
Polytopes and Consecutive Patterns on Trees

Christina Nguyen

December 20, 2020

In this report we want to explore the feasible region for consecutive patterns on trees. First, we will
begin with a discussion on trees and patterns. From there, we will discuss a a classic example of patterns
on permutations. Then, we will return to the topic of trees and the question that began this project
which is whether or not the feasible region for patterns of depth 2 on trees is a polytope.

1 Background

1.1 Trees

A tree T is a graph with no cycles and a rooted tree T (x) is a tree T with a specified vertex x as its root
as shown in Figure 2, see [3] for a complete definition in the context of graph theory. Let v be a vertex
of T and u be another vertex. Then, we can call u a child of v if there is a path from the root to u that
passes through v and u and v are neighbors. Furthermore, we will call any vertex of degree one a leaf if
it’s not the root. For any tree T , the maximum number of children is given by δ and its depth as r.

A rooted planar tree is a rooted tree where we order the vertices. The tree in Figure 2 is also a rooted
planar tree. Figure 5 illustrates how ordering the vertices changes how we identify different trees. We
will focus on rooted planar trees for this project and we will simply refer to them as trees.

1.2 Patterns

Let X be a set of size n ∈ N with a natural order of x1, x2, . . . , xn and we will consider the set SX to be the
set of permutations of sizeX. Let σ ∈ Sx be a permutation in one line notation so (σ(x1), σ(x2), . . . , σ(xn))
and π = (y1, . . . , yk) ∈ Sk be a pattern with k ≤ n [6]. We will denote the number of classical occurrences
of π in σ as

occ(π, σ) = |{I ⊆ [n] : patI(σ) = π}|

where I is a subset of [n] [4].
We define õcc as the proportion of classical occurrences of a permutation π in σ as

õcc(π, σ) =
occ(π, σ)(

n
k

) ∈ [0, 1].

In the limit for large σ we can obtain the feasible region for classical occurrences, or the vectors that
encode the possible proportion of patterns, is

FRclassical =
{
~v ∈ [0, 1]Sk : ∃ (σm)m∈N ∈ Sn s.t. |σm| → ∞ and õcc(π, σm)→ ~vπ,∀π ∈ Sk

}
.

Classical occurrences are well studied, see [2], [7], so we want to look at a similar concept. We want
to study what happens when we constrain our patterns to occurrences where the pattern can be found in
consecutive indices, or consecutive occurrences. We’ll denote the number of consecutive occurrences of π
as

c-occ(π, σ) = |{I ⊆ [n] : I is an interval patI(σ) = π}| .

1

Polytopes and Trees C. Nguyen

Similarly, we define the proportion of consecutive occurrences as

c̃-occ(π, σ) =
c-occ(π, σ)

n
∈ [0, 1].

The feasible region for consecutive occurrences is

FR =
{
~v ∈ [0, 1]Sk : ∃ (σm)m∈N ∈ Sn s.t. |σm| → ∞ and c̃-occ(π, σm)→ ~vπ,∀π ∈ Sk

}
.

We claim that the description of the feasible region gives us points within the convex hull of a polytope
[4]. We know that the vertices correspond to linear functionals and we also know that the feasible region
corresponds to a convex set. For permutations it’s known that the feasible region is a polytope. However,
in general it’s not known that the feasible region is a polytope. In this report we will investigate the
feasible region for trees.

2 Permutations

First, we will discuss a concrete example. Consider σ ∈ S8 such that σ = (7, 1, 4, 5, 2, 3, 6, 8) and we will
look at patterns π of (1, 2) and (2, 1).

To find the number of classical occurrences, we can count the times the patterns (1, 2) and (2, 1) occur
in σ. We get that occ((1, 2), σ) = 18 and occ((2, 1), σ) = 10. From this we get

õcc((1, 2), σ) =
occ((1, 2), σ)

28
=

18

28
∈ [0, 1],

õcc((2, 1), σ) =
occ((2, 1), σ)

28
=

10

28
∈ [0, 1].

If we were to compute this for all sequences in S8 we could plot those points to obtain a discrete set
close to the feasible region. In order to approximate the feasible region we need to compute these values
for a larger Sn. Or, we can maximize õcc((1, 2), σ) and õcc((2, 1), σ) over a vector ~v ∈ [0, 1] to obtain the
vertices of the feasible region.

(1, 2)

0 (2, 1)

1

1

Figure 1: The feasible region for (1, 2) and (2, 1) is a line.

3 Trees

Now we’ll look at trees. Why should we study patterns in trees? Trees can bridge between the linearity of

permutations and the non-linearity of graphs. Let F (r)
δ be a set of trees of depth at most r with at most

δ children. Let T, S be rooted trees, then the number of consecutive occurrences of S in T is denoted by

c-occ
(r)
δ (S, T)

c̃-occ
(r)

(S, T) =
c-occ(r)(S, T)

|T |
.

Page 2

Polytopes and Trees C. Nguyen

We also define a vector, where δ indicates the maximum number of children in the patterns,

c̃-occ
(r)
δ (S, T) ∈ [0, 1]|Frδ |

since the depth of the pattern changes how we count them on the tree. We want to introduce a slightly
different definition for the feasible region

FR
(r)
δ =

{
ν ∈ [0, 1]|F

r
δ |
∣∣∣ ∃(T (n)

)
s.t. c̃-occ

(r)
δ

(
T (n)

)
→ ν,

∣∣∣T (n)
∣∣∣→∞} .

This definition is very similar to the definition of the feasible region for consecutive occurrences as seen
earlier. However, we introduce δ and r since we need to consider the maximum degree of the tree along
with the depth of the pattern.

For trees with a maximum degree of 2 and for patterns of depth 2, we propose that FR
(r)
δ is a polytope.

3.1 Trees of Depth 1

Now we can put it all together into a concrete example for a tree with δ = 2 and r = 1. Consider the
following rooted tree

Figure 2: An example of a tree with 0 ≤ δ ≤ 2.

For trees with at most depth 1, there are three possible trees. We will introduce them with the
following notation, where each tree is described by the degree of its root.

0 1 2

Figure 3: The trees in F (1)
2 .

For a fixed tree S let aS = c̃-occ
(1)
δ (S, T) where S ∈ F (1)

2 as described in Figure 3. If aS ∈ FR
(1)
2 then,

in the limit, we claim that the following equations are satisfied

aS ≥ 0 for S ∈ F (r)
δ , (1)∑

S∈F(r)
δ

aS = 1, (2)

∑
S∈F(r)

δ

deg(S)aS = 1. (3)

Page 3

Polytopes and Trees C. Nguyen

These equations do not easily follow from the definitions and a proof is provided in [1].
For a tree of this size, it wouldn’t be too difficult to find the feasible vector by calculating c-occ and

c̃-occ by hand. But in order to generate the feasible region, we would need more trees and larger trees so
we used python to compute these values. For the tree in Figure 2, the values are found using the code in
Appendix A.3.

c̃-occ(0, T) =
c-occ(0, T)

|T |
=

11

32
,

c̃-occ(1, T) =
c-occ(0, T)

|T |
=

11

32
,

c̃-occ(2, T) =
c-occ(0, T)

|T |
=

10

32
.

There is a discrepancy between the values we expect from Equations 2 and 3 since we are calculating
the values with a smaller tree. If we were to do the same calculation for a much larger tree we would
eventually obtain the desired equalities. We can obtain the feasible region from the above equations which
is shown in the figure below.

a2

a1

a0

1

1

1

Figure 4: The feasible region for patterns of depth 1.

3.2 Trees of Depth 2

For patterns, of depth 2 the problem gets more interesting (aka harder) since we have 13 possible trees of
depth 2 where each vertex has at most 2 children. Below, we will introduce the trees with the following
notation where the trees are identified according to the figure below.

0(1,0) (2,0,0) (1,1) (1,2) (2,0,1)(2,1,0) (2,1,1)

(2,2,1) (2,1,2) (2,2,0) (2,0,2) (2,2,2)

Figure 5: The trees in F (2)
2 .

Page 4

Polytopes and Trees C. Nguyen

For trees of depth at most 2, in the feasible region, the following equations are satisfied∑
S∈F(r)

δ

aS = 1, (4)

∑
S∈F(r)

δ

deg(S)aS = 1, (5)

a0 = a(1,0) + a(2,0,1) + a(2,0,2) + a(2,2,0) + a(2,1,0) + 2a(2,0,0) (6)

a(1,0) + a(1,2) = a(2,0,1) + a(2,2,1) + a(2,1,0) + a(2,1,2) + 2a(2,1,1), (7)

a(1,2) + a(2,2,2) = a(2,0,0) + a(2,0,1) + a(2,1,0) + a(2,1,1). (8)

with aS ≥ 0 for all S ∈ F (r)
δ .

For patterns of depth 2, we will use python to find the feasible vector for the tree in Figure 2. Using
the code in Appendix A.4 we found the values for aT

a0 = 0.34375, a(1,0) = 0.09375, a(2,0,0) = 0.03125,

a(1,1) = 0.125, a(1,2) = 0.125, a(2,1,0) = 0.0,

a(2,0,1) = 0.0625, a(2,1,1) = 0.0625, a(2,2,0) = 0.03125,

a(2,0,2) = 0.09375, a(2,2,2) = 0.0, a(2,1,2) = 0.0,

a(2,2,1) = 0.03125

We also checked these values against Equations 6-8 using the code in Appendix A.5.

(6) : 0.34375 = 0.34375,

(7) : 0.21875 = 0.21875,

(8) : 0.125 = 0.15625

We expect that the equation would hold in the limit because the margin of error would shrink as the
trees get larger. If we were to iterate the code in Appendix A.5 for a set of large randomly generated
trees we expect to get a set of points that would approximate the feasible region.

4 Conclusion

We were able to compute the feasible vector for randomly generated trees and to verify that Equations 6-8

hold in the feasible region. As a result we are one step closer to proving that FR
(2)
2 is a polytope. Since

we know that the feasible region is convex and is in a 9−dimensional vector space we can approximate its
vertices. Afterwards, we will be able to check if the points generated by the code lie within the convex
hull.

References

[1] David Aldous. “Asymptotic Fringe Distributions for General Families of Random Trees”. In: Ann.
Appl. Probab. 1.2 (May 1991), pp. 228–266. doi: 10.1214/aoap/1177005936. url: https://doi.
org/10.1214/aoap/1177005936.

[2] Miklos Bona. Combinatorics of Permutations. Chapman and Hall/CRC, Apr. 2016. isbn: 9780429107245.
doi: 10.1201/b12210.

[3] Adrian Bondy and U.S.R. Murty. Graph Theory. Springer-Verlan, 2008.

[4] Jacopo Borga and Raul Penaguiao. “The feasible region for consecutive patterns of permutations is
a cycle polytope”. In: (Oct. 2019). url: http://arxiv.org/abs/1910.02233.

Page 5

Polytopes and Trees C. Nguyen

[5] Michael T. Goodrich, Roberto Tamassia, and Michael H. Goldwasser. Data Structures and Algorithms
in Python. Wiley Global Education, 2013.

[6] Richard Kenyon et al. “Permutations with fixed pattern densities”. In: Random Structures and Al-
gorithms 56 (1 2020). issn: 10982418. doi: 10.1002/rsa.20882.

[7] Vincent Vatter and Nik Ruskuc. Permutation Patterns. Ed. by Steve Linton, Nik Ruskuc, and Vincent
Vatter. Cambridge University Press, 2010. isbn: 9780511902499. doi: 10.1017/CBO9780511902499.

[8] Günter M. Ziegler. Lectures on Polytopes. Vol. 152. Springer New York, 1995. isbn: 978-0-387-94365-
7. doi: 10.1007/978-1-4613-8431-1.

A Code

A.1 Tree Generation

import random as rand #to crea t e random ch i l d r en

t r e e = [2] #root i s 2 f o r v a r i e t y
c h i l d r e n = [] #empty l i s t to s t o r e c h i l d r en
amount = 2 #we s t a r t wi th two ch i l d ren , s ince we s t a r t a t 2

”””
Generates the t r ee s , but sometimes makes sma l l t r e e s
Note ! r genera t e s r a d d i t i o n a l l e v e l s and a row of 0 s i s appended

so a t r e e wi th r=4 w i l l a c t u a l l y have 6 l e v e l s
”””
def t r e e g e n (d , r) : #d i s number o f ch i l d ren , r i s depth

t r e e =[2]
amount = 2
x = 0 #p la c eho l d e r var f o r random numbers
for i in range (r) : #i t e r a t e s over the depth

c h i l d r e n = []
for j in range (amount) : #makes sure we don ’ t g e t t r e e s t ha t don ’ t work

x = rand . rand int (0 , d)
c h i l d r e n . append (x)
temp = sum(c h i l d r e n) #b i a s e s random numbers so we ge t b i g g e r t r e e s
i f temp == 0 :

while temp == 0 :
for k in range (amount) :

x = rand . rand int (0 , d)
c h i l d r e n . append (x)
temp = sum(c h i l d r e n)

amount = sum(c h i l d r e n)
else :

amount = sum(c h i l d r e n)
t r e e . append (c h i l d r e n)

c h i l d r e n = []
for k in range (amount) :

c h i l d r e n . append (0)
t r e e . append (c h i l d r e n)
return t r e e

Page 6

Polytopes and Trees C. Nguyen

A.2 Size of Tree

def s i z e () :
s i z e = 1
for i in range (1 , len (t r e e)) :

for j in range (len (t r e e [i])) :
s i z e += 1

return s i z e

A.3 Pattern Checker for Depth 1

#checks f o r depth 1 pa t t e rn s
def pat check 1 (n) :

count = 0 #f i nd s c−occ

i f t r e e [0] == n : #checks the roo t
count += 1

for i in range (1 , len (t r e e)) : #t h i s i s to make python happy
i f len (t r e e [i]) >=2:

for j in range (len (t r e e [i])) :
i f t r e e [i] [j] == n :

count += 1
else : #not the most e f f i c i e n t way to ge t r i d o f a bug but i t works

i f t r e e [i] [0] == n :
count +=1

return count

A.4 Pattern Checkers for Depth 2

”””
Checks f o r pa t t e rn s o f depth 2 wi th a root o f degree 1 .
This i s messy but i t works .
”””
def pat check n1 (n , a) :

count = 0
pos = 0 #temp var f o r the p o s i t i o n o f the roo t o f the pa t t e rn t r e e
row = 0
i f t r e e [0] == n : #checks the roo t

i f t r e e [1] [0] == a :
count += 1
print (”row : 0” , ” count : ” , count)

row += 1
while row <= len (t r e e)−2: #keeps index in l en g t h o f the t r e e

#index n−2 i s a c t u a l l y the 2nd to l a s t bc python
i f len (t r e e [row]) == 1 :

i f t r e e [row] [0] == n :
i f t r e e [row + 1] [0] == a :

count += 1
print (”row : ” , row , ” c o l : ” , ”0” , ” count : ” , count)

Page 7

Polytopes and Trees C. Nguyen

i f len (t r e e [row]) == 2 : #i f I l e a v e t h i s out i t over counts
#NO IDEA WHY THOUGH

i f t r e e [row] [0] == n :
i f t r e e [row + 1] [0] == a :

count += 1
print (”row : ” , row , ” c o l : ” , ”0” , ” count : ” , count)

i f t r e e [row] [1] == n :
pos = t r e e [row] [0]
i f t r e e [row +1] [pos] == a :

count += 1
print (”row : ” , row , ” c o l : ” , ”1” , ” count : ” , count)

i f len (t r e e [row]) > 2 :
i = 0
while i <= len (t r e e [row])−1:

i f t r e e [row] [i] == n :
pos = sum(t r e e [row] [0 : i])
i f t r e e [row +1] [pos] == a :

count += 1
print (”row : ” , row , ” c o l : ” , i , ” count : ” , count , ”pos : ” , pos)

i +=1

row += 1

return count

”””
Checks f o r pa t t e rn s o f depth 2 , wi th a roo t o f degree 2 .
This i sn ’ t my b e s t b i t o f code .
I t works so t ha t ’ s enough f o r now .
”””
def pat check n2 (n , a , b) :

count = 0
pos = 0 #temp var f o r the p o s i t i o n o f the roo t o f the pa t t e rn t r e e
row = 0
i f t r e e [0] == n : #checks the roo t

i f t r e e [1] [0] == a :
i f t r e e [1] [1] == b :

count += 1
#pr in t (” row : 0” , ” count : ” , count)

row += 1
while row <= len (t r e e)−2: #keeps index in l en g t h o f the t r e e

#index n−2 i s a c t u a l l y the 2nd to l a s t bc python
i f len (t r e e [row]) == 1 :

i f t r e e [row] [0] == n :
i f t r e e [row + 1] [0] == a :

i f t r e e [row + 1] [1] == b :

Page 8

Polytopes and Trees C. Nguyen

count += 1
#pr in t (” row : ” , row , ” co l : ” , ”0” , ” count : ” , count)

i f len (t r e e [row]) == 2 : #over counts i f I l e a v e i t out . no idea why
i f t r e e [row] [0] == n :

i f t r e e [row + 1] [0] == a :
i f t r e e [row + 1] [1] == b :

count += 1
#pr in t (” row : ” , row , ” co l : ” , ”0” , ” count : ” , count)

i f t r e e [row] [1] == n :
pos = t r e e [row] [0]
i f t r e e [row +1] [pos] == a :

i f t r e e [row +1] [pos +1] == b :
count += 1
#pr in t (” row : ” , row , ” co l : ” , ”1” , ” count : ” , count)

i f len (t r e e [row]) > 2 :
i = 0
while i <= len (t r e e [row])−1:

i f t r e e [row] [i] == n :
pos = sum(t r e e [row] [0 : i])
i f t r e e [row +1] [pos] == a :

i f t r e e [row +1] [pos +1] == b :
count += 1
#pr in t (” row : ” , row , ” co l : ” , i , ” count : ” , count , ”pos : ” , pos)

i += 1

row += 1
return count

A.5 Tree Relation Checker

”””
Generates a random t r e e and then checks the pa t t e rn s
User inpu t s a pa t t e rn depth and then the depth o f the random t r e e .
”””

#import the two f i l e s wi th a l l the o ther f unc t i on s
from t r eegen import ∗
from depth2 import pat check n1 , pat check n2

def t r e e c h e c k e r (pat , depth) : #the pa t t e rn type (depth 1 or 2)

#t r e e = [2]
s i z e = 0

#depth = in t (input (”Depth o f the t r e e : ”))
t r e e = t r e e g e n (2 , depth)
s i z e = t r e e s i z e ()

#tr e e = [2 , [1 , 1] , [2 , 1] , [0 , 2 , 2] , [2 , 1 , 2 , 0] , [0 , 1 , 1 , 0 , 2] ,

Page 9

Polytopes and Trees C. Nguyen

#[2 , 1 , 1 , 1] , [0 , 2 , 0 , 1 , 0] , [0 , 1 , 2] , [0 , 0 , 0]]

i f pat == 1 :
a0 = pat check 1 (0) / s i z e
a1 = pat check 1 (1) / s i z e
a2 = pat check 1 (2) / s i z e

print (” a 0 : ” , a0 , ” a 1 : ” , a1 , ” a 2 : ” , a2)

e l i f pat == 2 :
a0 = pat check 1 (0) / s i z e
a1 = pat check 1 (1) / s i z e
a2 = pat check 1 (2) / s i z e

a10 = pat check n1 (1 , 0) / s i z e
a11 = pat check n1 (1 , 1) / s i z e
a12 = pat check n1 (1 , 2) / s i z e

a200 = pat check n2 (2 , 0 , 0) / s i z e
a210 = pat check n2 (2 , 1 , 0) / s i z e
a201 = pat check n2 (2 , 0 , 1) / s i z e
a211 = pat check n2 (2 , 1 , 1) / s i z e
a220 = pat check n2 (2 , 2 , 0) / s i z e
a202 = pat check n2 (2 , 0 , 2) / s i z e
a221 = pat check n2 (2 , 2 , 1) / s i z e
a212 = pat check n2 (2 , 1 , 2) / s i z e
a222 = pat check n2 (2 , 2 , 2) / s i z e

print (” the occurences : ”)
print (” a 0 : ” , a0 , ” a 1 : ” , a1 , ” a 2 : ” , a2)
print (” a 10 : ” , a10 , ” a 11 : ” , a11 , ” a 12 : ” , a12)
print (” a 200 : ” , a200 , ” a 210 : ” , a210 , ” a 201 : ” , a201)
print (” a 211 : ” , a211 , ” a 220 : ” , a220 , ” a 202 : ” , a202)
print (” a 222 : ” , a222 , ” a 212 : ” , a212 , ” a 221 : ” , a221)

#a1 , a2 are a l r eady accounted f o r by a10 and a200
eq1 = a10 + a201+ a202 + a220 + a210 + 2∗a200
e q 2 l h s = a10 + a12
eq2 rhs = a201 + a221 + a210 + a212 + 2∗a211
e q 3 l h s = a12 + a222
eq3 rhs = a200 + a201 + a210 + a211

print (” Equations : ”)
print (”1 s t : ” , a0 , ”=” , eq1)
print (”2nd : ” , eq2 lhs , ”=” , eq2 rhs)
print (”3 rd : ” , eq3 lhs , ”=” , eq3 rhs)

else :
print (” : (”)

Page 10

