0},

P = {z ∈ F | vP (z) > 0}.

Moreover an element z ∈ F is a prime element for a place P if and only if vP (z) = 1.

Definition 1.1.5. Let P ∈ PF be a place of a function field F .

i) FP := OP /P is called the residue class field of P .

ii) deg(P ) := [FP : K] is called the degree of P . A place of degree one is also called a
rational place of F .

Notice that the degree of a place is always finite. More precisely for a place P
of F and 0 6= z ∈ P we have that deg(P ) ≤ [F : K(z)] < ∞. As a corollary of such
a statement one can show that the field K̃ of constant of F is a finite field extension of K.

Of course, since we are dealing with places of function fields, it is natural to ask
whether they actually exist or not.

Theorem 1.1.6. Let F be a function field and R a subring of F such that K ⊆ R ⊆ F .
Assume that {0} 6= I ( R is a proper ideal of R. It follows that there is a place P ∈ PF
with I ⊆ P and R ⊆ OP .

Proof. For the proof we refer to [7, Theorem 1.1.19].

Next we give the definition of zeros and poles, which will play an important role for
defining the Riemann-Roch Space.

Definition 1.1.7. Let F be a function field. Let P ∈ PF be a place of F and let z ∈ F .
We say that P is a zero of z if vP (z) > 0, conversely if vP (z) < 0 we say that P is a
pole of z. Moreover, if vP (z) = m > 0 we say that P is a zero of z of order m, and if
vP (z) = −m < 0 we say that P is a pole of z of order m.

Following this definition, as a corollary of the Theorem 1.1.6, we obtain that for a
function field F , an element z ∈ F trascendental over K has at least one zero and one
pole. In particular we have that the set of places PF is different from the empty set.

More precisely, every function field has infinitely many places. Moreover, every
non-zero element z ∈ F has finitely many zeros and poles. This is a consequence of
the independence of valuations, in particular of the Weak Approximation Theorem [7,
Theorem 1.3.1].



1.2. Divisors 4

1.2 Divisors

As we have seen before, the field of constants K̃ of a function field is an extension field
of K, and also that F can be regarded as a function field over K̃. Hence from now on
we can make the following assumption:

Let F be a function field of one variable having full constant field K.

Definition 1.2.1. A divisor of a function field F is an element of Div(F ), where Div(F )
denotes the free abelian group generated by the places of F . In other words

Div(F ) :=

∑
P∈PF

nPP | nP ∈ Z and nP = 0 for all but finitely many places

 .

For a convenient writing we can define also the support of D as supp(D) := {P ∈
PF | nP 6= 0}, and so, considering a finite set S ⊆ PF with S ⊇ supp(D), we can write
a divisor as

D =
∑
P∈S

nPP.

Concerning the structure of the group we have that the neutral element of Div(F ) is
the divisor 0 :=

∑
P∈PF

nPP , with all nP = 0. Moreover the sum is made coefficientwise,
that is to say: let D =

∑
P∈PF

nPP and D′ =
∑

P∈PF
n′PP , then D+D′ =

∑
P∈PF

(nP +
n′P )P .

Consider now a place Q ∈ PF and a divisor D =
∑

P∈PF
nPP . We define vQ(D) :=

nQ. We can now rewrite a divisor and the definition of support in the following way:

supp(D) = {P ∈ PF | vP (D) 6= 0} and D =
∑

P∈supp(D)

vP (D)P.

We now define a partial ordering in the group of divisors, which will be important
later, in Chapter 2. For this, we first say that a divisor D ∈ Div(F ) is positive (denoted
by D ≥ 0) if vP (D) ≥ 0 for all P ∈ PF . Now the partial ordering on Div(F ) can be
defined as follow

D ≤ D′ def⇐⇒ D′ −D ≥ 0.

This is equivalent to say that D ≤ D′ if and only if vP (D) ≤ vP (D′) for all P ∈ PF .
We can also define the degree of a divisor through deg(D) :=

∑
P∈PF

vP (D) deg(P ).
Notice that the map deg : Div(F )→ Z is a ring homomorphism.

We now come to the next definitions.

Definition 1.2.2. Let F be a function field. Consider an element x ∈ F, x 6= 0. Let Z
be the set of zeros of x in PF and N be the set of poles of x. We define

(x)0 :=
∑
P∈Z

vP (x)P , called the zero divisor of x,

(x)∞ :=
∑
P∈N

(−vP (x))P , called the pole divisor of x,

(x) := (x)0 − (x)∞, the principal divisor of x.
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This definition makes sense since we have seen that every non-zero element x ∈ F
has finitely many zeros and poles.
Notice also that both (x)0 and (x)∞ are positive and that (x) =

∑
P∈PF

vP (x)P .

The set of principal divisors forms a subgroup, more precisely we define

Definition 1.2.3.

i) Princ(F ) := {(x) | x ∈ F, x 6= 0}, the group of principal divisors,

ii) Cl(F ) := Div(F )/Princ(F ) is called the divisor class group of F .

Let D ∈ Div(F ), then the divisor class of D, written [D], is the corresponding
element in Cl(F ). We can find an equivalence relation between two divisors D and
D′ in Div(F ), which is: D is equivalent to D′ if and only if [D] = [D′], meaning that
D = D′ + (x), for some 0 6= x ∈ F .

1.3 The Riemann-Roch Space

Consider a function field F over K.

Definition 1.3.1. Let D ∈ Div(F ). The Riemann-Roch space associated to D is defined
as

L(D) := {x ∈ F | (x) +D ≥ 0} ∪ {0}.

We can interpret this space as follows:
let D =

∑s
i=1 niPi −

∑t
j=1mjQj , with ni and mj both larger than zero for all i and j.

Then L(D) consists of all elements x ∈ F for which hold

• x has zeros of order larger or equal than mj at Qj , for j = 1, . . . , t,

• x may have poles only at the places P1, . . . , Ps, with the order of the pole at Pi
bounded by ni, i = 1, . . . , s.

The Riemann-Roch space L(D) for a divisor D ∈ Div(F ) is a K-vector space. We
denote its dimension by `(D) := dimK(L(D)) and call it the dimension of the divisor D.
For any D ∈ Div(F ) we have that `(D) <∞. More precisely, for a divisor D ∈ Div(F )
with D ≥ 0 we get that `(D) ≤ deg(D) + 1. In addition for any two divisors D and D′

with D ≤ D′ we have that L(D) ⊆ L(D′) and also

dimK(L(D′)/L(D)) = `(D′)− `(D) ≤ deg(D′)− deg(D).

We have also that L(D) 6= {0} if and only if there exists a divisor D′ ≥ 0 equivalent
to D. Moreover if D and D′ are two equivalent divisors, it follows that L(D) and L(D′)
are isomorphic as K-vector spaces.
Furthermore is useful to notice that L(0) = K and that if D < 0, then L(D) = {0}.

Remark 1.3.2. Observe that over a finite field with q elements Fq we have that L(D)
is finite. More precisely

| L(D) |= q`(D).

We state now an important theorem about principal divisors, which essentially tells
us that any element 0 6= x ∈ F has many zeros as poles when those ore counted properly.

Theorem 1.3.3. All principal divisors have degree zero. More precisely

deg(x)0 = deg(x)∞ = [F : K(x)].
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Proof. For the proof of this theorem, we refer to [7, Theorem 1.4.11].

Now we turn our attention to `(D) for D ∈ Div(F ). The question is which integer
values can this dimension have. As we have seen before for a positive divisor D ∈ Div(F )
we have that `(D) ≤ deg(D) + 1. But actually we can give a better bound independent
of the divisor D which rely only on the function field. In fact there exists a constant ε
such that for any divisor D ∈ Div(F )

deg(D)− `(D) ≤ ε.

This bound allows us to define an invariant of the function field. This definition will
lead us to the Riemann’s Theorem, which will be used often in Chapter 2.

Definition 1.3.4. Let F be a function field. The non-negative integer

g := max{deg(D)− `(D) + 1 | D ∈ Div(F )}

denotes the genus of F .

Theorem 1.3.5. (Riemann’s Theorem)
Let F be a function field of genus g. Then

i) `(D) ≥ deg(D) + 1− g, for all D ∈ Div(F ),

ii) there exists an integer β such that

`(D) = deg(D) + 1− g

whenever deg(D) ≥ β, where β depends only on the function field F .

We conclude this section by taking a quick look at the Riemann-Roch Theorem. The
proof and the theory needed in order to obtain this result can be found throughout
section 1.5 of [7].

Theorem 1.3.6. (Riemann-Roch Theorem)
Let F be a function field of genus g. Then for any divisor D ∈ Div(F ) we have

`(D) = deg(D) + 1− g + `(W −D),

where W denotes a canonical divisor of F .

As a consequence of this theorem, we can now be more precise in choosing the
constant β of the Riemann’s Theorem. Indeed we now have that

`(D) = deg(D) + 1− g

for any divisor D ∈ Div(F ) with deg(D) ≥ 2g − 1.

1.4 Holomorphy Rings

As in the previous sections, let F denotes a function field. Here we treat subrings of
function fields, in particular we deal with holomorphy rings. With this we complete the
base setting which is needed for the later chapters.

Definition 1.4.1. A set R with K ⊆ R ⊆ F is a subring of F if R is a ring and R is
not a field.

As an example one can consider the valuation ring R = OP for some place P ∈ PF .
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Definition 1.4.2. An holomorpy ring is a ring R ⊆ F of the form R = OS where

OS := {z ∈ F | vP (z) ≥ 0 for all P ∈ S}

for some S ( PF , S not the empty set.

Every holomorphy ring is a subring of F . Of course every valuation ring OP is a
holomorphy ring, just take S = {P} and get OP = OS . Moreover for any P ∈ PF and
∅ 6= S ( PF we have that OS ⊆ OP if and only if P ∈ S. Also OS = OT if and only if
S = T .

As an example one should consider the rational function field K(x) and the holo-
morphy ring K[x]. Namely

K[x] =
⋂

P 6=P∞

OP ,

where P∞ denotes the only pole of x in K(x).

Now we want to know some proprieties of the holomorpy rings. For this we start
with some definitions.

Definition 1.4.3. Consider a subring R ⊆ F .

i) An element z ∈ F is called integral over R if there exists a monic polynomial

f(T ) := Tn + an−1T
n−1 + · · ·+ a1T + a0 ∈ R[T ]

such that f(z) = 0. This type of equation is called an integral equation for z over
R.

ii) The integral closure of R in F is the set

icF (R) := {z ∈ F | z is integral over R}.

iii) R is called integrally closed if icQuot(F )(R) = R, where Quot(F ) ⊆ F denotes the
quotient field of R. This means that R is called integrally closed if all elements
z ∈ R integral over R already lie in R.

Following this definitions we have that an holomoprhy ringOS is integrally closed and
its quotient field is F itself. Moreover if we define the set Sub(R) = {P ∈ PF | R ⊆ OP },
we have the following:

• ∅ 6= Sub(R) ( PF ,

• icF (R) = OSub(R). Also icF (R) is an integrally closed subring of F having as
quotient field F itself.

We can now deduce that a subring R of F with quotient field F is a holomorphy
ring if and only if R is integrally closed.

We conclude this section by stating a useful fact about maximal ideals of holomorphy
rings.

Proposition 1.4.4. There is a one-to-one correspondence between the places in S ( PF
and the maximal ideals of the holomorphy ring OS. This correspondence is given by

P −→ P ∩ OS =: POS
.
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Moreover, as a generalization of the fact that any valuation ring is a principal ideal
domain, we have that for any non-empty and finite subset of places S ( PF the corre-
spondent holomorphy ring OS is a principal ideal domain.

Additionally, for any non-empty proper subset of places S ( PF , a holomorphy ring
is a Dedekind domain. More precisely, is important to us that any prime ideal in a
holomorphy ring is also a maximal ideal.

Concerning this result, here we state two lemmas which we prove using only theory
coming from [7]. More advanced proofs can also be found.

Lemma 1.4.5. Let F be a function field and OS a holomorphy ring of F . Let p ⊆
OS be a prime ideal but not maximal. Then there exists a finite number of places
{P1, . . . , Pn} ⊆ PF such that p is prime but not maximal in O

Ŝ
with Ŝ = {P1, . . . , Pn}c ⊇

S.

Proof. Suppose by contradiction that any prime ideal p ⊆ OS is maximal in any O
Ŝ

with Ŝc finite. Consider an element x ∈ OS . Since any element of a function field has
finitely many poles, it follows that x ∈ O

Ŝ
for some Ŝ. Moreover, due to the fact that

p ⊆ OS is maximal in any O
Ŝ

with Ŝc finite, we have that x · y = 1 mod p ∩ O
Ŝ

for
some y. This also imply that x · y = 1 mod p, since p ⊃ p ∩ O

Ŝ
. We deduce that x is

invertible in OS/p. Since x was chosen arbitrarily, we get that OS/p is a field, giving us
the maximality for p and contradicting the assumption of the lemma.

Lemma 1.4.6. Let F be a function field and O
Ŝ

a holomorphy ring of F with Ŝ having
finite complement. Then any prime ideal p ⊆ O

Ŝ
is maximal.

Proof. By exercise 3.2 of [7] we get that there exists an element x ∈ F such that the
extension F : K(x) is separable and x has poles exactly at Ŝc, which means that x
actually lies in O

Ŝ
. Consider now the holomorphy ring K[x], we have

icF (K[x]) =
⋂

P∈PF :K[x]⊆OP

OP =
⋂

P∈PF :x∈OP

OP =
⋂
P∈Ŝ

OP = O
Ŝ
.

Since K[x] is a principal ideal domain, we can apply part c) of Theorem 3.3.4 of [7],
which tells us that there exists a basis {u1, . . . , un} for F , where n is the finite degree
of the extension, with the following propriety

O
Ŝ

=
n∑
i=1

K[x]ui.

We now quotient both sides by p and obtain that O
Ŝ
/p, which is a integral domain since

p is prime, can be written as a finite dimensional vector space. Hence O
Ŝ
/p is a finite

integral domain and thus a field. From this it follows that p must be maximal.

Lemma 1.4.6 shows that the consequence of Lemma 1.4.5 is always not true. Con-
sequently the assumption of Lemma 1.4.5 must be false and so we obtain that in a
holomorphy ring of a function field every prime ideal is also maximal.



Chapter 2. Density of Eisenstein Polynomials

Chapter 2

Density of Eisenstein Polynomials

In this chapter we are interested in computing the densities of monic and non-monic
Eisenstein polynomials of a fix degree d with coefficient lying in a holomorphy ring of a
function field over a finite field. To do this we apply a strategy similar to the one used in
[6]. The formulas we obtain for the densities are analogous to the ones over the integers
described in the introduction. All the computations come directly from the paper [2],
written jointly with Giacomo Micheli.
We start with the definition of Eisenstein polynomial.

Definition 2.0.7. Let R be an integral domain. A polynomial f(X) =
∑n

i=0 aix
i ∈

R[X] is said to be Eisenstein if there exists a prime ideal p ⊆ R for which

• ai ∈ p for all i ∈ {0, . . . , n− 1},

• a0 /∈ p2,

• an /∈ p.

Notice that it makes sense to talk about Eisenstein polynomials over holomorphy
rings since those are integral domains, as we have seen in Chapter 1.

Let q be a prime power and Fq be the finite field of order q. Let F be an algebraic
function field having full constant field Fq. Let PF be the set of places of F and denote
with S a proper non-empty subset of PF . To S we associate the holomorphy ring H =⋂
P∈S OP . Furthermore let us define the set D := {D ∈ Div(F ) | D ≥ 0 and supp(D) ⊆

PF \ S}. It follows that

H =
⋃
D∈D
L(D),

where L(D) denotes the Riemann-Roch space for the divisor D. Furthermore, we re-
call that a holomorphy ring is also a Dedekind domain, hence the prime ideals of H
correspond to the maximal ideals of H, which are of the form P ∩ H =: PH and are
in one-to-one correspondence with the places in S ( PF . In order not to heavier the
notation, we will denote PH again by P .

We now need an appropriate definition of density for our setting and for this we
state a definition analogous to the natural density of the integer setting.

Definition 2.0.8. Let A ⊆ Hm, we define the upper and lower density of A as

D(A) = lim sup
D∈D

|A ∩ L(D)m|
| L(D)m |

,

D(A) = lim inf
D∈D

|A ∩ L(D)m|
| L(D)m |

.

9
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This limit is defined using the Moore-Smith convergence ad described in [5, Chapter
2]. As we have seen in Chapter 1 we have a partial ordering for the set of divisors, hence
(D,≤) is a directed set. Thus the map going from D to the topological space R defined
as

D −→ |A ∩ L(D)m|
| L(D)m |

is a net. Therefore the definition makes sense, since R is a Hausdorff space. Further-
more, if D(A) = D(A), we denote this value D(A) and call it the density of A.

Finally notice that throughout this chapter, when Y is a set and m is a positive
integer, we will denote by Y m the cartesian product ofm-copies of Y . To avoid confusion,
the square of an ideal Q will then be denoted by Q̂ = Q ·Q. Furthermore notice that in
the whole chapter we consider polynomials of degree d > 1.

2.1 Monic Eisenstein Polynomials

In this section we focus on computing the density of monic Eisenstein polynomials.

We begin by introducing the notation which will be used. First we fix an enumeration
of the places of S, that is {Q1, Q2, . . . , Qi, . . . }. Now, with a small abuse of notation
we identify Hd with the set of all monic polynomials of degree d having entries over H,
meaning that if (h0, . . . , hd−1) ∈ Hd, then hi denotes the coefficient of the monomial of
degree i. Furthermore, we denote by E ⊂ Hd the set of monic Eisenstein polynomials of
degree d and by N its complement in Hd. Moreover we denote by Ei the set of monic
polynomials which are Eisenstein with respect to Qi, that is to say:

Ei = {(h0, . . . , hd−1) ∈ Hd : hl ∈ Qi for all l ∈ {0, . . . d− 1} and h0 /∈ Q̂i}.

Finally we denote by Ni the complement of Ei.

In order to compute the density we approximate the complement of E with Nt :=⋂t
i=1Ni. First we give an explicit computation of the density of Nt, second we state a

lemma telling us under which conditions the density of Nt converges to the density of
N . To conclude, we verify that such conditions are fulfilled and then the density of E
will just be the complement of the density of N .

Proposition 2.1.1. The density of Nt is

D(Nt) =

t∏
i=1

(
1− qdeg(Qi) − 1

q(d+1) deg(Qi)

)
.

Proof. Consider the map

φ̃ : Hd →
(
H/(Q̂1 · · · Q̂t)

)d
,

which is defined componentwise by the reduction modulo the ideal (Q̂1 · · · Q̂t). Observe

also that
(
H/(Q̂1 · · · Q̂t)

)d
'
∏t
i=1

(
H/Q̂i

)d
by the Chinese Remainder Theorem.

Consider now a divisor D ∈ D. In order to compute the density of Nt it is enough to
count how many elements there are in Nt ∩ L(D)d, when the degree of D is large.

We start by showing that L(D)d maps surjectively onto
(
H/(Q̂1 · · · Q̂t)

)d
when the

degree of D is large enough.
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For this consider the Fq linear map φ : L(D) →
(
H/(Q̂1 · · · Q̂t)

)
. We have ker(φ) =

L(D)∩ (Q̂1 · · · Q̂t), which represents the elements of L(D) having at least a double root
at each Qi. Hence ker(φ) = L(D − 2

∑t
i=1Qi).

By Riemann’s Theorem, if the degree of D is large enough, the dimension of the kernel
as an Fq vector space is

`

(
D − 2

t∑
i=1

Qi

)
= deg

(
D − 2

t∑
i=1

Qi

)
+ 1− g

= deg(D)− 2
t∑
i=1

deg(Qi) + 1− g, (2.1)

where g denotes the genus of the function field.
By the same theorem `(D) = deg(D) + 1− g. Hence we obtain

dimFq (L(D)/ ker(φ)) = `(D)− `

(
D − 2

t∑
i=1

Qi

)
= 2

t∑
i=1

deg(Qi).

On the other hand, by the Chinese Remainder Theorem

dimFq

(
H/(Q̂1 · · · Q̂t)

)
CRT
= dimFq

(
H/Q̂1 × · · · ×H/Q̂t

)
= 2

t∑
i=1

deg(Qi).

Therefore when the degree of D is large enough φ is surjective, thus φ̃ is surjective.

Let ψi :
(
H/(Q̂1 · · · Q̂t)

)d
−→

(
H/Q̂i

)d
. We have the following situation:

L(D)d
φ̃
�
(
H/(Q̂1 · · · Q̂t)

)d ψ→
t∏
i=1

(
H/Q̂i

)d
,

where ψ = (ψ1, . . . , ψt). Notice that the check for f ∈ Hd not to be Eisenstein with
respect to Qi can be performed by looking at the reduction modulo Q̂i. Therefore

f ∈ Nt ∩ L(D)d if and only if ψi ◦ φ̃(f) /∈
(

(Qi/Q̂i) \ {0}
)
×
(
Qi/Q̂i

)d−1
=: Ei for all

i ∈ {1, . . . , t}.
It follows that Nt ∩ L(D)d = φ̃−1

(
ψ−1

(∏t
i=1

(
(H/Q̂i)

d \ Ei
)))

∩ L(D)d. Hence

| Nt ∩ L(D)d | =| ker(φ̃) | ·
t∏
i=1

|
(
H/Q̂i

)d
\ Ei |

= qd(deg(D)−2
∑t

i=1 deg(Qi)+1−g) ·
t∏
i=1

|
(
H/Q̂i

)d
\ Ei |,

where the last equality follows from (2.1). Now it remains to compute

|
(
H/Q̂i

)d
\ Ei | = q2d deg(Qi)− |

(
(Qi/Q̂i) \ {0}

)
×
(
Qi/Q̂i

)d−1
|

= q2d deg(Qi) −
(
qdeg(Qi) − 1

)
· q(d−1) deg(Qi)

= q2d deg(Qi)
(

1− q−d deg(Qi) + q−(d+1) deg(Qi)
)
.

Therefore for D of degree large enough

| Nt ∩ L(D)d |
| L(D)d |

=
qd(deg(D)−2

∑t
i=1 deg(Qi)+1−g)

qd(deg(D)+1−g) ·
t∏
i=1

q2d deg(Qi)
(

1− q−d deg(Qi) + q−(d+1) deg(Qi)
)
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=
t∏
i=1

(
1− q−d deg(Qi) + q−(d+1) deg(Qi)

)
=

t∏
i=1

(
1− qdeg(Qi) − 1

q(d+1) deg(Qi)

)
.

Hence

D(Nt) = lim
D∈D

| Nt ∩ L(D)d |
| L(D)d |

=

t∏
i=1

(
1− qdeg(Qi) − 1

q(d+1) deg(Qi)

)
.

Lemma 2.1.2. Let n ∈ N, A ⊆ Hn. Let {At}t∈N be a family of subsets of Hn such that
At+1 ⊆ At and

⋂
t∈NAt = A. Assume also that D(At) exists for all t. If limt→∞D(At \

A) = 0, then D(A) = limt→∞D(At).

Proof. We start from the equality | At ∩ L(D)n |=| A ∩ L(D)n | + | (At \A) ∩ L(D)n |,
from which it follows

lim inf
D∈D

| A ∩ L(D)n |
| L(D)n |

= lim inf
D∈D

(
| At ∩ L(D)n |
| L(D)n |

− | (At \A) ∩ L(D)n |
| L(D)n |

)
≥ lim inf

D∈D

| At ∩ L(D)n |
| L(D)n |

− lim sup
D∈D

| (At \A) ∩ L(D)n |
| L(D)n |

.

It follows that D(At)− D(At \A) ≤ D(A). Since D(At) exists for all t we get

D(At)− D(At \A) ≤ D(A).

Now notice that lim
t→∞

D(At) exists since D(At) is decreasing and bounded from below.

By taking the limit in t, the last expression then becomes

lim
t→∞

D(At)− lim
t→∞

D(At \A) ≤ D(A).

Since lim
t→∞

D(At \A) = 0 by assumption, it follows that lim
t→∞

D(At) ≤ D(A).

On the other hand A ⊆ At which implies D(A) ≤ D(At). In particular D(A) ≤
lim
t→∞

D(At). Combining all together we get

lim
t→∞

D(At) ≤ D(A) ≤ D(A) ≤ lim
t→∞

D(At),

therefore the claim follows.

Theorem 2.1.3. The density of the set of monic Eisenstein polynomials with coefficients
in H is

D(E) = 1−
∏
Q∈S

(
1− qdeg(Q) − 1

q(d+1) deg(Q)

)
.

Proof. We make use of Lemma 2.1.2 for the family {Nt}t∈N. Hence we want to show
that limt→∞D(Nt \ N ) = 0.
First notice that

• Nt \ N =
⋃
r>t Er ⊆

⋃
r>tQ

d
r ,

• Qr ∩ L(D) = L(D −Qr) = 0, if deg(D)− deg(Qr) < 0.
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Now we get

D(Nt \ N ) = lim sup
D∈D

| (Nt \ N ) ∩ L(D)d |
| L(D)d |

≤ lim sup
D∈D

∣∣∣∣∣∣∣∣
⋃
r>t

deg(Qr)≤deg(D)

Qdr ∩ L(D)d

∣∣∣∣∣∣∣∣ q
−d`(D)

= lim sup
D∈D

∣∣∣∣∣∣∣∣
⋃
r>t

deg(Qr)≤deg(D)

L(D −Qr)d

∣∣∣∣∣∣∣∣ q
−d`(D) ≤ lim sup

D∈D

∑
r>t

deg(Qr)≤deg(D)

qd`(D−Qr)

qd`(D)
. (2.2)

Observe now that if deg(D −Qr) ≥ 0 we have that `(D −Qr) ≤ deg(D −Qr) + 1 and
also that `(D) ≥ deg(D) + 1− g by Riemann’s Theorem.
Hence we have that (2.2) is less or equal than

lim sup
D∈D

∑
r>t

deg(Qr)≤deg(D)

qd(1+deg(D)−deg(Qr))

qd(deg(D)+1−g) ≤
∑
r>t

qd(g−deg(Qr)) = qdg
∑
r>t

q−d deg(Qr).

We now notice that
∑

r>t q
−d deg(Qr) is the tail of a subseries of the Zeta function, which

is absolutely convergent for d > 1. Letting t going to infinity the tail converges to 0,
thus lim

t→∞
D(Nt \ N ) = 0. We are now able to apply Lemma 2.1.2 with n = d, At = Nt

and A = N

D(N ) = lim
t→∞

D(Nt) = lim
t→∞

t∏
i=1

(
1− qdeg(Qi) − 1

q(d+1) deg(Qi)

)
=
∏
Q∈S

(
1− qdeg(Q) − 1

q(d+1) deg(Q)

)
.

We conclude by taking the complement

D(E) = 1− D(N ) = 1−
∏
Q∈S

(
1− qdeg(Q) − 1

q(d+1) deg(Q)

)
.

2.2 Non-Monic Eisenstein Polynomials

In this section we compute the density of non-monic Eisenstein polynomials applying
the same strategy of section 2.1. As before we fix an enumeration of the places of S,
that is {Q1, Q2, . . . , Qi, . . . }. Analogously to the previous section, we identify the set of
all polynomials of degree d having entries over H with Hd+1. Let E+ ⊆ Hd+1 be the set
of Eisenstein polynomials of degree d and N+ be its complement in Hd+1. We denote
by E+i the set of polynomials which are Eisenstein with respect to Qi:

E+i = {(h0, . . . , hd) ∈ Hd+1 : hl ∈ Qi for all l ∈ {0, . . . d− 1}, h0 /∈ Q̂i and hd /∈ Qi}.

We denote by N+
i the complement of E+i .

Finally let Nt
+

=
⋂t
i=1N

+
i .

Proposition 2.2.1. The density of Nt
+

is

D(Nt
+

) =

t∏
i=1

(
1− (qdeg(Qi) − 1)2

q(d+2) deg(Qi)

)
.
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Proof. Consider a divisor D ∈ D. With the same reasoning of the monic case one can

show that L(D)d+1 maps surjectively onto
(
H/(Q̂1 · · · Q̂t)

)d+1
when the degree of D is

large enough.

Let ψi :
(
H/(Q̂1 · · · Q̂t)

)d+1
−→

(
H/Q̂i

)d+1
as before. The situation is now the

following:

L(D)d+1 φ̃
�
(
H/(Q̂1 · · · Q̂t)

)d+1 ψ→
t∏
i=1

(
H/Q̂i

)d+1
,

where ψ = (ψ1, . . . , ψt).
Analogously to the case of monic polynomials we note that we can verify that f ∈ H
is not Eisenstein with respect to Qi by looking at the reduction modulo Q̂i. Hence f ∈
Nt

+∩L(D)d+1 if and only if ψi◦φ̃(f) /∈
(

(Qi/Q̂i) \ {0}
)
×
(
Qi/Q̂i

)d−1
×
(

(H/Q̂i) \ (Qi/Q̂i)
)

=:

E+
i for all i ∈ {1, . . . , t}.

Hence we get

| Nt
+ ∩ L(D)d+1 |=| ker(φ̃) | ·

t∏
i=1

|
(
H/Q̂i

)d+1
\ E+

i |

= q(d+1)(deg(D)−2
∑t

i=1 deg(Qi)+1−g) ·
t∏
i=1

|
(
H/Q̂i

)d+1
\ E+

i |,

where

|
(
H/Q̂i

)d+1
\ E+

i | = q2(d+1) deg(Qi)− |
(

(Qi/Q̂i) \ {0}
)
×
(
Qi/Q̂i

)d−1
×
(

(H/Q̂i) \ (Qi/Q̂i)
)
|

= q2(d+1) deg(Qi) −
((
qdeg(Qi) − 1

)
q(d−1) deg(Qi)

(
q2 deg(Qi) − qdeg(Qi)

))
= q2(d+1) deg(Qi)

(
1− q2 deg(Qi) − 2qdeg(Qi) + 1

q(d+2) deg(Qi)

)

= q2(d+1) deg(Qi)

(
1−

(
qdeg(Qi) − 1

)2
q(d+2) deg(Qi)

)
.

Therefore for D of degree large enough

| Nt
+ ∩ L(D)d+1 |
| L(D)d+1 |

=
q(d+1)(deg(D)−2

∑t
i=1 deg(Qi)+1−g)

q(d+1)(deg(D)+1−g) ·
t∏
i=1

q2(d+1) deg(Qi)

(
1−

(
qdeg(Qi) − 1

)2
q(d+2) deg(Qi)

)

=
t∏
i=1

(
1−

(
qdeg(Qi) − 1

)2
q(d+2) deg(Qi)

)
.

Hence

D(Nt
+

) = lim
D∈D

| Nt
+ ∩ L(D)d+1 |
| L(D)d+1 |

=
t∏
i=1

(
1−

(
qdeg(Qi) − 1

)2
q(d+2) deg(Qi)

)
.

Theorem 2.2.2. The density of the set of Eisenstein polynomials with coefficients in
H is

D(E+) = 1−
∏
Q∈S

(
1− (qdeg(Q) − 1)2

q(d+2) deg(Q)

)
.



2.2. Non-Monic Eisenstein Polynomials 15

Proof. Again by Lemma 2.1.2 we have to show that limt→∞D(Nt
+ \ N+) = 0.

Observe that E+r ∩ L(D)d+1 ⊆ Qdr × L(D). We get

D(Nt
+ \ N+) = lim sup

D∈D

| (Nt
+ \ N+) ∩ L(D)d+1 |
| L(D)d+1 |

≤ lim sup
D∈D

∣∣∣∣∣∣∣∣
⋃
r>t

deg(Qr)≤deg(D)

E+r ∩ L(D)d+1

∣∣∣∣∣∣∣∣ q
−(d+1)`(D)

≤ lim sup
D∈D

∣∣∣∣∣∣∣∣
⋃
r>t

deg(Qr)≤deg(D)

(
Qdr × L(D)

)
∩ L(D)d+1

∣∣∣∣∣∣∣∣ q
−(d+1)`(D)

≤ lim sup
D∈D

∑
r>t

deg(Qr)≤deg(D)

|
(
Qdr × L(D)

)
∩ L(D)d+1 |

q(d+1)`(D)

= lim sup
D∈D

∑
r>t

deg(Qr)≤deg(D)

| Qr ∩ L(D) |d| L(D) |
q(d+1)`(D)

= lim sup
D∈D

∑
r>t

deg(Qr)≤deg(D)

| Qr ∩ L(D) |d

qd`(D)

which is equation (2.2). Hence for t going to infinity we obtain D(Nt
+ \ N+) = 0.

We now apply Lemma 2.1.2 with n = d+ 1, At = Nt
+

and A = N+ obtaining

D(N+) = lim
t→∞

D(Nt
+

) = lim
t→∞

t∏
i=1

(
1−

(
qdeg(Qi) − 1

)2
q(d+2) deg(Qi)

)
=
∏
Q∈S

(
1−

(
qdeg(Q) − 1

)2
q(d+2) deg(Q)

)
.

We now take the complement

D(E+) = 1− D(N+) = 1−
∏
Q∈S

(
1−

(
qdeg(Q) − 1

)2
q(d+2) deg(Q)

)
.



Chapter 3. Eisenstein Polynomials and Totally Ramified Places

Chapter 3

Eisenstein Polynomials and
Totally Ramified Places

Since in the previous chapters we have discussed function fields and Eisenstein polyno-
mials, we would like to develop the theory a little further in order to obtain a result
which connects the two things in some way. This will be the function field analogue of
the work of Keith Conrad in [1], which is about number fields. For this we start talking
about algebraic extensions of function fields.

3.1 Algebraic Extensions of Function Fields

Definition 3.1.1.

i) Let F be a function field over K. An algebraic extension of F is an algebraic
function field E over K ′ such that E ⊇ F is an algebraic field extension and also
K ′ ⊇ K.

ii) The extension E of F is called finite if [E : F ] <∞.

iii) If the extension E of F satisfies E = FK ′, then E is called a constant field extension.

For the rest of the chapter let E over K ′ denotes an algebraic extension of the func-
tion field F over K, with K ⊆ K ′.

As a consequence of the definitions, we can see that if E is an algebraic extension of
F , then K ′ is algebraic over K and K = F ∩K ′. Moreover we have that E is a finite
extension of F if and only if [K ′ : K] < ∞. Also note that F ′ := FK ′ over K ′ is a
constant field extension of F and E is a finite extension of F ′.

With the notion of extensions of function fields is natural to discuss the intersection
between the base field and its extension. For this we investigate the relations between
the places of the two fields.

Definition 3.1.2. Let E be an extension of F . Let P ∈ PF and P ′ ∈ PE be places of
F and of E respectively. If P ⊆ P ′ then P ′ is said to lie over P . Equivalent one can say
that P lies under P ′ or that P ′ is an extension of P . The notation is P ′ | P .

Such extensions of places exists as shown in [7, Proposition 3.1.7]. More precisely,
for each place P ∈ PF there is at least one, but finitely many extensions P ′ ∈ PE . On
the opposite, for each P ′ ∈ PE there is exactly one P ∈ PF for which P ′ | P and this
will turn out to be P = P ′ ∩ F .

16
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Next we state a proposition which tells us which are equivalent conditions for the
fulfilment of the Definition 3.1.2.

Proposition 3.1.3. Let E be an algebraic extension of F . Consider a place P ∈ PF
and a place P ′ ∈ PE and let OP ⊆ F and OP ′ ⊆ E be the corresponding valuation rings
with respect to the discrete valuations vP and vP ′. Then the following are equivalent:

1. P ′ | P ,

2. OP ⊆ OP ′,

3. there exists e ∈ N, e ≥ 1 such that for all x ∈ F vP ′(x) = e · vP (x).

Furthermore notice that if P ′ | P , it follows that

P = P ′ ∩ F and OP = OP ′ ∩ F.

Proof. See [7, Proposition 3.1.4].

This proposition justify the next definitions.

Definition 3.1.4. Let E be an algebraic extension of F and consider the place P ∈ PF
lying under P ′ ∈ PE .

i) The natural number e(P ′ | P ) := e for which

vP ′(x) = e · vP (x)

is called the ramification index.

ii) We say that P ′ | P is unramified if e(P ′ | P ) = 1 and that P ′ | P is ramified
e(P ′ | P ) > 1.

iii) [EP ′ : FP ] =: f(P ′ | P ), where FP = OP /P , is called the relative degree of P ′ over
P . Notice that f(P ′ | P ) can also be infinite.

Moreover for the relative degree we have that f(P | P ′) < ∞ if and only if [E :
F ] < ∞. Furthermore for the ramification index and the relative degree there is a
multiplicative propriety, that is to say: let E′ over K ′′ be an algebraic extension of E
with P ′′ lying over P ′, then

e(P ′′ | P ) = e(P ′′ | P ′) · e(P ′ | P ),

f(P ′′ | P ) = f(P ′′ | P ′) · f(P ′ | P ).

We now state a very important theorem.

Theorem 3.1.5. Let E be an extension of F , [E : F ] < ∞. Let P ∈ PF and let
P1, . . . , Pn all the places in PE lying over P . Then

n∑
i=1

ei · fi = [E : F ],

where ei denotes the ramification index e(Pi | P ) and fi denotes the relative degree
f(Pi | P ).

Proof. [7, Theorem 3.1.11].
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As a direct corollary of this theorem one can see that | {P ′ ∈ PE : P ′ | P} |≤ [E : F ]
and moreover for a place P ′ such that P ′ | P we have that e(P ′ | P ) ≤ [E : F ] and
f(P ′ | P ) ≤ [E : F ].

These new results authorize us to state the next definitions.

Definition 3.1.6. Let E be an extension of F of degree n and consider a place P ∈ PF .
Then

i) if there are exactly n places P ′ ∈ PE lying over P , then we say that P splits
completely in E,

ii) if there exist a place P ′ ∈ PE with e(P ′ | P ) = n, then we say that P is totally
ramified in E.

We conclude this section by giving two statements which will be useful in Section
3.2.

Proposition 3.1.7. Let F be a function field and let R be a holomoprhy ring of F . Let
E be a finite extension of F and consider x ∈ E. Denote with fx(T ) ∈ F [T ] the minimal
polynomial of x in F . Then

x is integral over R ⇔ fx(T ) ∈ R[T ].

Lemma 3.1.8. Let F be a function field and E a finite separable extension of F . Con-
sider P ∈ PF . Then the integral closure of OP in E is

icE(OP ) =
⋂
P ′|P

OP ′ .

The proofs can be found in [7, Proposition 3.3.1] and [7, Corollary 3.3.5] respectively.

3.2 Eisenstein Polynomials and Totally Ramified Places

In this section we establish a connection between totally ramified places of a function
field and Eisenstein polynomials in a similar way to the work of K. Conrad in [1]. The
two results are converse of each other. First we show that whenever we have a simple
extension of a function field F , i.e. E = F (α), with α being a root a polynomial which
is Eisenstein at a place Q ∈ PF , then Q is totally ramified in E. Second we show that
whenever we deal with a finite separable extension E of a function field F with a place
Q ∈ PF totally ramified in E, then E can be written as E = F (α), where α is a prime
element of Q and its minimal polynomial is Eisenstein at Q. The first result will be a
direct corollary of Theorem 3.2.1, whereof a more general version can be found in [7,
Proposition 3.1.15]. The second result will need a more thoughtful approach, for which
I would like to thank Giacomo Micheli.

Theorem 3.2.1. Let F be a function field and E an extension of F of the form E =
F (α), where α is a root of the polynomial fα(T ) = anT

n + · · · + a1T + a0 ∈ F [T ]. Let
Q ∈ PF be a place of F such that

i) vQ(a0) = 1,

ii) vQ(ai) > 0 for all i ∈ {1, . . . , n− 1},

iii) vQ(an) = 0.

Then Q is totally ramified in E.
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Proof. Consider a place P lying over Q and denote by e := e(P | Q) its ramification
index, i.e vP (x) = e · vQ(x) for all x ∈ F .
We want to show that e = n, where n = [F (α) : F ]. By Theorem 3.1.5 we already know
that e ≤ n, so if we can show that e ≥ n, we are done.
Notice that the three conditions in the assumption imply also that vP (ai) > 0 for all
i ∈ {1, . . . , n− 1} and vP (an) = 0.
Since α is a root of fα(T ) we get the equation

−anαn = a0 + · · ·+ an−1α
n−1. (3.1)

By taking the valuation at P of the left and right side of (3.1) and applying the triangle
inequality for valuations, one can see that vP (α) > 0. Now for i ∈ {1, . . . , n − 1} we
obtain

vP (aiα
i) = vP (ai) + vP (αi) = e · vQ(ai) + i · vP (α) > e · vQ(ai) ≥ e · vQ(a0) = vP (a0).

We can now apply the strict triangle inequality while we take the valuation of (3.1) at
P obtaining

n · vP (α) = vP (−anαn) = vP (a0 + · · ·+ an−1α
n−1) = vP (a0) = e · vQ(a0).

Hence, since by assumption vQ(a0) = 1, we get that n · vP (α) = e, implying that n
divides e, which tells us that n ≤ e, completing the proof.

Corollary 3.2.2. Let F be a function field and H ⊆ F a holomorphy ring of F . Let
E be an extension of F of the form E = F (α), where α is a root of a polynomial
fα(T ) ∈ H[T ] with fα Eisenstein at a place Q ∈ PF . Then Q is totally ramified in E.

Proof. For the proof is enough to show that the valuations of the coefficients of fα satisfy
the proprieties of Theorem 3.2.1, and then the proof will follow by the same theorem.
Since fα is Eisenstein at Q it means that a0 ∈ Q \Q2, ai ∈ Q for all i ∈ {1, . . . , n− 1}
and an /∈ Q.
This directly imply that vQ(a0) = 1, vQ(ai) > 0 for all i ∈ {1, . . . , n− 1} and, since all
the coefficients of fα are in H, vQ(an) = 0. Thus all the assumptions of Theorem 3.2.1
are fulfilled and the claim follows.

We now would like to establish some sort of converse result. Notice that, differently
from the result of Conrad, in order to obtain this converse relation between totally
ramified places and Eisenstein polynomials, we have to assume the extension of F to be
separable. This is not needed in the work of Conrad since extensions of number fields
are always separable extensions.

Lemma 3.2.3. Let F be a function field and let E be a separable extension of F of
the form E = F (α), α algebraic over F . Assume the degree of the extension to be
[E : F ] = d <∞. Let now P ∈ PE such that α ∈ P \P 2 and let Q ∈ PF the unique place
of F lying under P . Assume finally that Q is totally ramified in E. Then the minimal
polynomial of α, fα(T ) ∈ F [T ], is Eisenstein at Q.

Proof. First we claim that the coefficients of the minimal polynomial of α actually lie
in the valuation ring OQ. Indeed, by Proposition 3.1.8 and since Q is totally ramified it
follows that

icE(OQ) = {z ∈ E | z is integral over OQ} =
⋂
P ′|Q

OP ′ = OP .

Since α is an element of P \ P 2, it is in particular an element of OP implying that α is
integral over OQ. Thus we just apply Lemma 3.1.7 and we get that fα ∈ OQ[T ].
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Moreover notice that Q ⊆ P d. This is true since vQ(x) ≥ 1 for all x ∈ Q, hence for
x ∈ Q we get vP (x) = d · vQ(x) ≥ d.
Assume now that all the firsts j − 1 coefficients of fα are in Q but aj /∈ Q, for a fixed
j ∈ {0, . . . , d− 1}. Consider now the equation given by fα(α):

αd +
d−1∑
i=1

aiα
i + a0 = 0.

By taking the equation modulo P d we obtain

d−1∑
i=j+1

aiα
i + ajα

j ≡ 0 mod P d

and so we get

αj

 d−1∑
i=j+1

aiα
i−j + aj

 ≡ 0 mod P d. (3.2)

We now take the valuation at P of the left side

vP

αj
 d−1∑
i=j+1

aiα
i−j + aj

 = j + vP

 d−1∑
i=j+1

aiα
i−j + aj



= j + min{vP

 d−1∑
i=j+1

aiα
i−j

 , vP (aj)}.

Observe that since we are assuming that aj /∈ Q and since aj ∈ OQ we get that vP (aj) =
d · vQ(aj) = 0. Thus we obtain

min{vP

 d−1∑
i=j+1

aiα
i−j

 , vP (aj)} = 0 and so vP

αj
 d−1∑
i=j+1

aiα
i−j + aj

 = j.

Combining what we have so far we get

d− 1 ≥ j = vP

αj
 d−1∑
i=j+1

aiα
i−j + aj

 ≥ d,
were the last inequality follows from (3.2). Clearly this is a contradiction, and so all the
coefficients of fα have to lie in Q.

It remains to prove that a0 ∈ Q \Q2, which is equivalent to prove that vQ(a0) = 1.
Since a0 ∈ Q we already have that vQ(a0) ≥ 1. In order to produce a contradiction,
assume that vQ(a0) > 1, which implies vP (a0) = d · vQ(a0) ≥ 2d. Consider now once

again the equation given by fα(α): −αd =
∑d−1

i=1 aiα
i + a0.

Taking the valuation of the equation at P and applying the triangle inequality we get

d ≥ min
i=1,...,d−1

{vP (ai) + i, vP (a0)} ≥ min
i=1,...,d−1

{vP (ai) + i, 2d}

= min
i=1,...,d−1

{d · vQ(ai) + i, 2d} ≥ min
i=1,...,d−1

{d+ i, 2d} = d+ 1,

which is a contradiction.
Hence vQ(a0) = 1, i.e. a0 ∈ Q \Q2, therefore the claim follows.
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Theorem 3.2.4. Let F be a function field and let E be a finite and separable extension
of F of degree [E : F ] = n. Let Q ∈ PF be a place of F and P ∈ PE be a place of E
lying above Q, with Q totally ramified in E. Moreover consider α ∈ P \ P 2. Then the
minimal polynomial fα ∈ F [T ] of α is a polynomial of degree n and it is Eisenstein at
Q.

Proof. Consider the following chain of extensions

E : F (α) : F (3.3)

and also consider P ∈ PE , P ′ ∈ PF (α) and Q ∈ PF such that P | P ′ and P ′ | Q. Notice
that Q, being totally ramified in E, is also totally ramified in the intermediate extension
F (α). Now α ∈ P \ P 2, which means vP (α) = 1, and since we have vP (α) = e(P |
P ′) · vP ′(α), we get vP ′(α) = 1, that is to say α ∈ P ′ \ P ′2.
Due to the assumption that E is finite and separable we have also that the intermediate
extension F (α) is finite and separable, therefore we can now apply Lemma 3.2.3. Thus
the minimal polynomial fα is Eisenstein at Q of degree [F (α) : F ] =: d.
It remains to show that d = n. By construction in (3.3) we already have that d ≤ n,
which means that we are left to show that n ≤ d.
For this consider the equation given by fα(α):

−αd =

d−1∑
i=0

aiα
i.

By taking the valuation at P and using the triangle inequality for valuations we get

d = vP (−αd) = vP (
d−1∑
i=0

aiα
i)

≥ min
i=0,...,d−1

{vP (ai) + i · vP (α)} = min
i=0,...,d−1

{vP (ai) + i}. (3.4)

Recall that Q is totally ramified in E, hence vP (ai) = n ·vQ(ai) for all i ∈ {0, . . . , d−1},
with vQ(ai) ≥ 1 due to the fact that fα is Eisenstein at Q. Therefore (3.4) is greater or
equal than

min
i=0,...,d−1

{n+ i} = n,

hence d ≥ n and so the claim follows.

Corollary 3.2.5. Let F be a function field and let E be a finite, separable extension
of F of degree [E : F ] = n. Let Q ∈ PF be a place of F totally ramified in E. Then
E = F (α), where α is a root of a polynomial fα ∈ F [T ] with fα Eisenstein at Q.

Proof. Consider the places P ∈ PE lying above Q. Take an element α ∈ P \ P 2 and
consider its minimal polynomial fα ∈ F [T ]. By Theorem 3.2.4 we have that fα is
Eisenstein at Q and has degree n. Therefore, with n being also the degree of the
extension, we can conclude that E is of the from E = F (α), giving us the desired
result.
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