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A probability distribution on qubits
The n-qubit model : [¢)) = " ¢c.|z) for 2 € {0,...,2" — 1}.

¢, - amplitudes

P[|v)) = |) after an observation | = |c,|?

Physical transformations of |¢)) have to be unitary
transformations.

Consider the identification [)) — pjyy = [1)(¢)|

DM(N) = {7 € End(N)|x = =T, (n|=|n) > 0, Tr(r) = 1}

Mapping vectors |¢)) to operators p,, takes unit vectors to
density matrices.
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Motivations for using a density matrix

A pure state is a density matrix p that results from some |¢),
thatis p = pjy)-

e Distinction between pure and mixed states.

e Important to understand measurement operators.

¢ Describing physically realizable operators.

¢ Reliable quantum circuits (coding theory in quantum
computing).
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Quantum probability model in

Event A = Linear subspaces of .
Probability distribution = density matrix p € DM(N).

Plp, A] = Tr(plLy)

Coherent with the interpretation that if [¢)) = ) ~ ¢,|x), then

T

Plp, 2] = |e|*:
Plpjy), Ca] = Tr(j9) (Y [ILy) = Te(|)(@[|a)(2]) = [eaf?

For pure states and M C N, P[[¢)), M] = ([T ps]1)).
A diagonal density matrix p corresponds to a classical
probability model on the basis vectors.
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The partial trace

Consider a density matrix p over N' ® F, which can be written
as

P = Z Apn ® B, )
A,, and B,, are operators A" and F, resp. (motivation:
End(B) = B ® B*)
Definition (The partial trace)

Trr(p) = Y Ap Tr(Bm) -

If F = C, then Tr» = Id. If A’ = C, then Tr» = Tr.
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Example of partial trace

Consider N = F = B, so that N ® F is a four dimensional
\0 0> + ]1 1)

V2
oy = Z|aa b6l = 2 3" la)| @ Ja)
a,b

vector space, and |¢) =

Tr]: p|psz - Z|a

Observe that p|,,; is a pure state, whereas Trz(p,) is mixed
(has rank > 1).
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Properties of quantum probablllty -1

In classical probability, if AN B = 0, then
P(AUB) =P(A) +P(B)
In quantum probability, if M, 1 M, then
P(p, M1) + P(p, Ma) = P(p, My & My)

\ Properties of quantum probability
If My L M, then P(Ml) + P(MQ) = P(Ml b Mg)

3
2
3
4
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Properties of quantum probability -2

In classical probability, we have that
P(AUB)+P(ANB)=P(A) +P(B)
In quantum probability, if ITy¢, ITrg, = o, IIaq, (%) then
P(p, M1) + P(p, Ma) = P(p, My & Ms) + P(p, My N M>)

\ Properties of quantum probability
1| If My L My then P(Ml) + P(MQ) = P(Ml b Mg)
2 | If xthen P(Ml) + P(MQ) = P(M1 D Mg) + P(Ml N Mg)
3
4
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Properties of quantum probability =0

Product probability spaces become density matrices on tensor
products
| Properties of quantum probability
If M1 L My then P(Ml) + P(MQ) = P(Ml & MQ)
If x then P(Ml) + P(Mz) = P(M1 D Mg) + P(Ml N Mg)
P(p1 ® p2, M1 @ M3) = P(p1, M1)P(p2, M)

AWN =
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Properties of quantum probability - 4

The trace helps us disregard unnimportant bits of information.
In classical probability, a probability distribution in N x F'
satisfies
P(Ax F)=) P(ix F)
€A

\ Properties of quantum probability
If M1 L My then P(Ml) + P(MQ) = P(M1 D MQ)
If x then P(Ml) + P(MQ) = P(M1 D Mg) + P(Ml N Mg)
P(p1 ® p2, M1 @ M3) = P(p1, M1)P(p2, M2)
P(p, M1 ® F) = P(Trx(p), M)

AWM=
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Properties of quantum probability - 4
Proof of property 4: if p = Z Am ® By, is a density matrix in
N® F, goal: P(p’Ml ®]:) = P(Tr]:(p)aMl)

P(p, My ® F) = Tr(pllpyeF) =
ZTr m ® Bo) (Mg, ®1d7)) = Y Te(ApTlag,) Te(Bin)

P(Trr(p), M1) = Tr(Trr(p)a,) = Y Tr(AmIlu, Tr(Bn))

=Y Tr(Aplln,) Tr(By,)
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Purification

Proposition (Purification of a state)

For any density matrix p over N, there exists F and
|v) € N @ F such that p = Trz(|1) (¥]).
To ¢ we call a purification of p.

In the example above, we found that |¢)) = Z la,a) is a

purification of p — %Z a){al, as Trr(|v) (¥]) = p.

Fact: two purifications |¢1), |¢2) of a density matrix p differ by a
unitary operation on F.
From the Schmidt decomposition: p = Z Aa|Na) (Cal-
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Physically realizable transformations
Physical transformations act on density matrices, so we encode
these as operators on density matrices DM(N). And call them
superoperators.

e If U is an unitary operator on A/, then consider the

superoperator
Sy :pe UlpU
e The partial trace Trr : DM(N ® F) — DM(N) is a
superoperator.

¢ Adding trivial bits is also a superoperator:
AN p s p@ [0MY (0N
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The most natural postulate in the world

We postulate: A physically realizable superoperator (PRS) T
is a composition of the operators Sy, Trr and AV.

Theorem
For any PRS T there is an isometric embedding V' such that

T:p— Ter(VpVh

Theorem
For any PRS T there are can be written as

T:pl—)ZAmijn

such that  ~ A Al =1d
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The totally mixed state vs the uniform diagonal state

Take NV an n-dimensional vector space with orthonormal basis

B. Let 1
pH = > la)(d|
a,beB
1
pa=— > la)(al
a€eB
1 1
The state piy = |—= > |a))(—= Y _ |a)| is a pure state.On the
\/ﬁ a€EB \/ﬁ a€EB

other hand, for any PRS T

T(pq) = pa because T': p 1+ Y AmpAl,

m
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The partial trace working as intended

Compare two situations:

A DM p € DM(N ® F) is given. We disregard the information on
F (putting it in the trash) and compute a probability in the
remaining state, say M C N, obtaining:

P(Tl“]:(p),./\/l) = P(p,M ® ]:)

On another situation, something happens to the information on
F, being affected by a unitary operator U, obtaining

P((Id ®U)pId @UT), M & F)

Because we find that these values are the same, we can safely
say that the trace has this physical meaning of disregarding
information.
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No observation without effect

Theorem
Suppose T : DM(N) — DM(N ® F) is a physically realizable

operator such that Trx(T|vy)(y|) = |)(y| for any vector
|)) € N. Then there exists some |y) € F such that

TX =X @)l

F represents a ledger for the state of \V.
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Decoherence

Physical irreversible degradation of a state
The decoherence superoperator D is defined with respect to
a basis:

This is a physically realizable superoperator that results in a
classical density matrix.
Recall that A(c®) : |a,b) — |a,a @ b)

p = p @ |0)(0] A Zpab\ab ab[HTrB
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The physical meaning of decoherence - Take a picture

Is decoherence reversible? Physically no, but mathematically
yes.

Copying the state of the photon to the chemical lattice
corresponds to a copy

p@[0)(0] =2 N " pg,
a,b

a,b){a, b|
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The quantum / classical computing model

Let AV describe the quantum part of our computer that is in a
state p, and K the classical part that is affected by p.

N = &;L;, orthogonal decomposition, we want to record on K
in which space {L;, ...} is the state p.
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Projective measurements

This is called the projective measurement (with respect to the
decomposition ' = @;L;) and maps DM(N) — DM(N @ F).

R:pw > Tppllz, @ |5){|
J

is the only physically realizable operator that satisfies

R} (] = [)(¢] ®|5)(j| whenever [¢) € L;.
After disregarding (i.e. taking the partial trace of) the quantum
part, we get a destructive POV measurement

DM(N) — DM(N & F) =T~ DM(F) .
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POVM measurements - generalization of POV
measurements

Empirical observations brings a generalization.
For a given set of Hamiltonian operators, {X}} that satisfy the
equality Z X}, = 1d, we define the corresponding POVM mea-

k
surement as:

Rix,y:p—= Y Tr(pXy)|k) (k|
P

For X, = II; we obtain the projective measurements earlier in-
troduced.
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Measuring operators

Given a decomposition V' = @;£;, a measurement operator
is a choice of unitary operators U; for each space L;, giving

R=> T, &Uj
J
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Measuring operators - examples

For a unitary operator U in NV, the operator

A(U) =TIy ® Id +1T; ® U acting on B® N is a measurement
operator with respect to B.

Finding the eighenspaces L; of U = Z Iz, \; also gives us

J
that A(U) is a measurement operator with respect to A/

AU) =) (o + M\I) @ T, .

J
The transformation Il + AII; is unitary because |A;| = 1.
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Summary

Probability distributions - Density matrices
Classical probability - Quantum probability

P(p, M) = Tr(pIlm)

Properties of clasical probability - properties of quantum
probability

Pure and mixed states - The purification process
Physically realizable transformations
Observation paradox

Decoherence in physics

Quantum/Classical computing model - Projective
measurements and measurement operators
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The end
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