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Symmetric functions

If f : [n]→ {1, 2, . . . }, write xf = xf(1) . . . xf(n), a symmetric
function can be written as ∑

f

cfxf

where cf = cg whenever f = b ◦ g for some order bijective map
b in the integers.
Basis indexed by partitions, endowed with a natural notion of
product and quasi-natural notion of coproduct.
Context of symmetric function: chromatic invariants,
representation theory (of the symmetric groups), and an
algebraic study of integer partitions.
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Symmetric functions are cool - chromatic functions

Hopf algebra of graphs Gr maps to Sym via the chromatic
symmetric function, due to Stanley.

ΨGr(G) =
∑
f

xf ,

where the sum runs over stable colourings f of the graph G.

Conjecture (Tree conjecture)
Any two non-isomorphic trees have distinct chromatic
symmetric functions.
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Quasi-symmetric functions
For a function f : [n]→ {1, 2, . . . } define its kernel as the set
partition

ker f = f−1(1)|f−1(2)| . . . ,

where we further disregard empty sets.
In this way, quasi-symmetric functions can be written as∑

f

cfxf ,

where cf are coefficients such that, for two different functions
f, g such that ker f = ker g, we have that cf = cg.
Basis indexed by compositions, endowed with a natural notion
of product and quasi-natural notion of coproduct arises.
Quasi-symmetric functions QSym used to study further
chromatic invariants, representation theory (of the Hecke
algebras), and an algebraic study of integer compositions.
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Quasi-symmetric functions are even cooler

Hopf algebra of matroids Mt maps to QSym via chromatic
quasi-symmetric function due to Billera-Jia-Reiner.

ΨMt(M) =
∑
f

xf ,

where the sum runs over M -generic colourings f , that is
colourings that are maximized in exactly one basis of the
matroid.
The fact that this is a quasi-symmetric function is non-trivial

Theorem (Aguiar, Bergeron, Sottile 2000)
Any combinatorial Hopf algebra H (HA + character) has a
unique Hopf algebra morphism to QSym denoted ΨH.
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Word symmetric functions in non-commutative
variables

We now consider a family of non-commuting variables
{an}n≥1.Word symmetric functions or symmetric functions in
non-commutative variables can be written as∑

f

cfaf ,

where cf are coefficients such that, whenever f = b ◦ g for
some bijection b, we have cf = cg.
(do not confuse with non-commutative symmetric functions, usually refers to the dual of QSym).
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Word quasi-symmetric functions

Word quasi-symmetric functions in non-commuting variables
can be written as ∑

f

cfaf ,

where cf are coefficients such that, whenever ker f = ker g, we
have cf = cg.
Basis indexed by set compositions, endowed with a natural
notion of product and quasi-natural notion of coproduct.

Theorem (Aguiar and Mahajan 2010)
There for any connected combinatorial Hopf monoid h there is a
unique Hopf monoid morphism Ψh : h→ WQSym.
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The big picture
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The combinatorial object

Symmetric set composition: a symmetric set composition π of
n is a set composition of {−n,−n+ 1, . . . , n− 1, n} such that

rev(π) = (−1) ∗ π

Example: {−2}|{1}|{0}|{−1}|{2}, {2− 1}|{0}|{−21} and
{1}|{−202}|{−1}.
Obs: always has an odd number of parts, zero is in the centre.
Let forg(π) be the set composition of [n] resulting from dropping
all non-positive integers from π.
Example: forg({1}|{−202}|{−1}) = 1|2
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The Hopf algebra

On non-commutative variables {an}n∈Z, for a symmetric set
composition π, we define the type B word quasi-symmetric
functions as a sum ∑

f

cfaf ,

where the sum runs over all odd functions f : {−n, . . . , n} → Z
and cf are coefficients such that, whenever ker f = ker g, we
have cf = cg.
Further define the basis elements Nπ =

∑
ker f=π

af .

Example: for π = −1|2|0| − 2|1 we have that

Nπ = a1a−2a0a2a−1 + a1a−3a0a3a−1 + a2a−3a0a3a−2 + . . . .

The projection Mπ 7→Mforg(π) is a Hopf algebra morphism.
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Let’s add polytopes - Generalized permutahedra

Why do we care about WQSym and BWQSym?

Pern = conv{Sn(1, . . . , n)}

and set compositions of n correspond to faces of Pern.
Consider the set GPer of polytopes arising from deformations of
Pern.It’s a Hopf algebra (Aguiar, Ardila 2017)
Thus arrises a map

GPer→ WQSym

q 7→
∑
π

Mπχ[The face of q correponding to π is a point] .

This map generalizes the chromatic symmetric function, and
many other chromatic invariants.



Some known Hopf algebras Some unknown Hopf algebras Future work

Let’s add polytopes - Type B
Let Dn be the reflection group of Rn generated by the
reflections accross the hyperplanes xi = xj and xj = 0.
The type B permutahedron arises as

BPern = conv{Dn(1, . . . , n)}

and symmetric set compositions of n correspond to faces of
BPern.
Consider the set GBPer of polytopes arising from deformations
of BPern.
Thus arrises a map

ΨB
BGPer : BGPer→ BWQSym

q 7→
∑
π

Nπχ[The face of q correponding to π is a point] .
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The diagram

The following diagram commutes:

Problem: BWQSym is not even a Hopf algebra!



Some known Hopf algebras Some unknown Hopf algebras Future work

Future work

• Is there some algebraic structure on BGPer that gives this
diagram some meaning?

• Chromatic questions in the new invariant?
• Does BWQSym have some universal property, similarly to
WQSym?
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The end
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