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The Riemann Zeta function

Figure: ζ(s). Hue is argument, brightness is
modulus. Made with Jan Homann’s
ComplexGraph Mathematica code.

Non-trivial zeros: those with real part
in (0, 1).

First few:
1
2

+ i14.13, 1
2

+ i21.02, 1
2

+ i25.01.

We assume the Riemann Hypothesis in
what follows: all nontrivial zeros have
the form 1

2
+ iγ, for γ ∈ R.

Around height T , zeros have density
roughly logT/2π. More precisely:

Theorem (Riemann - von Mangoldt)

N(T ) = #{γ ∈ (0,T ), ζ( 1
2

+ iγ) = 0}
= T

2π
log( T

2π
)− T

2π
+ O(logT )
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1 and 2-level density

1-level density: For large random s ∈ [T , 2T ] and dx small,

P
(
one γ ∈

[
s, s + 2π dx

log T

])
∼ dx

Since s is random, for fixed x , we can translate by 2πx
log T

and have the
same statement

P
(
one γ ∈ s + 2π

log T
[x , x + dx ]

)
∼ dx

2-level density (pair correlation): Does the presence of one zero in a
location affect the likelihood of other zeros being nearby?

Conjecture:

P
(
one γ ∈ s + 2π

log T
[x , x + dx ], one γ′ ∈ s+ 2π

log T
[y , y + dy ]

)
∼
(
1−

( sinπ(x−y)
π(x−y)

)2)
dx dy

1− ( sinπ(x−y)
π(x−y)

)2 ≈ 0 when x ≈ y , so very low likelihood of two zeros
being much nearer than average.

Compare probability dx dy for poisson process.
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A histogram of the pair correlation conjecture

Figure: A histogram of log T
2π

(γ − γ′) for the first 10000 zeros, in intervals of size .05, compared to the

appropriately scaled prediction 1− ( sin πx
πx

)2.
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k-level density

k-level density: Conjecture:

P
(
one γ1 ∈ s + 2π

log T
[x1, x1 + dx1], one γ2 ∈ s + 2π

log T
[x2, x2 + dx2],

..., one γk ∈ s + 2π
log T

[xk , xk + dxk ]
)

∼ det


1 S(x1 − x2) · · · S(x1 − xk)

S(x2 − x1) 1 · · · S(x2 − xk)
...

...
. . .

...
S(xk − x1) S(xk − x2) · · · 1

 dx1 dx2 · · · dxk

where S(x) = sinπx
πx

.

This is the same probability as

P
(

log T
2π

(γ1 − s) ∈ [x1, x1 + dx1], ..., log T
2π

(γk − s) ∈ [xk , xk + dxk ]
)
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A more formal statement and a comparison with the
unitary group

More formally:

Conjecture (GUE)

For fixed k and fixed η (Schwartz, say)

1

T

∫ 2T

T

∑
γ1,...,γk
distinct

η
(

log T
2π

(γ1−s), ..., log T
2π

(γk−s)
)
ds ∼

∫
Rk

η(x) det
k×k

(
S(xi−xj)

)
dkx

This is known to be the case for unitary matrices. Let U(N) be the
Haar-probability space of N × N random unitary matrices g , and label g ’s
eigenvalues {e i2πθ1 , ..., e i2πθN } with θj ∈ [−1/2, 1/2) for all j .

Theorem (Dyson-Weyl)

For fixed k and η,∫
U(N)

∑
i1,...,ik
distinct

η(Nθi1 , ...,Nθik ) dg ∼
∫
Rk

η(x) det
k×k

(
S(xi − xj)

)
dkx
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GUE restated

The GUE conjecture implies: Given any fixed interval J, the random
variable

#J

(
{ log T

2π
(γ − s)}

)
s ∈ [T , 2T ]

and the random variable

#J

(
{Nθj}

)
g ∈ U(N)

tend in distribution as T ,N →∞ to the same random variable.

The GUE conjecture is equivalent to: For any fixed test function η,
piecewise continuous and with compact support, the random variable∑

γ

η
(

log T
2π

(γ − s)
)

and the random variable ∑
j

η(Nθj)

tend in distribution as T ,N →∞ to the same random variable.
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Rigorous evidence for GUE

For certain band-limited test functions, the GUE conjecture is
known (on RH) to be true.

Theorem (Mongtomery, Hejhal, Rudnick-Sarnak)

For fixed k and η with supp η̂ ∈ {y : |y1|+ · · ·+ |yk | < 2}

1

T

∫ 2T

T

∑
γ1,...,γk
distinct

η
(

log T
2π

(γ1−s), ..., log T
2π

(γk−s)
)
ds ∼

∫
Rk

η(x) det
k×k

(
S(xi−xj)

)
dkx
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The statistics we have been talking about concern only zeros at height T
separated by O(1/ logT ). We call such statistics “microscopic.”

If we limit our knowledge to what I have so far talked about, we suffer two
restrictions:

(1) We can’t say anything rigorous about the distribution of zeros when we
‘count’ with test functions that are too oscillatory (too narrowly concentrated,
that is, by the uncertainty principle) at the microscopic level.

(2) We can’t say anything about the distribution of zeros when counted by test
functions that are not essentially supported at the microscopic level. We can’t
say anything, for instance, about the effect the position of a zero will have on
the statistics of a zero a distance of 1 away.

Philosophy: (1) is a serious obstruction to our knowledge of zeta
statistics, (2) is not. Any question that can be asked about zeta
zeros, provided answering it does not require counting with
functions that are “too oscillatory” in the microscopic regime, can
be rigorous answered.
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Mesoscopic collections of zeros

Theorem (Fujii)

Let n(T ) be a function →∞ as T →∞ but so that n(T ) = o(logT ), and let
s be random and uniformly distributed on [T , 2T ]. Let
JT = [−n(T )/2, n(T )/2], and define

∆T = #JT ({ log T
2π

(γ − s)})

= N(s + 2π
log T
· n(T )

2
)− N(s − 2π

log T
· n(T )

2
)

we have
E∆T = n(T ) + o(1)

Var∆T := E(∆− E∆)2 ∼ 1

π2
log n(T )

and in distribution
∆T − E∆T√

Var∆T

⇒ N(0, 1)

as T →∞.

That n(T ) = o(logT ) is important! Collections of zeros in this
range are known as ‘mesoscopic.’
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Mesoscopic collections of eigenvalues

Theorem (Costin-Lebowitz)

Let n(M) be a function →∞ as M →∞, but so that n(M) = o(M). Let
IM = [−n(M)/2, n(M)/2]. Consider the counting function

∆M = #IM ({Mθi}).

Then
EU(M)∆M = n(M)

VarU(M)∆M ∼
1

π2
log n(M)

and in distribution
∆M − E∆M√

Var∆M

⇒ N(0, 1)

Here n(M) = o(M) is a natural boundary.

Heuristic conjecture of Berry (1989): The zeros look like
eigenvalues not only microscopically, but also mesoscopically.
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Macroscopic collections of zeros

Theorem (Backlund)

N(T ) =
1

π
arg Γ( 1

4
+ i T

2
)− T

2π
log π + 1 + S(T )

S(T ) :=
1

π
arg ζ( 1

2
+ iT )

S(T ) is small and oscillatory, and may be thought of as an error term.

Theorem (Fujii)

Let
∆T = S(s + 2π

log T
n(T )

2
)− S(s − 2π

log T
n(T )

2
)

and n(T )→∞ we have
E∆T = o(1)

Var∆T ∼

{
1
π2 log n(T ) if n(T ) = o(logT )
1
π2 log logT if logT . n(T ) = o(T ).

We still have ∆T/Var∆T ⇒ N(0, 1).

This phase change does not correspond to phenomena in random matrix
theory. What causes it?
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Macroscopic pair correlation 1

Figure: A histogram of γ − γ′ for the first 5000 zeros, in intervals of size .1.
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Macroscopic pair correlation 2

Figure: A histogram of γ − γ′ for the first 7500 zeros, in intervals of size .1.
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Macroscopic pair correlation 3

Figure: A histogram of γ − γ′ for the first 10000 zeros, in intervals of size .1.
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The Bogomolny - Keating prediction

Figure: A histogram of γ − γ′ for the first 10000 zeros, in intervals of size .1, compared with the prediction
of Bogomolny and Keating.
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Montgomery’s strong pair correlation

Theorem (Montgomery)

For fixed ε > 0 and w(u) = 4/(4 + u2),

1

T log T
2π

∑
0≤γ,γ′≤T

e
(
α log T

2π
(γ − γ′)

)
w(γ − γ′)

= 1− (1− |α|)+ + o(1) + (1 + o(1))T−2α logT

= (1 + o(1))

∫
R
e(αx)w

(
2πx

log T

)[
δ(x) + 1−

( sinπx

πx

)2]
dx

uniformly for |α| ≤ 1− ε.

For fixed M, this is conjectured to be true uniformly for α ≤ M.

This has not only microscopic content, but first order macroscopic content! We
can see, to first order, the histogram γ − γ′ up to a microscopically blurred
resolution.
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What information does this give us?

The role of the cutoff w is only to restrict our attention to γ − γ′ in a
prescribed bounded region

- Morally w can be replaced by 1[−30,30], or
anything similar.

By integrating the expression in α against ĝ(α), for some ĝ supported in
(−1, 1), we obtain an asymptotic count of γ − γ′ around 0 as counted by
a microscopic (but band-limited) test function: g( log T

2π
(γ − γ′)).

By integrating against ĝ(α)e(−α log T
2π

r), we obtain an asymptotic count

of γ − γ microscopically near r : g( log T
2π

(γ − γ′ − r). This asymptotic is
uniform in r .

By adding these microscopic counts at different r , we can obtain
asymptotics of meso- and macroscopic counts, even against test functions
not band limited.
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not band limited.
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What information does this give us?
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Macroscopic pair correlation: An exact formulation

Theorem (R.)

For fixed ε > 0 and fixed ω with a smooth and compactly supported Fourier transform,

1

T

∑
0<γ 6=γ′≤T

ω(γ − γ′)e
(
α log T

2π
(γ − γ′)

)
= Oδ

( 1

T δ

)
+

∫
R
ω(u)e

(
α log T

2π
u
)[ 1

T

∫ T

0

( log(t/2π)

2π

)2
+ Qt(u) dt

]
du

for any δ < ε/2, uniformly for |α| < 1− ε.

where

Qt (u) :=
1

4π2

(( ζ′
ζ

)′
(1 + iu)− B(iu) +

( ζ′
ζ

)′
(1− iu)− B(−iu)

+
( t

2π

)−iu
ζ(1− iu)ζ(1 + iu)A(iu) +

( t

2π

)iu
ζ(1 + iu)ζ(1− iu)A(−iu)

)
,

defined by continuity at u = 0, and

A(s) :=
∏
p

(1− 1
p1+s )(1− 2

p
+ 1

p1+s )(
1− 1

p

)2
=
∏
p

(
1−

(1− p−s )2

(p − 1)2

)
= 1 + O(s2),

and

B(s) :=
∑
p

log2 p

(p1+s − 1)2
.
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What produces the troughs?

(ζ ′
ζ

)′
(1 + iu) =

d2

d2 s
log ζ

∣∣∣
1+iu

(ζ ′
ζ

)′
(1 + iu) = H(u)−

∑
γ

φ(u − γ)

for H(u) regular and not too large when u 6= 0, and

φ(x) := 2
1
4 − x2

( 1
4 + x2)2

It ends up that (ζ′
ζ

)′
(1 + iu)− B(iu) =

∞∑
k=1

ck
(ζ′
ζ

)′
(ks)

for ck =
∑

d|k µ(d)d .
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Macroscopic pair correlation: A reformulation for |α| < 1

Theorem

For fixed ε > 0 and fixed ω with a smooth and compactly supported Fourier transform,

1

T

∑
0<γ 6=γ′≤T

ω(γ − γ′)e
(
α log T

2π
(γ − γ′)

)
= Oδ

( 1

T δ

)
+

∫
R
ω(u)e

(
α log T

2π
u
)[ 1

T

∫ T

0

( log(t/2π)

2π

)2
+ Q̃t(u) dt

]
du

for any δ < ε/2, uniformly for |α| < 1− ε.

where

Q̃t(u) :=
1

4π2

(∑ Λ2(n)

n1+iu
+
∑ Λ2(n)

n1−iu
+

e(− log(t/2π)
2π

u) + e( log(t/2π)
2π

u)

u2

)
,

defined by continuity at u = 0.
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Another application of this philosophy: An analogue of the
Strong Szegő Theorem

Theorem (R., Bourgade-Kuan)

Let n(T )→∞, but n(T ) = o(log T ). For a fixed η define

∆η,T =
∑
γ

η
( log T

2πn(T )
(γ − s)

)
,

For all η with compact support and bounded variation when
∫
|x ||η̂(x)|2 dx diverges,

and nearly all such η when the integral converges, we have

E∆η,T = n(T )

∫
R
η(ξ)dξ + o(1),

Var∆η,T ∼
∫ n(T )

−n(T )
|x ||η̂(x)|2dx

and in distribution
∆η,T − E∆η,T√

Var∆η,T

⇒ N(0, 1)

as T →∞.
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Ideas in proof: Explicit formulas

Ex: Λ(n) ≈ 1−
∑
γ n
−1/2+iγ + lower order

Must use an explicit formula which is exact, or extremely close to being
exact

Must use an explicit formula which takes into account the functional
equation

Recall N(T ) = 1
π

arg Γ( 1
4

+ i T
2

)− T
2π

log π + 1 + S(T ).

⇒: dN(ξ) =
∑
γ

δγ(ξ)dξ =
Ω(ξ)

2π
+ dS(ξ)

where Ω(ξ)/2π is regular and ≈ log(ξ)/2π

Pair correlation ⇔ Knowing about dN(ξ1 + t)dN(ξ2 + t) on average
⇔ Knowing about dS(ξ1 + t)dS(ξ2 + t) on average
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Ideas in proof: Explicit formulas

Theorem (Riemann-Guinand-Weil)

For nice g∫
R
ĝ
( ξ

2π

)
dS(ξ) =

∫ ∞
−∞

[g(x) + g(−x)]e−x/2d
(
ex − ψ(ex)

)
Here ψ(x) =

∑
n≤x Λ(n).

This is a Fourier duality between the error term of the prime
counting function, and the error term of the zero counting function.
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Ideas in proof: Smooth averages

Replace

1

T

∫ 2T

T

· · · ds =

∫
R

1[1,2](s/T )

T
· · · ds with

∫
R

σ(s/T )

T
· · · ds

for σ̂ compactly supported, and σ of mass 1 (so σ̂(0) = 1).

We want to know about:

A =

∫
R

σ(s/T )

T

∫
R2

e
(
α log T

2π
(ξ1 − s)− α log T

2π
(ξ2 − s)

)
r
(
ξ1−s

2π

)
r
(
ξ2−s

2π

)
dS(ξ1) dS(ξ2) ds

=
∑

ε∈{−1,1}2

∫ ∞
−∞

∫ ∞
−∞

σ̂
(

T
2π

(ε1x1 + ε2x2)
)
r̂(ε1x1 − α log T )r̂(ε2x2 + α log T )

× e−(x1+x2)/2d
(
ex1 − ψ(ex1 )

)
d
(
ex2 − ψ(ex2 )

)
This is really four integrals, over different measures:

d
(
ex1 − ψ(ex1 )

)
d
(
ex2 − ψ(ex2 )

)
= d(ex1 )d(ex2 )− d(ex1 )dψ(ex2 )− dψ(ex1 )d(ex2 ) + dψ(ex1 )dψ(ex2 )
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Ideas in proof

The term σ̂
(

T
2π

(ε1x1 + ε2x2) forces ε1x1 + ε2x2 = O(1/T ):

A = O
( 1

T 1−α

)
+

∑
ε∈{−1,1}2

∫ ∞
−∞

∫ ∞
−∞

σ̂
(

T
2π

(ε1x1 + ε2x2)
)
r̂(ε1x1 − α logT )

× r̂(ε2x2 + α logT )e−(x1+x2)/2dψ(ex1 )dψ(ex2 )

= O
( 1

T 1−α

)
+
∑
n

Λ2(n)

n

[
r̂(− log n − α logT )r̂(log n − α logT )

+ r̂(log n − α logT )r̂(− log n − α logT )
]

This can be untangled with some complex analysis to give the form we’re
after.

Some additional work is needed to untangle dS(ξ1 + t)dS(ξ2 + t).
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A more ambitious application: Moments

1

T

∫ T

0

|ζ( 1
2

+ it)|2k dt ↔

∫ 1

0

∫
U(n)

| det(1− e i2πθg)|2k dg dθ

=

∫
U(n)

| det(1− g)|2k dg

Macroscopic information in
k-point correlation functions,
with microscopic
band-limitations: Fourier
support in
{y : |y1|+ · · ·+ |yk | ≤ 2}

↔

Using only knowledge of the
k-point correlation functions∫ ∑

j1,...,jk
distinct

η(e i2πθj1 , ..., e i2πθjk ) dg

for η : Tk → R, supp η̂ ⊂ {r ∈
Zk : |r1|+ · · ·+ |rk | ≤ 2n}
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A more ambitious application: Moments

But with this information, we can deduce∫
| det(1− g)|2k dg =

∫ n∏
j=1

(2− e i2πθj − e−i2πθj )k dg

for k = 1, 2 but no higher.

Classical knowledge about the zeta function, having nothing to do with random
matrix theory, let’s us rigorously deduce the asymptotics of

1

T

∫ T

0

|ζ( 1
2

+ it)|2k dt

for k = 1, 2, but no higher.

Question: Is there a way to understand these computations in terms of
macroscopic k-point correlation functions?

What about the conjectured asymptotics of higher moments? (Keating-Snaith
conjecture)
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Thanks:

Thanks!
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