Another set composition Hopf algebra - and a commutative diagram with polytopes

A Hopf district productions seminar

Raúl Penaguião
San Francisco State University

13th January, 2021

Slides can be found in
http://user.math.uzh.ch/penaguiao/

Symmetric functions

If $f:[n] \rightarrow\{1,2, \ldots\}$, write $x_{f}=x_{f(1)} \ldots x_{f(n)}$, a symmetric function can be written as

$$
\sum_{f} c_{f} x_{f}
$$

where $c_{f}=c_{g}$ whenever $f=b \circ g$ for some order bijective map b in the integers.
Basis indexed by partitions, endowed with a natural notion of product and quasi-natural notion of coproduct. Context of symmetric function: chromatic invariants, representation theory (of the symmetric groups), and an algebraic study of integer partitions.

Symmetric functions are cool - chromatic functions

Hopf algebra of graphs Gr maps to Sym via the chromatic symmetric function, due to Stanley.

$$
\Psi_{\mathrm{Gr}}(G)=\sum_{f} x_{f},
$$

where the sum runs over stable colourings f of the graph G.
Conjecture (Tree conjecture)
Any two non-isomorphic trees have distinct chromatic symmetric functions.

Quasi-symmetric functions

For a function $f:[n] \rightarrow\{1,2, \ldots\}$ define its kernel as the set partition

$$
\operatorname{ker} f=f^{-1}(1)\left|f^{-1}(2)\right| \ldots,
$$

where we further disregard empty sets. In this way, quasi-symmetric functions can be written as

$$
\sum_{f} c_{f} x_{f}
$$

where c_{f} are coefficients such that, for two different functions f, g such that $\operatorname{ker} f=\operatorname{ker} g$, we have that $c_{f}=c_{g}$.
Basis indexed by compositions, endowed with a natural notion of product and quasi-natural notion of coproduct arises. Quasi-symmetric functions Q Sym used to study further chromatic invariants, representation theory (of the Hecke algebras), and an algebraic study of integer compositions.

Quasi-symmetric functions are even cooler

Hopf algebra of matroids Mt maps to QSym via chromatic quasi-symmetric function due to Billera-Jia-Reiner.

$$
\Psi_{\mathrm{Mt}}(M)=\sum_{f} x_{f},
$$

where the sum runs over M-generic colourings f, that is colourings that are maximized in exactly one basis of the matroid.

The fact that this is a quasi-symmetric function is non-trivial
Theorem (Aguiar, Bergeron, Sottile 2000)
Any combinatorial Hopf algebra н (HA + character) has a unique Hopf algebra morphism to QSym denoted Ψ_{H}.

Word symmetric functions in non-commutative variables

We now consider a family of non-commuting variables $\left\{\mathbf{a}_{n}\right\}_{n \geq 1}$. Word symmetric functions or symmetric functions in non-commutative variables can be written as

$$
\sum_{f} c_{f} \mathbf{a}_{f}
$$

where c_{f} are coefficients such that, whenever $f=b \circ g$ for some bijection b, we have $c_{f}=c_{g}$.
(do not confuse with non-commutative symmetric functions, usually refers to the dual of $Q S y m$).

Word quasi-symmetric functions

Word quasi-symmetric functions in non-commuting variables can be written as

$$
\sum_{f} c_{f} \mathbf{a}_{f},
$$

where c_{f} are coefficients such that, whenever $\operatorname{ker} f=\operatorname{ker} g$, we have $c_{f}=c_{g}$.
Basis indexed by set compositions, endowed with a natural notion of product and quasi-natural notion of coproduct.
Theorem (Aguiar and Mahajan 2010)
There for any connected combinatorial Hopf monoid h there is a unique Hopf monoid morphism $\mathbf{\Psi}_{\mathrm{h}}: \mathrm{h} \rightarrow$ WQSym.

The big picture

The combinatorial object

Symmetric set composition: a symmetric set composition π of n is a set composition of $\{-n,-n+1, \ldots, n-1, n\}$ such that

$$
\operatorname{rev}(\pi)=(-1) * \pi
$$

Example: $\{-2\}|\{1\}|\{0\}|\{-1\}|\{2\},\{2-1\}|\{0\}|\{-21\}$ and $\{1\}|\{-202\}|\{-1\}$.
Obs: always has an odd number of parts, zero is in the centre. Let forg (π) be the set composition of $[n]$ resulting from dropping all non-positive integers from π.
Example: forg $(\{1\}|\{-202\}|\{-1\})=1 \mid 2$

The Hopf algebra

On non-commutative variables $\left\{\mathbf{a}_{n}\right\}_{n \in \mathbb{Z}}$, for a symmetric set composition π, we define the type B word quasi-symmetric functions as a sum

$$
\sum_{f} c_{f} \mathbf{a}_{f},
$$

where the sum runs over all odd functions $f:\{-n, \ldots, n\} \rightarrow \mathbb{Z}$ and c_{f} are coefficients such that, whenever $\operatorname{ker} f=\operatorname{ker} g$, we have $c_{f}=c_{g}$.
Further define the basis elements $\mathbb{N}_{\pi}=\sum_{\text {ker } f=\pi} \mathbf{a}_{f}$.
Example: for $\pi=-1|2| 0|-2| 1$ we have that

$$
\mathbb{N}_{\pi}=\mathbf{a}_{1} \mathbf{a}_{-2} \mathbf{a}_{0} \mathbf{a}_{2} \mathbf{a}_{-1}+\mathbf{a}_{1} \mathbf{a}_{-3} \mathbf{a}_{0} \mathbf{a}_{3} \mathbf{a}_{-1}+\mathbf{a}_{2} \mathbf{a}_{-3} \mathbf{a}_{0} \mathbf{a}_{3} \mathbf{a}_{-2}+\ldots
$$

The projection $\mathbb{M}_{\pi} \mapsto \mathbb{M}_{\text {forg }(\pi)}$ is a Hopf algebra morphism.

Let's add polytopes - Generalized permutahedra

Why do we care about WQSym and BWQSym?

$$
\operatorname{Per}_{n}=\operatorname{conv}\left\{S_{n}(1, \ldots, n)\right\}
$$

and set compositions of n correspond to faces of Per_{n}.
Consider the set GPer of polytopes arising from deformations of Per_{n}. It's a Hopf algebra (Aguiar, Ardila 2017)
Thus arrises a map

$$
\text { GPer } \rightarrow \text { WQSym }
$$

$$
\mathfrak{q} \mapsto \sum_{\pi} \mathbb{M}_{\pi} \chi[\text { The face of } \mathfrak{q} \text { correponding to } \pi \text { is a point }] .
$$

This map generalizes the chromatic symmetric function, and many other chromatic invariants.

Let's add polytopes - Type B

Let D_{n} be the reflection group of \mathbb{R}^{n} generated by the reflections accross the hyperplanes $x_{i}=x_{j}$ and $x_{j}=0$. The type B permutahedron arises as

$$
\operatorname{BPer}_{n}=\operatorname{conv}\left\{D_{n}(1, \ldots, n)\right\}
$$

and symmetric set compositions of n correspond to faces of BPer_{n}.
Consider the set GBPer of polytopes arising from deformations of BPer_{n}.
Thus arrises a map

$$
\Psi_{\text {BGPer }}^{B}: \text { BGPer } \rightarrow \text { BWQSym }
$$

$\mathfrak{q} \mapsto \sum_{\pi} \mathbb{N}_{\pi} \chi$ [The face of \mathfrak{q} correponding to π is a point $]$.

The diagram

The following diagram commutes:

Problem: BWQSym is not even a Hopf algebra!

Future work

- Is there some algebraic structure on BGPer that gives this diagram some meaning?
- Chromatic questions in the new invariant?
- Does BWQSym have some universal property, similarly to WQSym?

The end

