Hopf algebras and combinatorics A defense for the PhD proposal of

Raúl Penaguião

University of Zurich

28th May, 2020

Slides can be found in
http://user.math.uzh.ch/penaguiao/

What is algebraic combinatorics - combinatorics

What are combinatorial objects?

1342

Associated with a notion of not only a way to count, but also of size and how to merged and split them.

What is algebraic combinatorics - algebra

Goal: associate to combinatorial objects some algebraic strucutre (Groups, rings, algebras, monoidal categories). Special algebraic structure: Hopf algebras ($H, \mu, \Delta, \iota, \varepsilon, S$)

- Start with an algebra (H, μ, ι).
- Add a coproduct Δ with a counit ε.
- Add an antipode $S: H \rightarrow H$, that plays a role of "inverse function ".

Example of a Hopf algebra: the usual algebra $\mathbb{K}[x]$ with the coproduct

$$
\begin{gathered}
\Delta: x \mapsto x \otimes 1+1 \otimes x \\
S: x^{n} \mapsto(-x)^{n} .
\end{gathered}
$$

Main goals in Hopf algebras in combinatorics

What types of problems do we want to solve in algebraic combinatorics? Simple formulas for the antipode, structure theorems (freeness, cofreeness) and chromatic invariants.

Introduction

Patterns in combinatorics

Graph invariants

Generalized permutahedra

Future work from my thesis

Permutations and patterns

A permutation π of size n is an arrangement on an $n \times n$ table:

The set of permutations of size $n: \mathcal{S}_{n}$. The set of all permutations: \mathcal{S}.
Select a set I of columns of the square configuration of π and define the restriction $\left.\pi\right|_{I}$. This is a permutation.

Pattern functions

We can count occurrences!
For permutations π, σ, we define the pattern number:

$$
\mathbf{p}_{\pi}(\sigma)=\#\{\text { occurrences of } \pi \text { as a restriction of } \sigma\} .
$$

In this way we have

$$
\begin{aligned}
\mathbf{p}_{12}(4132)= & 2, \mathbf{p}_{312}(4132)=2, \mathbf{p}_{12}(12345)=10 \\
& \text { and } \mathbf{p}_{312}(3675421)=0
\end{aligned}
$$

The same objects can be defined on partitions and graphs and many more! Pattern functions come from combinatorial presheaves.

Pattern Hopf algebras

Fact: the pattern functions $\left\{\mathbf{p}_{\pi}\right\}_{\pi \in \mathcal{S}}$ form a linearly independent set.

$$
\mathcal{A}(\mathrm{Per}):=\operatorname{span}\left\{\mathbf{p}_{\pi}\right\}_{\pi \in \mathcal{S}} .
$$

Theorem (Vargas, 2014)
The space $\mathcal{A}(\mathrm{Per})$ is a Hopf algebra that is freely generated by the so called Lyndon permutations.

Theorem (P., 2019)
Let h be an associative presheaf. The space $\mathcal{A}(\mathrm{h})$ is a Hopf algebra. This is a free algebra when h is a commutative presheaf or is the presheaf on marked permutations.

Meanwhile in Twitter

A lot of pattern algebras are free! Amazing! Are all such algebras free?

	Stable Factorizations
$\alpha^{*}=\iota_{1}^{*} \star \iota_{2}^{*} \star \iota_{3}^{*}$	$\iota_{1}^{*}=\rho_{5}^{*} \star \rho_{2}^{*} \star \rho_{8}^{*}$
	$\iota_{2}^{*}=\rho_{3}^{*} \star \rho_{4}^{*} \star \rho_{1}^{*}$
$\beta^{*}=\rho_{1}^{*} \star \rho_{2}^{*} \star \rho_{3}^{*} \star \rho_{4}^{*} \star \rho_{5}^{*} \star \rho_{6}^{*} \star \rho_{7}^{*} \star \rho_{8}^{*}$	$\iota_{3}^{*}=\rho_{6}^{*} \star \rho_{7}^{*}$
7:35 PM. Jan 25, 2020 Twitter for Adroid	

0

Feasible regions

Fix $S_{j}=\bigcup \mathcal{S}_{k}$ of permutations. What are the possible values $j \geq k$
of $\left(\mathbf{p}_{\pi}(\sigma)|\sigma|^{-|\pi|}\right)_{\pi \in \mathrm{S}_{j}} \in \mathbb{R}^{\mathrm{S}_{j}}$ when $|\sigma|$ is big? These are the so called feasible values and form the feasible region.
Theorem (R. Glebov, C. Hoppen, et al, 2017)
The feasible region has dimension at least
|\{ indecomposable permutations of size $\leq j\} \mid$.

Conjecture (J. Borga, P.)
The dimension of the feasible region for classical occurrences is enumerated by the Lyndon permutations of size at most j.

Consecutive patterns

We now consider only occurrences that form an interval. For instance, taking $\sigma=2413$, there are two distinct consecutive restructions of σ of size three, namely 231 and 312 .

Theorem (J. Borga, P., 2019)
The feasible region for consecutive patterns is a polytope. Specifically, it is the cycle polytope of overlap graphs on permutations.

Meanwhile in Twitterland

Consecutive patterns are polytopes controlled by these amazing \#OverlapGraphs.
@JacopoBorga

2:09 PM. Oct 14, 2020 Twitter for Adroid

4k Retweets 701 Likes

What is a graph

A graph is a pair of sets (V, E). For instance:

A partition is a list of positive integers ($\lambda_{1} \leq \cdots \leq \lambda_{k}$). Fixed a partition $\lambda=\left(\lambda_{1} \leq \cdots \leq \lambda_{k}\right)$, let K_{λ}^{c} be a graph: $K_{\lambda}^{c}=\left(V_{1} \cup \cdots \cup V_{k}, E\right)$ with maximal edges in such a way that each V_{i} is independent.

Figure: The graph $K_{(1,2,3)}^{c}$.

Another Hopf algebra structure on graphs

Product $=$ disjoint union of graphs.

Figure: Product structure on the graph Hopf algebra.

Figure: Coproduct structure on the graph Hopf algebra.

This defines maps

$$
\begin{aligned}
& \mu: \mathbf{G} \otimes \mathbf{G} \rightarrow \mathbf{G} \\
& \Delta: \mathbf{G} \rightarrow \mathbf{G} \otimes \mathbf{G}
\end{aligned}
$$

Chromatic numbers

Given a graph $H=(V, E)$, a stable coloring $f: V \rightarrow \mathbb{N}$ is such that two neighboring vertices have always distinct colors.

Figure: A stable coloring of a graph.
Chromatic number $=$ lowest number of colors that still allows for a stable colouring. NP complete problem (one of the original ones).

$$
\chi_{H}(n)=\#\{\text { graph-colorings with } n \text { colors }\} \text {. }
$$

Deletion - contraction relations

Given a graph H, we can define the deletion and a contraction of a set of edges.

Figure: Deletion and contraction of edges.

$$
\chi_{H}(n)=\chi_{H \backslash e}(n)-\chi_{H / e}(n) .
$$

Reciprocity results

Given a graph, H, what is the meaning of $\chi_{H}(-n)$?
Theorem (R. Stanley, 1973)

$$
\chi_{H}(-1)=(-1)^{n} \#\{\text { acyclic orientations of the graph } H\} .
$$

Interpretations of $\chi_{H}(-k)$ for $k>1$ also exist that relate the chromatic polynomial and acyclic orientations.

The antipode

Theorem (B. Humpert and J. Martin, 2012)
Let $H=(V, E)$ be a graph, then

$$
S(H)=\sum_{F \subseteq E \text { flat }}(-1)^{n-\operatorname{rank}(F)} a(H / F) H_{(V, F)}
$$

$$
\chi H(-n)=S(\chi H(n))=\chi_{S}(H)(n)
$$

The ring of symmetric functions

A symmetric function on the variables x_{1}, \ldots (infinitely many variables) is a formal sum of monomials on x_{1}, \ldots with bounded degree.
Examples: 1, $x_{1}+x_{2}+\ldots$, $x_{1}^{2}+x_{2}^{2}+\ldots$ $x_{1} x_{2}^{2}+x_{1}^{2} x_{2}+x_{1} x_{3}^{2}+x_{1}^{2} x_{3}+x_{2} x_{3}^{2}+x_{2}^{2} x_{3}+x_{1} x_{4}^{2} \ldots$

This forms a Hopf algebra.

The CSF

The ultimate chromatic invariant.

$$
\Psi_{\mathbf{G}}(H)=\sum_{f \text { stable coloring }} x_{f(1)} \ldots x_{f(n)}=\sum_{f \text { stable coloring }} x_{f} \in \text { Sym } .
$$

Examples of CSF:

$$
\begin{gathered}
\Psi_{\mathbf{G}}(\checkmark)=6\left(x_{1} x_{2} x_{3}+x_{1} x_{2} x_{4}+x_{1} x_{3} x_{4}+\ldots\right) \\
\Psi_{\mathbf{G}}(\searrow)=4\left(x_{1}^{2} x_{2} x_{3}+\ldots\right)+24\left(x_{1} x_{2} x_{3} x_{4}+\ldots\right)
\end{gathered}
$$

The tree conjecture

Conjecture (Tree conjecture)
Given two non-isomorphic trees T_{1}, T_{2}, their chromatic symmetric functions are distinct, i.e. $\Psi_{\mathbf{G}}\left(T_{1}\right) \neq \Psi_{\mathbf{G}}\left(T_{2}\right)$.

Partial results: Proper caterpillars, " labelled " case.

Figure: A tree that is a proper caterpillar.

Modular relations on graphs

Are there any linear relations that Ψ_{G} satisfy?

Figure: Modular relations that annihilate Ψ_{G}, [GP13] and [OM14].

Figure: Two unicyclic graphs with the same CSF.

The kernel problem

Theorem (P., 2018)
The kernel of $\Psi_{\mathrm{G}}: \mathbf{G} \rightarrow$ Sym is generated by modular relations.
The tree conjecture is established if we find a graph invariant ζ that satisfies the following two properties

- The invariant ζ distinguishes trees, i.e. for two non-isomorphic trees T_{1}, T_{2} we have that $\zeta\left(T_{1}\right) \neq \zeta\left(T_{2}\right)$.
- The invariant ζ satisfies the modular relations.

Meanwhile in Twitter

CombinatoricsMathNerd
rpenas
The modular relations are enough to find a rewriting between two graphs with the same CSF! Noice!

4:17 PM. May 16, 2018 Twitter for Adroid

1k Retweets 160 Likes

O

The kernel solution

Proof: Start with an expression $\sum_{i} \alpha_{i} G_{i} \in \operatorname{ker} \Psi_{\mathbf{G}}$. Always increase the number of edges on a graph!
Consider the path of length three:

For which graphs aren't we able to add edges? Graphs of the form K_{λ}^{c}. Fact: $\left\{\Psi_{\mathbf{G}}\left(K_{\lambda}^{c}\right)\right\}_{\lambda \vdash n}$ is a linearly independent set.

Polytopes - Simplices

Let's go to the n-dimentional space \mathbb{R}^{n}, that has a canonical basis $\left\{\vec{e}_{i} \mid i=1, \ldots, n\right\}$.

$$
\operatorname{Sim}_{I}=\operatorname{conv}\left\{\vec{e}_{i} \mid i \in I\right\}
$$

Figure: The polytopes $A=\operatorname{Sim}_{\{1\}}, B=\operatorname{Sim}_{\{1,3\}}, C=\operatorname{Sim}_{\{1,2,3\}}$ are simplices in \mathbb{R}^{3}.

Polytopes - Minkowski operations

Given two convex sets A, B and a non-negative real number λ, their Minkowski sum is given by $A+B=\{a+b \mid a \in A, b \in B\}$ and the Minkowski dilation is $\lambda A=\{\lambda a \mid a \in A\}$.

For convex sets A, B, the set $A-B$ is the convex set C such that $B+C=A$. May not exists, but it is unique.

Polytopes - Generalized permutahedra

A generalized permutahedron is a polytope that results as

$$
\left(\sum_{a_{J}>0} a_{J} \operatorname{Sim}_{J}\right)-\left(\sum_{a_{J}<0}\left|a_{J}\right| \operatorname{Sim}_{J}\right) .
$$

A hypergraphic polytope is a polytope of the form $\sum_{a_{J}>0} a_{J} \operatorname{Sim}_{J}$.

Figure: The permutahedra for $n=4$.

Faces and linear optimization

Given a polytope \mathfrak{q}, a face of \mathfrak{q} is a set of the form

$$
\mathfrak{q}_{f}:=\min _{x \in \mathfrak{q}} f(x)
$$

for some linear function f.

Figure: For some linear functionals the corresponding face.

A chromatic invariant on generalized permutahedra

$$
x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots \mapsto\left(\alpha_{1}, \alpha_{2}, \ldots\right)
$$

Define $\Psi_{\mathbf{G P}}(\mathfrak{q})=\sum x^{(\alpha)} \mathbb{1}\left[\mathfrak{q}_{\alpha}\right.$ is a point $]$.
α vector
This is a chromatic invariant as well! But is not in Sym anymore.

Figure: Commutative diagram of chromatic invariants.

Theorem (P. , 2018)
Explicit generators of the kernel of $\Psi_{\mathbf{G P}}$ can be given, when restricted to HGP.

Future work

- Find all modular relations for the chromatic invariant on GP.
- Freeness conjecture on pattern algebras, antipode formulas for pattern algebras.
- More exciting feasible regions!

Figure: The feasible region for consecutive occurrences of permutations avoiding 321.

The end

