Feasible regions meet pattern avoidance The awaited 3rd part on feasible regions Combinatorics Days

Raúl Penaguião

San Francisco State University

30th November, 2020

Slides can be found in
http://user.math.uzh.ch/penaguiao/

Patterns in permutations

A permutation π of size n is an arrangement on an $n \times n$ table:

The set of permutations of size $n: \mathcal{S}_{n}$
The set of all permutations: \mathcal{S}
Select a set I of columns of the square configuration of π and define the restriction $\left.\pi\right|_{I}$. This is a permutation.

Number of occurrences

We can count occurrences!
For permutations π, σ, we define the pattern number:

$$
\operatorname{occ}(\pi, \sigma)=\#\{\text { occurrences of } \pi \text { in } \sigma\} .
$$

In this way we have

$$
\begin{aligned}
\operatorname{occ}(12,4132)= & 2, \operatorname{occ}(312,4132)=2, \operatorname{occ}(12,12345)=10 \\
& \text { and } \operatorname{occ}(312,3675421)=0
\end{aligned}
$$

For a fixed integer k, what are the possible values of $\left(\operatorname{occ}(\pi, \sigma)|\sigma|^{-|\pi|}\right)_{\pi \in \mathcal{S}_{k}}$ when $|\sigma|$ is big?

Plotting these relationships

$$
\widetilde{\circ \operatorname{cc}(\pi, \tau)}=\frac{\operatorname{occ}(\pi, \tau)}{\left(\begin{array}{c}
\tau \pi) \\
\pi \pi)
\end{array}, \widetilde{o c c}_{k}(\tau)=(\widetilde{\circ c c}(\pi, \tau))_{\pi \in \mathcal{S}_{k}} \in \mathbb{R}^{\mathcal{S}_{k}} .\right.}
$$

Figure: The interplay between proportion of occurrences of 12 and 21.

Introduction and classical patterns

Consecutive occurrences

Restricted feasible region

Future work

Feasible region - Classical patterns

For a fixed integer k, the corresponding feasible region (FReg) is defined as follows

$$
F_{k}:=\left\{\vec{v} \in \mathbb{R}^{\mathcal{S}_{k}}\left|\exists \sigma^{(n)}, \widetilde{\mathrm{occ}}_{k}\left(\sigma^{(n)}\right) \rightarrow \vec{v},\left|\sigma^{(n)}\right| \rightarrow \infty\right\}\right.
$$

$F_{\leq k}$ - the FReg indexed by all permutations of size at most k $F_{\mathcal{S}}$ - the FReg indexed by a set of permutations \mathcal{S}.
$F_{\{\pi\}}$ - an interval and is often studied in the context of packing problems.

Feasible region - Examples

Figure: Left: The FReg comparing 12 and 123. Right: The FReg comparing patterns of 12 and patterns of 123 or 213 becomes a scalloped triangle. Feasible regions due to Kenyon, Kral, et.al. 2015.

Feasible region - The dimension problem

Theorem (Glebov, Hoppen, et.al. 2017)
The dimension of the feasible region $F_{\leq k}$ is at least the number of indecomposable permutations of size k.

Theorem (Vargas, 2014)
The feasible region $F_{\leq k}$ satisfies a set of algebraic equations indexed by the Lyndon permutations of size up to k.

Conjecture
The codimension of the feasible region $F_{\leq k}$ is precisely the number of Lyndon permutations of size up to k.

Consecutive occurrences

We now consider only occurrences that form an interval. For instance, taking $\sigma=2413$, there are two distinct consecutive restrictions of σ of size three, namely 231 and 312 .

$$
\operatorname{c-occ}(\pi, \tau)=\#\left\{I \text { interval s.t. }\left.\tau\right|_{I}=\pi\right\}
$$

Figure: The permutation 3142, does not contain a consecutive occurrence of 231 , but it does contain a consecutive occurrence of 213.

Consecutive occurrences

The number c-occ (π, τ) varies between 0 and $|\tau|-|\pi|+1$. So we define

$$
\widetilde{\operatorname{cocc}}(\pi, \tau)=\frac{\operatorname{coccc}(\pi, \tau)}{|\tau|}, \widetilde{\mathrm{c-Occ}}_{k}(\tau)=(\widetilde{\mathrm{c-Occ}}(\pi, \tau))_{\pi \in \mathcal{S}_{k}} \in \mathbb{R}^{\mathcal{S}_{k}} .
$$

The "permuton" version for consecutive occurrences are called shift-invariant random orders of \mathbb{Z}, due to Borga(2018).

FReglve

$$
\mathcal{F}_{k}:=\left\{\vec{v} \in \mathbb{R}^{\mathcal{S}_{k}}\left|\exists \sigma^{(n)},{\widetilde{\operatorname{cocc}_{k}}}_{k}\left(\sigma^{(n)}\right) \rightarrow \vec{v},\left|\sigma^{n}(n)\right| \rightarrow \infty\right\} \subseteq \mathbb{R}^{\mathcal{S}_{k}} .\right.
$$

This is a closed and convex region.

The overlap graph

Consider the case $k=3$ and the permutation $\sigma=2714365$.

$$
2714365 \mapsto 231-312-132-213-132
$$

We can construct a graph from this:

Figure: The overlap graph for $k=3$
$\{$ permutations $\} \rightarrow\{$ paths in $\mathcal{O} v(k)\}$, is this map invertible?

The overlap graph - inverting a path

$$
\omega=2413 \rightarrow 4123 \rightarrow 1342 \rightarrow 2413
$$

Figure: The construction of the path ω.

FReglve is a cycle polytope

Theorem (Borga, P., 2019)

$$
P(\mathcal{O} v(k))=\mathcal{F}_{k} .
$$

In particular, \mathcal{F} is a polytope with dimension k ! $-(k-1)$!.

Figure: The feasible region of $k=3$.

Avoiding set patterns - permutation classes

Let's introduce pattern avoidance in this problem!

$$
\operatorname{Av}(\mathcal{P})=\{\tau \in \mathcal{S} \mid \forall \pi \in \mathcal{P}, \operatorname{occ}(\pi, \tau)=0\},
$$

Let $\operatorname{Av}_{k}(\mathcal{P})$ be $\operatorname{Av}(\mathcal{P}) \cap \mathcal{S}_{k}$.
A set of the form $\operatorname{Av}(\mathcal{P}) \subseteq \mathcal{S}$ is called a permutation class.
Permutations classes are a world to be investigated!

Generating trees and ReFReglve

in $\operatorname{Acv}_{2}(4321)$

Figure: Left: the permutation class $\operatorname{Av}(132)$ is characterized by in inductive construction. Right: the permutation classes $\operatorname{Av}(n \cdots 1)$ are characterized by $n-1$ increasing monochromatic subsequences.

The feasible region (ReFReglve) is:

$$
\mathcal{F}_{k}^{\operatorname{Av}(\mathcal{P})}:=\left\{\vec{v} \in \mathbb{R}^{\operatorname{Av}_{k}(\mathcal{P})} \mid \exists \sigma^{(n)} \in \operatorname{Av}(\mathcal{P}) \text { with } \widetilde{\text { c-occ }}\left(\sigma^{(n)}\right) \rightarrow \vec{v}\right\}
$$

Does anyone read these titles?

ReFReglve is still a closed set. Convexity on ReFReglve?
Example: if $\mathcal{P}=\{132,312,231,213\}$, then $\mathcal{F}_{k}^{\operatorname{Av}(\mathcal{P})}$ is a set with only two points.

Proposition
If \mathcal{P} is a singleton, then $\mathcal{F}_{k}^{\operatorname{Av}(\mathcal{P})}$ is convex.
$\{$ permutations in $\operatorname{Av}(\mathcal{P})\} \rightarrow\{$ paths in $\mathcal{O} v(k)$ avoiding $\mathcal{P}\}$
Thus, $P\left(\left.\mathcal{O} v(k)\right|_{\operatorname{Av}(\mathcal{P})}\right) \subseteq \mathcal{F}_{k}^{\operatorname{Av}(\mathcal{P})}$.

Example of path inversion - 132

On the case 132, can we always invert such paths? Example:

$$
\omega=123 \rightarrow 231 \rightarrow 321 \rightarrow 213 .
$$

Figure: The construction of a permutation corresponding to the path ω.

The upshot - 132

$$
\mathcal{F}_{k}^{\mathrm{Av}(132)}=P\left(\left.\mathcal{O} v(k)\right|_{\operatorname{Av}_{k}(132)}\right) \text { and } \operatorname{dim} \mathcal{F}_{k}^{\mathrm{Av}(132)}=C_{k}-C_{k-1}
$$

Figure: Left: The restricted overlap graph for $\mathcal{P}=\{312\}$. Right: The restricted feasible region for $k=3$ and $\mathcal{P}=\{312\}$.

The overlap graph - 321

On the case 321, can we always invert such paths? Example:

$$
\omega=312 \rightarrow 123 \rightarrow 231 .
$$

Let's add colours to the path, in such a way that each color is a monotone sequence:

$$
\omega=312 \rightarrow 123 \rightarrow 231
$$

The coloured overlap graph - 321

On the other hand, a valid sequence would be, for instance

$$
\omega=312 \rightarrow 123 \rightarrow 123 \rightarrow 132
$$

Figure: The construction of a permutation corresponding to the corrected path ω.

The coloured overlap graph - 321

 Let's add colours to the overlap graph itself and call it $\mathfrak{C O} v^{\mathcal{A} v(321)}(k)$

Figure: The overlap graph for $k=3$ adapted to $\mathcal{P}=\{321\}$, where now we include all possible colouring of each edge.

Theorem (Borga, P. 2020)

$$
\begin{gathered}
\mathcal{F}_{k}^{\operatorname{Av}(n \cdots 1)}=\Pi\left(P\left(\mathfrak{C} \mathcal{O} v^{\mathcal{A} v(n \cdots 1)}(k)\right)\right) \\
\operatorname{dim} \mathcal{F}_{k}^{\operatorname{Av}(n \cdots 1)}=\left|\operatorname{Av}_{k}(n \cdots 1)\right|-\left|\operatorname{Av}_{k-1}(n \cdots 1)\right| .
\end{gathered}
$$

The restricted feasible region - 321

Figure: Left: $P(\mathcal{O} v(3))$. Right: The restricted feasible region for $k=3$ and $\mathcal{P}=\{321\}$, overlaid with $P\left(\left.\mathcal{O} v(3)\right|_{\mathrm{Av}_{3}(321)}\right)$.

Future work

- Other permutation classes are also given by generating trees. We believe that any such permutation class will have a direct description of the feasible region, and that we can totally describe all the extremal points.
- The dimension conjecture: if \mathcal{P} has only one pattern, then

$$
\operatorname{dim} \mathcal{F}_{k}^{\operatorname{Av}_{k}(\mathcal{P})}=\left|\operatorname{Av}_{k}(\mathcal{P})\right|-\left|\operatorname{Av}_{k-1}(\mathcal{P})\right| .
$$

- The other dimension conjecture on the classical FReg.
- What is the volume of all these regions? Related with triangulations.
- Combinatorial structure of cycle polytopes.

The end

