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Patterns in permutations
A permutation π of size n is an arrangement on an n× n table:

π = = 2431

Select a set I of columns of the square configuration of π and
define the restriction π|I . This is a permutation.

π|{1,2,4} = 231=
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Number of occurrences
We can count occurrences of each of the k! permutations of
size k in a big permutation σ.
For permutations π, σ, we define the pattern number:

occ(π, σ) = #{occurrences of π in σ} .

In this way we have

occ(12, 4132) = 2, occ(312, 4132) = 2, occ(12, 12345) = 10

and occ(312, 3675421) = 0

õcc(π, σ) =
occ(π, σ)(|σ|
|π|
) , õcck(σ) = (õcc(π, σ))π∈Sk ∈ RSk .



Introduction and classical patterns Consecutive occurrences Restricted feasible region Related problems

Plotting these relationships

For a fixed integer k, what are the possible values of
(õcc(π, σ))π∈Sk when |σ| is big?

Figure: The interplay between proportion of occurrences of 12 and 21.
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Feasible region - Classical patterns

For a fixed integer k, the corresponding feasible region (FReg)
is defined as follows

Fk := {~v ∈ RSk | ∃σ(n), õcck(σ
(n))→ ~v, |σ(n)| → ∞} .

F≤k - the FReg indexed by all permutations of size at most k
FS - the FReg indexed by a set of permutations S.

F{π} - an interval and is often studied in the context of packing
problems.
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Feasible region - Examples

Figure: Left: The FReg comparing 12 and 123. Right: The FReg
comparing patterns of 12 and patterns of 123 or 213 becomes a
scalloped triangle. Feasible regions due to Kenyon, Kral, et.al. 2015.
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Feasible region - The dimension problem

Theorem (Glebov, Hoppen, et.al. 2017)
The dimension of the feasible region F≤k is at least the number
of indecomposable permutations of size k.

Theorem (Vargas, 2014)
The feasible region F≤k satisfies a set of algebraic equations
indexed by the Lyndon permutations of size up to k.

Conjecture
The codimension of the feasible region F≤k is precisely the
number of Lyndon permutations of size up to k.
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Consecutive occurrences
We now consider only occurrences that form an interval. For
instance, taking σ = 2413, there are two distinct consecutive
restrictions of σ of size three, namely 231 and 312.

c-occ(π, τ) = #{I interval s.t. τ |I = π} .

Figure: The permutation 3142, does not contain a consecutive
occurrence of 231, but it does contain a consecutive occurrence of
213.
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Consecutive occurrences

The number c-occ(π, σ) varies between 0 and |σ| − |π|+ 1. So
we define

c̃-occ(π, σ) =
c-occ(π, σ)

|σ|
, c̃-occk(σ) = (c̃-occ(π, σ))π∈Sk ∈ RSk .



Introduction and classical patterns Consecutive occurrences Restricted feasible region Related problems

New feasible region

Fk := {~v ∈ RSk |∃σ(n), c̃-occk(σ
(n))→ ~v, |σn(n)| → ∞} ⊆ RSk .

This is a closed and convex region.

Figure: The FRegIve comparing patterns 12 and 123.



Introduction and classical patterns Consecutive occurrences Restricted feasible region Related problems

The overlap graph

Consider the case k = 3 and the permutation σ = 2714365.

2714365 7→ 231− 312− 132− 213− 132 .

We can construct a graph from this:

Figure: The overlap graph for k = 3
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Another overlap graph
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Figure: The overlap graph for k = 4, together with the path
corresponding to σ = 628451793.
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The cycle polytope

Figure: A graph with five cycles.

The cycle polytope is defined in RE(G).

(~eC)x =
1

|C|
1[x ∈ C] .

conv{~eC |C is a simple cycle in G} ⊆ RE(G) .
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The cycle polytope

Figure: The overlap graph of a graph with five cycles.
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The overlap graph - inverting a path

{ permutations } → { paths in Ov(k)} , is this map invertible?

ω = 2413→ 4123→ 1342→ 2413 .
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Figure: The construction of the path ω.
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It is a cycle polytope

Theorem (Borga, P., 2019)

P (Ov(k)) = Fk .

In particular, F is a polytope with dimension k!− (k − 1)!.

Figure: The feasible region of k = 3.
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Avoiding set patterns - permutation classes

Let’s introduce pattern avoidance in this problem!

Av(P) = {τ ∈ S | ∀π ∈ P, occ(π, τ) = 0} ,

Let Avk(P) be Av(P) ∩ Sk.

Av(12) = {1, 21},# Avk(132) = Ck .

A set of the form Av(P) ⊆ S is called a permutation class.

Permutations classes are a world to be investigated!
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Generating trees

Figure: Left: the permutation class Av(132) is characterized by in
inductive construction. Right: the permutation classes Av(n · · · 1) are
characterized by n− 1 increasing monochromatic subsequences.
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Does anyone read these titles?
The feasible region is:

FAv(P)
k := {~v ∈ RSk | ∃σ(n) ∈ Av(P) with c̃-occk(σ

(n))→ ~v} .

FAv(P)
k is still a closed set. Is it convex?

Example: if P = {132, 312, 231, 213}, then FAv(P)
k is a set with

only two points.

Proposition
If P is a singleton, then FAv(P)

k is convex.

{ permutations in Av(P)} → { paths in Ov(k) avoiding P }

Thus, FAv(P)
k ⊆ P (Ov(k)|Av(P)).
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Example of path inversion - 132

On the case P = {132}, can we always invert such paths?
Example:

ω = 123→ 231→ 321→ 213 .

Figure: The construction of a permutation corresponding to the path
ω.
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The upshot - 132

FAv(132)
k = P (Ov(k)|Avk(132)) and dimFAv(132)

k = Ck − Ck−1 .

Figure: Left: The restricted overlap graph for P = {312}. Right: The
restricted feasible region for k = 3 and P = {312}.
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The overlap graph - 321

On the case 321, can we always invert such paths? Example:

ω = 312→ 123→ 231 .

Recall: 321 avoiders have a monotone bicoloring. Let’s add
colours to the path, in such a way that each color is a monotone
sequence:

ω = 312→ 123→ 231 .

Incolorable!
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The coloured overlap graph - 321

On the other hand, a valid path of colored permutations would
be, for instance

ω = 312→ 123→ 123→ 132 .

Figure: The construction of a permutation corresponding to the
corrected path ω.
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The coloured overlap graph - 321
Let’s add colours to the overlap graph itself and call it
COvAv(321)(k)
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Figure: The overlap graph for k = 3 adapted to P = {321}, where now
we include all possible colouring of each edge.

Theorem (Borga, P. 2020)

FAv(n···1)
k = Π(P (COvAv(n···1)(k))) ,

dimFAv(n···1)
k = |Avk(n · · · 1)| − |Avk−1(n · · · 1)| .
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The restricted feasible region - 321
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Figure: Left: P (Ov(3)). Right: The restricted feasible region for
k = 3 and P = {321}, overlaid with P (Ov(3)|Av3(321)).
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Related problems

• Other permutation classes are also given by generating
trees. We believe that any such permutation class will have
a direct description of the feasible region, and that we can
totally describe all the extremal points.
• The dimension conjecture: if P has only one pattern, then

dimFAvk(P)
k = |Avk(P)| − |Avk−1(P)| .

• The other dimension conjecture on the classical FReg.
• What is the volume of all these regions?
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The end
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