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DYNAMIC POLE ASSIGNMENT AND SCHUBERT CALCULUS*
M. S. RAVI!, JOACHIM ROSENTHAL, AND XIAOCHANG WANG}

Abstract. The output feedback pole assignment problem is a classical problem in linear systems theory. In this
paper we calculate the number of complex dynamic compensators of order g assigning a given set of poles for a
g-nondegenerate m-input, p-output system of McMillan degree n = g(m + p — 1) + mp. As a corollary it follows
that when this number is odd, the generic system can be arbitrarily pole assigned by output feedback with a real
dynamic compensator of order at most g if and only if g(m + p — 1) +mp > n.
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1. Introduction. The output feedback pole assignment of linear systems with static or
dynamic compensators is a classical problem in control theory and many theoretical and
numerical research papers have been devoted to this problem.

Although the systems involved are linear, the problem is in fact not linear. It was Brockett
and Byrnes [4] who first explained the pole assignment problem with static compensators as
an intersection problem in a compactified set of static compensators, the Grassmann manifold

Grass(m, m + p). In making the connection to the classical Schubert calculus they were able
to show that there are

1121 (p — D!(mp)!

(1.1 d(m, p) = deg Grass(m, m + p) = s D mtp—1)!

complex static output feedback laws which assign a set of poles for a nondegenerate m-input,
p-output linear system of McMillan degree n = mp. In particular if the number d(m, p) is
odd, pole assignment by real static feedback is possible, because the set of complex solutions
has to be invariant under complex conjugation. Moreover even if d(m, p) is even, Wang,
using algebrogeometric techniques, showed in [25] that a real solution exists for the generic
system as soon as mp > n.

People have been looking for similar results for the dynamic pole assignment problem
for a long time. A first attempt was made by Byrnes in [5]. Recently Rosenthal interpreted
in [16, 17] the pole assignment problem with dynamic compensators, again as an intersection
problem in a compactified space of dynamic compensators which we denote by K7, ,. It was
also proven in [17] that if a plant has McMillan degree n = g(m + p — 1) + mp and is
g-nondegenerate, then there exist

(1.2) d(m, p,q) = deg K,‘fl’p

complex dynamic feedback compensators of order g which assign a set of n + g closed-loop
poles. At this point we want to mention that all major results derived in [4, 17, 25] are based on
a careful study of the associated pole assignment map. (See §2 for more details.) Indeed the
number d(m, p, q) canalso be viewed as the mapping degree of the associated pole assignment
map and this map has geometrically the format of a central projection.
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One goal of our paper is to derive a formula for d(m, p, g). Historically the formula (1.1)
for d(m, p) = d(m, p, 0) was first discovered in 1886 by Hannibal Schubert [18], a German
high school teacher, using a symbolic formalism known as Schubert calculus. Using modern
language the number d(m, p) is equal to 0", where o1 denotes the first Chern class of the
classifying bundle over the Grassmann manifold Grass(m, m+ p). By applying Pieri’s formula
(see §3 for more details)

(1.3) (i1 day i) o1 = (ineeyit =1, i)

i—1>iy

repeatedly to (p, p +2,p+ 3,..., p + m) = o1, we can compute the number d(m, p) =
deg Grass(m, m + p).

In [15] we defined a set of subvarieties of K p similar to the Schubert varieties of
Grass(m, m + p) and proved a geometric formula similar to Pieri’s formula (1.3). This
enables us to express d(m, p, q) = deg K/}, , as the solution of a partial difference equation
with boundary condition. In this paper (§3) we will solve this difference equation and derive
a closed formula for d(m, p, q) which is valid for all positive integers m, p, and g. From this
formula we finally will derive several new results which predict real and complex solutions
assigning a specific set of closed-loop poles. One of the main results of this paper is Theo-
rem 1.1.

THEOREM 1.1. The poles of an m-input, p-output, q-nondegenerate, linear system of
McMillan degree
(1.4) n=qm+p—1)+mp

can be assigned arbitrarily by using output feedback with complex dynamic compensators of
order at most q, and there are

[ ]G —k+;—nd)m+p))
(LS)  d(m, p,q) = D™ Dmp+qm+p)! Y. 5

o=t | [ (ptj+nj(m+p)— 1!
j=1

complex solutions for each set of poles. In particular, if d(m, p, q) is odd, a real solution
always exists. Moreover when d(m, p, q) is odd, the generic system can be arbitrarily pole
assigned by output feedback with real dynamic compensators of order at most q if and only if

(1.6) n<qm+p-—1)+mp.

The variety K, , which parameterizes the set of m-input, p-output compensators of
McMillan degree g can also be viewed as a parameterization of the space of rational curves
of degree g on the Grassmann variety Grass(m, m + p). This geometric link originates from
the well-known Hermann-Martin identification [12]. (Compare also with [6, 17].)

We were surprised to learn that there has recently been a tremendous interest in the in-
tersection theory of parameterized curves (of arbitrary genus) on Grassmann varieties and
other homogeneous spaces [2, 8, 24, 31]. Researchers working in conformal quantum field
theory conjectured several new intersection numbers and an interesting formula for all num-
bers d(m, p, q), different from (1.5), was part of this conjecture. Readers interested in the
physics behind this conjecture are referred to Vafa [24]. The conjecture itself is formulated by
Intriligator in [8] as well as in [2]. In [15] we were able to verify this conjecture for all numbers
d(m, p, q). More recently Siebert and Tian [22] presented a proof covering the conjecture
for all spaces of parameterized curves on a Grassmann variety. For readers interested in these
connections we will give some more details at the end of §3.
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The paper is organized as follows. In the next section we review the notion of an au-
toregressive system. This class of systems generalizes the class of transfer functions and
it allows us to define the pole placement map by using the behavioral approach to systems
modeling as proposed by Willems [28, 29]. In this framework the points of the variety K, ,
naturally parameterize all autoregressive compensators of a fixed number of inputs, outputs,
and a bounded McMillan degree. We also restate the main results derived in [17], which
were in part the motivation of this paper. We conclude this section with two new theorems
(Theorems 2.14 and 2.15) which sharpen the main results derived in [17].

The main theorem (Theorem 1.1) is proven in §3. The proof involves the review of
the generalized Pieri formula which was derived in [15]. To derive the new formula (1.5)
describing the degree of the pole placement map in the critical dimension, we solve the partial
recurrence relation mentioned earlier. This leads not only to a closed formula for the degree
of the pole placement map in the critical dimension but also to a formula of the degree of
some generalized Schubert varieties (Theorem 3.5). The section is concluded with several
simplified formulas covering particular situations.

In §4 we concentrate on the question of for which triples m, p, ¢ the degree d(m, p, q)
is odd, respectively, even. In Theorem 4.2 and Corollary 4.4 we present a relatively simple
combinatorial procedure which computes the mod 2 degree of the variety K , for arbitrary
m, p, q. Using this procedure we prove the existence of odd degrees even if min(m, p) > 3,
covering in this way many multi-input, multi-output feedback situations. (If min(m, p) > 3the
degree of all Grassmann varieties is even. In part because of this there do not exist any positive
pole placement results over R in the critical dimension, i.e., when n = mp.) We conclude the
section with a complete description of all odd numbers d(m, p, gq) forg =0, 1, 2.

Finally in the last section we merge the derived results and provide a collection of corol-
laries and consequences. In this section we also cover situations when the plant is represented
by a “traditional” strictly proper transfer function or when the compensator is supposed to be
a proper transfer function only.

2. The set of autoregressive systems A;’n,p, the projective variety Ky ,, and the pole
placement map. In this section we collect some mathematical preliminaries and simulta-
neously establish our notation. We develop the theory by using the behavioral approach of
Willems [28] because we believe that the problem formulation in this setting is very natural.
For the relation of this formulation to the traditional transfer function formulation we refer
to [17, 28, 29].

First we review the notion of signal space, behavior, and autoregressive system. For this
let K denote either the set of real numbers or the set of complex numbers, i.e., K = R or
C. Let KR denote the set of all functions ¢ : R — K. With respect to the usual addition
and scalar multiplication of functions, KF is a real vector space. A linear subspace H C KR
which consists of functions that are arbitrarily many times differentiable will be called a signal
space (see [3, 27]). In other words, H is a linear subspace which is invariant under the linear
transformation %. Usually we will assume that H = C*° (R, K), though other function spaces
are well possible. (Compare with [3, p. 76] and [28].)

Let p(s) be a polynomial with coefficients in K, i.e., p(s) € K[s]. Such a polynomial
induces a linear transformation p : H — H, w(t) — p([%)w(t). More generally consider a
p X k polynomial matrix P(s) with entries in K[s]. P(s) induces a linear transformation

.1 P H — HP,

sw() — P (5;) w(t).
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Using the language of Willems [28], we call the kernel of the linear transformation P the
behavior and will denote this subset of the signal set H* by B.

In general the behavior B = ker(P(t%)) is an infinite-dimensional R-vector space of the
signal space H*. In the case where P(s) is square and invertible it is, however, well known
that the behavior B has real dimension n = degdet P(s). Moreover the dynamics of this
autonomous system are described by the roots of the characteristic polynomial det P(s) = O.

Recall that two p x k polynomial matrices P (s) and P(s) are called (row) equivalent if
there is a unimodular matrix U (s) with P(s) = U(s) P(s). Clearly row equivalent matrices
define the same behavior. On the other hand if the signal space is sufficiently rich, e.g., if
C*(R, R) C H, we have the following result. (Compare with [3, §6.2] and [10, Thm. 3.9].)

LEMMA 2.1 (cf. [19, Cor. 2.5]). If C*°(R, R) C H, then P(s) and P(s) define the same
behavior if and only if they are row equivalent.

Based on this result we have the following definition.

DEFINITION 2.2. An equivalence class of full rank p x k polynomial matrices is called
an autoregressive system.

The class of autoregressive systems generalizes the class of transfer functions in the
following way. Consider a proper or improper p x m transfer function G(s). Assume G(s)
has a left (polynomial) coprime factorization D~!(s)N(s) = G(s). If D Y(s)N(s) = G(s)
is a second left coprime factorization, then it is well known that the p x (m + p) polynomial
matrices (N(s) D(s)) and (N(s) D(s)) are row equivalent. In other words (N (s) D(s))
defines an autoregressive system.

The following definition extends the notion of McMillan degree to the class of autore-
gressive systems.

DEFINITION 2.3 (see [17, 26, 28]). The degree of an autoregressive system P(s) is given
by the maximal degree of the full-size minors of P (s).

Next we would like to introduce feedback. For this consider a p x (m + p) autoregressive
system P(s) (the plant) and an m x (m + p) autoregressive system C(s) (the compensator).
The closed-loop system is then the dynamical system described through the system of autore-
gressive equations

P4
2.2 . = 0.
22) ( c (%)> w(t) = 0

Note that the square polynomial matrix (g(:;) is in general not of full rank, i.e., (2.2) does
not describe an autoregressive system as del%ned in Definition 2.2. To single out the compen-
sators which give rise to a closed-loop autoregressive system we need the following definition
(compare with [20]).

DEFINITION 2.4. A compensator C (s) is called admissible if the closed-loop characteristic
polynomial

3
2.3) o(s) := det( C8> £ 0.

We are now in a position to define the pole placement map. Let P(s) bea p x (m + p)
autoregressive system of McMillan degree n and denote by A}, , the set of all m x (m +
p) autoregressive systems of McMillan degree at most q. Let B, C A}, , be the set of
autoregressive systems which are not admissible compensators. Finally identify the set of
nonzero polynomials of degree at most d with the projective space P?. Then define the pole
placement map as follows.
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DEFINITION 2.5. The pole placement map for a plant P(s) is defined as the rational map
given by

2.4) op - Aﬁ’n‘p—Bp — P,
C(s) —> ¢(s)=det(ggg).

We want to note at this point that the roots of ¢(s) do not depend on the particular
representation of the plant P(s) or the compensator C(s). Indeed if P(s) = Ui(s)P(s)
and C(s) = Uy(s)C(s), then d(s) = detU,(s) - det Ua(s) - ¢ (s). Finally the roots of ¢ (s)
correspond to the poles of the closed-loop system in the transfer function formulation. (See [17]
for details.) :

For a given plant P (s) we usually say that P (s) is pole assignable (almost pole assignable)
in the class of feedback compensators of degree at most g if the map pp is onto (almost onto).
Though many results are known when a system is pole assignable in the class of feedback
compensators of order at most g over the complex numbers C [17], the question is still far
from being solved over the reals and in the ungeneric situation. (Compare with [28].) Clearly
the following property is a necessary condition for pole assignability.

DEFINITION 2.6 (see [26, 28]). An autoregressive system P(s) is called controllable or
irreducible if the matrix P (s) is of full row rank for all s € C.

Indeed if the system P (s) is not controllable, the full-size minors of P (s) have a common
factor which is necessarily a factor of the closed-loop characteristic polynomial ¢ (s). Clearly,
evenif P(s) is controllable we cannot expect that P (s) is pole assignable in the set of feedback
compensators of degree at most ¢g. The following definition singles out an interesting class
of systems which has the pole assignability property in the critical dimension (i.e., when
dim A}, , = dimP"*9) over the complex numbers.

DEFINITION 2.7 (see [17]). A plant P(s) is called g-nondegenerate if all compensators
C(s) of order at most q are admissible. To put it in other words, P(s) is q-nondegenerate if
the set B, introduced in (2.4) is empty.

In the last part of this section we establish the connection to our earlier work in [17, 26].
First we would like to point out the following observation. The pole placement map pp
as introduced in (2.4) actually depends only on the full-size minors of P(s) and C(s). In
other words if C(s) and € (s) have the same full-size minors, then the resulting closed-loop
characteristic polynomial pp(C(s)) and pp(C (s)) have the same roots. Based on this fact we
assign to each autoregressive system C(s) € A}, , its full-size minors, i.e., we consider the
following Pliicker map:

2.5) 7 AL, — P @ ATK"P)
C(s) > c1(8) A -+ Acp(s).

Here ¢;(s) denotes the /th row vector of the m x (m + p) matrix C(s). Of course when
describing the map 7 with respect to the standard basis

2.6) {en Avee Ay | L<ii < <im <m+p,

it is well known that the coordinates are exactly the full-size minors of the matrix C(s). In
particular the map 7 is well defined.

In the following, whenever we work with coordinates, we will assume the standard ba-
sis (2.6). More specifically, if

@7 T(CE) =D fils) e A A,

iel (m)
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we will use the coordinates
(2.8) fi() = 2a:ps” + 2isg-s? T 4+ 260

The map 7 is in general not an embedding as it is for the classical Pliicker embedding
(the case ¢ = 0). Indeed as shown in [17], 7 (C(s)) = 7 (C(s)) if and only if the matrices
C(s) and C(s) are H-equivalent. (See [17] for details.) On the other hand if C(s) and C (s)
are both controllable (see Definition 2.6), then C(s) and C(s) are H -equivalent if and only if
they are row equivalent. The following lemma summarizes these statements.

LEMMA 2.8. 7 restricted to the set of controllable autoregressive systems is an embedding,
in particular m is generically one-to-one.

From the earlier remarks it is clear that the pole placement map p, factors over the image
of . We introduce therefore the following notation.

DEFINITION 2.9. K}, , denotes the image of A7, , under the map n.

By definition the set K} , is a subset of the projective space

PV = P(K9*! @ AMK"P).

Note that the Pliicker coordinates { f; (s)} introduced in (2.8) satisfy a set of quadratic relations
coming from the description of Grass(m, m + p) in P("" )1 [7, p. 65]. Those relations must
hold for all s € K. Equating coefficients we get a necessary set of quadratic relations for the
coordinates z(;.4y as well. The following theorem states that those relations define K, ,.

THEOREM 2.10 (see [17]). K/, is a projective (sub)variety of PN. The defining relations
are given by a set of homogeneous quadratic polynomials obtained from equating the coef-
ficients in the Pliicker relations. The variety K}, , is in general singular and has dimension
q(m + p) + mp.

The following example explains the situation.

Example 2.11 (see [16]). The only Pliicker relation of Grass(2, 4) in P is given by

2.9 X12X34 — X13X24 + X14x23 = 0.
Let fij(s) = zqj;1)s + 2qj;0) and
(2.10) F12(5) f34(5) — f13(5) f24(s) + f1a(s) fa3(s) = 0;

we then have three quadratic equations

Z(12;DZ34;1) — 213,224 1) + Zaa ey =0,

2(12;1)2(34;0) — Z(13;1)2(24;0) T+ Z(14;1)%(23;0)
+ 2012,00234; 1) — Z(13;00224: 1) + 2(14:00223;1) = 0,

2(12;0)2(34;0) — 2(13;0)2(24;0) + 2(14;0)223;0) = 0,

which define the projective variety K , in P'!. Because dim K , = 8, it follows that K , is
a complete intersection and by Bézout’s theorem [7], the degree is equal to 2° = 8.
As we can describe the compensator C (s) through the vector

(2.11) c(s) =ci(s) A+ Acw(s),
we can describe the plant P (s) through the vector

2.12) p(s) = p1(s) A -+ A pp(s).
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Finally the closed-loop characteristic polynomial is given through the linear pairing
(2.13) (p(s), c(s)) :=c1() A== Aem($) Api(s) A~ A pp(s) = @(s).

Note that the linear pairing (, ) originally defined on K ,, x K, . p extends linearly to the
product space P(K"+! ® APK™*P) x P(K9t! @ AmK™+P).

Next we show that the pole placement map p, induces a central projection in the projective
space PV = P(K9*! ® A™K™*P). For this consider a fixed plant P(s) represented through
the vector p(s) = pi(s) A --- A pp(s). Consider the subspace

(2.14) E, := {c()(p(s). c(s)) = 0} C PV.
Then we have a central projection (compare with [17, 25]):
(2.15) L, : PN —Ep — prta,

f(s) —> (8(s), f(s)).

Let x, be the restrictionmap L, |xs _g,),1.e.,

P

(2.16) X, © Kb, —Ep — P

The next lemma explains the relation between the maps x,, L, and the pole placement map
£y

LEMMA 2.12. The pole placement map p, introduced in (2.4) factors over the variety
K}, , through

2.17) pp,=L,om.

The map p, is onto (almost onto) if and only if x, is. Finally a plant P (s) is q-nondegenerate
ifand only if K , N Ep = .

Proof. From the definition of the linear pairing (, ) it is clear that p, = L, ow. Moreover
because

(2.18) AL, - K

is onto, the second statement follows. Finally if P(s) is g-degenerate there is a compensator
C(s) € A}, p which is not admissible. But this is equivalent to the statement

2.19) cl(s)/\~--/\cm(s)€K,‘f,‘pﬂEP. il

This lemma will allow us to study the pole assignment problem completely in the projective
space PV. In the geometric picture the set K, , N E p will be of crucial importance. Note that

n(B,) = K! ,NEp.

By abuse of notation we will denote K » N Ep by Bp as well; Lemma 2.12 justifies this
choice. The set B, is sometimes called the base locus of the central projection y, and by
Lemma 2.12 this set is empty if and only if the plant P (s) is g-nondegenerate. The following
theorem gives the result which mainly motivated this paper.

THEOREM 2.13 (see [17]). For a q-nondegenerate system of McMillan degree n =
q(m + p — 1) + mp, the pole assignment map x, is onto over C and there are deg K}, ,
(counted with multiplicity) complex dynamic compensators assigning each set of poles. In
particular, a real solution always exists if deg K7 , is odd.
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Proof. Since B, = @, the pole placementmap x, : K5, , — P"™ isa finite morphism [21,
Chap. I, §5, Thm. 7]. Therefore x, is onto over C [21, Chap. I, §5, Thm. 4] and deg x, =
deg K}, , [13, Cor. (5.6)]. 0

Actually we can strengthen this result with the following theorem.

THEOREM 2.14. Let P be a system of degreen < g(m + p — 1) + mp. If

(2.20) dimB, =dimE, N K} , =qm+p)+mp—n—qg—1,

then x, is onto over C (and over R if deg K}, , is also odd).

Proof. Let H be the q(m + p) + mp — n — q codimensional projective subspace in P"
such that

221) B,NH =0

(such H exists by [13, Cor. 2.29)]), 1 : Kj , — P4+P)+mP s the central projection with
center E, N H, and 7, : PAMm+P+mP _ 7, (B,) — P"*4 is the central projection with center
71(E,). Then my is onto over C and is onto over R if deg K, p is also odd, and

Xp = M2 OTL. 0

THEOREM 2.15. The pole assignment map x, is onto over C for the generic system if and
only if

2.22) n<qm+p-—1) +mp.

This condition is also sufficient over R if deg K} , is odd.

Proof. The necessity was proven by Willems and Hesselink in [30]. On the other hand
if n = g(m + p — 1) + mp, the generic system is g-nondegenerate by [17, Cor. 5.6] and the
sufficiency follows from Theorem 2.13. If n < g(m + p — 1) + mp, then it follows for the
generic system from [17, Thm. 5.5] that

(2.23) dimB, =g(m+p)+mp—n—q—1.

By Theorem 2.14 the sufficiency follows. O

3. The subvarieties Z,, of the variety K7, , and a closed formula of their degrees.
In this section we derive a closed formula for the degree of a set of generalized Schubert
subvarieties of the variety K, ,. As a corollary we will obtain a formula for the mapping
degree of the pole placement map in the critical dimension. For the convenience of the reader
we quickly review some geometric aspects of the classical Pieri formula (1.3). For this consider
the index set

I = {l =(i1,...,im)|1 <ip <+ <ip)
equipped with the partial order
3.1 G1sevesim) S UtsenesJm) © i < jiVL

If an m-dimensional plane P € Grass(m, m + p) C P(A"K™P) is expanded in terms of
the standard basis (2.6), i.e., if P is represented by the vector

3.2) X = in-e,-l/\---/\eim,

iel
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we will call the coordinates x; the Pliicker coordinates (see [7, p. 64]) of the plane P. The set
(3.3) S; := {x € Grass(m, m + p)|x; =O0forall j £i}

is called a Schubert variety. Let H; be the hyperplane defined by setting x; = 0 and let
lil := >/~ (i, — I). Then the geometric version of Pieri’s formula states that

(3.4) snH = |J 5

Jjel
j<iy jl=lil=1

and that the intersection multiplicity along each S; is 1. In terms of the intersection ring, S;
represents a Schubert cycle (iy, is, ..., i), H; represents the Schubert cycle oy := (p, p +
2,p+3,..., p+ m), and the geometric intersection is expressed through a formal multipli-
cation as given in (1.3). Readers who want to learn more about Schubert calculus are referred
to the excellent survey article of Kleiman and Laksov [9].

In [15] we proved a similar formula as given in (3.4) for subvarieties of K/, ,. To explain
this generalized Pieri formula we first re-index the coordinates z;.4) of K/ .

DEFINITION 3.1. For each (i;d), i = (i1,...,im), 1 < i1 < -+ < iy < m+ p, let
a = (ay,...,qy) be defined as
o = [d/m}(m + p) +il+d—m[d/m] forl=1,2,...,mld/ml+m—d,
'=1 (d/m]l+ D)(m + p) + iird—mia/m-m forl=mld/ml+m—d+1,...,m.

Using this re-indexing we can associate to every coordinate z(;.) of Ky, , anew coordinate
Zo- The following example shows the relation between the indices (i; d) and «:
2;0) = Zi»
Z(i; 1) = Z(l’z,..‘,im,l'l-l—m-l—p)’

2(i:2) = Z(i3,eenrimyir+m+p,iz+m+p)»

2(ism) = Liy+m+p,...im+m+p)s

Z@m+1) = Ligtm+p,..imtm+p,is+2(m+p))»

Note that the indices o belong to the index set
(3.5) [:={a€llay —a, <m+ p},

which is by definition a subset of the index set /. In particular 7 is also equipped with a partial

order. Using this partial order we can now define an interesting set of subvarieties of K, ,.
DEFINITION 3.2.

(3.6) Zy:={z€ K} ,lzg=0forall B £ a}.

The main results of [15] are summarized in the following proposition and corollary.
PROPOSITION 3.3 (see [15]). For each index o, Z,, is a subvariety of dimension |«|. If H,
is the hyperplane of P" defined by z, = O, then

(3.7) Z.NHy= |J 2%

Bel
B<a, |Bl=lal-1

and the intersection multiplicity along each Zg is 1.
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55(5,9) 165(5,9)
» PN
55(5,8) 90(5,8) 75(4,9)
PN
34(5,7) 21(4,3) 42(5,7) 48(4,8) 27(3,9)
PN N PN
13(5,6) 21(4,7) 14(5,6) 28(4,7) 20(3,8) 7(2,9)
N
13(4,6) 8(3,7) 14(4,6) 14(3,7) 6(2,8) (1,9
5@4,5) 8(3,6) 5(4,5) 9(3,6) 52,7 (1,8)
PN
5(3,5) 3(2,6) 5(3,5) 4(2,6) 1,7
2(3,4) 32,5) 2(3,4) 32,5) (1,6)
PN
2(2,4) (L,5) 2(2,4) (1,5
PN
2,3) (1,4) 2,3) 1,4
N N
(1,3) (1,3)
e

1,2) 1,2)

FiG. 1. (a) Hasse Diagram of Zs,9). (b) Hasse Diagram of S5 9).

Using Bézout’s theorem [7, Thm. 18.3] the expression (3.7) translates into a partial
recurrence relation, which the degrees of the varieties Z, have to satisfy.
COROLLARY 3.4 (see [15]).

(3.8) degZ,= Y

Bel
B<a, |Bl=lal-1

The partial recurrence relation (3.8) has to be satisfied for the whole index set I.tis pos-
sible to depict this relation with the help of a Hasse diagram. A Hasse diagram corresponding
to the variety Z, is a directed graph, whose vertices are all 8 € I, 8 < «. The directed edges
B — y are precisely those ordered pairs such that 8 covers y (i.e., 8 > y and |8| = |y|+ 1).
Then according to Corollary 3.4, the degree of Z, can be computed graphically in the fol-
lowing way: If we label the vertices in such a way that the number on (1,2, ...,m) is 1 and
the number on B is the sum of the numbers on the vertices covered by g, then the number on
a is deg Z,. Figure 1 provides an example of Zs o) = K, ;. Note that Rosenthal obtained
deg K ,L » = 55 by computing the coefficients of the Hilbert polynomial using the computer
program CoCoA in [16]. For comparison we also include the Hasse diagram of the Schubert
variety S(s¢), whose underlying diagram corresponds to all indices i € I,i < (5,9).

From Fig. 1 we can see that the Hasse diagram of Z,an be obtained by “cutting off” all
the vertices of I that are not in / in the Hasse diagram of S,. If we use d(«1, ..., ) for the
degree, then both deg Z,, and deg S, satisfy the partial difference equation

deg Zg.

(3.9) d(al,...,am)=Zd(a1,...,al—1,...,01,,,)
=1

subject to the initial condition

(3.10) d(,2,...,m)=1
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and subject to the boundary conditions

(3.11) do,...,a,) =0,
(3.12) ...,k k,...)=0.
deg Z,, is subject to one more boundary condition, namely,
(3.13) dk,....,.k+m+p)=0.

The computation of the degrees of the varieties Z,, is therefore reduced to the solution of
a partial difference equation with boundary conditions. The next theorem provides a closed
formula for this problem.

THEOREM 3.5.

3 [Tk, (@ — i + (nj — ng)(m + p))
oo o Th@ tnm+ p) - D

with the convention that 1/ k! = 0 ifk < 0.
Proof. Let g(a) = deg S,. Then (see [11, p. 103] and [23])

(3.14) deg Zo = |a|!

l_I(Olj — ) ("“I‘)’ (“lrz)! (al—lm)!
(3.15) gla) = |oz|!k<m’—-— = |oftdet | oTD" Com2! (e
[ @ -1t : : :
N 1 1 1
=t @D @t
and (3.14) becomes
(3.16) degZ, = Z glay +nm(m+p),...,on +n,(m+ p)).
nytetn, =0

Let

d@)y= Y gli+mm+p),...,cn+n,0n+ p)).
n1+"'+nm=0

Then d(«) satisfies the equation (3.9) because g(«) does. Moreover since

dloag,...,on) =glar, ..., 0n)
fora; <--- < ay < m+ p,d(a) satisfies the conditions (3.10) and (3.11) for o, < m + p.
We only need to verify (3.12) and (3.13).
Notice that by (3.15)
(3.17) gl aj, oo o, ) =—80 ., ..., 05..0).
If oj = ajyy, then
g(....,aj +kj(m+ p),aji1 +kjyi(m+ p),...)
= —g(...,a; tkjt1(m + p),ajt1 + kj(m + p),...).
On the other hand if &) + m + p = «,,, then
gy +ki(m + p), ..., dn + kn(m + p))
= g(am + (ki — D(m + p), ..., o1 + (ky + D(m + p))
= —g(o1 + (k + D(m + p), ..., + (ki — D(m + p)).
In either case d(«) = —d(w); i.e., d(a) = 0. 0
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Applying the formula (3.14) to K/} , we then have a formula for deg K, .
THEOREM 3.6.

[ [ —k+@;—n)m+p))
k<j

(3.18)  degKf , =" Dmp+qm+p)! Y, =

nitetnn=q (p+j+njm+p)—1!
j=1

Proof. Letk = [¢q/m] and r = g — km. Then

K o = Z(ptr 1tk (ntp)s.oo pmkn-tp), p+ 1 (R DY 0n+ p)s e, potr-+ (ke 1) mt-p)) -

So
degKY ,=(sgno) Y. glp+1l+m(m+p),....p+m+nu(m+p),
nit =g
where o is the permutation
r+4Lr+2,...,m,1,2,...,r)—> (1,2,...,m),

and the sign of this permutation is given by

sgno = (=1)7" ") = (—1)a-kmGtm—q) _ (_1)2qkm+mq~qz—k(k+1)m2

= (=" (=D = (=" (=1)7.

Therefore

deg Kf , = (=D N~ g(p+1+ni(m+p),...,p+m+n,(m+p)),
nyttnm=q
which is the formula (3.18). a
Combining Theorems 2.13, 2.15, and 3.6, we then have Theorem 1.1.
We conclude this section with several simplified formulas. First recall the definition of
the Fibonacci numbers given by the recurrence relation f; = 1, fo = 1, and f,41 = fu+ fu-i
for n > 1. From Corollary 3 .4 it follows immediately that

(3.19) deg K;’,3 = fsq+5.
Using a well-known expression for the Fibonacci sequence we therefore get
5(g+1) 5(g+1
(3 20) J Kq 1 1+ ﬁ q+ 1— ﬁ q+1)
. C = — —_— J—
g 2,3 ﬁ 2 2

Note that formula (3.20) has also been given by Intriligator [8, p. 3554] as an illustration of
the conjectured intersection numbers arising from some computation in conformal quantum
field theory. For ¢ = 1, we again get deg Kzl‘3 = 55 (compare with the Hasse diagram of
Zs,9)) and for g = 2, we get deg K3 ; = 610.

In general, for m = 2, formula (3.18) can be simplified to
1 (@=2)(p+2)+1

deg K¢ = (=1)? 2) +2p)! :
g Kz p = (Da(p+2)+2p) ;(p+,-(p+z)>!(p+1+(q—j>(p+2))!

To illustrate “the nonlinear character” of the pole placement map we derive a table that shows
all degrees of the variety Kg,p forp=1,...,9andg =0, ..., 5; see Table 1.
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TABLE 1.
P\ | O 1 2 3 4 5
1 1 1 1 1 1 1
2 2 8 32 128 512 2048
3 5 55 610 6765 75025 832040
4 14 364 9842 265720 7174454 193710244
5 42 2380 147798 9112264 562110290 34673583028
6 132 15504 2145600 290926848 39541748736 5372862566400
7 429 100947 30664890 8916942687 2610763825782 763562937059280
8 1430 657800 435668420 266668876540 165745451110910 102703589621825280
9 | 4862 4292145 6186432967 7853149169635 10262482704258873 13319075453502743045

4. Odd or even degrees. In this section we introduce some methods that can be used to
determine whether the deg K, ,, is odd or even without computing the degree itself.

For Grass(m,m + p) = K ,?ly p» it is a well-known fact that deg Grass(m, p + m) is even
whenever min(m, p) > 3 [1]. This is not the case for general K, p» i.€., in a certain sense
there are many more odd numbers for a fixed g > O than there are for g = 0.

The main result of this section is Theorem 4.2, which provides a short combinatorial
description of all triples m, p, ¢ which result in an odd degree. Using this theorem we derive

several corollaries classifying the odd- and even-degree varieties.
To prepare for the main theorem we first rewrite formula (3.18):
1 mm—1)

deg kY , = (=1)*" V(mp+qm+p)! Y (=D
niteFnn=q
L 1 .. 1
(p—m+1+ni(m+p)!  (p—m+2+n1(m+p))! (p+ni(m+p))!
1 1

. det (p—m+2+n2(m+p)!  (p—m+3+na(m+p))!

1
1 1
(4'1) (p+ +n2.(m+l7))
1 1 AP N
(p+nm(m+p))! (p+1+nu(m+p))! (p+m—14n,, (m+p))!

= (=D Y Y sgno

ni+-+n,=q o

4.2) ) (mp + q(m + p))!
' (p—m+o)+ni(m+p)!---(p—1+0@m)+nn(m+ p)!

Note that /" ,((p —m — 1) +i + o (i) + n;(m + p)) = mp + q(m + p). It therefore
follows that every summand in the expression (4.2) is a multinomial coefficient

k kit kAt k)
ki ..o kn) '

4.3
@3 kilka! .- ky,!

For multinomial coefficients there is a well-known criterion frequently used by topologists

which guarantees that such a coefficient is odd. We formulate this criterion as a lemma.

LEMMA 4.1. The multinomial coefficient (,, * ) is odd if and only if there are no “carry

overs” in the summation ky + - - - + k,, when calculated using binary representation.
Proof. Let
k=2"4+...42" 0<n;<---<n.
Then

!
(xl+...+xm)"_—_l_[(xl""+...+x,2n"i) mod 2. 0

i=1
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In particular it follows from this lemma that (k k ' ) is even as soon as two numbers

.....

among {ky, ..., k,} are equal or two numbers are odd.
We will call aset {ky, k7, . . ., k,,} of positive integers a disjoint binary partition of k if the
multinomial coefficient (kl,f ’ km) is odd. To put it in other words, {ky, k2, . .., k,,} is a disjoint

binary partition of k if k; + k2 + - - - + k,, = k and if their binary representations
ki =2M 42" 2" 0<nyp <npp<-or<nmgy, i=1,2,...,m,

have disjoint exponents; i.e., n;; # n,, foralli, j, r,s.
THEOREM 4.2. Let a = min(m, p). Then deg K} , is odd if and only if the number of
disjoint binary partitions {ky, ..., k;} of g(m + p) + mp having the property that

{ki,....kgy={m+p—1,m+p—-3,....m+p—2a+1} modm+ p

is odd.
Before we give the proof we will illustrate Theorem 4.2 with several examples.
Example43. aam=2,p=9qg=4,qm+p)+mp =62 =2+22 423424425
The disjoint binary partitions equal to {10, 8} mod 11 are

(25,2422 + 23 + 2% = (32, 30},
(2422424425 2% = {54, 8},
(24 23,22 4 2% +2%) = {10, 52}.

So deg K3 o = deg K , is odd.

b.m=3,p=4,qg=5qg(m+ p)+mp=47=1+2+22+23+2% The disjoint
binary partitions equal to {6, 4, 2} mod 7 are

(24+22,2°,1+2% = {6,32,9},
(242%,2%,1+2% = {34,4,9,
(1422423272} ={13,32,2},
{1423 +2° 22 2) = {41, 4,2}.

So deg K3 , = deg K7 5 is even.
c.m=3,p=6q=3,q(m+p)+mp=45= 1422+ 23425 There is only one
disjoint binary partition equal to {8, 6, 4} mod 9:

(23,14 2°,2%) = {8, 33, 4).

So deg K3 ¢ = deg K 5 is odd.
d m=5p=6qg=3,qm+p)+mp=063=1+2+22423+2%425 Thereis
only one disjoint binary partition equal to {10, 8, 6, 4,2} mod 11:

(25,23, 1424222} = {32,8,17,4,2}.

So deg K53,6 = deg Kg,s is odd.

Proof. Without loss of generality, assume m < p. Consider again the description of the
degree of the variety K, , as it was provided in formula (4.2). It is our goal to show that in
the summation mod 2 the only relevant permutation is o = id. In other words, we will show
by clever “book keeping” that all other multinomial coefficients are either O or cancel each
other.
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First assume o is notanidempotent, i.e., 0% # id oro # o~!. Inthis case we immediately
verify that the sets

{((p—m—-D+ito@)+nm+p)li=1...,m}

and

{(p=m—=D+i+o @) +nmpm+p)li=1,...,m)

are equal as unordered sets. But this just means that the corresponding multinomial coefficients
in the summation (4.2) cancel each other mod 2. So it follows that we only have to sum over
idempotent permutations.

Assume therefore that 0> = id. If ¢ # id then o contains a pure transposition, i.e., there

are two distinct integers a, b having the property that o (@) = b and o (b) = a. Consider the
ordered set

((p—m—-D+i+to@+nm+p)li=1...,m).

If n, = ny, then the corresponding multinomial coefficient is zero since two numbers in the
binary partition (namely the numbers at positions a and b) are equal. On the other hand
if n, # ny, then the corresponding multinomial coefficient cancels with the multinomial
coefficient obtained by interchanging n, and n,.

It therefore follows that the only relevant summand in (4.2) is 0 = id. The mod 2 degree
of K}, p reduces, therefore, to the evaluation of the mod 2 sum of

“4.4)
( (mp + q(m + p)) )
it =q P_m+1+n1(m+P)’P_m+3+n2(m+l7),yP+m—1+nm(m+P) '
Since a summand
( (mp + q(m + p)) )
p—m+1+n(m+p), p—m+3+ny(m+p), ..., p+m—1+n,,(m+p)

isoddifandonlyif {p —m+1+ni(m+p),..., p+m—14n,(m+ p)} is a disjoint bin-
ary partition of mp + q(m + p), the deg K, , is odd if and only if the number of disjoint

binary partitions equalto {p—m+1, p—m+3,..., p+m—1}modm+ p of g(m+ p)+mp
is odd. o

For the Grassmann variety it is possible to identify the first Chern class ¢; (respectively, the

first Stiefel-Whitney class w;) of the classifying bundle with the first elementary symmetric
function

X1+ xp € Z[x1, ..., Xnl

The degree (respectively, the mod 2 degree) of the Grassmann variety is then represented
through the coefficient of a certain monom (see [23] for details) in the expansion of

(xl + ... 4 xm)dlmGrass(m,m.‘_p)‘

For the mod 2 degree of the variety K ,, Theorem 4.2 gives a way to do a similar
computation. For this consider the polynomial ring Z5[x;, ..., x,,], the ideal

I::(x;"“'—l,...,x:'n’“’—l),

and the factor ring R := Z,[x;, ..., x,,]/1. Then we have the following corollary.
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COROLLARY 4.4. If m < p the mod 2 degree of the variety K, , is equal to the coefficient

-1 mtp—3 —mt1 .
of the monom x}" "~ xy P> . xh™" L in the expansion of

(14 -+ x) KR € R,

Proof. From the proof of Theorem 4.2 it follows that the mod 2 degree of K}, , is equal
to the sum of certain multinomial coefficients of the form

dim K, , ) _ (q(m +p)+ mp)

ki,ooovkm)  \ ki ke )
Since the mod (m + p) identification of disjoint binary partitions in Theorem 4.2 corresponds
to the ideal theoretic identification of monoms in the factor ring R, the total mod 2 number of

identified monoms is exactly the mod 2 degree of K7, . a0
In practice we can often use the “freshman’s dream”

(x1+~-+xm)2k=xfk+---+X,2,: mod 2.

The following examples illustrate the corollary.
Example 4.5. a. m =2, p = 3, g = 3. In this case dim K§‘3 = 21 and we know from
the table at the end of §3 that deg K. 23”3 = 6765. Using the corollary we compute

Gy +2 =G+ 2ty +2)° =2+ + 2D

Since the coefficient in front of the monom x*y? is indeed 1, we conclude once more that K23y3
is of odd degree.
b.m=3,p=4,qg=069,g(m+p)+mp =495 =14+24+22423 425426427428,
Since the dimension is quite large we reduce mod 7 in the first step:

(1,2,22,23,2%,2°,27 2%y = (1,2,4,1,4,1,2,4) mod 7.
Using this reduction we have

x+y+2* = +y+2°C6* + Y+ D +y 4+ 2’
=x+y+20&t+y*+29.

Since there is no monom x®y*z* in this expansion, we conclude that K’ and K
both have an even degree.
COROLLARY 4.6. Let min(m, p) > 1. Then any of the following conditions implies that
deg K7}  is even:
a) m + p is even.
b) mp +3 > (m + p)(q + 2).
¢) min(m, p) > q+2++/q>+4q + 1.
d) The binary number of q(m + p) + mp has less than m 1°s other than the digit on the
29 position.
e) 2minm.p)+l 5 g(m 4 p) +mp + 2.
) Zi:l ri < mp, where r; € [0, m + p) is the number, equals the 2" mod m + p in
the binary representation q(m + p) +mp = 2" 4 ... 4+ 2",
g m+p=2~k—1
Proof. Without loss of generality assume that m < p.
a) Whenm+ piseven, all the integers p—m+1+n;(m+p), ..., p+m—1+n,(m+p)
are odd. By the remark after Lemma 4.1, all multinomial coefficients appearing in
(4.4) are even.
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b) Let2" < g(m + p) + mp < 2!, Then a necessary condition for {p —m + 1 +

ni(m+ p),...,p+m—1+n,(m+ p)} to be a disjoint binary partition is

p—m+2i—1+n(m+p) =2
for some i. In particular
p+m—1+4+q(m+p)=>2" > (1/2)(q(m+ p) +mp + 1),
which implies
(m+ p)(g+2) > mp+3.

c) Consider —(m? —2(q + 2)m + 3). It has two roots: g +2 & /g2 +4g + 1. So

whenm > g +2+ /g2 +4q + 1,
—(m? —2(g +2)m +3) <0.
The degree is even if m = p by a). If m < p (note thatg +2 —m < 0),

(m+p)g+2)—mp—3=—m*-2(q+2m+3)+(q+2—m)(p—m)
< —(m2—2(q +2)m + 3)
<0.

So c) implies b).

d) Under the condition, g(m + p) + mp cannot have a disjoint binary partition
{ki, ..., k,} such that none of the k; is 1.

¢) The smallest number such that d) is not satisfied is 2! — 2. So e) implies d).

f) A necessary condition for

kiyo. k) =(p-m+1,....,p+m—1) modm+ p, k; >0,
isY "' ki = mp.
g) Noticethatm + pisodd. So2 <m < p. Foranyn > k,letn =ak+r,0<r <k.
Then
2" =27 (142K 4 ... 4 2ka@=Dyak _ 1y 4 2,

So 2" = 2" mod m + p. Let the binary representation of g(m + p) + mp be
2mM 2" 4 ... 4 2" and consider

I . .

[T6d +- 220

i=1

By replacing 2" with 2" for r; = n; mod k, r; € [0, k), and using the property
(x%r + . +x31r)2 - (x%r—H + . + x’%lwrl) mod 2

repeatedly, we get
j r: re
(4.5) [Jod" +- +x20,
i=1

with {r(, ..., r;} C [0, k) distinct. The polynomial (4.5) has degree at most 1 +2 +
-++ 421 = m + p, which is always less than mp under the condition2 <m < p.
By the same argument as in the proof of (f), the degree is even. O
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An immediate corollary of Theorem 4.2 is the result of [1]: deg Grass(m, m + p) is odd
if and only if
1. min(m, p) = 1 or
2. min(m, p) = 2, max(m, p) =2* — 1.
We say this corollary is immediate because whenm = 2 < p, {p + 1, p — 1} is a disjoint
binary partition if and only if p = 2% — 1, and when min(m, p) > 3, all the degrees are even
by Corollary 4.6 (c).
COROLLARY 4.7. deg K, , is odd if and only if either
1. min(m, p) = 1l or
2. min(m, p) = 2, max(m, p) = 2" +2"2 ... +2" — 1L withn;y,y >n; + 1, i =
L...,l—-1
Proof. By lettingm + p = 1+2" + ...+ 2" we can easily show that neither of the sets

m+p—-1m+p-3,m+p-5}, 2m+p)—1,m+p—-3,m+p-75},

fm+p—-1,2m+p)—-3,m+p-5, {m+p—-1,m+p—-32(m+ p) -5}

can have disjoint exponents in the binary representations of the elements. So the degree is
even if min(m, p) > 3. Now let m = 2, p > m, be odd and

pH+1=2"4...42m

Then 2™ appears inboth p +1=m + p —1and 2p + 1 = 2(m + p) — 3. So deg K21‘p is
odd if and only if

(P—1,2p+3}=(2+2%+. .- f2m7hqpom pooqpom [ pomtl g omtly

is a disjoint binary partition, i.e., if and only if n;y > n; + 1fori =1,...,1 — 1. 0
Similar results can also be proven for ¢ > 1. The combinatorics however becomes very
involved. We provide without proof the result for g = 2.
COROLLARY 4.8. deg K, , is odd if and only if either
1. min(m, p) =1,
2. min(m, p) = 2, max(m, p) = 8(*51) + 1, or
3. min(m, p) = 3, max(m, p) = 8.

5. Corollaries and additional new positive pole placement results. In this section we
establish the connection to the classical state space and transfer function formulation of the
pole placement problem. We also derive several results which combine the results derived in
§3 with some results derived in [17].

Consider a controllable observable linear system

;.1 X =Ax + Bu, y=Cx,

where x € R", u € R™, and y € R”?, respectively. If a controllable observable dynamic
compensator of order g,

5.2) u=Fu+FEy, u=Hu+ Ky,

is applied to the system, the closed-loop system becomes

(5.3) (i):(AJrE%KC Bﬁ)(z) y = Cx.
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So the closed-loop characteristic polynomial is

(5.4) b (s) =det< st—A- BKC —BH )

If G(s) = C(sI — A)"'Band T(s) = K + H(sI — F)"'E are the transfer functions of
the system (5.1) and compensator (5.2), respectively, and if G(s) = D(s)"'N(s) and T (s) =
Td_1 (s)T,,(s) are left coprime fractions such that det(s] — A) = det D(s) and det(sI — F) =
det T, (s), then ¢ (s) can also be written as

_ _ D(s) N(s)
(5.5) ¢@y_®m1—ANaU—G@ﬂ@D®WI—F%4m(]M” n@))
Let P(s) = (D(s) N(s)) and C(s) = (T,(s) T;(s)). Then P(s) and C(s) can be viewed as
autoregressive systems describing the behavior of the plant and the compensator, respectively.
The combined dynamics are then described by

D(%4) N(%)
(5.6) “ « -(3)0):&
T,(4) Ty
The following result combines Theorem 2.15 with [17, Cor. 5.8].

THEOREM 5.1. Consider a generic set of matrices (A, B, C) € R"""+P) describing a
plant as in (5.1) and consider an arbitrary monic polynomial ¢ (s) € R[s] of degree n +q. If

() n<qgm+p-—1+mp,

then there exists a complex dynamic compensator of the form (5.2) resulting in the closed-
loop characteristic polynomial ¢ (s). If in addition the number d(m, p, q) introduced in (1.5)
is odd, then there even exists a real compensator assigning the closed-loop characteristic
polynomial ¢ (s).

Proof. We only outline the main steps. Using the same argument as in Theorem 2.15, we
verify that dim B, = g(m + p) + mp — n — g — 1 for the generic and strictly proper plant.
Theorem 2.14 therefore still applies and the pole placement map is onto if we allow all auto-
regressive systems. Since the plant is strictly proper a closed-loop characteristic polynomial
of degree n + ¢ can only be achieved if the compensator is proper. 0

The following example illustrates how this theorem can be applied.

Example 5.2. Assume the matrices (A, B, C) describe the plant parameters of a generic
real 2-input, 9-output plant of McMillan degree n. From Table 1 it follows immediately that
there exists a real compensator of degree 1 as long as n < 28. If, e.g., n < 58, then it
follows that there is a real compensator of degree 4 assigning an arbitrary set of self-conjugate
closed-loop poles.

Combining Theorem 2.15 with [17, Cor. 5.9] one can finally prove the following result.

THEOREM 5.3. Let G(s) be a generic m-input, p-output proper transfer function of
McMillan degree n and let ¢ (s) € K[s] be a generic polynomial of degree n + q. If

(5.8) n<qgm+p-—1)+mp,

then there exists a proper complex compensator T (s) of McMillan degree q such that the
closed-loop transfer function

Gr(s) = (I — G($)T(s)"'G(s)

has characteristic polynomial ¢ (s). If in addition the number d(m, p, q) introduced in (1.5)
is odd, then there even exists a real transfer function T (s).



832 M. S. RAV], J. ROSENTHAL, AND X. WANG

REFERENCES

[1] L BERSTEIN, On the Lusternik-Snirel' mann category of real Grassmannians, Proc. Cambridge Philos. Soc., 79
(1976), pp. 129-239.
[2] A. BERTRAM, G. DASKALOPOULOS, AND R. WENTWORTH, Gromov Invariants for Holomorphic Maps from Rie-
mann Surfaces to Grassmanians, preprint, 1993.
[3]1 H. BLOMBERG AND R. YLINEN, Algebraic Theory for Multivariable Linear Systems, Academic Press, London,
1983.
[4] R. W. BROCKETT AND C. 1. BYRNES, Multivariable Nyquist criteria, root loci and pole placement: A geometric
viewpoint, IEEE Trans. Automat. Control, AC-26 (1981), pp. 271-284.
[5] C.I. BYRNES, On compactifications of spaces of systems and dynamic compensation, in IEEE Conf. on Decision
and Control, vol. 4, San Antonio, TX, 1983, pp. 889-894.
[6] H. GLUSING-LUERSSEN, On Various Topologies for Finite-Dimensional Linear Systems, Tech. Report 273,
University of Bremen, Germany, 1992.
[71 J. HARrRis, Algebraic Geometry, A First Course, Graduate Text in Mathematics, Springer-Verlag, New York,
Berlin, 1992.
[8] K. INTRILIGATOR, Fusion residues, Mod. Phys. Lett. A, 6 (1991), pp. 3543-3556.
[9] S.L.KLEIMAN AND D. Laksov, Schubert calculus, Amer. Math. Monthly, 79 (1972), pp. 1061-1082.
[10] M. KUUPER, First-Order Representation of Linear Systems, Ph.D. thesis, Centrum voor Wiskunde en Infor-
matica, Amsterdam, the Netherlands, 1992.
[11] M. P. MAacMAHON, Combinatory Analysis, vol. 1, Cambridge University Press, Cambridge, 1915.
[12] C. F. MARTIN AND R. HERMANN, Applications of algebraic geometry to system theory: The McMillan degree
and Kronecker indices as topological and holomorphic invariants, SIAM J. Control Optim., 16 (1978),
pp. 743-755.
[13] D. MUMFORD, Algebraic Geometry 1: Complex Projective Varieties, Springer-Verlag, Berlin, New York, 1976.
[14] M. S.RaAvIAND J. ROSENTHAL, A smooth compactification of the space of transfer functions with fixed McMillan
degree, Acta Appl. Math, 34 (1994), pp. 329-352.
[15] M. S. Ravy, J. ROSENTHAL, AND X. WANG, Degree of the Generalized Pliicker Embedding of a Quot Scheme
and Quantum Cohomology, preprint alg-geom/9402011, 1994.
[16] J. ROSENTHAL, On minimal order dynamical compensators of low order systems, in Proc. of European Control
Conference, Hermes, France, 1991, pp. 374-378.
, On dynamic feedback compensation and compactification of systems, SIAM J. Control Optim., 32
(1994), pp. 279-296.
[18] H. ScHUBERT, Kalkiihl der abzihlenden Geometrie, Teubner, Leipzig, 1879.
[19] J. M. SCHUMACHER, Transformations of linear systems under external equivalence, Linear Algebra Appl., 102
(1988), pp. 1-33.
[20] , A pointwise criterion for controller robustness, Systems Control Lett., 18 (1992), pp. 1-8.
[21] I. R. SHAFAREVICH, Basic Algebraic Geometry, Springer-Verlag, Berlin, New York, 1974.
[22] B. SIEBERT AND G. TiAN, On Quantum Cohomology Rings of Fano Manifolds and a Formula of Vafa and
Intriligator, preprint alg-geom/9403010, 1994.
[23] R. STANLEY, Some combinatorial aspects of the Schubert calculus, in Lecture Notes in Mathematics vol. 579,
Springer-Verlag, Berlin, New York, 1977, pp. 217-251.
[24] C. VAFA, Topological mirrors and quantum rings, in Essays on Mirror Manifolds, S. T. Yau, ed., International
Press, Hong Kong, 1992.
[25] X. WANG, Pole placement by static output feedback, J. Math. Systems Estim. Control, 2 (1992), pp. 205-218.
[26] X. WANG AND J. ROSENTHAL, A cell structure for the set of autoregressive systems, Linear Algebra Appl.,
205/206 (1994), pp. 1203-1226.
[27] J. C. WILLEMS, Input-output and state-space representations of finite-dimensional linear time-invariant sys-
tems, Linear Algebra Appl., 50 (1983), pp. 581-608.

[17]

[28] , Paradigms and puzzles in the theory of dynamical systems, IEEE Trans. Automat. Control, AC-36
(1991), pp. 259-294.
[29] , Feedback in a behavioral setting, in Systems, Models and Feedback: Theory and Applications,

Birkhduser-Verlag, Basel, Switzerland, 1992, pp. 179-191.

[30] J. C. WiLLEMS AND W. H. HESSELINK, Generic properties of the pole placement problem, in Proc. of the IFAC,
1978, pp. 1725-1729.

[31] E. WITTEN, The Verlinde Algebra and the Cohomology of the Grassmannian, preprint IASSNS-HEP-93/41,
hep-th/9312104, 1993.



