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What is algebraic combinatorics - combinatorics

What are combinatorial objects?

1342

Associated with a notion of not only a way to count, but also of
size and how to merged and split them.
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What is algebraic combinatorics - algebra

Goal: associate to combinatorial objects some algebraic
strucutre (Groups, rings, algebras, monoidal categories).
Special algebraic structure: Hopf algebras (H,µ,∆, ι, ε, S)

• Start with an algebra (H,µ, ι).
• Add a coproduct ∆ with a counit ε.
• Add an antipode S : H → H, that plays a role of “ inverse

function ”.

Example of a Hopf algebra: the usual algebra K[x] with the
coproduct

∆ : x 7→ x⊗ 1 + 1⊗ x

S : xn 7→ (−x)n .
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Main goals in Hopf algebras in combinatorics

What types of problems do we want to solve in algebraic
combinatorics? Simple formulas for the antipode, structure
theorems (freeness, cofreeness) and chromatic invariants.
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Permutations and patterns
A permutation π of size n is an arrangement on an n× n table:

π = = 2431

The set of permutations of size n : Sn. The set of all
permutations : S.
Select a set I of columns of the square configuration of π and
define the restriction π|I . This is a permutation.

π|{1,2,4} = 231=
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Pattern functions

We can count occurrences!
For permutations π, σ, we define the pattern number:

pπ(σ) = #{occurrences of π as a restriction of σ} .

In this way we have

p12(4132) = 2, p312(4132) = 2, p12(12345) = 10

and p312(3675421) = 0

The same objects can be defined on partitions and graphs and
many more! Pattern functions come from combinatorial
presheaves.
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Pattern Hopf algebras

Fact: the pattern functions {pπ}π∈S form a linearly independent
set.

A(Per) := span{pπ}π∈S .

Theorem (Vargas, 2014)
The space A(Per) is a Hopf algebra that is freely generated by
the so called Lyndon permutations.

Theorem (P., 2019)
Let h be an associative presheaf. The space A(h) is a Hopf
algebra. This is a free algebra when h is a commutative
presheaf or is the presheaf on marked permutations.
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Meanwhile in Twitter
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Feasible regions

Fix Sj =
⋃
j≥k
Sk of permutations. What are the possible values

of
(
pπ(σ) |σ|−|π|

)
π∈Sj

∈ RSj when |σ| is big? These are the so

called feasible values and form the feasible region.

Theorem (R. Glebov, C. Hoppen, et al, 2017)
The feasible region has dimension at least

|{ indecomposable permutations of size ≤ j }| .

Conjecture (J. Borga, P.)
The dimension of the feasible region for classical occurrences
is enumerated by the Lyndon permutations of size at most j.
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Consecutive patterns

We now consider only occurrences that form an interval. For
instance, taking σ = 2413, there are two distinct consecutive
restructions of σ of size three, namely 231 and 312.

Theorem (J. Borga, P., 2019)
The feasible region for consecutive patterns is a polytope.
Specifically, it is the cycle polytope of overlap graphs on
permutations.
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Meanwhile in Twitterland
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What is a graph

A graph is a pair of sets (V,E). For instance:

A partition is a list of positive integers (λ1 ≤ · · · ≤ λk). Fixed a
partition λ = (λ1 ≤ · · · ≤ λk), let Kc

λ be a graph:
Kc
λ = (V1 ∪ · · · ∪ Vk, E) with maximal edges in such a way that

each Vi is independent.

Figure: The graph Kc
(1,2,3).
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Another Hopf algebra structure on graphs
Product = disjoint union of graphs.

Figure: Product structure on the graph Hopf algebra.

⊗

Figure: Coproduct structure on the graph Hopf algebra.

This defines maps
µ : G⊗G→ G

∆ : G→ G⊗G
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Chromatic numbers
Given a graph H = (V,E), a stable coloring f : V → N is such
that two neighboring vertices have always distinct colors.

1

1

2

2

4

Figure: A stable coloring of a graph.

Chromatic number = lowest number of colors that still allows for
a stable colouring. NP complete problem (one of the original
ones).

χH(n) = #{ graph-colorings with n colors } .
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Deletion - contraction relations

Given a graph H, we can define the deletion and a
contraction of a set of edges.

H

e

H \ {e} H/{e}H

e

Figure: Deletion and contraction of edges.

χH(n) = χH\e(n)− χH/e(n) .
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Reciprocity results

Given a graph, H, what is the meaning of χH(−n)?

Theorem (R. Stanley, 1973)

χH(−1) = (−1)n#{ acyclic orientations of the graph H } .

Interpretations of χH(−k) for k > 1 also exist that relate the
chromatic polynomial and acyclic orientations.
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The antipode

Theorem (B. Humpert and J. Martin, 2012)
Let H = (V,E) be a graph, then

S(H) =
∑

F⊆E flat

(−1)n−rank(F )a(H/F )H(V,F ) .

G

G

K[x]

K[x]

S S

χ

χ

χH(−n) = S(χH(n)) = χS(H)(n) .



Introduction Patterns in combinatorics Graph invariants Generalized permutahedra Future work from my thesis

The ring of symmetric functions

A symmetric function on the variables x1, . . . (infinitely many
variables) is a formal sum of monomials on x1, . . . with
bounded degree.
Examples: 1 , x1 + x2 + . . . , x21 + x22 + . . .

x1x
2
2 + x21x2 + x1x

2
3 + x21x3 + x2x

2
3 + x22x3 + x1x

2
4 . . .

This forms a Hopf algebra.
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The CSF

The ultimate chromatic invariant.

ΨG(H) =
∑

f stable coloring

xf(1) . . . xf(n) =
∑

f stable coloring

xf ∈ Sym .

Examples of CSF:

ΨG

( )
= 6(x1x2x3 + x1x2x4 + x1x3x4 + . . . ) ,

ΨG

( )
= 4(x21x2x3 + . . . ) + 24(x1x2x3x4 + . . . ) .
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The tree conjecture

Conjecture (Tree conjecture)
Given two non-isomorphic trees T1, T2, their chromatic
symmetric functions are distinct, i.e. ΨG(T1) 6= ΨG(T2).

Partial results: Proper caterpillars, “ labelled ” case.

Figure: A tree that is a proper caterpillar.
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Modular relations on graphs

Are there any linear relations that ΨG satisfy?

Figure: Modular relations that annihilate ΨG, [GP13] and [OM14].

Figure: Two unicyclic graphs with the same CSF.
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The kernel problem

Theorem (P., 2018)
The kernel of ΨG : G→ Sym is generated by modular
relations.
The tree conjecture is established if we find a graph invariant ζ
that satisfies the following two properties
• The invariant ζ distinguishes trees, i.e. for two

non-isomorphic trees T1, T2 we have that ζ(T1) 6= ζ(T2).
• The invariant ζ satisfies the modular relations.
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Meanwhile in Twitter
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The kernel solution
Proof: Start with an expression

∑
i

αiGi ∈ ker ΨG. Always

increase the number of edges on a graph!
Consider the path of length three:

+ − + −

−+

For which graphs aren’t we able to add edges? Graphs of the
form Kc

λ. Fact: {ΨG(Kc
λ)}λ`n is a linearly independent set.
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Polytopes - Simplices
Let’s go to the n-dimentional space Rn, that has a canonical
basis {~ei|i = 1, . . . , n}.

SimI = conv{~ei|i ∈ I} .

e3

e1 e2

A

B
C

Figure: The polytopes A = Sim{1}, B = Sim{1,3}, C = Sim{1,2,3} are
simplices in R3.
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Polytopes - Minkowski operations
Given two convex sets A,B and a non-negative real number λ,
their Minkowski sum is given by A+B = {a+ b|a ∈ A, b ∈ B}
and the Minkowski dilation is λA = {λa|a ∈ A}.

+ =

For convex sets A,B, the set A−B is the convex set C such
that B + C = A. May not exists, but it is unique.
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Polytopes - Generalized permutahedra
A generalized permutahedron is a polytope that results as(∑

aJ>0

aJ SimJ

)
−

(∑
aJ<0

|aJ | SimJ

)
.

A hypergraphic polytope is a polytope of the form
∑
aJ>0

aJ SimJ .

Figure: The permutahedra for n = 4.
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Faces and linear optimization

Given a polytope q, a face of q is a set of the form

qf := min
x∈q

f(x) ,

for some linear function f .

Figure: For some linear functionals the corresponding face.



Introduction Patterns in combinatorics Graph invariants Generalized permutahedra Future work from my thesis

A chromatic invariant on generalized permutahedra

xα1
1 xα2

2 · · · 7→ (α1, α2, . . . ) .

Define ΨGP(q) =
∑

α vector

x(α)1[qα is a point ] .

This is a chromatic invariant as well! But is not in Sym anymore.

GP

G

QSym

Sym

ΨGP

ΨG

Z

Figure: Commutative diagram of chromatic invariants.

Theorem (P. , 2018)
Explicit generators of the kernel of ΨGP can be given, when
restricted to HGP.
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Future work
• Find all modular relations for the chromatic invariant on
GP.
• Freeness conjecture on pattern algebras, antipode

formulas for pattern algebras.
• More exciting feasible regions!
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Figure: The feasible region for consecutive occurrences of
permutations avoiding 321.
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The end
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