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Abstract

Stable inversion plays a key role in the solution of the exact tracking control problem
in nonminimum phase systems. However, the general methods developed so far for
the computation of stable inverses require backwards time numeric integration of the
internal dynamics equation, which yields high sensitivity to external disturbances
and/or structured uncertainties. This article introduces an iterative technique that
provides periodic, closed-form analytic expressions uniformly convergent to the ex-
act periodic solution of a certain class of Abel ODE written in the normal form.
The method is then applied to the output voltage tracking of periodic references in
DC-DC boost power converters through a state feedback indirect control scheme.
The procedure lies on a number of assumptions for which sufficient conditions in-
volving system parameters and reference candidates are derived. It also allows to
attenuate the effect of bounded, piecewise constant load disturbances using dynamic
compensation. Simulation results validate the proposed algorithm.
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1 Introduction

Nonminimum phase output tracking is a challenging, theoretically sound con-
trol problem with a variety of applications that include controlling DC-DC
boost and buck-boost converters [1–3]. Stable inversion of unstable internal
dynamics in nonminimum phase plants plays a crucial role in developing the
output tracking control algorithms [4,5]. Hence, the exact tracking of a known
output reference y = yd(t) in nonminimum phase, time-invariant systems by
means of stable inversion was addressed in [4]. Since then, further studies
have completed the method by relaxing original hypotheses, extending it to
discrete-time systems and introducing new approaches (see [5] and the refer-
ences therein). However, these general methods require backwards time nu-
meric integration for the computation of a stable inverse, which is the main
reason of the well-known sensitivity of inversion-based exact-output tracking
controllers to external perturbations and/or plant parameter uncertainties.

The solution of the exact tracking control problem of periodic references in
nonminimum phase DC-DC nonlinear switched power converters requires sta-
ble inversion of the internal dynamics equation satisfied by the unstable vari-
able, i.e. the inductor current, which takes the normal form of Abel ODE
[1]. A variety of approaches for this purpose are available in the literature.
In [2], the stable inverse is computed from the expression of the equilibrium
current in the regulation case, just replacing the setpoint voltage reference
by the actual time-varying one: this yields a severe trade-off between system
parameters and command profile in order to keep the tracking error between
acceptable bounds. A bounded reference for the inductor current is obtained
in [3] as a solution of the unstable linearized internal dynamics, which reduces
its effectiveness to a vicinity of the operating point. The method introduced
in [6] exploits the differential flatness of the system to derive an iterative
sequence of bounded approximations of the nonminimum phase variable ref-
erence; however, no convergence proof is provided. Finally, a uniformly con-
vergent sequence of Galerkin approximations of the inductor current reference
is proposed as a solution in [7]. However, this approach suffers of two major
drawbacks. Firstly, only the first Galerkin approximation can be obtained in
a closed-form and, therefore, used for dynamic compensation of the distur-
bances. Secondly, the performance of the control setup depends on a number
of hypotheses which are difficult to verify. The last issues have been partially
overcome in [8] with the introduction of a Banach’s fixed-point theorem-based
iterative technique that allows generating a uniformly convergent sequence
of periodic functions. It is worth noting that these functions are analytically
computable in the closed form. However, although the set of hypotheses is
reduced with respect to [7], the verification problem still remains.

In this article, the procedure developed in [8] for obtaining a stable inverse of
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the Abel equation is improved. Now, sufficient, easily verifiable conditions are
imposed on the output voltage reference profile and the system parameters
in order to fulfill the required assumptions. Namely, the method solves the
stable inversion problem in a class of Abel ODE providing a uniformly con-
vergent, closed-form analytic iterative sequence of periodic approximations of
its periodic solution that shows an explicit dependence on the system param-
eters. The proposed technique is then applied to nonminimum phase output
voltage tracking in DC-DC boost power converters via indirect control. Fur-
thermore, robustness to bounded, piecewise constant load disturbances may
be achieved by dynamic compensation once the disturbed/unknown param-
eters are measured or estimated. This estimation can be accomplished, for
instance, using Higher Order Sliding Mode (HOSM) observation and input
reconstruction techniques developed for nonminimum phase systems in [9] or
algebraic estimation [10]. In turn, the steady-state output voltage tracking
error should be reduced at will using a sufficiently high order iteration for the
current reference.

The structure of the paper is as follows. In Section 2 stable inversion of Abel
differential equation is rigorously studied. The output voltage tracking in non-
minimum phase DC-DC boost converters using the developed stable inversion
technique is presented in Section 3. Section 4 contains the simulation study,
which confirms the efficacy of the proposed control algorithm. Conclusions are
presented in Section 5. In order to improve readability, proofs are concentrated
in an Appendix.

2 Stable inversion of a class of Abel equations

Consider the affine single-input, single-output system

ẋ = f(x) + g(x)u,

y = h(x),
(1)

where x ∈ R
n, f, g : D ⊆ R

n → R
n are smooth vector fields and h : D ⊆

R
n → R is a smooth scalar map.

Let the control problem be the exact tracking of the function yd(t) by the
output y. Assume that (1) has relative degree n− 1 on D0 ⊆ D and also that
its internal dynamics equation can be written as (or transformed into) an Abel
equation in the normal form [11]

η̇ = 1 − g(t)

η
, (2)
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where g(t) = g (yd(t)) and η = ϕ(x) is to be selected in such a way that the
mapping T⊤(x) = (ϕ(x), h(x), Lfh(x), . . . , Ln−2

f h(x)) is a diffeomorphism on
D0 [4]. Here Lk

fh(x) denotes the k-th order Lie derivative of h(x) along f .

Theorem 1 [1] Let g(t) be T -periodic, smooth and such that g(t) > 0, ∀t ≥ 0.
Then, (2) has one and only one T -periodic solution φ(t), which is positive and
unstable. 2

Let us obtain an iterative sequence of approximations of the periodic solution
of (2). For, let T ∈ R

+ and denote Cn
per([0, T ]) = {η ∈ Cn([0, T ]); η(0) = η(T )}

the subset of elements of Cn([0, T ]) that allow a continuous and T -periodic
extension in R, with Cper([0, T ]) = C0

per([0, T ]). Recall that (Cper([0, T ]), ‖ · ‖),
where ‖ · ‖ is the uniform norm, is a Banach space with respect to the metric
induced by ‖ · ‖.

Consider now the projection operator P0 : Cper([0, T ]) → R, that extracts the
mean value of periodic functions, namely, P0(η) = (1/T )

∫ T
0 η(t)dt, and let X̄

denote the subset of Cper([0, T ]) that contains the elements with zero mean
value, i.e. X̄ = {η ∈ Cper([0, T ]); P0(η) = 0}. Then, it is immediate that any
η ∈ Cper([0, T ]) can be uniquely decomposed as η = η0 + η̄, with η0 = P0(η)
and η̄ ∈ X̄. Finally, X̄ being closed by integration, for all η̄ ∈ X̄ there exists
a unique element η̂ ∈ X̄ such that ˙̂η = η̄.

Assumption A. Let g(t) be positive, C∞
per([0, T ]) and verify:

g0 >
T

2
+
√

2‖ĝ‖.

Let us define

α = 1 −

√

√

√

√

(

1 − T

2g0

)2

− 2‖ĝ‖
g2
0

, L(z) := zg0 −
T

2
. (3)

Theorem 2 If Assumption A holds, then ∀a ∈ (α, 1) and ∀L ∈ (L(α), L(a)],
there exists a closed, nonempty subset ML = {η̄ ∈ X̄; ‖η̄‖ ≤ L} ⊂ Cper([0, T ])
such that the sequence {φn}={g0 + φ̄n}, obtained by means of the iterative
procedure

φ̄n+1 = Ā(φ̄n) =
1

g0



φ̂n − ĝ −
φ̄2

n − P0

(

φ̄2
n

)

2



 , (4)

with φ̄0 ∈ ML, converges uniformly to the T -periodic solution φ(t) of (2).

Next Corollary establishes that if both g and φ̄0 have finite Fourier expan-
sions, then the successive approximations φn also have finite Fourier expan-
sions. Moreover, its coefficients depend explicitly on those of g and φ̄0 and
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are analytically computable in the closed form. The proof requires tedious
algebraic manipulation and has been omitted.

Corollary 3 Let Assumption A hold, let

g(t) = g0 + ḡ(t) = g0 +
r
∑

k=1

Ak cos kωt + Bk sin kωt

and let also φ̄0 ∈ ML be

φ̄0(t) =
s
∑

k=1

α0k cos kωt + β0k sin kωt.

Then, the successive approximations φn = g0 + φ̄n obtained from (4) are such
that, for all n ≥ 1, φn has m = 2n−1 · max{r, 2s} harmonics and

φn+1(t) = g0 +
2m
∑

k=1

αn+1,k cos kωt + βn+1,k sin kωt,

where the coefficients follow the recursive assignment

αn+1,k =
Bk − βnk

kg0w
− 1

2g0

∑

i−j=k
1≤i,j≤m

(αniαnj + βniβnj) +

+
1

4g0

∑

i+j=k
1≤i,j≤m

(βniβnj − αniαnj) ,

βn+1,k =
αnk − Ak

kg0w
+

1

2g0

∑

i−j=k
1≤i,j≤m

(αniβnj − αnjβni) +

− 1

4g0

∑

i+j=k
1≤i,j≤m

(αniβnj + αnjβni) .

Remark 4 The quality of the approximations provided by Theorem 2 depends
on the contractive constant and the distance between the initial condition φ0 =
g0 + φ̄0 and the periodic solution φ = g0 + φ̄, namely [12]:

‖φn − φ‖ = ‖φ̄n − φ̄‖ ≤ an‖φ̄0 − φ̄‖ = an‖φ0 − φ‖, ∀n ≥ 0.

Remark 5 Notice that the recurrence (4) coincides with the one derived in
[8], the only apparent difference being in Assumption A. However, in the latter
approach the problem is posed and solved in L2 and uses the L2 norm, which
hides a-priori information about uniform bounds on φn. As an example, notice
that with the procedure arising from Theorem 2 it is ensured that φn > 0,
∀n ≥ 0 (see relation B.1 in Appendix B), which is essential for its use in the
control scheme developed in next section.
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3 Approximate output tracking control in nonminimum phase

boost converters

The state-space averaged model of the boost DC-to-DC switched power con-
verter [13] may be written in dimensionless variables as [1]:

ẋ1 = 1 − ux2, (5)

ẋ2 =−λx2 + ux1, (6)

where

x1 =
1

Vg

√

L

C
iL, x2 =

vC

Vg

, t =
τ√
LC

, λ =
1

R

√

L

C
.

Notice that the inductor current iL and the capacitor voltage vC are pro-
portional to the dimensionless state variables x1 and x2, respectively, while
u : [0, +∞) −→ (0, 1). Recall also that the control action in the physical con-
verter is actually carried out by means of a switch; hence, u(t) is implemented
through a PWM signal. The constant voltage source Vg, the inductance L and
the capacitance C are considered known parameters, while perturbations may
affect the load resistance R.

Let the control objective be the tracking of a smooth, T -periodic reference
x2d(t) by the state variable x2 such that Assumption A is fulfilled. It is well
known that y = x2 is a nonminimum phase output with relative degree 1 in
D0 = {x ∈ R

2; x1 6= 0}. Therefore, after selecting η = x1, the standard stable
inversion procedure previously sketched yields the internal dynamics equation

ẋ1 = 1 − x2d(t) [ẋ2d(t) + λx2d(t)]

x1

. (7)

It is worth noting that equation (7) falls into a format of Abel ODE (2) with
the assignment g(t) = x2d(t) [ẋ2d(t) + λx2d(t)]. Hence, Theorem 1 ensures that,
for g(t) > 0, (7) has a positive, T -periodic, unstable solution φ(t).

Consider that Assumption A is fulfilled and let system (5)-(6) undergo the
indirect state feedback control action

u =
1 − φ̇n + γ(x1 − φn)

x2

, γ ∈ R
+, (8)

where φn stands for an approximation of the periodic solution of (7) obtained
through Theorem 2. It is then straightforward from (5) that (8) forces a steady-
state in which x1 tracks the reference signal φn(t). Hence, (6)-(8) yield the
dynamics of x2 for x1 = φn(t), namely,

x2n (ẋ2n + λx2n) = φn(1 − φ̇n). (9)
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Assumption B. Assumption A holds and φ̄0 is selected in ML ⊃ MD = {η̄ ∈
ML; ‖ ˙̄η‖ < D}, with

L <
g0 − ‖ḡ‖

2
and

‖ḡ‖ + L

g0 − L
≤ D < 1. (10)

Remark 6 The existence of such a positive D is indeed ensured. Notice that
(10) yields (‖ḡ‖ + L) (g0 − L)−1 < 1, while Lemma 11 and Theorem 2 entail

g0 − L ≥ g0 − L(a) = (1 − a)g0 +
T

2
> 0. (11)

Next result characterizes the output responses x2n(t).

Theorem 7 Let Assumption B hold. Then, for every n ≥ 1, (9) has one
and only one T -periodic solution x2n(t) in R

+, which is asymptotically stable.
Moreover, the sequence {x2n} converges uniformly to x2d.

The applicability of the control procedure is restricted to the fulfillment of an
obviously necessary condition: the steady-state control law u = u(t, φn, x2n)
must lie in (0, 1), ∀t ≥ 0. As u ∈ (0, 1), its isolation in (5)-(6) yields that
the steady-state trajectories that do not saturate the control action are those
satisfying:

0 <
1 − φ̇n

x2n

< 1, or 0 <
ẋ2n + λx2n

φn

< 1. (12)

It is immediate from the positive character of φn (established in relation (B.1)
of Appendix B) and x2n (derived from Theorem 7) that, under Assumption
B, the unsaturated region (12) is equivalently defined by

0 < 1 − φ̇n < x2n, or 0 < ẋ2n + λx2n < φn. (13)

Hence, the key demand of unsaturation of the control action in the steady-
state is claimed straightforward:

Assumption C. Assumption B holds and the steady-state of (5)-(6) under
the control law (8) remains in the unsaturated region defined by (13), for all
n ∈ N.

Restrictions involving x2d and the system parameters for the fulfillment of
Assumptions B and C are established below.

Proposition 8 Let Assumption A hold. Then, it is necessary for the fulfill-
ment of Assumption B that

g0 + ‖ḡ‖ − T

2
<

√

(

g0 −
T

2

)2

− 2‖ĝ‖. (14)
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Proposition 9 Let Assumption B hold. Then, it is sufficient for the fulfill-
ment of Assumption C that:

g0 − L > λ
(1 + D)2

1 − D
(15)

Remark 10 (i) Unsaturation of the control action in the steady state is also
assumed in [8] from a certain n1 ∈ N. However, no discussion about how to
find n1, or at least, how to prove that it actually exists, was provided. Notice
that, with the present approach, the fulfillment of (15) ensures steady-state
unsaturation for any input current reference φn obtained from Theorem 2.

(ii) It is also worth pointing out that the fulfillment of Assumption C assures
unsaturation of the control action (8) during transients if the initial conditions
x1(0), x2(0) are set close enough to those of their respective reference profiles.
Otherwise, the performance can not be guaranteed.

Now, all assumptions are easily verifiable and the stable inverse algorithm
developed for the generic Abel ODE (2) can be applied to equation (7) for
the tracking of time-varying, periodic output voltage references in the DC-DC
boost converter (5)-(6).

The proposed procedure can also be used to tackle the robust tracking control
problem under sudden load changes. This is because, from Corollary 3, the
current references φn are available in the closed form and show explicit depen-
dence on λ, which is proportional to the output load. Then, it is possible to
dynamically compensate the effect of piecewise constant load disturbances be-
longing to a known compact set Λ through a real-time updating of the selected
current reference φn(t) = φn(t, λ) according to the instantaneous variation of
λ, which is assumed to be estimated (using, for example, HOSM observation
[9] or algebraic estimation [10]) or measured. Hence, success is subject to the
fulfillment of Assumption C for all λ ∈ Λ and, according to Remark 10.ii, to
the unsaturation of the control action during the transients that occur because
of load jumps. For specific situations, such as the case of DC periodic output
voltage command profiles, it is possible to obtain sufficient conditions over the
system parameters and reference candidates that guarantee Assumption A and
(14) to be verified not only for a fixed λ, but also for all λ ∈ Λ = [λ−, λ+] ⊂ R

+

(see [14]).

4 Simulation results

The technique has been tested on a boost converter with Vg = 50V , L =
0.018H, C = 0.00022F and RN = 10Ω. The output voltage reference profile
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has been set to:
vC(τ) = 210 + 50 sin(2πντ),

with ν = 50Hz. At a certain time instant, the load resistance is assumed to
undergo an additive perturbation of a 50% of the nominal value RN , thus
growing up to RP = 15Ω. The corresponding values in normalized variables
are Λ = [λ−, λ+] = [0.6030, 0.9045] and x2d(t) = 4.2+sin ωt, where ω = 0.6252.

With these settings, Assumptions A, B and C have been numerically verified
∀λ ∈ Λ. Indeed, Assumption A is fulfilled because

min
λ∈Λ

{

g0 −
T

2
−
√

2‖ĝ‖
}

= 1.62 > 0.

Regarding Assumption B, it is worth remarking that the contractive constant
a is to be selected in (0.5359, 1); once a is fixed, the possible radius L of ML

belong to (L(α), L(a)], with L(α) ≤ 0.8371 and L(a) ≥ 10.9288a−5.0252. Let
a = 0.9 and L = 1. This entails D ∈ (0.724, 1], so we choose D = 0.8 < 1 = L.
Hence, as

min
λ∈Λ

{

g0 − ‖ḡ‖
2

− L

}

= 1.40 > 0, min
λ∈Λ

{

D − ‖ḡ‖ + L

g0 − L

}

= 0.08 > 0,

(10) hold ∀λ ∈ Λ. Finally,

min
λ∈Λ

{

g0 − L − λ
(1 + D)2

1 − D

}

= 0.17 > 0,

which ensures the fulfillment of (15) and, therefore, of Assumption C ∀λ ∈ Λ.

Furthermore, according to Remark 4, the iterative procedure of Theorem 2
provides better convergence rates with initial conditions closer to φ̄. Thence,
let us pick φ̄0 = φ̄1G, with φ̄1G denoting the periodic component of the first
Galerkin approximation of φ(t), namely [15]:

φ̄1G(t) =
4ABω(1 + λ2Q)

4 + λ2ω2Q2
cos ωt +

2λAB(4 − ω2Q)

4 + λ2ω2Q2
sin ωt,

where Q = 2A2 + B2 and A, B are the offset and amplitude of x2d, i.e.
x2d(t) = A + B sin ωt. The fact that φ̄1G(t) has a λ-dependent closed-form
analytic expression maintains the possibility of achieving robustness by means

of dynamic compensation. Finally, ‖φ̄1G‖ ≤ 0.8255 < L, ‖ ˙̄φ1G‖ ≤ 0.5161 < D,
∀λ ∈ Λ.

The dynamical behavior of system (5), (6) subject to the continuous state
feedback control law (8), with current reference x1d = φ1 = g0 + Ā(φ̄1G)
and γ = 0.5, has been simulated with MAPLE. The sensitivity to initial
conditions is checked setting x1(0) = 15 6= φ1(0), x2(0) = 1 6= x2d(0). In
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Fig. 1. The input current x1 tracking φ1 under dynamic compensation of a load
disturbance occurring at t = 15 ntu.

turn, the robustness of the control approach in front of piecewise constant
load disturbances is tested as follows: at t = 15 normalized time units (ntu),
the output resistance undergoes the above described step change; assuming
output load measurement, a delay of 0.01 ntu between the appearance of the
disturbance and the incorporation of the actual value of λ in the inductor
current reference φ1 is considered.

Figure 1 depicts the input current x1 tracking the command profile x1d(t).
The plot includes the exact solution φ(t) of equation (2), which appears to be
indistinguishable from its approximation φ1(t). Figure 2 depicts the output
voltage reference x2d(t) and the output voltage state variable x2. Notice that
both state variables exhibit asymptotic tendency to their respective references,
while dynamic compensation allows effectiveness of the tracking task to be
recovered immediately after the disturbance occurs. Figure 3 shows that the
control action (8) does not saturate during the entire process.

The main drawbacks of the method are: (a) the peaking effect undergone
by the output voltage and the control action, which is inherent to dynamic
compensation in indirect control schemes, and (b) the performance decay as-
sociated to mismatches between the supposed or estimated value of λ and its
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Fig. 2. The output voltage x2 tracking x2d under dynamic compensation of a load
disturbance occurring at t = 15 ntu.
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Fig. 3. The control action u accommodating a load disturbance occurring at t = 15
ntu.

actual value, because this implies that x1 would be following an erroneous ref-
erence φn and, consequently, x2 would not track the expected output reference
but a different signal. Indeed, it is immediate from the proof of Theorem 7 that
the internal dynamics equation (9) has a positive, T -periodic, asymptotically
stable solution whenever Gn = φn(1 − φ̇n) is positive and T -periodic.

5 Conclusions

This article provides a stable inversion method for a class of Abel equations
in case of DC periodic tracking. The procedure allows to find periodic, closed-
form analytic approximations uniformly convergent to the exact periodic solu-
tion of the inverse problem. The method is applied to the output voltage track-
ing control of nonminimum phase DC-DC boost converters: a state feedback
indirect control scheme that uses the approximate references of the nonmini-
mum phase variable yields asymptotic tracking of the output voltage reference
target. Furthermore, bounded piecewise constant load disturbances belonging
to an a priori known compact set can be dynamically compensated. Sufficient
conditions for the fulfillment of the technical assumptions and physical re-
strictions arising in the procedure are provided. The efficacy of the proposed
algorithm is verified via computer simulation.

Further research is devoted to the extension of the stable inversion method to
the tracking of a broader class of functions that includes periodic functions
with non-definite sign and non-periodic functions. The experimental imple-
mentation of the control technique for a boost converter is under study as
well.
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A Proof of Theorem 2

Follow Section 4 in [16] and replace Lemmas 5 and 6 therein by Lemmas
11 and 12, respectively, which are stated below. The proof of Lemma 11 is
straightforward.

Lemma 11 If Assumption A holds, then 0 < T (2g0)
−1 ≤ α. Moreover, ∀a ∈

(α, 1), 0 ≤ L(α) < L(a). 2

Lemma 12 Let x̄, x̂ ∈ X̄ be such that ˙̂x = x̄. Then, ‖x̂‖ ≤ (T/2)‖x̄‖ for all
x̄ ∈ X̄.

Proof. x̂ being continuous and with zero mean value in [0, T ], it is straight-
forward that there exists, at least, t0 ∈ [0, T ] such that x̂(t0) = 0. Therefore,
assuming that both x̄(t) and x̂(t) are naturally extended to [t0, t0 + T ], one
has that

∫ t0+T

t0

x̂(t)dt = 0.

Moreover, the T -periodicity of x̂(t) ensures the existence of c ∈ [t0, t0 + T ]
such that ‖x̂‖ = |x̂(c)|; hence,

‖x̂‖ = |x̂(c)| =
∣

∣

∣

∣

∫ c

t0

x̄(t)dt

∣

∣

∣

∣

.

Furthermore, it is also straightforward that

∫ T

0
x̄(t)dt = 0 =⇒

∫ t0+T

t0

x̄(t)dt = 0;
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thus,
∫ c

t0

x̄(t)dt =
∫ t0

t0+T
x̄(t)dt +

∫ c

t0

x̄(t)dt =
∫ c

t0+T
x̄(t)dt,

this yielding

‖x̂‖ =
∣

∣

∣

∣

∫ c

t0

x̄(t)dt
∣

∣

∣

∣

≤ (c − t0)‖x̄‖, and

‖x̂‖ =
∣

∣

∣

∣

∫ c

t0+T
x̄(t)dt

∣

∣

∣

∣

≤ (t0 + T − c)‖x̄‖.

The result follows adding both inequalities . 2

B Proof of Theorem 7

Lemma 13 Let Assumption B hold. Then, the sequence {Gn} = {φn(1− φ̇n)}
verifies that Gn(t) > 0, ∀n ≥ 0.

Proof. On the one hand, let φ̄0 ∈ ML; then, by Theorem 2, φ̄n ∈ ML, ∀n ≥ 0.
Consequently, ∀n ≥ 0, (11) entails

φn = g0 + φ̄n ≥ g0 − ‖φ̄n‖ ≥ g0 − L > 0. (B.1)

On the other hand one has φ̄0 ∈ ML and ‖φ̇0‖ = ‖ ˙̄φ0‖ ≤ D < 1 by hypothesis.

In accordance to the induction principle, assume that ‖φ̇n‖ = ‖ ˙̄φn‖ ≤ D < 1.
Now, using (4) and (10),

‖φ̇n+1‖ ≤ 1

g0

(g0D − LD + LD) ≤ D < 1.

Therefore, 1 − φ̇n ≥ 1 − ‖φ̇n‖ ≥ 1 − D > 0 and, finally, Gn = φn(1 − φ̇n) > 0,
∀n ≥ 0. 2

Equation (9) can be written as

x2n (ẋ2n + λx2n) = Gn (B.2)

The change of variables y = 1/2x2
2n linearizes (B.2), which allows to obtain

its general solution:

x2n(t) = ±
[

x2
2n(0)e−2λt + 2e−2λt

∫ t

0
e2λsGn(s)ds

]

1

2

. (B.3)

Lemma 13 guarantees that, under Assumption B, Gn > 0, for all n ≥ 1. As it
is also λ > 0, all the elements inside the square root in (B.3) are positive and
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x2n is well defined: it is x2n > 0 for x2n(0) > 0 and x2n < 0 for x2n(0) < 0. No-
tice that x2n(0) = 0 does not define a solution because it requires Gn(0) = 0,
which is impossible by hypothesis. Furthermore, the periodic solution (abu-
sively denoted) x2n may be found demanding x2n(0) = x2n(T ), this yielding
two periodic solutions, one in R

+ and another one in R
−. The positive solution

is:

x2n(t) =

[

2e−2λt

e2λT − 1

∫ T

0
e2λsGn(s)ds + 2e−2λt

∫ t

0
e2λsGn(s)ds

]
1

2

,

and its asymptotic stability follows immediately from the fact that λ > 0.

Let us now prove the uniform convergence. For, consider the change of vari-
ables zn = 1/2(x2

2n − x2
2d). Therefore, (B.2) becomes

żn + 2λzn = Fφn(t), (B.4)

where

Fφn(t) = Gn − x2d (ẋ2d + λx2d) = φn(1 − φ̇n) − φ(1 − φ̇),

φ being the positive, T -periodic solution of ( 7). It is then immediate that
(B.4) has a T -periodic, asymptotically stable solution (abusively denoted) zn

which may be found by a procedure equivalent to the one followed to find x2n:

zn(t) =
e−2λt

e2λT − 1

∫ T

0
e2λsFφn(s)ds + e−2λt

∫ t

0
e2λsFφn(s)ds. (B.5)

Notice also that

∫ t

0
e2λsFφn(s)ds =

=
∫ t

0
e2λs (φn(s) − φ(s)) ds − 1

2

∫ t

0
e2λs d

ds

(

φ2
n(s) − φ2(s)

)

ds =

=
∫ t

0
e2λs [φn(s) − φ(s)] ds − e2λt

2

[

φ2
n(t) − φ2(t)

]

+
1

2

[

φ2
n(0) − φ2(0)

]

+

+λ
∫ t

0
e2λs

[

φ2
n(s) − φ2(s)

]

ds.

Then, taking uniform norms in (B.5),

‖zn‖≤NTe2λT‖φn − φ‖ +
N

2

(

1 + e2λT
)

(‖φn‖ + ‖φ‖) ‖φn − φ‖ +

+λNTe2λT (‖φn‖ + ‖φ‖) ‖φn − φ‖,

where

N =
e2λT

e2λT − 1
.
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On the one hand, φn → φ uniformly and φ is continuous and periodic, thus
bounded. On the other hand, these two facts entail the uniform boundedness
of {φn}. Consequently, taking limits for n → ∞ yields {zn} → 0 uniformly
and, being x2d > 0 and x2n > 0, for all n ≥ 1, then x2n → x2d uniformly. 2

C Proof of Proposition 8

Theorem 2 indicates that the radius L of ML must satisfy L(α) < L. Hence,
L− < 2−1(g0 − ‖ḡ‖) is a necessary condition for Assumption B. Relation (14)
follows re-writing the later inequality using (3). 2

D Proof of Proposition 9

Assumption B ensures that 1 − φ̇n > 0, ∀n ∈ N; thus, x2n > 1 − φ̇n if

inf
t∈[0,T ]

{x2n} > ‖1 − φ̇n‖. (D.1)

Recall that x2n is C1
per([0, T ]) and satisfies (9). Hence, there exists tm ∈ [0, T ],

with ẋ2n(tm) = 0, where x2n(t) attains minimum value, this yielding

φn(tm)
[

1 − φ̇n(tm)
]

= λx2
2n(tm).

Thus,

x2n(tm) =

√

1

λ
φn(tm)

[

1 − φ̇n(tm)
]

,

which means that (D.1) is guaranteed by

inf
t∈[0,T ]

{

φn(t)
[

1 − φ̇n(t)
]}

> λ‖
(

1 − φ̇n

)

‖2.

Finally, (B.1) and Assumption B entail

inf
t∈[0,T ]

{

φn(t)
[

1 − φ̇n(t)
]}

≥ (g0 − L)(1 − D),

λ‖1 − φ̇n‖2 ≤ λ(1 + D)2.

Then, (15) is a sufficient condition for (D.1) and, therefore, of (13). 2
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