MAT 636 ODES AND FOURIER SERIES SOLUTIONS TO HOMEWORK 9

Problem 1. Let $\{\phi_j\}$ be an orthonormal system in a Hilbert space H. Prove that $\{\phi_j\}$ is a complete orthonormal system if and only if the only vector $u \in H$ for which $\langle u, \phi_j \rangle = 0$ for all j is u = 0.

Note added later: Here $\{\phi_j\}$ is to be taken as a countable set. However, it is an interesting fact that the statement remains true if the orthonormal system, $\{\phi_{\alpha}\}$ say, is uncountable. I've added some words about proving this more general claim at the end of the solution posted on piazza.

Problem 2. Let f of period 1 be an element of $L^1[0,1)$ and differentiable such that $f' \in L^2[0,1)$. Prove that

$$\sum_{n \in \mathbb{Z}} |\hat{f}(n)| \le ||f||_1 + \left(\frac{1}{2\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2}\right)^{1/2} ||f'||_2.$$