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A probability distribution on qubits
The n-qubit model : |ψ〉 =

∑
x

cx|x〉 for x ∈ {0, . . . , 2n − 1}.

cx - amplitudes

P[|ψ〉 = |x〉 after an observation ] = |cx|2

Physical transformations of |ψ〉 have to be unitary
transformations.

Consider the identification |ψ〉 7→ ρ|ψ〉 = |ψ〉〈ψ|

DM(N ) = {π ∈ End(N )|π = π†, 〈η|π|η〉 ≥ 0,Tr(π) = 1}

Mapping vectors |ψ〉 to operators ρ|ψ〉 takes unit vectors to
density matrices.
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Motivations for using a density matrix

A pure state is a density matrix ρ that results from some |ψ〉,
that is ρ = ρ|ψ〉.

• Distinction between pure and mixed states.
• Important to understand measurement operators.
• Describing physically realizable operators.
• Reliable quantum circuits (coding theory in quantum

computing).
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Quantum probability model in N

Event A = Linear subspaces of N .
Probability distribution = density matrix ρ ∈ DM(N ).

P[ρ,A] := Tr(ρΠA)

Coherent with the interpretation that if |ψ〉 =
∑
x

cx|x〉, then

P[ρ, x] = |cx|2:

P[ρ|ψ〉,Cx] = Tr(|ψ〉〈ψ|Πx) = Tr(|ψ〉〈ψ||x〉〈x|) = |cx|2

For pure states andM⊆ N , P[|ψ〉,M] = 〈ψ|ΠM |ψ〉.
A diagonal density matrix ρ corresponds to a classical
probability model on the basis vectors.
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The partial trace

Consider a density matrix ρ over N ⊗F , which can be written
as

ρ =
∑
m

Am ⊗Bm ,

Am and Bm are operators N and F , resp. (motivation:
End(B) ∼= B ⊗ B∗)

Definition (The partial trace)

TrF (ρ) =
∑
m

Am Tr(Bm) .

If F = C, then TrF = Id. If N = C, then TrF = Tr.
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Example of partial trace

Consider N = F = B, so that N ⊗F is a four dimensional

vector space, and |ψ〉 =
|0, 0〉+ |1, 1〉√

2
.

ρ|ψ〉 =
1

2

∑
a,b

|a, a〉〈b, b| = 1

2

∑
a,b

|a〉〈b| ⊗ |a〉〈b|

TrF (ρ|psi〉) =
1

2

∑
a

|a〉〈a|

Observe that ρ|psi〉 is a pure state, whereas TrF (ρψ) is mixed
(has rank > 1).
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Properties of quantum probability - 1

In classical probability, if A ∩B = ∅, then

P(A ∪B) = P(A) + P(B)

In quantum probability, ifM1 ⊥M2 then

P(ρ,M1) + P(ρ,M2) = P(ρ,M1 ⊕M2)

Properties of quantum probability
1 IfM1 ⊥M2 then P(M1) + P(M2) = P(M1 ⊕M2)
2
3
4
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Properties of quantum probability - 2

In classical probability, we have that

P(A ∪B) + P(A ∩B) = P(A) + P(B)

In quantum probability, if ΠM1ΠM2 = ΠM2ΠM1 (?) then

P(ρ,M1) + P(ρ,M2) = P(ρ,M1 ⊕M2) + P(ρ,M1 ∩M2)

Properties of quantum probability
1 IfM1 ⊥M2 then P(M1) + P(M2) = P(M1 ⊕M2)
2 If ? then P(M1) + P(M2) = P(M1 ⊕M2) + P(M1 ∩M2)
3
4
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Properties of quantum probability - 3

Product probability spaces become density matrices on tensor
products

Properties of quantum probability
1 IfM1 ⊥M2 then P(M1) + P(M2) = P(M1 ⊕M2)
2 If ? then P(M1) + P(M2) = P(M1 ⊕M2) + P(M1 ∩M2)
3 P(ρ1 ⊗ ρ2,M1 ⊗M2) = P(ρ1,M1)P(ρ2,M2)
4
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Properties of quantum probability - 4

The trace helps us disregard unnimportant bits of information.
In classical probability, a probability distribution in N × F
satisfies

P(A× F ) =
∑
i∈A

P(i× F )

Properties of quantum probability
1 IfM1 ⊥M2 then P(M1) + P(M2) = P(M1 ⊕M2)
2 If ? then P(M1) + P(M2) = P(M1 ⊕M2) + P(M1 ∩M2)
3 P(ρ1 ⊗ ρ2,M1 ⊗M2) = P(ρ1,M1)P(ρ2,M2)
4 P(ρ,M1 ⊗F) = P(TrF (ρ),M1)
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Properties of quantum probability - 4

Proof of property 4: if ρ =
∑
m

Am ⊗Bm is a density matrix in

N ⊗F , goal: P(ρ,M1 ⊗F) = P(TrF (ρ),M1)

P(ρ,M1 ⊗F) = Tr(ρΠM1⊗F ) =∑
m

Tr((Am ⊗Bm)(ΠM1 ⊗ IdF )) =
∑
m

Tr(AmΠM1) Tr(Bm)

P(TrF (ρ),M1) = Tr(TrF (ρ)ΠM1) =
∑
m

Tr(AmΠM1 Tr(Bm))

=
∑
m

Tr(AmΠM1) Tr(Bm)
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Purification

Proposition (Purification of a state)
For any density matrix ρ over N , there exists F and
|ψ〉 ∈ N ⊗ F such that ρ = TrF (|ψ〉〈ψ|).
To ψ we call a purification of ρ.

In the example above, we found that |ψ〉 =
1√
2

∑
a

|a, a〉 is a

purification of ρ =
1

2

∑
a

|a〉〈a|, as TrF (|ψ〉〈ψ|) = ρ.

Fact: two purifications |ψ1〉, |ψ2〉 of a density matrix ρ differ by a
unitary operation on F .
From the Schmidt decomposition: ρ =

∑
a

λa|ηa〉〈ζa|.
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Physically realizable transformations
Physical transformations act on density matrices, so we encode
these as operators on density matrices DM(N ). And call them
superoperators.

• If U is an unitary operator on N , then consider the
superoperator

SU : ρ 7→ U †ρU

• The partial trace TrF : DM(N ⊗F)→ DM(N ) is a
superoperator.
• Adding trivial bits is also a superoperator:

AN : ρ 7→ ρ⊗ |0N 〉〈0N |
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The most natural postulate in the world
We postulate: A physically realizable superoperator (PRS) T
is a composition of the operators SU ,TrF and AN .

Theorem
For any PRS T there is an isometric embedding V such that

T : ρ 7→ TrF (V ρV †)

Theorem
For any PRS T there are can be written as

T : ρ 7→
∑
m

AmρA
†
m

such that
∑
m

AmA
†
m = Id
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The totally mixed state vs the uniform diagonal state

Take N an n-dimensional vector space with orthonormal basis
B. Let

ρH =
1

n

∑
a,b∈B

|a〉〈b|

ρd =
1

n

∑
a∈B
|a〉〈a|

The state ρH = | 1√
n

∑
a∈B
|a〉〉〈 1√

n

∑
a∈B
|a〉| is a pure state.On the

other hand, for any PRS T :

T (ρd) = ρd because T : ρ 7→
∑
m

AmρA
†
m
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The partial trace working as intended

Compare two situations:
A DM ρ ∈ DM(N ⊗F) is given. We disregard the information on
F (putting it in the trash) and compute a probability in the
remaining state, sayM⊆ N , obtaining:

P(TrF (ρ),M) = P(ρ,M⊗F)

On another situation, something happens to the information on
F , being affected by a unitary operator U , obtaining

P((Id⊗U)ρ(Id⊗U †),M⊗F)

Because we find that these values are the same, we can safely
say that the trace has this physical meaning of disregarding
information.
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No observation without effect

Theorem
Suppose T : DM(N )→ DM(N ⊗F) is a physically realizable
operator such that TrF (T |ψ〉〈ψ|) = |ψ〉〈ψ| for any vector
|ψ〉 ∈ N . Then there exists some |γ〉 ∈ F such that

TX = X ⊗ |γ〉〈γ| .

F represents a ledger for the state of N .
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Decoherence

Physical irreversible degradation of a state
The decoherence superoperator D is defined with respect to
a basis:

ρ =
∑
a,b

ρa,b|a〉〈b| 7→
∑
a

ρa,a|a〉〈a| .

This is a physically realizable superoperator that results in a
classical density matrix.
Recall that Λ(σx) : |a, b〉 7→ |a, a⊕ b〉

ρ 7→ ρ⊗ |0〉〈0| 7→Λ(σx)
∑
a,b

ρa,b|a, b〉〈a, b| 7→TrB
∑
a

ρa,a|a〉〈a| .
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The physical meaning of decoherence - Take a picture

Is decoherence reversible? Physically no, but mathematically
yes.

Copying the state of the photon to the chemical lattice
corresponds to a copy

ρ⊗ |0〉〈0| 7→Λ(σx)
∑
a,b

ρa,b|a, b〉〈a, b|
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The quantum / classical computing model

Let N describe the quantum part of our computer that is in a
state ρ, and K the classical part that is affected by ρ.

N = ⊕jLk orthogonal decomposition, we want to record on K
in which space {L1, . . . } is the state ρ.
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Projective measurements

This is called the projective measurement (with respect to the
decomposition N = ⊕jLj) and maps DM(N)→ DM(N ⊗F).

R : ρ 7→
∑
j

ΠLjρΠLj ⊗ |j〉〈j|

is the only physically realizable operator that satisfies
R|ψ〉〈ψ| = |ψ〉〈ψ| ⊗ |j〉〈j| whenever |ψ〉 ∈ Lj .
After disregarding (i.e. taking the partial trace of) the quantum
part, we get a destructive POV measurement

DM(N)→ DM(N ⊗F)→TrN DM(F) .
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POVM measurements - generalization of POV
measurements

Empirical observations brings a generalization.
For a given set of Hamiltonian operators, {Xk} that satisfy the
equality

∑
k

Xk = Id, we define the corresponding POVM mea-

surement as:

R{Xk} : ρ 7→
∑
k

Tr(ρXk)|k〉〈k| .

For Xk = Πk we obtain the projective measurements earlier in-
troduced.
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Measuring operators

Given a decomposition N = ⊕jLj , a measurement operator
is a choice of unitary operators Uj for each space Lj , giving

R =
∑
j

ΠLj ⊗ Uj
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Measuring operators - examples

For a unitary operator U in N , the operator
Λ(U) = Π0 ⊗ Id +Π1 ⊗ U acting on B ⊗N is a measurement
operator with respect to B.
Finding the eighenspaces Lj of U =

∑
j

ΠLjλj also gives us

that Λ(U) is a measurement operator with respect to N

Λ(U) =
∑
j

(Π0 + λΠ1)⊗ΠLj .

The transformation Π0 + λΠ1 is unitary because |λj | = 1.
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Summary

• Probability distributions - Density matrices
• Classical probability - Quantum probability

P(ρ,M) = Tr(ρΠM)

• Properties of clasical probability - properties of quantum
probability
• Pure and mixed states - The purification process
• Physically realizable transformations
• Observation paradox
• Decoherence in physics
• Quantum/Classical computing model - Projective

measurements and measurement operators
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The end
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