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Patterns in permutations
A permutation π of size n is an arrangement on an n× n table:

π = = 2431

The set of permutations of size n : Sn
The set of all permutations : S
Select a set I of columns of the square configuration of π and
define the restriction π|I . This is a permutation.

π|{1,2,4} = 231=
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Number of occurrences

We can count occurrences!
For permutations π, σ, we define the pattern number:

occ(π, σ) = #{occurrences of π in σ} .

In this way we have

occ(12, 4132) = 2, occ(312, 4132) = 2, occ(12, 12345) = 10

and occ(312, 3675421) = 0

For a fixed integer k, what are the possible values of(
occ(π, σ) |σ|−|π|

)
π∈Sk

when |σ| is big?
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Plotting these relationships

õcc(π, τ) =
occ(π, τ)(|τ |
|π|
) , õcck(τ) = (õcc(π, τ))π∈Sk ∈ RSk .

Figure: The interplay between proportion of occurrences of 12 and 21.
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Feasible region - Classical patterns

For a fixed integer k, the corresponding feasible region (FReg)
is defined as follows

Fk := {~v ∈ RSk | ∃σ(n), õcck(σ
(n))→ ~v} .

Denote F≤k for the FReg indexed by all permutations of size at
most k, and more flexibly FS for a set of permutations S.

The FReg Fπ, indexed by only one permutation, is an interval
and is often studied in the context of packing problems.
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Feasible region - Examples

Figure: Left: The FReg comparing 12 and 123. Right: The FReg
comparing patterns of 12 and patterns of 123 or 213 becomes a
scalloped triangle. Feasible regions due to Kenyon, Kral, et.al. 2015.
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Feasible region - The dimension problem
Given two permutations π of size n, and τ of size m, its direct
product is π ⊕ τ given as

π ⊕ τ = π(1) · · ·π(n)(τ(1) + n) · · · (τ(m) + n) .

Figure: Left: The direct sum of the permutations 132 and 21. Right:
The inverse sum of the permutations 12 and 1.
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Feasible region - The dimension problem

A permutation σ is called indecomposable if it cannot be
written as σ = π ⊕ τ for π, τ non-trivial permutations.

Theorem (Glebov, Hoppen, et.al. 2017)
The dimension of the feasible region F≤k is at least the number
of indecomposable permutations of size k.
For instance, when k = 3, there are 3 permutations that are
indecomposable. But the feasible region has dimension four.
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Feasible region - Permutons

Permutons: A probability measure in the square [0, 1]× [0, 1]
with uniform marginals.

Figure: Left:A permuton has uniform marginals. Right: A permuton
constructed from twice the Lebesgue measure on two squares.

Any permuton arises as the limit of permutations with
unbounded size.
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Feasible region - Algebra of patterns

Theorem (Vargas, 2014)
The pattern functions satisfy the following polynomial relations:

occ(π, ·) occ(τ, ·) =
∑
σ

(
σ

π, τ

)
occ(σ, ·) .

Furthermore, the algebra of pattern functions has a free basis
indexed by Lyndon permutations.
Consequence: we have an upper bound for dimF≤k, given by
the number of Lyndon permutations.

Conjecture (Borga, P., 2019)
This upper bound is tight.
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Consecutive occurrences
We now consider only occurrences that form an interval. For
instance, taking σ = 2413, there are two distinct consecutive
restrictions of σ of size three, namely 231 and 312.

c-occ(π, τ) = #{I interval s.t. τ |I = π} .

Figure: The permutation 3142, does not contain a consecutive
occurrence of 231, but it does contain a consecutive occurrence of
213.



Introduction and classical patterns Consecutive occurrences Restricted feasible region Future work

Consecutive occurrences

The number c-occ(π, τ) varies between 0 and |τ | − |π|+ 1. So
we define

c̃-occ(π, τ) =
c-occ(π, τ)

|τ |
, c̃-occk(τ) = (c̃-occ(π, τ))π∈Sk ∈ R .

The “permuton” version for consecutive occurrences are called
shift-invariant random orders of Z, due to Borga(2018).
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FRegIve

Fk := {~v ∈ RSk |∃σ(n), c̃-occk(σ
(n))→ ~v} ⊆ RSk .

This is still a closed region. Is it convex?
Claim: The feasible region is convex. Proof: use ⊕.

Figure: The construction of a particular permutation to establish
convexity.
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FRegIve

Figure: The FRegIve comparing patterns 12 and 123.
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The overlap graph
Consider the case k = 3 and the permutation σ = 2714365.

2714365 7→ 231− 312− 132− 213− 132 .

We can construct a graph from this:

Figure: The overlap graph for k = 3

{ permutations } → { paths in Ov(k)} , is this map invertible?
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The overlap graph - inverting a path

Lemma
Any path comes from a permutation.
Consider the path

ω = 2413→ 4123→ 1342→ 2413 .

Figure: The construction of the path ω.
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Cycle polytopes
Simple cycles in Ov(k) correspond to a sequence of walks
that give us a sequence of permutations of increasing size.

What are these points? ~eC =

(
1[e ∈ C]
|C|

)
e∈E(Ov(k))

.

For a graph G, define P (G) = conv{~eC | for C a simple cycle of G} .

Figure: The cycle polytope of a graph H.
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FRegIve is a cycle polytope

Theorem (Borga, P., 2019)

P (Ov(k)) = Fk .

In particular, F is a polytope with dimension k!− (k − 1)!.

Figure: The feasible region of k = 3.
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Avoiding set patterns - ReFRegIve

Let’s introduce pattern avoidance in this problem! Fix a finite
set P of patterns, and let Av(P) be the set of permutations that
avoid all patterns of the set P:

Av(P) = {τ ∈ S | ∀π ∈ P, occ(π, τ) = 0} ,

and let Avk(P) be Av(P) ∩ Sk.

A set of the form Av(P) ⊆ S is called a permutation class.

Permutations classes are a world to be investigated!
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Permutation classes

Figure: Left: the permutation class Av(132) is characterized by in
inductive construction. Right: the permutation classes Av(n · · · 1) are
characterized by n− 1 increasing monochromatic subsequences.

The feasible region (ReFRegIve) is:

FAv(P)
k := {~v ∈ RAvk(P) | ∃σ(n) ∈ Av(P) with c̃-occ(σ(n))→ ~v} .



Introduction and classical patterns Consecutive occurrences Restricted feasible region Future work

Does anyone read these titles?

ReFRegIve is still a closed set. Convexity on ReFRegIve?
The argument above is not valid in general anymore.
Example: if P = {132, 312, 231, 213}, then FAv(P)

k is a set with
only two points.

Proposition
If the patterns of P are all ⊕ indecomposable, or are all 	
indecomposable, then FAv(P)

k is convex.
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The overlap graph - general cases
A permutation avoiding P still corresponds to a path in the
overlap graph. This path patterns in P, so it does not populate
the whole overlap graph. Thus, P (Ov(k)|Av(P)) ⊆ F

Av(P)
k .

Conjecture: this inclusion is almost an equality.

Figure: Left: The restricted overlap graph for P = {132}. Right: The
restricted feasible region for k = 3 and P = {132}.
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Example of path inversion - 132
On the case 132, can we always invert such paths? Example:

ω = 123→ 231→ 321→ 213 .

Figure: The construction of a permutation corresponding to the path
ω.
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The upshot - 132

FAv(132)
k = P (Ov(k)|Avk(132)) and dimFAv(132)

k = Ck − Ck−1 .

Example: the cycle 231→ 213 corresponds to a sequence of
permutations σ(n) avoiding 132 that has

c̃-occk(σ
(n))→ 1

2
(~e231 + ~e213) .

Figure: A big permutation that corresponds to the cycle 231→ 213.
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The feasible region - 132

Figure: Left: The unrestricted feasible region for k = 3. Right: The
restricted feasible region for k = 3 and P = {132}.
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The overlap graph - 321
On the case 321, can we always invert such paths? Example:

ω = 312→ 123→ 231 .

Figure: The construction of a permutation corresponding to the path
ω.

We run into a big problem here: there are no permutations that
map to the path.
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The coloured overlap graph - 321
Let’s add colours to the path, in such a way that each color is a
monotone sequence:

ω = 312→ 123→ 231 .

We can see that we cannot colour it using only two colours, so
this path is not “transversible” while avoiding 321.
On the other hand, a valid sequence would be, for instance

ω = 312− 123− 123− 132 .

Figure: The construction of a permutation corresponding to the
corrected path ω.
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The coloured overlap graph - 321
Let’s add colours to the overlap graph itself and call it
COvAv(321)(k)

21

12

12

12

31
2

1
2
3

1
3
2

123 12
3

1
2
3

1
3
2

231

1
3
2

2
1
3

Figure: The overlap graph for k = 3 adapted to P = {321}, where now
we include all possible colouring of each edge.

RITMO colouring of a permutation:

σ = 1327456 7→ 1327456 7→ 1327456 .

This gives us a map
{permutations avoiding 321} → {walks on COvAv(321)(3) }
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The path lemma - monotone avoiding

Lemma
For any path ω, we can prepend a path ω′ with constant size so
that ω′ ? ω is invertible.

Let Π : RCAvk(321) → RAvk(321) be the projection that forgets the
colour of the edges. Then

FAv(321)
k = Π(P (COvAv(321)(k))) .

dimFAv(321)
k = |Avk(321)| − |Avk−1(321)| = Ck − Ck−1 .
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The restricted feasible region - 321
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Figure: Left: P (Ov(3)). Right: The restricted feasible region for
k = 3 and P = {321}, overlaid with P (Ov(3)|Av3(321)).
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The coloured overlap graph - n · · · 1
Let’s add more colours to the permutations of the graph, and
use the RITMO colouring of a permutation:

σ = 5467231 7→ 5467231 7→ 5467231 7→ 5467231 .

This gives us a map

{permutations} → {walks on COvAv(n···1)(k) } .

Theorem (Borga, P. 2020)

FAv(n···1)
k = Π(P (COvAv(n···1)(k))) ,

dimFAv(n···1)
k = |Avk(n · · · 1)| − |Avk−1(n · · · 1)| .
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Future work

• Other permutation classes are also given by generating
trees. We believe that any such permutation class will have
a direct description of the feasible region, and that we can
totally describe all the extremal points.
• The dimension conjecture: if P has only one pattern, then

dimFAvk(P)
k = |Avk(P)| − |Avk−1(P)| .

• The other dimension conjecture on the classical FReg.
• What is the volume of all these regions? Related with

triangulations.
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The end
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