The Birkoff von Neumann polytope
 Volumes, triangulations, and magic squares seminar diskrete mathematik

Raul Penaguiao

FU Berlin
22nd June, 2021

Slides can be found at
http://user.math.uzh.ch/penaguiao/

The Birkoff von Neumann polytope

The Birkoff von Neumann polytope is the set of matrices that are doubly stochastic:

$$
B_{n}=\left\{A \in \mathbb{R}_{\geq 0}^{n \times n} \mid \forall_{j=1, \ldots, n}, \sum_{i} A_{i, j}=\sum_{i} A_{j, i}=1\right\} .
$$

Examples of matrices in this region:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right), \frac{1}{3}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Permutation matrices are particular examples of doubly-stochastic matrices!

Questions about B_{n}

Problem

What is the dimension of the Birkoff von Neumann polytope?
We have a dimension preserving injective map, by selecting the entries in the uppermost and leftmost minor:

$$
\begin{gathered}
\mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{(n-1) \times(n-1)} ; \quad B_{n} \mapsto A_{n} \\
\text { for example : } \frac{1}{5}\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 2 & 1 \\
2 & 1 & 2
\end{array}\right) \mapsto \frac{1}{5}\left(\begin{array}{ll}
1 & 2 \\
2 & 2
\end{array}\right) \\
A_{n}=\left\{\sum_{i} A_{i, j} \leq 1, \sum_{i, j} A_{j, i} \leq 1, \sum_{i} A_{i, j} \geq 2 n-2\right\} .
\end{gathered}
$$

Thus $\operatorname{dim} B_{n}=\operatorname{dim} A_{n}=(n-1) \times(n-1)$.

Questions about B_{n}

Theorem (Birkoff von Neumann theorem)
 The Birkoff von Neumann polytope is the convex hull of the permutation matrices of dimension n.

Question: this is an exercise in the book? I have no idea how to establish this in a simple way...

Problem

What is the $(n-1)^{2}$-volume of the Birkoff von Neumann polytope?
Three ways of computing this volume: twice via the Ehrhard polynomial and once by finding a triangulation.

The polytope A_{3}

Figure: From left to right, we have $A_{3} \cap\left\{x_{2,2}=0\right\}, A_{3} \cap\left\{x_{2,2}=0.5\right\}$, $A_{3} \cap\left\{x_{2,2}=1\right\}$.

The Erhart polynomial

Let $P \subseteq \mathbb{R}^{d}$ be a polytope. The Ehrhart polynomial is defined as:

$$
E_{P}(t)=\left|\mathbb{Z}^{d} \cap t P\right|, t \text { non-negative integer }
$$

Figure: The value of the Ehrhart polynomial for a few values of t.
$E_{T}(t)=(t+1)^{2}=t^{2}+2 t+1$

The Erhart polynomial

Theorem (Erharht theorem)

If $P=\operatorname{conv}\left\{v_{1}, \ldots, v_{n}\right\}$ is a polytope of dimension d, where each v_{i} has integer coordinates, then $E_{P}(t)$ is a polynomial. Furthermore, it has degree d, and the leading coefficient is the volume of P.

Example: if T is the unit square, then

$$
\operatorname{vol} T=\operatorname{coeff}_{t^{2}} E_{T}(t)=\operatorname{coeff}_{t^{2}}(t+1)^{2}=1
$$

Strategies for computing $E_{B_{n}}(t)$: via power series magic, and by interpolation/ computing the first few values.
Find a combinatorial interpretation of the value $E_{B_{n}}(t)=\left|\mathbb{Z}^{n \times n} \cap t B_{n}\right|$.

The Erhart polynomial - magic squares

A magic square (sometimes called semi-magic square) is an $n \times n$ matrix with coefficients in $\mathbb{Z}_{\geq 0}$, whose rows and columns sum up to t.

$$
\text { For example, for } t=5:\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 2 & 1 \\
2 & 1 & 2
\end{array}\right) \text {. }
$$

Figure: An example of a magic square dating back to the first century AC.

Triangulations of a polytope

Figure: Computing the volume of the cube

Theorem (Magic and very rare theorem)
Any simplex in the Birkoff von Neumann polytope has the same volume $\frac{n^{n-1}}{(n-1)^{2}!}$. Thus,

$$
\operatorname{vol} B_{n}=\#\left\{\text { triangles in a triangulation of } B_{n}\right\} \frac{n^{n-1}}{(n-1)^{2}!}
$$

Why is it rare?

Theorem (Magic and very rare theorem)
Any simplex in the Birkoff von Neumann polytope has the same volume.

This does not happen in the cube! There are triangulations with six and with five simplices.

Outline of the talk

(1) Introduction
(2) The Ehrhart polynomial

- Power series
- Interpolation
(3) The poset of faces

4 Triangulations algorithm
(5) Conclusion

Power series galore

Introduce $2 n$ variables $z_{1}, \ldots, z_{n}, w_{1}, \ldots, w_{n}$, and perform some power series magic.
For $n \times n$ matrix A, define
$r_{i}(A)=$ sum of the entries in row i
$c_{i}(A)=$ sum of the entries in column i

$$
F\left(z_{1}, \ldots, z_{n}, w_{1}, \ldots, w_{n}\right)=\sum_{\substack{A \text { non-negative matrix } \\ \text { integer }}} \prod_{i} z_{i}^{r_{i}(A)} w_{i}^{c_{i}(A)}
$$

Goal: find the coefficient at $z_{1}^{t} \cdots z_{n}^{t} w_{1}^{t} \cdots w_{n}^{t}$ algebraically, this has to be $E_{B_{n}}(t)$, the number of magic squares of row sum and column sum t.

Power series galore - case $n=2$

$$
\begin{aligned}
& F\left(z_{1}, z_{2}, w_{1}, w_{2}\right)=\sum_{\substack{a_{1,1} \geq 0 \\
a_{1,2} \geq 0 \\
a_{2,1} \geq 0 \\
a_{2,2} \geq 0}} z_{1}^{a_{1,1}+a_{1,2}} z_{2}^{a_{2,1}+a_{2,2}} w_{1}^{a_{1,1}+a_{2,1}} w_{2}^{a_{1,2}+a_{2,2}} \\
= & \sum_{\substack{a_{1,1} \geq 0 \\
a_{1,2} \geq 0 \\
a_{2,1} \geq 0 \\
a_{2,2} \geq 0}}\left(z_{1} w_{1}\right)^{a_{1,1}}\left(z_{2} w_{1}\right)^{a_{2,1}}\left(z_{1} w_{2}\right)^{a_{1,2}}\left(z_{2} w_{2}\right)^{a_{2,2}}=\left(\sum_{a_{1,1} \geq 0}\left(z_{1} w_{1}\right)^{a_{1,1}}\right) \\
& \left(\sum_{a_{1,2} \geq 0}\left(z_{1} w_{2}\right)^{a_{1,2}}\right)\left(\sum_{a_{2,1} \geq 0}\left(z_{2} w_{1}\right)^{a_{2,1}}\right)\left(\sum_{a_{2,2} \geq 0}\left(z_{2} w_{2}\right)^{a_{2,2}}\right) .
\end{aligned}
$$

Power series galore - major simplification

$$
\begin{gathered}
F\left(z_{1}, z_{2}, w_{1}, w_{2}\right)=\left(\sum_{a_{1,1} \geq 0}\left(z_{1} w_{1}\right)^{a_{1,1}}\right)\left(\sum_{a_{1,2} \geq 0}\left(z_{1} w_{2}\right)^{a_{1,2}}\right) \ldots \\
=\frac{1}{\left(1-z_{1} w_{1}\right)\left(1-z_{2} w_{1}\right)\left(1-z_{1} w_{2}\right)\left(1-z_{2} w_{2}\right)}
\end{gathered}
$$

This works in general for any n, so we have a product with n^{2} terms:

$$
F(\mathbf{z}, \mathbf{w})=\sum_{A \text { integer }} \prod_{i} z_{i}^{r_{i}(A)} w_{i}^{c_{i}(A)}=\prod_{i, j=1, \ldots, n} \frac{1}{1-z_{i} w_{j}}
$$

Power series galore

$$
E_{B_{n}}(t)=\operatorname{coeff}_{z_{1}^{t} \cdots w_{n}^{t}}(F)=\operatorname{coeff}_{1}\left(\left(z_{1}^{t} \cdots w_{n}^{t}\right)^{-1} \prod_{i, j=1, \ldots, n} \frac{1}{1-z_{i} w_{j}}\right)
$$

By splitting $\prod_{j=1, \ldots, n} \frac{1}{1-z_{i} w_{j}}=\sum_{j=1, \ldots, n} \frac{A_{j}}{1-z_{i} w_{j}}$ for some carefully
chosen A_{j} (and a lot of "massaging") we get:
Proposition

$$
E_{B_{n}}(t)=\operatorname{coeff}_{1}\left(\left(z_{1}^{t} \cdots z_{n}^{t}\right)^{-1} \sum_{k=1}^{n} \frac{z_{k}^{n-1+t}}{\prod_{i \neq k} z_{k}-z_{i}}\right)^{n} .
$$

Power series galore - case $n=2$

$$
\begin{aligned}
E_{B_{2}}(t) & =\operatorname{coeff}_{1}\left(z_{1}^{t} z_{2}^{t}\right)^{-1}\left(\frac{z_{1}^{t+1}}{z_{1}-z_{2}}+\frac{z_{2}^{t+1}}{z_{2}-z_{1}}\right)^{2} \\
& =\operatorname{coeff}_{1}\left(z_{1}^{t} z_{2}^{t}\right)^{-1}\left(\frac{z_{1}^{t+1}-z_{2}^{t+1}}{z_{1}-z_{2}}\right)^{2}
\end{aligned}
$$

Now assume that the variable t is an integer :

$$
\begin{gathered}
E_{B_{2}}(t)=\text { coeff }_{z_{1}^{t} z_{2}^{t}\left(\sum_{i=0}^{t} z_{1}^{i} z_{2}^{t-i}\right)^{2}=\operatorname{coeff}_{z_{1}^{t} z_{2}^{t}} \sum_{a, b=0, \ldots, t} z_{1}^{a+b} z_{2}^{2 t-a-b}}^{=\sum_{\substack{a, b=0, \ldots, t \\
a+b=t}} 1=t+1} .
\end{gathered}
$$

Power series galore - case $n=4$

Much in the same way, by using

$$
E_{B_{n}}(t)=\operatorname{coeff}_{1}\left(\left(z_{1}^{t} \cdots z_{n}^{t}\right)^{-1} \sum_{k=1}^{n} \frac{z_{k}^{n-1+t}}{\prod_{i \neq k} z_{k}-z_{i}}\right)^{n}
$$

one can compute by hand:

$$
\begin{aligned}
E_{B_{4}}(t)= & \frac{11}{11340} t^{9}+\frac{11}{630} t^{8}+\frac{19}{135} t^{7}+\frac{2}{3} t^{6}+\frac{1109}{540} t^{5}+ \\
& \frac{43}{10} t^{4}+\frac{35117}{5670} t^{3}+\frac{379}{63} t^{2}+\frac{65}{18} t+1
\end{aligned}
$$

Interpolating Ehrhart

If $E_{B_{n}}(t)$ is the number of magic squares of size n and row sum t, then we can simply try to compute all such squares. Can we?

Problem
How many magic squares are there of size n and row sum t ?

Interpolating Ehrhart - some properties

Ehrhart theory says that:

$$
\begin{gathered}
E_{B_{n}}(-n-t)=(-1)^{n-1} E_{B_{n}}(t) \\
E_{B_{n}}(0)=1=E_{B_{n}}(-n)(-1)^{n-1}, E_{B_{n}}(-n+1)=\cdots=E_{B_{n}}(-1)=0
\end{gathered}
$$

So in general it is enough to compute $E_{B_{n}}(t)$ for $t=1, \ldots,\binom{n-1}{2}$, because $E_{B_{n}}(t)$ has degree $(n-1)^{2}$.

Interpolating Ehrhart - magic squares $n=3$

$$
E_{B_{3}}(0)=1=E_{B_{3}}(-3)(-1)^{2}, E_{B_{3}}(-2)=E_{B_{3}}(-1)=0
$$

Only quartic polynomial that satisfies this and $E_{B_{3}}(1)=6$ is

$$
E_{B_{3}}(t)=(t+1)(t+2)\left(\frac{1}{8} t^{2}+\frac{3}{8} t+\frac{1}{2}\right)
$$

Thus, vol $B_{3}=\frac{1}{8}$.
Challenge: Can you do the same for $n=4$? Hint: $E_{B_{4}}(1)=24$, $E_{B_{4}}(2)=282, E_{B_{4}}(3)=2008$.

Faces of a polytope

What is a polytope, what are the faces of the polytope?

A face is determined by the set of vertices that it contains (but not the other way around)!

Faces of the Birkoff von Neumann polytope

Proposition

The faces of Birkoff von Neumann polytope are indexed by some 0-1 matrix U. This face corresponds to the set of doubly stochastic matrices

$$
F_{U}=\left\{A \in B_{n} \mid A_{i, j}>0 \text { only if } U_{i, j}=1\right\} .
$$

Example $n=2 . B_{n}=\operatorname{conv}\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right\}$ is a line segment. The one dimensional face corresponds to the matrix $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$

Faces of the Birkoff von Neumann polytope - case

 $n=3$Example $n=3, B_{n}=\operatorname{conv}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right),\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$,

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

Some edges are indexed by the following matrices:

$$
\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Faces of the Birkoff von Neumann polytope - case

 $n=3$

Faces of the Birkoff von Neumann polytope - case

 $n=3$Some 0 - 1 matrices do not correspond to a face, for instance:

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right)
$$

If a vertex A is in F_{U}, then $A_{1,1}=0$.
Proposition
If $F_{U} \subseteq T_{V}$ then $U \leq V$.

Regular subdivisions of a polytope - and inductive procedure

Let P be a polytope.

- Pick a vertex v, and consider all facets that are opposite to v, $\left\{F_{1}, \ldots, F_{k}\right\}$.
- Find a regular subdivision of each face $F_{i}=\bigcup_{j} T_{i, j}$ into simplices.
- Extend each simplex thus obtained $T_{i, j}$ to the piramid $T_{i, j}^{o}=\operatorname{conv} T_{i, j} \cup\{v\}$.
The resulting recursive algorithm gives us a triangulation of $P=\bigcup_{i, j} T_{i, j}^{o}$.

$$
\operatorname{vol} P=\sum_{i, j} \operatorname{vol} T_{i, j}^{o}
$$

Regular subdivisions of a polytope - the Birkoff von Neumann polytope

- Start with a face F_{U} of B_{n}, say $U=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)$.
- Select a vertex P of this face. A permutation matrix $P \leq U$.

$$
P=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- Identify all facets of F_{U} that are opposed to P.

$$
\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Regular subdivisions of a polytope - Algorithm observations

- Method computes the volume of all faces of B_{n}.
- More efficient than the two methods described above, when $n \geq 6$.
- Already intractable when $n \geq 9$ (around $2^{n^{2}}$ faces).

n	2	3	4	5	6	7	8
Δ	1	3	352	4718075	$1.47 \cdot 10^{13}$	$1.78 \cdot 10^{22}$	$1.28 \cdot 10^{34}$

The relative volumes of the Birkoff von Neumann polytope.

Open problems

- The coefficients of the Erhard polynomial are all non-negative.
- Let F_{n} be the face of B_{n} corresponding to the matrix

$$
\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & \ldots & 0 \\
1 & 1 & 1 & 0 & \ldots & 0 \\
1 & 1 & 1 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & 1 & \ldots & 1 \\
1 & 1 & 1 & 1 & \ldots & 1
\end{array}\right)
$$

Then $\operatorname{vol} F_{n}=\prod_{i=0}^{n-2} \frac{1}{i+1}\binom{2 i}{i}=\prod_{i=0}^{n-2} C_{i}$.

Biblio

- Clara S. Chan and David P. Robbins (1999). On the volume of the polytope of douplby stochastic matrices. Experiment. Math. 8, 291-300.
- Matthias Beck and Sinai Robins (2015). Chapter 6: Computing the continuous Discretely. Springer.

Thank you

