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In this thesis the reader can find results in algebraic combinatorics, along with its con-

nections with convex geometry, extremal combinatorics and the study of substructures.

We start by making the reader comfortable with the context of algebraic combinatorics

and introducing the central object in this thesis: Hopf algebras.

This leads us to talk about the common ways in which these Hopf algebras are con-

structed from combinatorial objects and present an original one, the pattern algebras.

We introduce the notion of combinatorial presheaf, by adapting the algebraic frame-

work of species to the study of substructures in combinatorics. Afterwards, we consider

functions that count the number of patterns of objects and endow the linear span of

these functions with a product and a coproduct. In this way, any well behaved family

of combinatorial objects that admits a notion of substructure generates a Hopf algebra,

and this correspondence is functorial. For example, the Hopf algebra on permutations

studied by Vargas in 2014 and the Hopf algebra on symmetric functions are particular

cases of this construction.

From there, we consider three problems on Hopf algebras:

• Chromatic invariants and kernel problems. We study the chromatic symmetric

function on graphs, and show that its kernel is spanned by the modular relations.

We generalize this result to the chromatic quasi-symmetric function on hyper-

graphic polytopes, a family of generalized permutahedra. We use the description

of the kernel of the chromatic symmetric function to find other graph invariants

that may help us tackle the tree conjecture.
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• Freeness and other structure results. We discuss the multiplicative structure of

Hopf algebras, and the methods used to prove freeness. We show that all the

pattern Hopf algebras corresponding to commutative presheaves are free. We also

study a non-commutative presheaf on marked permutations, i.e. permutations

with a marked element. These objects have an inherent product called inflation,

which is an operation motivated by factorization theorems of permutations. In

this thesis, we find new factorization theorems on marked permutations, and use

them to show that this is another example of a pattern Hopf algebra that is free.

• Antipode formulas: Specifically, we consider cancellation-free and grouping-free

antipode formulas. These formulas not only are economic and helpful to compute,

but also reflect interesting combinatorial formulas like reciprocity results.

Finally, we address an unexpected application of this algebraic machinery in extremal

combinatorics. The reader will find below a description of what is called a feasible region

of classical and consecutive permutation patterns. This is a geometric body that encodes

precisely to which extent the proportion of occurrences of a particular pattern affect the

proportion of occurrences of other patterns. We see here that the description of the free

generators of the permutation pattern Hopf algebra plays a role in the dimension of this

geometric body. Furthermore, we show that in the context of consecutive occurrences,

this feasible region is the cycle polytope of a particular graph, which allows us to compute

its dimension, vertices and faces.
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Chapter 1

Introduction

Dealing with combinatorial objects is of great importance to the working mathematician.

This transpires both when the combinatorial objects are in plain sight, as the graph

that is the underlying structure of a network, and when they can be introduced in our

mathematical vocabulary to solve problems and point the way to correct solutions.

This thesis deals with the study of the interaction between combinatorial objects and

algebraic operations. The methods underlined in this thesis are twofold: associating a

suitable polytope to the combinatorial objects and studying the geometric properties

of this polytope; or endowing algebraic structures on our combinatorial objects and

studying the resulting algebraic structures. The hope is that either the features of the

algebraic structures or the geometric properties allow us to more cleverly handle the

original combinatorial structures, in order to extract information.

Take as an example the problem of enumerating matrices with integer entries and a fixed

row sum, called magic squares. Specifically, we want to compute

Hn(r) = |{A ∈ Matn×n(Z≥0) |A has row sum r}| .

By considering a suitable embedding of matrices in a polynomial ring, namely A 7→∏n
i,j=1 x

Ai,j
i,j , and a meticulous algebraic treatment, we can show that Hn(r) is a polyno-

mial in r for any integer n, meeting the expectation that algebraic structures can give

us information about combinatorial objects. Details on this and many other examples

are given in [Sta07].

The type of algebraic application that we develop in this thesis comes from recognizing

Hopf algebra structures in combinatorics. The notion of Hopf algebra was introduced

in the study of topological spaces, as an algebraic structure over the cohomology ring

of certain topological spaces. It seems to be the case that the specific definition was

1
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never explicitly introduced by Hopf, but it came to be understood that this algebraic

structure was the one that he was intending to use in his work in the 1950s. This has

then grown to be a purely algebraic object, leaving the nuances of topological structures

behind. We refer the reader to Appendix A, where the basics of Hopf algebras are given.

The introduction of Hopf algebras in combinatorics was brought forth by [JR79], where

the relation between the study of “merging and splitting combinatorial objects” and

bialgebras was pointed out. Specifically, consider a family of objects O, where for three

given objects ./, �, . ∈ O we can count how many ways we can split ./ into the �, .. For

instance, how many ways can we split a collection of four white balls and two black balls

into two collections of two white balls and a black ball. The resulting number is the so

called section coefficient, denoted (./ |�, .) in the literature. It is usually the case that

these satisfy complicated algebraic relations. Depending on the specific equations, this

often means that from the following definition

∆(./) =
∑
�,.

(./ |�, .) � ⊗ . , (1.1)

a comultiplication ∆ arises, i.e., this is an algebraic operation that satisfies specific

comultiplication properties presented in Definition A.1.2.

A product may be defined in a similar way. Thus, each family of combinatorial objects

with a notion of splitting and merging yields a product or a coproduct. This is a

different strategy from the usual one in enumerative combinatorics: we will not try

to find relations and equations that these splitting coefficients satisfy, nor describe any

generating function that relates to these coefficients. We will instead establish properties

of these algebraic operations.

For instance, we are interested in the question of freeness of a Hopf algebra. A Hopf

K-algebra H is said to be free commutative (or simply free) over a ring R, if it is

commutative and there is a set of generators G ⊆ H satisfying two properties: any

element of the algebra H can be expressed as a polynomial over G with coefficients

on the ring R; and there is no non-zero polynomial that annihilates over the set G.

Usually the ring is the field K. Ditters’ conjecture, proposed in the 1970s [Dit72], asks

whether the Hopf algebra of quasi-symmetric functions is free over the integers. This

conjecture is crucial for the classification theory of non-commutative formal groups, see

[Dit72, Sch96]. Ditters’ conjecture was proven in [Haz01].

The algebraic treatment of combinatorial objects also helps us to explain old invari-

ants and find new ones. Take the case of graphs, posets and matroids, that admit the

very well-known chromatic polynomial (see [Bir12]), the strict order polynomial (see
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[Sta72]) and the Billera-Jia-Reiner polynomial (see [BJR09]), respectively. These were

seen to be specializations of a particular Hopf algebra morphism to the Hopf algebra of

quasi-symmetric functions in [ABS06]. The construction of such a Hopf algebra mor-

phisms is mechanical and immediate in most combinatorial Hopf algebras, and results

from a universal property in a suitable category. Consider the case of scheduling prob-

lems, a combinatorial abstraction of the usual NP-complete problem that in some ways

generalize the notions of graph and matroids. In [BK16] a polynomial was associated

to it to study these objects. Unsurprisingly, in the same paper the authors also give

the corresponding quasi-symmetric version which comes from a suitable Hopf algebra

structure.

In general, finding universal properties in combinatorially flavored categories gives us

new invariants of combinatorial objects. In [Agu00] another result was presented, where

the author observed that there is a universal object in the category of infinitesimal Hopf

algebras, an algebra on non-commutative polynomials, and the map that arises encodes

some information of the cd-index, an invariant of polytopes. These results are often

called universality results, because they portray a universal property of an object in a

suitable category.

The chromatic symmetric function is such an example. For a given graph G, this is a

graph invariant ΨG(G) introduced in [Sta95] that generalizes the chromatic polynomial

of a graph. It was observed that ΨG arises precisely as a morphism of combinatorial Hopf

algebras from the incidence Hopf algebra on graphs G, that we introduce in Section 1.1

below.

An important conjecture related to the chromatic symmetric function of graphs, ΨG,

is that this graph invariant distinguishes trees, a claim commonly referred to as the

tree conjecture. When the chromatic symmetric function is seen as a Hopf algebra

morphism, the tree conjecture is reduced to the following: if T1, T2 are two trees such

that T1−T2 ∈ ker ΨG, then the trees T1, T2 are isomorphic. This observation kick-starts

the kernel problem, that is, to give generators for the kernel of Ψ. This problem makes

sense for any combinatorial Hopf algebra, and we present a solution for the incidence

Hopf algebra on graphs and for the Hopf algebra on hypergraphic polytopes, HGP,

in Chapter 4, opening a possible avenue to tackle the tree conjecture.

Another interesting problem in combinatorial Hopf algebras is to obtain cancellation-

free and grouping-free formulas for the antipode. This was done, for instance, in

[HM12, ML14, MP15, Pat15, BS17, AA17]. These types of antipode formulas are spe-

cially interesting because they usually relate unexpected statistics to the Hopf algebra

structure.
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This can be applied to explain a result regarding the well-known chromatic polynomial

of a graph. This is defined as

χG(n) = |{proper vertex-colorings with n colors}| ,

where a proper coloring of a graph is an assignment of a color to a vertex, in such a

way that connected vertices have distinct colors. This is known to be a polynomial in

n, so we can evaluate it at n = −1, obtaining the surprising identity (usually called a

reciprocity result):

χG(−1) = (−1)|G||{acyclic orientations of G}| . (1.2)

Now we describe the antipode formula for graphs and compare with the above. Let

G = (V,E) be a graph. The rank of an edge set E′ ⊆ E, written rank(E′), is the size

of its maximal acyclic subset. A flat F ⊆ E of the graph G is a set of edges such that

rank(F ′) > rank(F ) for any F ′ ) F . If F is a flat of G, we define the graph G/F on the

connected components of (V, F ), connected by an edge if the components are connected

by an edge in G. Then the following antipode formula was obtained in [HM12]:

S(G) =
∑

F⊆E flat

(−1)n−rank(F )a(G/F )GV,F , (1.3)

where a(H) stands for the number of acyclic orientations of a graph H, and GV,F stands

for the graph (V, F ). There, we can see that the number of acyclic orientations and the

concept of flats show up, despite having no immediate relation with the Hopf algebra

structure. Based on the theory of Hopf algebras, we can in fact derive (1.2) from this

antipode formula. Similarly, several reciprocity results are explained by what are

called cancellation-free and grouping-free formulas for antipodes in combinatorial

Hopf algebras, like the one in (1.3). These are formulas that are economic in that have

as few terms as possible and no underlying cancellation of terms occurs.

As a concluding note, it is safe to say that Hopf algebras are widespread in mathemat-

ics. They made their debut in topology as describing the fundamental structure of the

cohomology ring of path-connected Lie groups, and even nowadays have a great deal of

influence in the study of algebraic topology. Hopf algebras have also made some unex-

pected appearances. They were discovered in quantum field theory as early as 1969 and

were used to reinterpret some aspects of renormalization theory in the influential work of

Conner and Kreimer in [CK99], see [Bro09] for a descriptive work. In knot theory, Hopf

algebras are used to extract new knot invariants, for example the Jones polynomial, see

a practical survey in [Saw96].
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This introduction is structured as follows: in Section 1.1 we introduce most of the Hopf

algebras that will play an important role in the thesis, along with some fundamental

ones that are not necessary for the remaining of the thesis, but are nonetheless useful in

algebraic combinatorics; in Section 1.2 we present the category theory point of view of

combinatorial Hopf algebras. There, we see that the notion of species allows us to con-

struct combinatorial Hopf algebras in a seamless way via the Fock functors; a method

to obtain invariants in combinatorial structures from a Hopf algebra is presented in Sec-

tion 1.3; in Section 1.4 we describe some of the reasons why simple antipode formulas

for combinatorial Hopf algebras are an interesting topic of research in algebraic com-

binatorics; a general construction of pattern algebras from a combinatorial presheaf

is described in Section 1.5; in Section 1.6 we present some freeness results on pattern

algebras; in Section 1.7 we introduce the problem of describing feasible regions for pat-

terns, and its connection to extremal combinatorics and to the algebra of permutation

patterns. This leads us to the study of some graph polytopes.

1.1 Common Hopf algebras

Here we introduce some common Hopf algebras in combinatorics that play an important

role in this thesis and in the landscape of algebraic combinatorics. We refer the reader

to Appendix A for an introduction of Hopf algebras.

Note: for sake of clarity, we have been using boldface for non-commutative Hopf al-

gebras in power series, their elements, and the associated combinatorial objects, like

word symmetric functions and set compositions. We try and maintain that notational

convention throughout the thesis.

The group Hopf algebra

We start with the group Hopf algebra. Despite not having a direct appearance in this

thesis, it is perhaps the simplest generic construction of a Hopf algebra. It is a useful

one: when suitably adapted, it can be used to introduce important Hopf algebras like

quantum groups, see [Dri86]. These correspond to deformations of the group Hopf

algebras. More specifically, they differ from the latter by a parameter. This was a

surprising construction, as it has been known that compact Lie groups and Lie algebras

do not admit deformations, that is, they are rigid objects. It turns out that finite groups

are not like that, and admit deformations in the category of Hopf algebras.

Let K be a field, which we assume to have characteristic zero, and consider a finite group

G. Let K[G] be a vector space, with a basis {eg}g∈G indexed by G. The product is
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defined as

egeh = eg·h ,

and the coproduct is defined as

∆(eg) = g ⊗ g .

In this way, the linear map S defined on the basis as S(eg) = eg−1 is the antipode map

and endows K[G] with a Hopf algebra structure.

If 1 is the identity of G, then e1 is the unit of K[G]. The counit map ε is defined in the

basis elements as ε(eg) = 1. In Appendix A we saw that a group-like element x satisfies

∆(x) = x⊗ x, and a primitive element x satisfies ∆(x) = 1⊗ x+ x⊗ 1. In this way, the

group Hopf algebra has no primitive elements. In addition, the set {eg}g∈G is precisely

the set of group-like elements. This Hopf algebra is cocommutative, i.e., if we consider

the natural map twist : K[G]⊗ K[G]→ K[G]⊗ K[G], we have that twist ◦∆ = ∆.

With this example we can explain the common adage “Hopf algebras are to bialgebras

as groups are to monoids”, as mentioned for instance in [VdL19]. Indeed, for a finite

monoid G that is not closed under inversion, it can be shown that the corresponding

bialgebra does not admit an antipode, and what we obtain is not a Hopf algebra.

We remark that the Hopf algebras presented in the remaining of this section have a

fundamental difference comparing with the group Hopf algebra, as all of them are fil-

tered, that is, the product and coproduct respect a “grading” of the vector space. See

Definition A.2.3.

The polynomial Hopf algebra

The following Hopf algebra is another example of a simple construction. This Hopf alge-

bra plays an important role in Theorem A.4.4, where a classification of cocommutative

Hopf algebras is presented. Consider {xi}i∈I , a family of commuting variables indexed

by a generic set. The polynomial Hopf algebra K[x] is the usual algebra structure on the

polynomial ring K[x], together with the coalgebra map defined by ∆(xi) = 1⊗xi+xi⊗1.

In this way, because ∆ is a multiplicative map, we have that

∆(xni ) = ∆(xi)
n =

n∑
k=0

(
n

k

)
xki ⊗ xn−ki .

The counit ε is further defined with ε(xi) = 0. The multiplicative map S(xi) = −xi
defines an antipode. This makes K[x] a commutative and cocommutative Hopf algebra.
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The space of primitive elements is P (K[x]) = span{xi}i∈I . There are no group-like

elements other than the unit.

Symmetric functions and quasi-symmetric functions

The ring of symmetric functions has played an important role in combinatorics and

algebra, see [Sta00] for some examples. In representation theory, the Frobenius map

encodes characters of representations of the symmetric group Sn, as symmetric functions.

Specifically, it maps irreducible representations to the celebrated Schur functions basis.

With this encoding, we can relate the product in the ring to induced representations, a

classical construction in representation theory, see for instance [Mac98]. Thus, the Hopf

algebra structure arises naturally: the coproduct can be constructed via the restriction

of representations.

The Hopf algebra on quasi-symmetric functions arises as a natural generalization of

symmetric functions. It was introduced in [Ges84], to explain a combinatorial relation

on P-partitions from Stanley, in [Sta72], by algebraic means. This Hopf algebra also

arises in representation theory via the representations of the Hecke algebra, see [Hiv00].

To introduce these Hopf algebras, we first describe some relevant combinatorial objects.

An integer composition, or simply a composition, of n is an ordered list α = (α1, . . . , αk)

of positive integers whose sum is n. We write α |= n. We denote the length of the list

by l(α) and we denote the set of compositions of n by Cn.

An integer partition, or simply a partition, of n is a non-increasing list of positive integers

λ = (λ1, . . . , λk) whose sum is n. We write λ ` n. We denote the length of the list by

l(λ) and we denote the set of partitions of n by Pn. By disregarding the order of the

parts on a composition α we obtain a partition λ(α).

The Hopf algebra of quasi-symmetric functions is a graded Hopf algebra QSym =⊕
n≥0QSymn. Each homogeneous component QSymn has a basis {Mα}α|=n indexed

by compositions of n. If α = (α1, . . . , αk), we identify Mα with the formal power series

in the family {xn}n≥1 of commuting variables

∑
i1<···<ik

xα1
i1
. . . xαkik .

The coproduct structure is defined as follows:

∆Mγ =
∑
γ=α•β

Mα ⊗Mβ ,



8

where α • β is the concatenation of compositions.

The Hopf algebra Sym is a Hopf subalgebra of QSym, spanned by the elements

mτ =
∑

λ(α)=τ

Mα .

It is also a graded Hopf algebra and its homogeneous components have a basis indexed

by partitions {mτ}τ`n.

Symmetric functions and quasi-symmetric functions on non-commuting

variables

We now introduce the non-commutative versions of the Hopf algebras above. These

are the Hopf algebra of word symmetric functions, also known as the Hopf algebra of

symmetric functions in non-commutative variables, WSym, and the Hopf algebra of

word quasi-symmetric functions, also known as the Hopf algebra of quasi-symmetric

functions in non-commuting variables, or simply WQSym.

The Hopf algebra of word symmetric functions was introduced in [W+36], see [RS06] for

a description of its most important bases, along with several extensions of the theory of

the ring of symmetric functions to WSym. This Hopf algebra is not to be confused with

the Hopf algebra of non-commutative symmetric functions, the graded dual of QSym

introduced by Gelfand in [GKL+94], nor with the Hopf algebra of partially commutative

symmetric functions introduced by Lascoux and Schützenberger, see [LS81].

The Hopf algebra of word quasi-symmetric functions is an analogue of QSym in non-

commutative variables introduced in [NT06]. This Hopf algebra has a basis indexed by

set compositions, which is in fact in bijection with the faces of the permutahedron, a well

studied polytope in combinatorics. Unsurprisingly, this algebraic structure will reflect

some geometric aspects, as it is seen in [Cha00].

Let us start by setting some notation. We write [n] for the set {1, . . . , n}, and [n,m] =

{n, . . . ,m} whenever 0 ≤ n ≤ m are integers. A set partition π = {π1, . . . ,πk} of a set

I is a collection of non-empty disjoint subsets of I, called blocks, whose union is I, i.e.,

that covers I. We write π ` I. We denote the number of parts of the set partition by

l(π) and call it its length. We denote the family of set partitions of I by PI , or simply

by Pn if I = [n]. By counting the elements on each block of π, we obtain an integer

partition denoted by λ(π) ` |I|. We identify a set partition π ∈ PI with an equivalence

relation ∼π on I, where, for x, y ∈ I, we say that x ∼π y if they are on the same block

of π.



9

A set composition ~π = S1| . . . |Sl of I is an ordered list of non-empty disjoint subsets

of I, which we also call blocks, that cover I. We write ~π |= I. We denote the length

of the set composition by l(~π) and call it its length. We write CI for the family of set

compositions of I, or simply Cn if I = [n]. By disregarding the order of a set composition

~π, we obtain a set partition λ(~π) ` I. By counting the elements on each block of ~π, we

obtain a composition denoted by α(~π) |= |I|. A set composition is naturally identified

with a total preorder R~π on I, where xR~πy if x ∈ Si, y ∈ Sj for i ≤ j.

A coloring of the set I is a function f : I → N. The set composition type ~π(f) of a

coloring f : I → N is the set composition obtained after deleting the empty sets in the

list f−1(1)|f−1(2)| . . . . This notation is extended to functions f : I → R. We denote by

CI the set of colorings of the set I.

The Hopf algebra of word quasi-symmetric functions is a graded Hopf algebra, and we

write its homogeneous components as WQSym = ⊕n≥0WQSymn. Each homogeneous

component has a basis {Mα}~π|=[n], indexed by set compositions of [n], of power series

in the family of non-commuting variables {an}n≥1, as

M~τ =
∑

f colorings s.t.
~π(f)=~τ

af(1) . . .af(n) .

This defines a product structure on WQSym. For instance, we have that

M1|2M12 = M1|2|34 + M1|234 + M1|34|2 + M134|2 + M34|1|2 .

The coproduct structure is defined as follows:

∆(M~π) =
∑
~π=~τ•~δ

M~τ ⊗M~δ
,

where • stands for the concatenation of set compositions.

The Hopf algebra WSym is a Hopf subalgebra of WQSym, spanned by the elements

mτ =
∑

λ(~π)=τ

M~π .

It is also a graded Hopf algebra and its homogeneous components have a basis indexed

by set partitions {mλ}λ`[n].

We write comu to denote the canonical maps WQSym→ QSym and WSym→ Sym.
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Permutation pattern Hopf algebra

Permutation patterns is an area of combinatorics that has been heavily studied. In

[Wil02], the number of occurrences of a permutation τ in π is studied, and the concept

of pattern avoiding permutation is described in [Knu68]. We introduce these concepts

below. A survey about pattern counting and the combinatorics of patterns in permuta-

tions can be found in [Bón16]. In this way, we wish to endow a suitable vector space with

an algebraic structure that resembles pattern counting. This structure, the permutation

pattern Hopf algebra A(Per), was introduced by Vargas in [Var14].

We represent a permutation σ of size n in its one-line notation, that is, as σ(1) . . . σ(n),

or as an n × n diagram, where the i-th column is marked in the box of height σ(i).

So, for instance, we have the following representations of the same permutation of size

three:

213 =

•
•
•

. (1.4)

Definition 1.1.1 (Patterns in permutations). If w = w1 . . . wk is a word of distinct

positive integers, we denote by std(w) the order preserving relabeling of these integers,

so that we obtain a standard one-line notation of a permutation. If π, τ are two permu-

tations of sizes k and n, respectively, we say that i1 < i2 < · · · < ik is an occurrence of

π in τ if π = std(τ(i1) . . . τ(ik)). In this way, if τ = 1423 and π = 21, then {2, 3} and

{2, 4} are occurrences of π in τ . We say that a permutation π is a pattern of another

permutation τ if there is an occurrence of π in τ .

We can now introduce the pattern Hopf algebra on permutations, A(Per), brought forth

in [Var14]. Consider S the set of all permutations, and for each permutation π let

pπ : S → Q be defined as

pπ(σ) = |{occurrences of π in σ}| .

We also define the cover number
(

τ
π1,π2

)
of the permutations π1, π2 and τ , as the number

of pairs of occurrences in τ , one of π1, another of π2, whose union is precisely [|σ|].

Specifically, if π1 = 132, π2 = 23 and τ = 1324, then(
1324

132, 23

)
= |{(1324, 1324 ), (1324, 13 24 ), (1324, 1 324 )}| = 3 .
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Consider, as another example, σ = 24135. The occurrences of π1 = 123 in σ are 24135,

24135, 24135. On the other hand, there is a unique occurrence of π2 = 132 in σ, namely

24 13 5.

Thus, (
24135

132, 123

)
= |{(24135, 24 13 5)}| = 1 .

In a similar way,(
4726135

2413, 35142

)
= |{(4726135, 4726 13 5), (4726135, 4726 13 5)}| = 2 .

These functions span a vector subspace span{pπ |π ∈ S} ⊆ F(S,Q) of the space of

functions from S to Q. In Theorem 2.2.3, we see that this vector space is closed with

respect to the pointwise multiplication. More precisely, we have for any permutations

π1, π2, τ and σ that

pπ1(τ) pπ2(τ) =
∑
σ

(
σ

π1, π2

)
pσ(τ) ,

where the sum runs over all permutations σ.

This is a commutative algebra where the unit is indexed by the unique permutation

of size zero, p∅ ≡ 1, i.e., the constant function that is equal to one. It can be fur-

ther endowed with a coproduct structure by means of the direct sum of permutations,

introduced below in Example 3.1.1, and setting

∆(pπ) =
∑

π=τ1⊕τ2

pτ1 ⊗pτ2 ,

where the sum runs over all the direct sum factorizations of π.

Observe, in particular, that if |τ | > |π1| + |π2|, then
(

τ
π1,π2

)
= 0. We can describe

combinatorially the “top component”: if |τ | = |π1| + |π2|, the covers counted by the

cover coefficient are the bishuffles of π1 and π2 that match τ . That is, the number of

ways to partition σ into two occurrences i1 < · · · < i|π1| and j1 < · · · < j|π2| of π1 and

π2, respectively. In this way, comparing the product structures between A(Per) and the

shuffle algebra (see [DK92] for more on this algebra), the product structure presented

has more terms, in general. So, for instance, we have

p1 p21 = p132 + p312 + p321 + p213 +2 p231 + p312 +2 p321 +2 p21 .

In [Var14], it is shown that this is a free algebra and a free generator set is {pπ |π ∈ L},
where L is the set of the so-called Lyndon permutations. The combinatorics of Lyndon
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words is developed in [CFL58] and it has been ever since serviceable in establishing the

freeness of algebras.

Incidence Hopf algebras on graphs and posets

The incidence Hopf algebras on graphs and posets have been studied ever since the intro-

duction of Hopf algebras in combinatorics, with [JR79]. A great description of the Hopf

algebra on graphs, usually called the incidence Hopf algebra on graphs, was presented in

[HM12], where a very simple antipode formula was shown. This antipode formula is ex-

pressed in terms of acyclic orientations of a graph, explaining some reciprocity formulas.

On posets, the general results presented by [Sch93] provide a determinantal formula for

its antipode.

The Hopf algebras on graphs G and on posets Pos are graded and connected Hopf

algebras that portray simple construction of Hopf algebras through combinatorial oper-

ations.

The homogeneous components of these Hopf algebras Gn, respectively Posn, are the

linear span of the graphs with vertex set [n], respectively partial orders in the set [n].

In these graded vector spaces, one defines the products and coproducts in the basis

elements. For that, when A,B are sets of integers with the same cardinality, we let

relA,B be the canonical relabeling of combinatorial objects on A to combinatorial objects

on B that preserves the order of the labels.

We introduce now the underlying combinatorial constructions in order to present a prod-

uct and a coproduct on graphs and posets. The disjoint union of graphs (V1, E1), (V2, E2),

where V1 ∩ V2 = ∅, is (V1 t V2, E1 t E2). Given a graph G = (V (G), E(G)) and a set

I ⊆ V (G), the restriction of a graph G|I is (I, E(G) ∩
(
I
2

)
). Given two graphs G1, G2

with vertices labeled in [n], [m] respectively, the product is the relabeled disjoint union

G1 ·G2 = G1 t rel[m],[n+1,n+m](G2) .

For the coproduct, let G be a graph labeled in [n], then

∆(G) =
∑

[n]=ItJ

relI,[|I|](G|I)⊗ relJ,[|J |](G|J) .

To define a Hopf algebra on posets, consider two posets P1 = (S1, RP1), P2 = (S2, RP2),

where R represents the set of pairs (x, y) such that x ≤ y in the respective poset. The

disjoint union of posets is written P1 t P2 and defined as (S1 t S2, RP1 tRP2), and the
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restriction of a poset P = (S,RP ) is written P |I and defined as (I,RP ∩ (I × I)). A

subset S of I is said to be an ideal of P if, whenever x ≤ y and x ∈ S, then y ∈ S.

Define the product between partial orders P,Q in the sets [n], [m], respectively, as

P ·Q = P t rel[m],[n+1,n+m](Q) ,

and the coproduct for a partial order P in [n] as

∆(P ) =
∑

S ideal of P

relS,[|S|](P |S)⊗ relSc,[n−|S|](P |Sc) .

These operations define a Hopf algebra structure in G and Pos, as described in [GR14].

Hopf algebra of generalized permutahedra

Our last specific example of a Hopf algebra introduces the strong geometric flavor that

this thesis has been alluding to. The family of generalized permutahedra is a family of

polytopes that has been introduced recently, in [PRW08]. There, Postnikov presented

combinatorial formulas for their volume and showed that some classical families of poly-

topes are also generalized permutahedra. Most notably, the graphical zonotope (see

[Gru16]) and the matroid polytope (see [Grö04]) associated to each graph, respectively

matroid, are generalized permutahedra. In [AA17], a Hopf algebra structure on gen-

eralized permutahedra was introduced and a cancellation-free formula was presented.

Remarkably, this Hopf algebra structure is compatible with the graphical zonotopes and

the matroid polytopes, therein resulting two Hopf algebra morphisms. Other combina-

torial objects present the same feature (see [AA17] for a small collection of such objects).

This naturally implies that we obtain cancellation-free formulas on these Hopf algebras

as well.

We start with some notational remarks: For a set composition ~π = S1| . . . |Sk on [n],

recall that R~π is a partial order on [n]. For a non-empty set J ⊆ [n], define the

set J~π = {minima of J in R~π} = J ∩ Si(J), where i(J) is the smallest index i with

J ∩ Si 6= ∅. In convex combinatorics, we identify a coloring f : [n] → R with the linear

function f : R[n] → R.

x 7→
n∑
i=1

f(i)xi .

We denote the convex hull of a set A, the set of all convex combinations of points of A (see

Section 6.1.7) by convA. In the space R[n], we define the simplices sJ = conv{ev| v ∈ J}
for each J ⊆ [n].
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In convex geometry, we also define the Minkowski sum, difference and scalar multiplica-

tion. Given two convex sets A,B ⊆ RI , the Minkowski sum is

A+B = {a+ b | a ∈ A, b ∈ B} ,

and we define A− B to be the convex set C such that B + C = A. It is known that if

such set exists, it is unique. Finally, if λ ∈ R≥0, then we define λA as {λa|a ∈ A}.

A generalized permutahedron is a Minkowski sum and difference of the form

q =

∑
J 6=∅
aJ>0

aJsJ

−
∑

J 6=∅
aJ<0

|aJ |sJ

 ,

for reals L(q) = {aJ}∅6=J⊆[n] that can be either positive, negative or zero.

A hypergraphic polytope is a generalized permutahedron of the form

q =
∑
J 6=∅

aJsJ ,

for non-negative reals L(q) = {aJ}∅6=J⊆[n].

For a polytope q and a real coloring f on [n], we denote by qf the subset of q on which

f is minimized, that is,

qf := arg min
x∈q

∑
i∈I

f(i)xi .

A face of q is a subset of q of the form qf for some f . A real coloring is said to be

q-generic if the corresponding face is a point.

Example 1.1.2. Consider the hypergraphic polytope q = s{1,2,3} + s{1,2} in R3. If we

take the coloring of {1, 2, 3} given by f(1) = f(2) = 1 and f(3) = 3, then qf = 2s{1,2}.

If we consider the coloring g(1) = g(3) = 2 and g(2) = 1, then qg = 2s{2} is a point, so

g is q-generic.

For a generalized permutahedron q in RI and A ⊆ I, let B = I \ A pick f ∈ RI given

by f(x) = 1 if x ∈ A, and f(x) = 0 otherwise. It was shown in [AA17] that the

corresponding face decomposes in the following way:

qf =: q|A × q\A ,

where q|A is a generalized permutahedron in RA and q\A is a generalized permutahedron

on RB. Note that B = Ac, so the dependence of q|A and q\A on B is implicit. In fact,

in the proof of Proposition 4.2.10, we obtain explicit expressions for q|A and q\A.
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Finally, recall that we use relI,J to denote the relabeling of combinatorial objects via the

order preserving map between I, J . In this way, if q ⊆ RI , we have that relI,J(q) ⊆ RJ .

We have now all the material to endow the space of generalized permutahedra with a

Hopf algebra structure as done in [AA17]: let GP = ⊕n≥0GPn, where GPn is the

free linear space on generalized permutahedra in R[n]. Notice that each GPn is infinite

dimensional, for n ≥ 1.

The GP linear space has the following product, when q1, q2 are generalized permutahe-

dra in Rn,Rm respectively:

q1 · q2 = q1 × rel[m],[n+1,n+m](q2) ,

where we note that rel[m],[n+1,n+m](q2) is a polytope in R[n+1,n+m].

The GP linear space has the following coproduct, when q is a generalized permutahedron

in Rn:

∆q =
∑
A⊆[n]

relA,[|A|](q|A)⊗ relAc,[n−|A|](q\A) .

Remark 1.1.3. The span of the hypergraphic polytopes also forms a Hopf algebra, that

we denote by HGP. This is a Hopf subalgebra of GP.

Cohomology ring of a Lie group

The remaining of the thesis does not depend on this section. It only illustrates a rich

source of Hopf algebras in topology, yet another motivation to study Hopf algebras.

This was in fact the first motivation to study Hopf algebras, in the 1950s, see [Jam99,

Chapter 26].

A Lie group is a group X that also has a smooth manifold structure, and the group

structure maps are smooth. This means that not only we can do group theory, but also

analysis and topology. In particular, we can talk about the cohomology ring H∗(K, X)

of a Lie group X, that is induced from its topology, see [Hat05, Chapter 3.1], where

the product corresponds to the cup product. In [Hat05, Chapter 3.C], the cohomology

ring of a Lie group is further endowed with a Hopf algebra structure, via the dual of

the group product. The inverse map gives us an antipode, making the cohomology

ring H∗(K, X) a Hopf algebra. This entails a topological group invariant that we can

associate to topological spaces.
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Central problems in Hopf algebras

On describing the structure of the operations of a Hopf algebra, in algebraic combina-

torics, there are three objectives that we will focus on this thesis: to study the unique

Hopf algebra morphism to QSym (see [ABS06, BJR09, Gru16] for instance), to find a

simple formula for the antipode map (see [BS17, HM12, AA17] for instance), and to

establish a structure theorem on the product or coproduct maps, usually establishing

that it is free or cofree (see [Haz01, BZ09, Var14] for instance). We will deal with each of

these questions in the following sections, and point to the relevant results in this thesis.

1.2 Species and Hopf monoids

Species were introduced in [Joy81] as a tool to transform generating function equalities

into bijective proofs in an automatic way. A bijective proof is deemed a more desirable

type of proof in enumerative combinatorics, because it usually provides finer equalities,

by keeping track of suitable statistics.

The benefits of species, however, go further than obtaining bijective proofs: this treat-

ment allows us to construct Hopf algebras easily, via the Fock functors. In this manner

we introduce combinatorial species.

Combinatorial species

Let Set be the category of finite sets and maps between finite sets. Define as well Set×

to be the category of finite sets and bijections between finite sets, and let VecK be the

category of vector spaces over K and linear maps.

A set species is a functor from Set× to Set. Hence, a species h is described by an

assignment of each finite set I to a finite set h[I], together with some relabeling map for

each bijection f : I → J , which we usually refer to relI,J , disregarding the dependence

on f . A vector species is a functor h : Set× → VecK. We will refer to vector species as

simply species. The categories of species and set species are what is called a monoidal

category.

In category theory, the abstract notion of an algebra arises with the study of monoidal

categories. A monoidal category is a pair (C, •) where C is a category, and • is a bifunctor

• : C × C → C that satisfies some specific associativity properties. In Appendix B, the

reader can find basic definitions in monoidal categories.
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Monoidal categories were defined by Mac Lane in [Mac63]. Mac Lane shows that speci-

fying a monoidal category structure is enough to be able to define monoids, comonoids

and Hopf monoids, that are generalizations of the usual concepts of algebras, coalgebras

and Hopf algebras.

The Fock functors

In this section we will explore constructions on combinatorial species, called the Fock

functors, K, K, K∨, K∨. These functors build a clear bridge between Hopf monoids in

the monoidal category of vector species and graded Hopf algebras. In particular, this

provides a fairly simple way to build Hopf algebras from the aforementioned “merge and

split” operations that are common in combinatorics. Therefore, it is not surprising that

most of the Hopf algebras in combinatorics result from applying one of the Fock functors

to a suitable species.

We denote the set of permutations of size n by Sn. The Fock functors K, K, K∨, and

K∨ were introduced in [Sto93]. These are functors from the category of species to the

category of graded vector spaces. Fix a species q and define

K∨(q) = K(q) =
⊕
n≥0

q[n] ,

K∨(q) =
⊕
n≥0

q[n]Sn ,

K(q) =
⊕
n≥0

q[n]Sn ,

where q[n]Sn is the subspace of q[n] that is invariant under the action of Sn, and q[n]Sn

is the quotient of q[n] through the action of Sn.

If q is a monoid or a comonoid, then we can endow the vector spaces K∨(q),K(q),K∨(q)

and K(q) with an algebra, respectively coalgebra structure.

To illustrate this concept, we detail it for the functor K. Assume that the species q

is equipped with a structure of Hopf monoid: (q, µ, ι,∆, ε, S). Then we can define a

product of two elements a ∈ q([n]), b ∈ q([m]) by using the structure maps as follows:

a · b = µ[n],[n+1,n+m](a, rel[m],[n+1,n+m](b)) ,

and a coproduct

∆(a) =
∑

AtB=[n]

relA,[|A|]⊗ relB,[|B|] ◦∆A,B(a) .
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The fact that these operations, together with the correct unit and counit, form a Hopf

algebra is encoded in the next theorem:

Theorem 1.2.1 ([AM10, Theorem 15.12.]). If q is a Hopf species, then each of the

constructions above gives a graded Hopf algebra.

Example 1.2.2. We consider the species of graphs Gr. This associates to a set I, the

vector space Gr[I] spanned by graphs with vertex set I. Furthermore, for each bijection

f : I → J , we also consider the natural relabeling maps relI,J : Gr[I] → Gr[J ] that

map a graph in the vertex set I to the corresponding graph in the vertex set J via the

relabeling f .

This species can be endowed with a Hopf monoid structure in a very similar way as

done in Section 1.1. In this way, the Hopf algebra K(Gr) is precisely the Hopf algebra

on graphs G introduced above.

Other Hopf algebras arise as an application of Fock functors. The Hopf algebras on

posets and generalized permutahedra are prime examples, as are the Hopf algebras in

symmetric functions, in quasi-symmetric functions, in word symmetric functions, and

in word quasi-symmetric functions. Details on how to construct such Hopf algebras via

the Fock functors can be found in [AM10].

1.3 Chromatic invariants as characters of Hopf algebras

In this section we describe a method to obtain invariants in combinatorial structures

from Hopf algebras. This method was introduced in [ABS06] and can be used to obtain,

for instance, the chromatic symmetric function of graphs, introduced by Stanley in

[Sta95]. We call these invariants chromatic invariants. Particular specializations of

these chromatic invariants have been studied in several places of combinatorics, including

the chromatic polynomial of graphs, the Billera–Jia–Reiner polynomial in matroids and

others.

To present the construction, we first clarify the algebraic structure on our combinatorial

objects. A combinatorial Hopf algebra is a pair (H, η), where H =
⊕

n≥0Hn is a graded

connected Hopf algebra and η : H → K is a character, i.e., a multiplicative linear

functional. A morphism of combinatorial Hopf algebras φ : (H, η)→ (H ′, η′) is a graded

Hopf algebra morphism that satisfies η = η′ ◦ φ. In [ABS06], it was shown that the

terminal object in the category of combinatorial Hopf algebras is QSym, the graded

Hopf algebra of quasi-symmetric functions endowed with the character η0 : QSym→ K

defined as η0(Mα) = 1 if α is a composition with at most one part and η0(Mα) = 0

otherwise. Concretely, this means the following:
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Theorem 1.3.1 (Terminal object in combinatorial Hopf algebras - [ABS06, Theorem

4.1.]). If (H, η) is a combinatorial Hopf algebra, then there is a unique combinatorial

Hopf algebra morphism ΨH : (H, η)→ (QSym, η0).

Specifically, if H =
⊕

n≥0Hn is the grading on the Hopf algebra H, the map ΨH can

be constructed at each Hn as follows: For each α |= n, define ηα by the following

composition of functions:

H
∆k−1

−−−→ H⊗k −→ Hα1 ⊗ · · · ⊗Hαk
η⊗k−−→ K .

In this way, for x ∈ Hn, we define ΨH(x) =
∑

α|=n ηα(x)Mα.

For several combinatorial Hopf algebras, this recovers a studied invariant. For example,

consider the following character on G, the graph Hopf algebra:

η(G) = 1[G has no edges] .

Then, ηα(G) counts how many set compositions ~π of V (G) such that α(~π) = α and that

each block of ~π has no edges in G. In this way, we obtain precisely the classic chromatic

symmetric function:

ΨG(G) =
∑

~π|=V (G)
~π stable partition

Mα(~π) =
∑

f stable coloring
of G

xf(1) . . . xf(n) ,

where a stable coloring of a graph f : V (G)→ Z≥0 is a coloring such that f(v) 6= f(w)

whenever v, w are connected by an edge in G.

A classic problem pertaining the chromatic symmetric function ΨG is the tree conjecture.

It claims that this graph invariant distinguishes trees. A complete invariant for general

graphs is an invariant F such that any two non-isomorphic graphsG1, G2 satisfy F (G1) 6=
F (G2). The fact that the chromatic symmetric function is not a complete invariant can

be readily observed: in [Sta95], Stanley identified two non-isomorphic graphs with the

same chromatic symmetric function. Some efforts have been done in establishing that the

tree conjecture is true. For instance, in [APZ14], it is shown that all proper caterpillars

have distinct chromatic symmetric functions. This is done by suitably manipulating the

combinatorial interpretation of the coefficients of the chromatic symmetric function into

the power-sum basis of Sym.

The map ΨG satisfies linear relations, called modular relations on graphs, established in-

dependently in [GP13] and [OS14]. In Theorem 4.1.1, we show that these are essentially

the only linear relations that these maps satisfy. This is done by describing generators

for the kernel of ΨG. A similar problem has been already debated in the context of
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posets, specifically for the graded Hopf algebra Pos and its corresponding chromatic

function ΨPos, in [Fér15]. This is called the kernel problem.

An application for this problem is to find new invariants that are as strong as the

chromatic symmetric function. For instance, in Section 4.3.1 we describe a new graph

invariant Ψ̃ that seems stronger than the chromatic symmetric function. That is, for

two graphs G1, G2 such that Ψ̃(G1) = Ψ̃(G2), we can easily see that we also have

ΨG(G1) = ΨG(G2). However, by showing that Ψ̃ also satisfies the modular relations,

we establish that it is as strong as the chromatic symmetric function. In particular, the

tree conjecture in Ψ̃ is equivalent to the tree conjecture in ΨG. This has synergy with

the classic strategies to tackle the tree conjecture, where we use other graph invariants

to establish the tree conjecture for particular classes of trees, instead of using directly

ΨG, see [APZ14] for instance.

The role played by generalized permutahedra in this is ubiquitous. We have observed

that many Hopf algebras H in combinatorics can be embedded in GP via an injective

Hopf algebra morphism Z : H → GP. Because of the uniqueness in Theorem 1.3.1, we

can in fact observe that ΨGP ◦ Z = ΨH . Thus, from the kernel of ΨGP we can extract

satisfactory intuition about the kernel of ΨH . This motivates us to try to find generators

of the vector space ker ΨGP. A partial result is presented in Theorem 4.1.4. There, we

address the kernel problem on the Hopf algebra HGP, a Hopf subalgebra of GP that

embeds a significant amount of relevant Hopf algebras, for instance the Hopf algebra on

graphs introduced above or the Hopf algebra on matroids introduced in [GR14].

In [GS01], a generalization of ΨG was presented in the Hopf algebra of symmetric func-

tions in non-commutative variables. There it is shown that this chromatic invariant

satisfies a deletion-contraction property, like the chromatic polynomial χG does, but

unlike ΨG. This allows some progress in relevant problems on chromatic symmetric

functions, for instance in the (3+1)-free conjecture; see [SS93, Sta95] for more details

on that conjecture. This construction is in fact a general one: the chromatic invariants

can be generalized to an invariant in non-commutative variables. Motivated by this,

in Chapter 5, we describe the notion of combinatorial Hopf species, which is the paral-

lel notion of combinatorial Hopf algebra in the context of species. We present the Hopf

species of word quasi-symmetric functions, denoted by WQSym. Finally, in Theorem 5.4.1,

we show the following:

Theorem 1.3.2 (Terminal object in combinatorial Hopf monoids). Given a combinato-

rial Hopf monoid h with a character η : h ⇒ Exp, there is a unique combinatorial Hopf

monoid morphism Υh : h⇒ WQSym.
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1.4 Antipode formulas: reciprocity results, power series

and the character group

There is a rather general antipode formula given in Theorem A.2.2, that dates back to

[Tak71]. However, this formula is neither cancellation-free nor grouping-free. In

algebraic combinatorics, interest has been shown to obtain such antipode formulas, see

[HM12, ML14, MP15, Pat15, BS17, AA17].

In (1.5), we give some examples of antipodes on particular objects in the incidence Hopf

algebra on graphs and in the permutation pattern Hopf algebra.

S

( )
= 12 − 18 + 2 + 6 − ,

S(p132) = 3 p321 + p312 + p213 +2 p231 +2 p21 .

(1.5)

Describing the antipode of a Hopf algebra may have applications outside algebraic combi-

natorics. For instance, in [AA17], the relation between the antipode of the Faá di Bruno

Hopf algebra and an inversion formula for the composition of generating functions is

described.

In combinatorics, it has been observed that some formulas come in pairs, usually under

an umbrella term “reciprocity results” that dates back to [Sta75]. For instance, two

distinct ways of describing the chromatic polynomial pG(x) are through stable colorings

of the given graph G and through its acyclic orientations. These descriptions of the

chromatic polynomial pG(x) are related by the transformation x 7→ −x. The antipode

plays a crucial role in explaining this relation: in the case of the graph Hopf algebra,

a cancellation-free formula for the antipode is described precisely by counting acyclic

orientations. In general, having simple formulas for the antipode of a Hopf algebra

presents itself as a direct method of obtaining such reciprocity results.

A notable recent result in cancelation-free and grouping-free antipode formulas is set

in [AA17], where an antipode formula is described for the Hopf algebra of generalized

permutahedra, GP. This helps explaining old antipode formulas and finding new ones

in several combinatorial Hopf algebras, because many combinatorial Hopf algebras can

be embedded in GP. For instance, the graphical zonotope gives precisely such an

embedding from the incidence Hopf algebra on graphs to GP, and the same can be

done for matroids, set partitions, paths, and many others.
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In this thesis we discuss open problems on cancellation-free and grouping-free formulas

for the antipode of the pattern Hopf algebras, in Section 7.3. Specifically, we debate a

preliminary result of the author, where an antipode formula of the pattern Hopf algebra

in permutations is found, and possible avenues for future projects starting from there.

1.5 Pattern algebras

The permutation pattern Hopf algebra is the starting point of Chapter 2, where we find a

general construction of pattern algebras. We understand that the ingredients that make

A(Per) a Hopf algebra are present not only in permutations, but in many combinatorial

objects such as matroids, graphs, marked permutations and set partitions. All these

examples fit into the framework of combinatorial presheaves, introduced first in [Sch93]

as species with restrictions. These are in essence species with a notion of patterns, and

this is how we start to construct a Hopf algebra on combinatorial objects that allow for

the notion of pattern:

Definition 1.5.1 (Combinatorial presheaves). Let Set↪→ be the category of finite sets

and injective maps between finite sets. Recall that Set is the usual category on finite

sets. A combinatorial presheaf, or a presheaf for short (also called species of finite

sets with restrictions), is a contravariant functor from Set↪→ to Set. A morphism of

combinatorial presheaves is a natural transformation of functors.

In this way, we have the category CPSh of combinatorial presheaves. For a presheaf h

and a set I, we refer to the elements of h[I] as the h-objects on I, or simply objects

on I, when h is clear from the context. Two objects a ∈ h[I], b ∈ h[J ] are said to be

isomorphic if there is a bijection f : J → I such that h[f ](a) = b. In this case, we write

a ∼ b.

Given a combinatorial presheaf h and two finite sets I, J such that J ⊆ I, the inclusion

map incJ,I : J → I play an important role in describing the presheaf h. Whenever the

combinatorial presheaf is clear, we write h[incJ,I ] = resJ,I , or simply resJ .

Example 1.5.2 (The presheaf on permutations). To fit the framework of presheaves and

define a combinatorial presheaf on permutations Per, we use a rather unusual definition

of permutations introduced in [ABF18]. There, a permutation on a set I is seen as a

pair of total orders in I. Two permutations π1, π2 in the sets I1, I2 respectively are said

to be isomorphic if there is a bijection f : I1 → I2 that maps both orders of π1 to the

respective orders of π2.

This notion of permutation relates to the usual definition as bijection in the following

way: if we are given a permutation π = (≤P ,≤V ) on the set I, we order the elements
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of I = {a1 ≤P · · · ≤P ak} = {b1 ≤V · · · ≤V bk} therein defining a bijection π̃ : I → I

via ai 7→ bi. Conversely, for any bijection π̃ on I, there are several pairs of orders

(≤P ,≤V ) that correspond to the bijection π̃, all of which are isomorphic. We consider

the restriction map Per[incJ,I ] = resJ,I from permutations on I to permutations on J by

simply restricting both total orders. This maps a permutation τ ∈ Per[I] to the pattern

π ∈ Per[J ] corresponding to the occurrence J (see Definition 1.1.1). This results in a

presheaf structure Per. We write |σ| = n whenever ∼∈ Per[I] such that |I| = n.

To simplify notation we refer to the Per-objects in [n] simply by Per[n]. We will use the

same convention for all the other combinatorial presheaves and species in this thesis.

As usual we represent permutations in I as square diagrams. In this case we label the

entries of the diagram by elements of I. This is done in the following way: we place the

elements of I in an |I|×|I| grid so that the elements are placed horizontally according to

the ≤P order, and vertically according to the ≤V order. For instance, the permutation

π = {1 <P 2 <P 3, 2 <V 1 <V 3} in {1, 2, 3} can be represented as

3

1

2

. (1.6)

In this way, there are (n!)2 many elements in Per[n]. Up to isomorphism, we can

represent a permutation as a diagram with one dot in each column and row.

Given a presheaf h, we let G(h) = tn≥0h[n]/∼, where h[n]/∼ is the collection of h-objects

on [n] up to isomorphism. This is called the collection of coinvariants.

Definition 1.5.3 (Patterns in presheaves). Let h be a presheaf, and consider two objects

a ∈ h[I], b ∈ h[J ]. We define the pattern function

pa(b) :=
∣∣{J ′ ⊆ J s.t. resJ ′,J(b) ∼ a}

∣∣ .
A crucial observation is that this notion recovers the usual concept of permutation

pattern counting already present in the literature, described in [Wil02].

In Proposition 2.2.1, we observe that this definition only depends on the isomorphism

classes of a and b. Hence, we can consider {pa}a∈G(h) as a family of functions from G(h)

to Q, indexed by G(h). We remark that the choice to work with functions over Q is not

important, as we can also choose to work with functions over Z, for instance.
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Denote the family of functions A → B by F(A,B). If h is a combinatorial presheaf,

then the linear span of the pattern functions is a linear subspace A(h) ⊆ F(G(h),Q) of

the space of functions on G(h) taking rational values.

Theorem 1.5.4. The vector space A(h) is closed under pointwise multiplication and

has a unit. It forms an algebra, called the pattern algebra. More precisely, we have the

product rule

pa pb =
∑
c

(
c

a, b

)
pc , (1.7)

where the sum runs over elements of G(h), and we define the coefficients
(
c
a,b

)
below in

(2.4) as the number of “quasi-shuffles” of a, b that result in c.

Quasi-shuffles of objects have been studied in several contexts as a notion of merging

objects together. For details on quasi-shuffles of combinatorial objects the interested

reader can see [Hof00, AM10, FPT16].

We now address the coproduct of the pattern algebra. For that, we will exploit the

duality in the world of functions, and instead define a product on our combinatorial

objects. This allows us to define a coproduct by essentially requiring it to satisfy the

following equation, see (2.7):

pa(b · c) = ∆ pa(b⊗ c) .

For two presheaves f, g, define the presheaf f � g by f � g[I] =
⋃
AtB=I f [A] × g[B].

This is called the Cauchy product on combinatorial presheaves, and makes CPSh a

monoidal category. In particular, we can talk about monoids in this category, or simply

an associative presheaf. An associative presheaf is a presheaf h together with a map

∗ : h�h→ h and a unit. More details on the axioms and properties of ∗ and 1 are given

in Observation 2.1.5.

Examples of associative operations on combinatorial presheaves are the disjoint union

of graphs and the direct sum of permutations. Another less standard example which we

study in Chapter 3, is the inflation of marked permutations.

If (h, ∗, 1) is an associative presheaf, the associative product ∗ in our combinatorial

objects is a natural transformation. Thus this induces a product on G(h), which we

denote by · (see Definition 2.2.6 for the details of this construction). More importantly,

it allows us to introduce a coproduct in the pattern algebra A(h):

∆ pa =
∑

b,c∈G(h)
a=b·c

pb⊗pc . (1.8)
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Theorem 1.5.5. If (h, ∗, 1) is an associative presheaf such that |h[∅]| = 1, then the

pattern algebra of h together with this coproduct, and a natural choice of counit, forms

a Hopf algebra.

Some known Hopf algebras can be constructed as the pattern algebra of a combina-

torial presheaf. An example is Sym, the Hopf algebra of symmetric functions. This

Hopf algebra has a basis indexed by partitions, and corresponds to the pattern Hopf

algebra of the presheaf on set partitions (see details in Section 2.3.4). The pattern Hopf

algebra corresponding to the presheaf on permutations described above is precisely the

permutation pattern Hopf algebra already introduced.

Some other Hopf algebras constructed here, like the ones on graphs and on marked

permutations below, are new to the knowledge of the author. However, we conjecture

that the Hopf algebra of quasi-symmetric functions arises as a pattern algebra, see

Conjecture 2.3.15.

In Chapter 2, we also describe the primitive space of any pattern Hopf algebra, and

prove that some properties that hold in A(Per), established in [Var14], are also true in

general.

1.6 The freeness of pattern algebras

Having observed such a general construction of Hopf algebras via patterns, in this section

we delve into the algebraic properties of some examples of pattern algebras. We start

with an example of an associative structure on graphs.

Example 1.6.1 (Associative presheaf on graphs). For each set I, let Gr[I] be the family

of graphs with vertex set I. Recall that given a graph G = (I, E(G)) and a subset J ⊆ I
of vertices, we can define the restriction resJ,I(G) = G|J . This defines a presheaf

structure on graphs.

Furthermore, we can endow Gr with a structure of associative presheaf via the disjoint

union of graphs t : Gr� Gr → Gr. In this way, we have a pattern Hopf algebra A(Gr).

Some simple calculations are given in (1.9).

p ·p = 3 p +2 p + p +2 p ,

∆(p ) = 1⊗ p + p ⊗p + p ⊗p + p ⊗1,

S(p ) = 6 p +4 p + p +4 p .

(1.9)
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This example has a quite general property: the underlying product (disjoint union) on

the presheaf is commutative. An associative presheaf (h, ·, 1) is said to be commutative if

the product · is commutative. In particular, observe that the graph presheaf presented

above is commutative. In Chapter 2, we establish the main result for pattern Hopf

algebras of commutative presheaves:

Theorem 1.6.2. Let (h, ∗, 1) be a commutative presheaf. Then, the pattern Hopf alge-

bra A(h) is free. Furthermore, the free generators are precisely {pa}a∈I(h), where I(h)

is the set of irreducible elements of G(h) under the product · defined in Definition 2.2.6.

With this, the graph pattern Hopf algebra A(Gr) is free, and the pattern functions of

connected graphs are the free generators, that is:

A(Gr) = Q[pG |G connected graph] .

This was already proved in [Whi32, Theorem 3], though in a largely different language.

This theorem in particular totally describes the coradical filtration of a Hopf algebra,

via Corollary 2.3.5. The coradical filtration is, roughly speaking, the “largest filtration

that suits the coalgebra structure”, see Definition A.4.2 for a concrete definition.

Remarkably, the algebraic structure of a pattern Hopf algebra does not depend on the

associative structure that it is endowed with - this only affects the coproduct. Thus,

any presheaf that admits a commutative product has a free pattern algebra.

In this way, we obtain some other examples of free Hopf algebras, for instance the pattern

Hopf algebra of marked graphs under the inflation product, defined in Definition 2.3.10.

On the presheaf of permutations, it is a result from [Var14] that the algebra A(Per) is

free. Observe that this is an example of an associative presheaf that is not commutative.

In Chapter 3, we extend the methods used on that paper and show that A(MPer) is also

free, and similarly construct a set of generators.

Theorem 1.6.3. The pattern Hopf algebra on marked permutations A(MPer) is free.

We conjecture that any pattern Hopf algebra arising from an associative presheaf is free.

Conjecture 1.6.4 (Freeness conjecture). Let (h, ∗, 1) be an associative presheaf. Then

the pattern algebra A(h) is free.
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1.7 The feasible region of patterns and the dimension con-

jecture

In this section we introduce the concept of feasible region. This is a geometrical object

that explores the interplay between the proportion of occurrences of different patterns.

This has been studied in the community of extremal combinatorics, by generalizing

questions like “what is the maximum number of triangles in a graph with a limited

number of edges?”. In [BCL+08, Lov12, HKM+13, Bor19] this has been studied by

introducing notions of a limiting object in graphs and permutations, called graphons

and permutons. This transforms a combinatorial problem into an analytic one. More

detail is given in Section 1.7.1.

We denote by Sn the set of all permutations of size n, and by S =
⊎
n≥0 Sn the set

of all permutations of finite size. For two permutations σ and π, we the proportion of

occurrences of π as a pattern of σ as õcc(π, σ) = pπ(σ)

(|σ||π|)
. We will be considering the

following family of feasible regions for each fixed k ≥ 0:

clPk = {~v ∈ [0, 1]Sk |∃{σm}m≥1 ⊆ S s.t. lim
n→∞

|σn| = +∞

, lim
n→∞

õcc(π, σn) = ~vπ for π ∈ Sk} .
(1.10)

This set clPk was studied in [GHK+17]. There, it was shown that it contains an open

ball B with dimension |Ik|, where Ik is the set of ⊕-indecomposable permutations of size

at most k. This work opened the problem of finding the maximal dimension of an open

ball contained in clPk, and placed a lower bound on it.

We now introduce another point of view in this problem, by recalling the pattern Hopf

algebra in permutations discussed above. Indeed, the construction of free generators in

the pattern algebra on permutations A(Per), studied in [Var14], allows us to derive an

upper bound for this maximal dimension. Let Lk be the set of Lyndon permutations of

size at most k. Then, for any permutation π that is not a Lyndon permutation, pπ(σ)

can be expressed as a polynomial on the functions {pτ (σ)|τ ∈ Lk} that does not depend

on σ. It follows that clPk sits inside an algebraic variety of dimension |Lk|, given by

these polynomial equations. We expect that this bound is sharp since this is the case

for small values of k.

Conjecture 1.7.1. The feasible region clPk is full-dimensional inside a manifold of

dimension |Lk|.
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In this thesis we study the corresponding set for the consecutive occurrences of a pattern,

defined as:

c-occ(π, σ) :=
∣∣∣{I ⊆ [n]| I is an interval, σ|I = π

}∣∣∣.
Moreover, we denote by c̃-occ(π, σ) = c-occ(π,σ)

|σ| the proportion of consecutive occur-

rences of a pattern π in σ. In this way, the feasible region for consecutive patterns is:

Pk = {~v ∈ [0, 1]Sk |∃{σm}m≥1 ⊆ S s.t.

lim
n→∞

|σn| = +∞, and lim
n→∞

c̃-occ(π, σn) = ~vπ for π ∈ Sk} .
(1.11)

We prove that this region is a polytope, i.e., it is described by a finite family of linear

inequalities. Its vertices, in fact, are related to the cycles of a specific graph called

the overlap graph. Motivated by this, in Chapter 6 we define a graph invariant called

the cycle polytope, and solve certain geometric problems for general graphs and their

respective cycle polytope. With these results, for instance, we obtain that the dimension

of the feasible region Pk is k!− (k− 1)!, and also a structure theorem about the faces of

the feasible region.

In the remaining of this section, we describe the main results related to the feasible

region in Section 1.7.1, and introduce the cycle polytope construction and the relevant

geometric results in Section 1.7.2.

1.7.1 Limiting objects in permutations

A notion of limiting object in combinatorics arises when a suitable notion of convergence

is introduced. On permutations, two main notions of convergence have been defined:

a global notion of convergence (called permuton convergence) and a local notion of

convergence (called Benjamini–Schramm convergence).

The first notion of limit for permutations has been introduced in [HKM+13], where the

permuton was introduced. A permuton is a probability measure on the unit square

with uniform marginals, and represents the scaling limit of a permutation seen as a

permutation matrix, as the size grows to infinity. The study of permuton limits is an

active and exciting research field in combinatorics, see for instance [BBF+17, BBF+19,

BBF+18, BBFS19, KKRW15, RVV16, Rom06, Sta09]. On the other hand, the notion

of Benjamini–Schramm limit for permutations is more recent, having been introduced

in [Bor19]. Informally, in order to investigate Benjamini–Schramm limits, we study the

permutation in a neighborhood around a randomly marked point. Limiting objects for

this framework are called infinite rooted permutations and are in bijection with total
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orders on the set of integer numbers. Benjamini–Schramm limits have also been studied

in some other works, see for instance [Bev19, BBFS19, BS19]. We present the definition

of a random shift-invariant permutation in Definition 6.3.3.

The following theorems provide relevant combinatorial characterizations of the two afore-

mentioned notions of convergence. We denote by Sn the set of permutations of size n, by

S the set of all permutations, and by õcc(π, σ) (respectively c̃-occ(π, σ)) the proportion

of classical occurrences (respectively consecutive occurrences) of a permutation π in σ

(see Section 6.1.7 for notation and basic definitions).

Theorem 1.7.2 ([HKM+13]). For any n ∈ N, let σn ∈ S and assume that |σn| → ∞.

The sequence (σn)n∈N converges to some limiting permuton P if and only if there exists

a vector (Λπ(P ))π∈S of non-negative real numbers (that depends on P ) such that, for

all π ∈ S,

õcc(π, σn)→ Λπ(P ).

Theorem 1.7.3 ([Bor19]). For any n ∈ N, let σn ∈ S and assume that |σn| → ∞.

The sequence (σn)n∈N converges in the Benjamini–Schramm topology to some random

infinite rooted permutation σ∞ if and only if there exists a vector (Γπ(σ∞))π∈S of non-

negative real numbers (that depends on σ∞) such that, for all π ∈ S,

c̃-occ(π, σn)→ Γπ(σ∞).

With these limiting objects, we can describe the feasible region on classical patterns as

follows:

clPk :=
{
~v ∈ [0, 1]Sk

∣∣∃(σm)m∈N ∈ SN s.t. |σm| → ∞ and õcc(π, σm)→ ~vπ,∀π ∈ Sk
}

=
{

(Λπ(P ))π∈Sk
∣∣P is a permuton

}
,

and the feasible region on consecutive patterns as:

Pk :=
{
~v ∈ [0, 1]Sk

∣∣∃(σm)m∈N ∈ SN s.t. |σm| → ∞ and c̃-occ(π, σm)→ ~vπ, ∀π ∈ Sk
}

=
{

(Γπ(σ∞))π∈Sk
∣∣σ∞ is a random infinite rooted shift-invariant permutation

}
.

Using this description of the feasible region in classical patterns, the dimension problem

was addressed in [GHK+17], where explicit elements of the feasible region were con-

structed by giving suitable permutons, and a lower bound for its dimension was given.
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1.7.2 The cycle polytope

In the literature we can find some examples of polytopes that are associated to graphs.

This helps us to construct intricate polytopes whose geometric properties can be related

to the properties of the original graphs (see Theorem 6.2.13). The flow polytope, intro-

duced by [BV08], is such a polytope. Originally associated to a root system of type An,

the flow polytope can be described from a labeled undirected graph on the vertex set

[n] := {1, . . . , n}: thus, if we are given a graph G = ([n], E) and a flow vector ~a ∈ Rn,

its corresponding flow polytope is

FG(~a) :=

~x ∈ RE
∣∣∣∣∣ ∑
{j<i}∈E

~x{j<i} −
∑

{i<j}∈E

~x{i<j} = ~ai, i ∈ [n]

 .

Classical examples of polytopes that are flow polytopes are the Stanley–Pitman poly-

tope, also called the parking functions polytope, and the Chan–Robbins–Yuen polytope, a

polytope on the space of doubly stochastic square matrices. In [BV08], a formula was

obtained for the volume and the number of integer points in its interior. In praticular,

they recovered a formula of the volume of the Chan–Robbins–Yuen polytope, due to

Zeilberger, in his very short paper [Zei99].

Polytopes related to cycles have also been around in the literature. The cycle polytope

was introduced in [BP19] and in this thesis, see Chapter 6, which we present now:

Definition 1.7.4. Let G = (V,E) be a directed multigraph. For each non-empty cycle

C in G, define ~eC ∈ RE so that

(~eC)e :=
|{occurrences of e in C}|

|C|
, for all e ∈ E.

The cycle polytope of G is the polytope P (G) := conv{~eC | C is a simple cycle of G}. This

is a polytope in the affine space RE(G).

Polytopes introduced in [BO00] are similar to the cycle polytopes (here referred to U-

cycle polytopes). In fact, in Balas & Oosten [BO00] and Balas & Stephan [BS09] the

dimension of the U-cycle polytopes of the complete graph (that is, the complete directed

graph without loops) is computed, and its facets described.

Our main result is Theorem 6.2.13, and relates the structure of the cycle polytope with

the corresponding graph. Before introducing this result, we define a full subgraph H of

a directed graph G. A subgraph H of G is said to be full if any edge of H is contained

in some cycle of H.
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Theorem 1.7.5. The face poset of P (G) is isomorphic to the poset of non-empty full

subgraphs of G according to the following identification:

H 7→ P (G)H := {~x ∈ P (G)|xe = 0 for e 6∈ E(H)} .

Also, if we identify P (H) with its image under the canonical inclusion RE(H) ↪→ RE(G),

we have that P (H) = P (G)H .

Furthermore, dim(P (G)H) = |E(H)| − |V (H)|+ |{connected components of H}| − 1.

1.8 Outline of thesis

In what follows of the thesis, we will present works based on [Pen20, Pen18, BP19].

However, Section 4.5 is an original work and exposed for the first time in this thesis.

In Chapter 2, we introduce the construction of pattern Hopf algebras from combinato-

rial presheaves, presenting the pattern Hopf algebra functor A. We also describe the

primitive space of any pattern Hopf algebra, and prove that some properties of A(Per)

are also true in general pattern Hopf algebras. In Chapter 3, we study a specific pat-

tern Hopf algebra on marked permutations. We show that this pattern algebra is free,

and construct explicitly the free generators. In Chapter 4 we find a description of the

kernel of chromatic symmetric functions, and of the chromatic quasi-symmetric func-

tion on hypergraphic polytopes. We also present new graph invariant Ψ̃. In Chapter 5

we present the word quasi-symmetric function species WQSym, and a construction of a

universal Hopf monoid morphism from WQSym. In Section 4.5, we describe the image

of ΥGP. In Chapter 6, we show that the feasible region for consecutive occurrences is

a polytope that can be described as the cycle polytope of a specific graph. Next we

present Chapter 7, a section dedicated to further work and open questions left in this

thesis. Finally, in Appendix A we discuss some basic facts about Hopf algebras and

about monoidal categories.



Chapter 2

Pattern Hopf algebras

This chapter is based on the article [Pen20], which is submitted for publication. The

work in [Pen20] is split into this chapter and Chapter 3.

2.1 Introduction

The notion of substructure is important in mathematics, and particularly in combina-

torics. In graph theory, minors and induced subgraphs are the main examples of studied

substructures. Substructures of other objects also got some attention: set partitions,

trees, paths and, to a bigger extent, permutations, where the study of patterns leads to

the concept of permutation class.

A priori unrelated, it has been shown that Hopf algebras are a natural tool in algebraic

combinatorics to study discrete objects, like graphs, set compositions and permutations.

For instance, the celebrated Hopf algebra on permutations named after Malvenuto and

Reutenauer sheds some light on the structure of shuffles in permutations. Other ex-

amples of Hopf algebras in combinatorics that are relevant to this work are the Hopf

algebra on symmetric functions (described for instance in [Sta00]), and the permutation

pattern Hopf algebra introduced by Vargas in [Var14].

With that in mind, we build upon the notion of species, as presented in [AM10] by

Aguiar and Mahajan, in order to connect these two areas of algebraic combinatorics.

We propose to enrich a species with restriction maps to obtain what we call a combi-

natorial presheaf. With this combinatorial data, we show a functorial construction of

a pattern algebra A(h) from any given combinatorial presheaf h. By further consider-

ing an associative product in our objects, we can endow A(h) with a coproduct that

makes it a bialgebra, and under specific circumstances a Hopf algebra. Main examples of

32
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combinatorial presheaves are words, graphs and permutations. Examples of associative

products on combinatorial objects are the disjoint union on graphs or the direct sum on

permutations.

The algebras obtained from a combinatorial presheaf are always commutative. In an-

alyzing Hopf algebras, it is of particular interest to show that such algebras are free

commutative (henceforth, we simply say free), and to construct free generators of the

algebra structure. The fact that a Hopf algebra is a free algebra has several applications.

For instance, in [Foi12], it was shown that any graded free and cofree Hopf algebra is

self dual. Moreover, the self dual Hopf algebras are characterized by studying their

primitive elements. The freeness of a Hopf algebra also allows us to gain some insight

on the character group of the Hopf algebra, see for instance [Sup19]. It can also be

used under duality maps to establish cofreeness of Hopf monoids, as described in the

methods of Möbius inversion in [San19]. If the Hopf algebra H =
⋃
n≥0H

(n) is a filtered

Hopf algebra with P (H) primitive space, computing the dimension of H(n) ∩ P (H) is

a classical problem in Hopf algebras and may have applications, for instance in proving

that a give Hopf algebra is not a Hopf subalgebra of another one.

In this chapter, we show that any commutative combinatorial presheaf gives rise to a

pattern algebra that is free commutative. We also study a non-commutative combina-

torial presheaf on marked permutations, where we establish the freeness, construct the

free elements with help of Lyndon words, and enumerate the primitive elements of the

pattern Hopf algebra on marked permutations. In the remaining part of this section, we

present these results with more detail, and describe the methods for proving them.

2.1.1 Pattern Hopf algebras from monoids in presheaves

Let Set↪→ be the category whose objects are finite sets and morphisms are injective

maps between finite sets. Let also Set× be the category whose objects are finite sets

and morphisms are bijective maps between finite sets. Write Set for the usual category

on finite sets. A set species is a functor from Set× to Set, whereas a combinatorial

presheaf is a contravariant functor from Set↪→ to Set.

In this form, a presheaf is simply a species enriched with restriction maps resJ : h[I]→
h[J ] for each inclusion J ⊆ I in a way that is functorial, that is if J1 ⊆ J2, then

resJ2 ◦ resJ1 = resJ1 . The notion and the name of presheaves has been around in

category theory and geometry for some time, where it generally refers to contravariant

functors from the category of open sets of a topology with inclusions as morphisms. Main

examples of combinatorial presheaves are graphs (see Example 1.6.1), set partitions (see
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Definition 2.3.12), and permutations ( see Example 1.5.2). In general, any combinatorial

object that admits a notion of restriction admits a presheaf structure.

In presheaves, two objects a ∈ h[I], b ∈ h[J ] are said to be isomorphic objects, or a ∼ b,
if there is a bijection f : I → J such that h[f ](b) = a. The equivalence classes are also

called coinvariants. Let h[n] denote the objects of type h on the set [n] = {1, . . . , n}.
The collection of coinvariants of a presheaf h is denoted by G(h) =

⋃
n≥0 h[n]/∼. Recall

from Definition 1.5.3 the definition of the pattern functions:

Definition 2.1.1 (Patterns in presheaves). Let h be a presheaf, and consider two objects

a ∈ h[I], b ∈ h[J ]. We say that J ′ ⊆ J is a pattern of a in b if b|J ′ ∼ a. We define the

pattern function

pa(b) :=
∣∣{J ′ ⊆ J s.t. resJ ′(b) ∼ a}

∣∣ .
In Proposition 2.2.1, we observe that this definition only depends on the isomorphism

classes of a and b. Hence, we can consider {pa}a∈G(h) as a family of functions from G(h)

to Q, indexed by G(h).

Recall that we denote the family of functions A→ B by F(A,B). If h is a combinatorial

presheaf, then we saw in Theorem 1.5.4 that the linear span of the pattern functions is

a linear subspace A(h) ⊆ F(G(h),Q) of the space of functions in G(h) taking rational

values. We will prove this result in this section.

The Cauchy product gives rise to the notion of a monoid structure in the category of

presheaves, or simply an associative presheaf. This is a triple (h, ∗, 1), where h is a

combinatorial presheaf, ∗ is a natural transformation h�h⇒ h, and 1 ∈ h[∅] a unit that

satisfy classical axioms of associativity and unit. We detail further in Section 2.1.4 below.

Examples of associative operations on combinatorial presheaves are the disjoint union of

graphs and the direct sum of permutations. Another less standard example, which we

study in Chapter 3, is the inflation of marked permutations, defined in Definition 3.1.3.

Observe that the associative product ∗ in our combinatorial objects is a natural trans-

formation. This means that the product is stable with respect to relabelings and restric-

tions, so we can also define the corresponding product on G(h), which we denote by ·
for the sake of distinction (see Definition 2.2.6 for details). With this, we introduce the

following coproduct in the pattern algebra A(h):

∆ pa =
∑

b,c∈G(h)
a=b·c

pb⊗pc . (2.1)

As we have claimed in Theorem 1.5.5, and prove below, whenever (h, ∗, 1) is an asso-

ciative presheaf such that |h[∅]| = 1, then A(h) forms a Hopf algebra. The reason we
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need the presheaf to be connected is so we can find an antipote through the so called

Takeuchi formula, introduced in [Tak71].

Some known Hopf algebras can be constructed as the pattern algebra of a combinato-

rial presheaf, like the Hopf algebra of symmetric functions, which arises as the pattern

algebra of set partitions (see details in Section 2.3.4). The pattern Hopf algebra cor-

responding to the presheaf on permutations described above was introduced by Vargas

in [Var14]. Some other Hopf algebras constructed here, like the ones on graphs and on

marked permutations below, are new.

In this chapter, we also establish some general properties of the pattern Hopf algebras,

like describing its primitive elements, finding the inverse of the so called pattern action

in A(h), and relating A(h) with the Sweedler dual of an algebra generated by ∗.

Remark 2.1.2. It is common to use category theory tools to construct Hopf algebras

in a mechanical way, as it gives us more algebraic tools to understand combinatorial

objects. This is the case with the Fock functors (see [AM10, Chapter 15]), where from

a Hopf monoid in species we construct four distinct Hopf algebras.

It is then meaningful to compare the construction of a pattern algebra with the Fock

functors. In fact, a cocommutative comonoid in set species is precisely a presheaf. This

was already observed in [AM10, Section 8.7.8]. Furthermore, an associative presheaf is

a cocomutative bimonoid in set species, and this is established in [AM10, Proposition

8.29]. The coalgebra structure of the pattern Hopf algebras that we construct here is a

subcoalgebra of the dual algebra of the so called bosonic Fock functor of these comonoids

in linearized set species. However, the algebra structure is in general different.

Specifically, on the combinatorial presheaf on graphs introduced below, the correspond-

ing coalgebra structure is the dual of the well known incidence Hopf algebra introduced

in [Sch94].

2.1.2 Commutative presheaves

In this chapter, we focus on the problem of proving the freeness of some pattern alge-

bras. The first case that we want to explore is the one of commutative presheaves. An

associative presheaf (h, ∗, 1) is called commutative if ∗ is commutative, that is for any

a ∈ h[I], b ∈ h[J ] we have that a ∗ b = b ∗ a, see Definition 2.1.4.

As it turns out, having a commutative monoid structure is enough to guarantee the

freeness of the pattern Hopf algebra. This is the main result of this chapter, already

mentioned in Theorem 1.6.2.
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The proof of this result is presented in Section 2.3. The main ingredient for this result

is Corollary 2.3.4, a surprising structure result on associative presheaves. If one wishes

to describe the associative structure of G(h) under the product ·, it can be done as it

is for groups: by prescribing a set of generators, whose role is played by the irreducible

coinvariants, and a collection of relations that these satisfy. Corollary 2.3.4 says that on

the case of associative presheaves, the collection of relations is very restricted, allowing

only for relations that use the same factors but with different orders. This in particular

also describes the coradical filtration of a Hopf algebra, for instance, via Corollary 2.3.5

(see Definition A.4.2 for definition of coradical filtration).

We remark that the algebraic structure of the pattern Hopf algebra A(h) is defined

independently from its associative product. It follows that the pattern Hopf algebra

of a combinatorial presheaf is free whenever we can endow h with a commutative as-

sociative product, regardless of whether that is the associative presheaf at hand. In

other words, given (h, ∗1, 1) and (h, ∗2, 1) connected associative presheaf structures on

the same presheaf h, such that ∗2 is commutative, then A(h) = A(h, ∗1, 1) is a free

Hopf algebra. An example of this is presented on the presheaf of marked graphs, in

Section 2.3.3 below. Notwithstanding, all freeness proofs on pattern Hopf algebras uses

both the pattern structure and the associative structure. In fact, the role played by the

associative structure is streamlined and inflexible, as described in Section 2.1.3, whereas

the role of the pattern structure is somewhat harder to deal with.

This was already proved in [Whi32, Theorem 3], where if a function satisfies (1.7),

the connected graphs (there called non-separable) are enough to determine its values,

that the remaining values are obtained via polynomial expressions, and that no other

polynomial expressions hold for such a generic function.

2.1.3 Strategy for establishing the freeness of a pattern algebra

We now discuss the general strategy that we employ when establishing the freeness of

a pattern Hopf algebra. In particular, we clarify what is the relation between unique

factorization theorems and freeness of the algebra of interest. Let S ⊆ G(h) be a

collection of objects in a presheaf h. Then the set {ps |s ∈ S} is a set of free generators

of A(h) if the set {∏
s∈S

ps

∣∣∣S multiset of elements of S

}
,

is a basis of A(h). This is usually established by connecting this set with the set

{pa|a ∈ G(h)}, which is known to be a basis by Remark 2.2.2. This connection is done

with the following ingredients:



37

• An order � in G(h).

• A bijection f between {
∏
s∈S ps |S multiset of elements of S} and G(h), which is

usually phrased in terms of a unique factorization theorem. See for instance The-

orem 3.3.9.

• The property that, for any S multiset of S,

∏
s∈S

ps =
∑
t�f(S)

ct,S pt , (2.2)

with non-negative coefficients ct,s such that cf(S),S 6= 0.

These are enough to establish the desired freeness. In the commutative presheaf case, the

unique factorization theorem is the one that we naively would expect, see Theorem 2.3.3.

For the case of presheaf on permutations and the presheaf on marked permutations, the

construction of the set S is more technical. In general, we conjecture that any associative

presheaf is free, see Conjecture 1.6.4.

2.1.4 Notation and preliminaries

2.1.4.1 Species and monoidal functors

If h is a combinatorial presheaf, and if a ∈ h[I], we define the size of a as |a| := |I| and

the indexing set of a as X(a) = I.

Example 2.1.3. The unit for the Cauchy product is the unique presheaf that satisfies

E [A] = ∅ for A 6= ∅, and E [∅] = {�}. The presheaf of graphs

Gr[I] = {graphs with vertex set I} ,

results from the usual species structure by adding the natural graph restrictions.

In this way, X(�) = ∅, and if G is a graph in the vertex set V , we have that X(G) = V

and |G| = |V |.

Recall that we are given a bifunctor � that endows the category of combinatorial

presheaves with a monoidal category structure, as introduced in [AM10].

Definition 2.1.4 (Associative presheaf). An associative presheaf is a monoid in CPSh,

that is, is a combinatorial presheaf h together with natural transformations η : h�h⇒ h

and ι : E ⇒ h that satisfy associativity and unit conditions. We use, for a ∈ h[I] and

b ∈ h[J ], the notation ηI,J(a, b) = a ∗ b. We also denote the unit by 1 := ι[∅](�) ∈ h[∅].
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This is said to be commutative if, for any a ∈ h[I], b ∈ h[J ] with I ∩ J = ∅, we have

a ∗ b = b ∗ a.

Thus, a product on a presheaf way simply describes how to merge objects of a certain

type h that are based in disjoint sets.

Observation 2.1.5 (Naturality axioms in associative presheaves). The naturality of η,

the associativity and unit conditions correspond to, respectively,

• For all I, J disjoint sets, all a ∈ h[I], b ∈ h[J ] and all A ⊆ I,B ⊆ J , we have

(a ∗ b)|AtB = a|A ∗ b|B.

• For all I, J,K disjoint sets and all a ∈ h[I], b ∈ h[J ], c ∈ h[K], we have (a ∗ b) ∗ c =

a ∗ (b ∗ c).

• For any set I, and a ∈ h[I], we have a ∗ 1 = 1 ∗ a = a.

Remark 2.1.6 (Monoidal product and quasi-shuffle). In an associative presheaf (h, ∗, 1),

let a ∈ h[I], b ∈ h[J ] with I, J disjoint sets. Then it may not be the case that a|∅ = 1,

that (a ∗ b)|I = a or that (a ∗ b)|J = b.

This is the case, however, when h is a connected presheaf. It follows that in an associative

connected presheaf h, we have that
(
a∗b
a,b

)
≥ 1.

Definition 2.1.7. Let (h, ∗h, 1h) and (j, ∗j , 1j) be associative presheaves, and let f be a

presheaf morphism between (h, ∗h, 1h) and (j, ∗j , 1j). This is an associative presheaf mor-

phism if it preserves the unit and the associative product of the associative presheaves.

That is, f : h⇒ j is an associative presheaf morphism if it is a presheaf morphism that

satisfies f(1h) = 1j and f(b′ ∗h c′) = f(b′) ∗j f(c′) for any b′ ∈ h[I], c′ ∈ h[J ].

2.1.4.2 Preliminaries on permutations and marked permutations

We can write a permutation in its two-line notation, as
a1,...,ak
b1,...,bk where a1 ≤V a2 ≤V . . .

and b1 ≤P b2 ≤P · · · ≤P bk. If we identify b1, . . . , bk with 1, . . . , k, respectively, we can

disregard the bottom line. This also disregards the indexing set I, and in fact any two

isomorphic permutations have the same representation with the one line notation.

To the unique permutation in the empty set we call the trivial permutation and denote

it ∅.
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Definition 2.1.8 (The 	 operation). Given two permutations, π, σ, we have already

introduced the product π⊕σ. We now define the permutation π	 τ ∈ Per[I t J ] as the

pair of total orders (≤	P ,≤
	
V ) extending the respective ones from π, τ to I tJ by forcing

that i ≤	P j and i ≥	V j for any i ∈ I, j ∈ J . Correspondingly, the diagram of π 	 τ
results from the ones from π, τ as

π 	 τ =
π

τ
.

It is a routine observation to check that both ⊕,	 are associative products on Per,

and that ∅ is the unit of both operations, by simply checking that all properties in

Observation 2.1.5 are fulfilled.

Definition 2.1.9 (Marked permutations). Given a set I, we use the shorthand notation

I∗ = It{∗}. A marked permutation π∗ on a set I is a pair (≤P ,≤V ) of total orders in I∗,

we write X(π∗) = I. If f : J → I is an injective map, this can be extended canonically

to an injective map f∗ : J∗ → I∗. Thus, the preimage of each order ≤P ,≤V under f∗

is well defined and is also a total order in J∗. This defines the marked permutation

MPer[f ](π∗).

Note that a relabeling of the permutation π∗ in I∗ is a relabeling of the corresponding

marked permutation in I if the relabeling preserves the marked elements.

We can also write marked permutations in a one line notation, where we add a marker

over the position of ∗. The resulting notation only disregards the indexing set I, and

so any two isomorphic marked permutations have the same one line notation. Note

that for each permutation of size n it corresponds n different non-isomorphic marked

permutations of size n− 1, one for each possible marked position.

Example 2.1.10. If we consider (1 <P 2 <P ∗ <P 4, 1 <V ∗ <V 4 <V 2), a marked

permutation on {1, 2, 4}, its representation with the one line notation is 142̄3.

The marked permutation τ∗ = (73 <P x <P ∗ <P 47, 73 <V ∗ <V x <V 47) is

based on the set I = {x, 47, 73} and has a one line representation 132̄4. Consider now

π∗ = (1 <P ∗ <P 2, 1 <V ∗ <V 2) and σ∗ = (1 <P ∗ <P 2, ∗ <V 1 <V 2) marked

permutations in {1, 2}. So the marked permutations τ∗, π∗, σ∗ correspond to the one

line notations below

τ∗ = 132̄4 =

·
·
�

·

, π∗ = 12̄3 =

·
�

·

, σ∗ = 21̄3 =

·
·
�

. (2.3)
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Then, we have that π∗, σ∗ are patterns of τ∗, because J = {73, 47} is an occurrence of

π∗ in τ∗, and J ′ = {x, 47} is an occurrence of σ∗ in τ∗.

2.2 Substructure algebras

In this section, we present the properties of the framework of combinatorial presheaves

and associative presheaves, introduced above, and describe the construction of the pat-

tern Hopf algebra mentioned in Theorem 1.5.5. We establish that for a combinatorial

presheaf h, A(h) is an algebra (see Theorem 2.2.3). Moreover, if h is connected and

endowed with an associative structure, then A(h) is a Hopf algebra (see Theorem 2.2.8).

We also describe the space of primitive elements in A(h), clarify that A is in fact functo-

rial (see Theorem 2.2.11), and find some identities and properties of the pattern functions

in Propositions 2.2.14 and 2.2.15.

2.2.1 Coinvariants and pattern algebras

Given a combinatorial presheaf h, let [n] = {1, . . . , n} for n non-negative integer. Then,

recall that we define the coinvariants of h as the family

G(h) =
⊎
n≥0

h[n]∼ .

For an object a ∈
⊎
J h[J ], we define the pattern function pa :

⊎
J h[J ] → Q as follows:

if b ∈ h[I], then

pa(b) :=
∣∣{J ′ ⊆ I s.t. b|J ′ ∼ a}

∣∣ .
The following proposition allows us to consider a, b to be coinvariants, showing that this

pattern function is still well defined for a ∈ G(h) as function in F(G(h),Q).

Proposition 2.2.1. This definition only depends on the isomorphism type of a, b. That

is, if a1 ∈ h[I1], a2 ∈ h[I2], b1 ∈ h[J1], b2 ∈ h[J2] are so that a1 ∼ a2, b1 ∼ b2 then

pa1(b1) = pa2(b2).

Proof. Because a1 ∼ a2, we have that

{J ′ ⊆ J1 s.t. b1|J ′ ∼ a1} = {J ′ ⊆ J1 s.t. b1|J ′ ∼ a2} ,

so pa1(b1) = pa2(b1). It remains to prove that pa2(b1) = pa2(b2).
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Because b1 ∼ b2, there exists some bijective map f : J1 → J2 such that h[f ](b2) = b1.

This bijection lifts to a bijection between {J̃ ⊆ J2} and {J ′ ⊆ J1}, via J̃ 7→ f−1(J̃).

We claim that this in fact restricts to a bijection between {J̃ ⊆ J2 s.t. b2|J̃ ∼ a2} and

{J ′ ⊆ J1 s.t. b1|J ′ ∼ a2}. Indeed, let J̃ ⊆ J1, let incJ2,J̃ : J̃ → J2, incJ1,f−1(J̃) denote

the inclusion maps of J̃ in J2 and f−1(J̃) in J1, respectively. Then

b1|f−1(J̃) = h[f−1 ◦ incJ2,J̃ ](b2) = h[incJ1,f−1(J̃) ◦f
−1](b2) = h[f−1](b2|J̃) ,

so b2|J̃ ∼ b1|f−1(J̃). This proves that pa2(b1) = pa2(b2).

Recall that we write

A(h) := span{pa | a ∈ G(h)} ⊆ F(G(h),Q) ,

for the linear space spanned by all pattern functions.

Remark 2.2.2. If two coinvariants a, b are such that |a| ≥ |b| and a 6= b, then pa(b) = 0.

We also have pb(b) = 1. Hence, the set {pa |a ∈ G(h)} is a basis of A(h).

For a, b objects and c ∈ h[C], we defined the quasi-shuffle number as follows:(
c

a, b

)
= |{(I, J) s.t. I ∪ J = C , c|I ∼ a, c|J ∼ b}| . (2.4)

And a quasi-shuffle as a pair that contributes to the coefficient above. This is invariant

under the equivalence classes of ∼, as it can be show in a similar way to Proposition 2.2.1.

In the following proposition we observe that A(h) is a subalgebra of F(G(h),Q) with the

pointwise multiplication structure.

Theorem 2.2.3. Let h be a presheaf. Then the pattern functions satisfy the following

identity:

pa pb =
∑
c∈G(h)

(
c

a, b

)
pc . (2.5)

In particular, the pattern functions of h span a subalgebra of the function algebra

F(G(h),Q), where the unit is
∑

c∈h[∅] pc. We say that A(h) is the pattern algebra of

h.
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Proof. Fix x ∈ h[I], and note that pa(x) pb(x) counts the following

pa(x) pb(x) = |{A ⊆ I s.t. x|A ∼ a} × {B ⊆ I s.t. x|B ∼ b}|

= |{(A,B) s.t. A,B ⊆ I, x|A ∼ a, x|B ∼ b}|

=
∑
C⊆I
|{(A,B) s.t. A ∪B = C, x|A ∼ a, x|B ∼ b, }|

=
∑
C⊆I

(
x|C
a, b

)
=
∑
c∈G(h)

(
c

a, b

)
pc(x) .

(2.6)

Hence, the space A(h) is closed for the product of functions. Further, it is easy to

observe that
∑

a∈h[∅] pa is the constant function equal to one, so this is a unit and A(h)

is an algebra, concluding the proof.

Corollary 2.2.4 (Products and quasi-shuffles). Let c ∈ h[I] and bi ∈ h[Ji] for i =

1, . . . , k, and let

(
a

b1, . . . , bk

)
:=

∣∣∣∣∣
{

(J1, . . . , Jk) s.t.

k⋃
i=1

Ji = I, a|Ji ∼ bi ∀i = 1, . . . , k

}∣∣∣∣∣ .
Then we have that

k∏
i=1

pbi =
∑
c

(
c

b1, . . . , bk

)
pc .

Definition 2.2.5 (Shuffles and quasi-shuffles). If an object a is such that
(

a
b1,...,bk

)
> 0

we say that a is a quasi-shuffle of b1, . . . , bk. In addition, if |a| =
∑k

i=1 |bi|, we say that

a is a shuffle of b1, . . . , bk.

2.2.2 Coproducts on pattern algebras

In this section we consider an associative presheaf (h, ∗, 1). Concretely, our combinatorial

presheaf h is endowed with an associative product ∗ and a unit 1 ∈ h[∅].

Definition 2.2.6 (Product structure in G(h)). If (h, ∗, 1) is an associative presheaf,

then G(h) inherits an associative product. If a is an object, we denote its equivalence

class under ∼ by ā in this remark. The associative product in G(h) is defined as follows:

Let a ∈ h[n1], b ∈ h[n2] and denote [n1 + 1, n1 + n2] = {n1 + 1, . . . , n1 + n2}. Consider

st the order preserving map st : [n1 + 1, n1 + n2]→ [n2], and let b′ = h[st](b). Then we

define the product in G(h) as ā · b̄ := a ∗ b′ ∈ h[n1 + n2]∼.

It is a direct computation to see that a ∗ b does not depend on the representative chosen

for a and b. Thus we have a well defined operation in G(h).
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Definition 2.2.7. Let a ∈ G(h). Then, define

∆ pa :=
∑

b,c∈G(h)
b·c=a

pb⊗pc .

Note that the right hand side is a finite sum, because b · c = a implies that |b|, |c| ≤ |a|,
so this is well defined. Define further the map ε : A(h) → Q that sends pa to 1[a = 1],

where 1 stands for the unit in the associative presheaf h.

We recall and prove Theorem 1.5.5 here.

Theorem 2.2.8 (The pattern Hopf algebra). Let (h, ∗, 1) be an associative presheaf.

Then, the maps ∆ and ε give A(h) a structure of a coalgebra. Furthermore, together

with pointwise multiplication of functions, this defines a bialgebra structure in A(h).

Further, A(h) is a Hopf algebra whenever h is a connected presheaf.

Remark that we refer to the pattern Hopf algebra of (h, ∗, 1) simply by A(h) instead of

A(h, ∗, 1), for simplicity of notation, whenever emphasis on the role of ∗ is not needed.

Proof of Theorem 1.5.5. First, we note that ∆ is trivially coassociative, from the asso-

ciativity axioms of ∗ described in Observation 2.1.5. That ε is a counit follows from the

unit axioms on (h, ∗, 1).

We first claim that, for a, x, y ∈ G(h),

∆ pa(x, y) = pa(x · y) , (2.7)

using the natural inclusion F(G(h),Q)⊗2 ⊆ F(G(h)2,Q).

Indeed, take representatives x ∈ h[n1] and y ∈ h[n2] with no loss of generality, and

write B = [n1], C = {n1 + 1, . . . , n1 + n2}. Let st be the order preserving map between

C and [n2]. Then

pa(x ∗ y) = |{J ⊆ B t C s.t. (x ∗ y)|J ∼ a}|

= |{J ⊆ B t C s.t. x|J∩B ∗ y|J∩C ∼ a}|

=
∑

b,c∈G(h)
a∼b·c

|{J ⊆ B t C s.t. x|J∩B ∼ b, y|J∩C ∼ c}|

=
∑

b,c∈G(h)
a∼b·c

|{J ⊆ B s.t. x|J ∼ b} × {J ⊆ C s.t. y|J ∼ c}|

=
∑

b,c∈G(h)
a∼b·c

pb(x) pc(y) = ∆ pa(x, y) .

(2.8)



44

Since both functions take the same values on G(h)2, we conclude that (2.7) holds.

The following are the bialgebra axioms that we wish to establish:

∆(pa pb) = ∆(pa)∆(pb) ,

∆

 ∑
a∈h[∅]

pa

 =

 ∑
a∈h[∅]

pa

⊗
 ∑
a∈h[∅]

pa

 ,

ε(pa pb) = ε(pa)ε(pb) ,

ε

 ∑
a∈h[∅]

pa

 = 1 .

The last three equations are direct computations. For the first equation, we use (2.7) as

follows: take a, b, x, y ∈ G(h), then

∆(pa pb)(x, y) = (pa pb)(x · y) = pa(x · y) pb(x · y) = (∆ pa ∆ pb)(x, y) .

This concludes the first part of the proof.

Now suppose that h is connected, so that the zero degree component A(h)0 is one

dimensional. From [Tak71], because A(h) is commutative, it suffices to establish that

the group-like elements of A(h) are invertible. Now it is a direct observation that

any group-like element is in A(h)0, which is a one dimensional algebra, so all non-zero

elements are invertible. This concludes that A(h) is a Hopf algebra.

2.2.3 The space of primitive element

In this section we give a description of the primitive elements of any pattern Hopf algebra.

Denote by P (H) := {a ∈ H|∆a = a⊗ 1 + 1⊗ a} the space of primitive elements, where

1 stands for the unit of the Hopf algebra.

Definition 2.2.9 (Irreducible objects). Let (h, ∗, 1) be a connected associative presheaf.

An object t ∈ h[I] with t 6= 1 is called irreducible if any two objects a ∈ h[A], b ∈ h[B]

such that a ∗ b = t and A tB = I have either a = 1 or b = 1.

The notion of irreducibility lifts to G(h). That is, a coinvariant t ∈ G(h) with t 6= 1 is

said to be irreducible if any a, b ∈ G(h) such that a · b = t have either a = 1 or b = 1.

We have that a ∈ h[I] is irreducible if and only if the corresponding equivalence class

ā ∈ G(h) is irreducible. The family of irreducible equivalent classes in G(h) is denoted

by I(h) ⊆ G(h).
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Proposition 2.2.10 (Primitive space of pattern Hopf algebras). Let (h, ∗, 1h) be a

connected associative presheaf, and I(h) the set of irreducible elements in G(h).

Then

P (A(h)) = span{pa |a ∈ I(h)} .

Proof. If f is irreducible, it is straightforward to observe that pf is primitive. On the

other hand, let a =
∑

f∈G(h) cf pf be a generic primitive element from A(h). Then, the

equation ∆a = a⊗ p1h
+ p1h

⊗ a becomes

∑
g1,g2∈G(h)

cg1·g2 pg1 ⊗pg2 =
∑
f

cf (pf ⊗p1h
+ p1h

⊗pf ) .

From Remark 2.2.2, {pg1 ⊗pg2}g1,g2∈G(h) is a basis of A(h)⊗2, so we have that for any

g1 6= 1h, g2 6= 1h,

cg1·g2 = 0 .

Thus we conclude that a is a linear combination of the set
{
pf |f ∈ I(h)

}
, as desired.

2.2.4 The pattern algebra functor

In this section, we see that the mapping A is in fact functorial, bringing the parallel

between the pattern Hopf algebras and the Fock functors even closer.

Theorem 2.2.11 (Pattern algebra maps). If f : h⇒ j is a morphism of combinatorial

presheaves, then the following formula

A[f ](pa) :=
∑
f(b)=a

pb ∈ A(h) , (2.9)

defines an algebra map A[f ] : A(j)→ A(h).

Further, if f is a morphism of associative presheaves, then A[f ] is a bialgebra morphism.

Consequently, if h, j are connected, this is a Hopf algebra morphism.

Remark that the sum in (2.9) is finite, so this functor is well defined.

Proof. The map A[f ] is linear and sends the unit
∑

a∈j[∅] pa of A(j) to

∑
a∈j[∅]

∑
b∈h[∅]
f(b)=a

pb =
∑
b∈j[∅]

pb .
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Hence, to establish that A[f ] is an algebra morphism, it suffices to show that it preserves

the product on the basis, i.e., that A[f ](pa pb) = A[f ](pa)A[f ](pb).

It is easy to see that this holds if we have that(
f(c′)

a, b

)
=

∑
a′,b′∈G(h)

f(a′)=a,f(b′)=b

(
c′

a′, b′

)
,

for any a, b ∈ G(j), c′ ∈ G(h).

Indeed, if a ∈ j[A], b ∈ j[B] and c′ ∈ h[C], then for any set I, by naturality of f , we

have f(c′)|I = f(c′|I). Then(
f(c′)

a, b

)
=
∣∣∣{(I, J) s.t. f(c′)|I ∼ a, f(c′)|J ∼ b, I ∪ J = C

}∣∣∣
=

∑
a′,b′∈G(h)

f(a′)=a, f(b′)=b

∣∣∣{(I, J) s.t. c′|I ∼ a′, c′|J ∼ b′, I ∪ J = C
}∣∣∣

=
∑

a′,b′∈G(h)
f(a′)=a, f(b′)=b

(
c′

a′, b′

)
.

Now suppose further that f is an associative presheaf morphism between (h, ∗h, 1h) and

(j, ∗j , 1j). That A[f ] preserves counit follows from f(1h) = 1j . That A[f ] preserves ∆

follows because both A[f ]⊗2(∆ pa) and ∆(A[f ] pa) equal

∑
b′,c′∈G(h)
f(b′·hc′)=a

pb′ ⊗pc′ ,

since f(b′ ∗h c′) = f(b′) ∗j f(c′), concluding the proof.

Write AlgQ, BiAlgQ for the categories of algebras and bialgebras over Q. Recall that,

given a monoidal category C, we denote by Mon(C) its subcategory of monoids objects,

see Appendix B.1.

Definition 2.2.12 (The pattern algebra functor). Because of Theorem 2.2.11, we can

define the pattern algebra contravariant functor A : CPSh→ AlgQ.

This functor when restricted to the subcategory of associative presheaves is also a functor

to bialgebras as A : Mon(CPSh)→ BiAlgQ.

Example 2.2.13 (Graph patterns in permutations). Consider again the associative

presheaves (Gr,⊕, ∅) on graphs and (Per,⊕, ∅) on permutations. The inversion graph

of a permutation is a presheaf morphism Inv : Per ⇒ Gr defined as follows: given a
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permutation π = (≤P ,≤V ) on the set I, we take the graph Inv(π) with vertex set I and

an edge between i, j ∈ I, i 6= j if

i ≤P j ⇔ j ≤V i .

It is a direct observation that this map is indeed an associative presheaf morphism. As

a consequence, we have a Hopf algebra morphism A(Inv) : A(Gr)→ A(Per).

2.2.5 Magnus relations and representability

The goal of the following two sections is to show that arithmetic properties of the per-

mutation pattern algebra that are established in [Var14] are actually general properties

of pattern algebras.

Proposition 2.2.14 (Magnus inversions). Let h be a combinatorial presheaf, and con-

sider the maps M,N : spanG(h) → spanG(h) given in the basis elements a ∈ G(h)

by

M : a 7→
∑
b∈G(h)

pb(a)b ,

N : a 7→
∑
b∈G(h)

(−1)|a|+|b| pb(a)b ,

and extended linearly to spanG(h). Then the maps M,N are inverses of each other.

This result was already known in the context of words in [Hof00] and [AM10] and in the

context of permutations in [Var14].

Proof. We start by proving a relation on pattern functions. Let a ∈ h[I], c ∈ G(h). Then

we claim that ∑
b∈G(h)

(−1)|b| pb(a) pc(b) = (−1)|a|1[a ∈ c] .

Indeed, for each pair of sets (J,B) such that J ⊆ B ⊆ I and a|J ∈ c it corresponds an

object b = a|B, and the patterns B of b in a, and J of c in b. Observe that this is a

bijective correspondence, so we have

∑
b∈G(h)

(−1)|b| pb(a) pc(b) =
∑
J⊆I
a|J∈c

∑
J⊆B⊆I

(−1)|B| = (−1)|I|1[a|I ∈ c] = (−1)|a|1[a ∈ c] .
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It follows that

N(M(a)) =N

 ∑
b∈G(h)

pb(a)b

 =
∑
b∈G(h)

pb(a)
∑
c∈G(h)

(−1)|b|+|c| pc(b)

=
∑
c∈G(h)

c(−1)|c|
∑
b∈G(h)

(−1)|b| pb(a) pc(b)

=
∑
c∈G(h)

c(−1)|c|(−1)|a|1[a = c] = a ,

and that

M(N(a)) =M

 ∑
b∈G(h)

(−1)|a|+|b| pb(a)b

 =
∑
b∈G(h)

pb(a)
∑
c∈G(h)

(−1)|a|+|b| pc(b)

=
∑
c∈G(h)

c(−1)|a|
∑
b∈G(h)

(−1)|b| pb(a) pc(b)

=
∑
c∈G(h)

c(−1)|a|(−1)|a|1[a = c] = a ,

as desired.

2.2.6 The Sweedler dual and pattern algebras

Let A be an algebra over a field K. We denote by A∗ the vector space F(A,K). Then

the Sweedler dual A◦ is defined in [Swe69] as

A◦ := {g ∈ A∗| ker g contains a cofinite ideal} ,

where a cofinite ideal J of A is an ideal such that A/J is a finite dimensional vector

space over K. There, it is established that A◦ is a coalgebra, where the coproduct map

is the transpose of the product map.

Consider the following right action of A on A∗: for f ∈ A∗ and a, b ∈ A,

(f · b)(a) := f(ab) . (2.10)

A description of A◦ is given in [Swe69, Proposition 6.0.3], as all representable elements

f ∈ A∗, that is all f such that the vector space {f · b}b∈A is finite dimensional.

Let (h, ∗, 1) now be an associative presheaf, and consider the algebra generated by · in

G(h):

Alg(h) := span(G(h), ·) .
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Then A(h) ⊆ Alg(h)∗ = F(G(h),Q). In fact, the following proposition guarantees

that we have A(h) ⊆ Alg(h)◦. Remark that the coproduct in A(h) is precisely the

transpose of the multiplication in span(G(h), ·), therefore A(h) ⊆ Alg(h)◦ is an inclusion

of coalgebras.

Proposition 2.2.15 (Pattern algebra and the sweedler dual). Let h be an associative

presheaf. Then, its pattern algebra satisfies A(h) ⊆ Alg(h)◦.

This result generalizes the one from [Var14], where it is shown that any pattern function

on permutations is representable.

Proof. We claim that each pattern function is representable, which concludes the proof

according to [Swe69, Proposition 6.0.3]. In fact, for a, b, c ∈ G(h):

pa · b (c) = pa(b · c) = ∆ pa(b, c)

=
∑

a1,a2∈G(h)
a=a1·a2

pa1(b) pa2(c)

That is, pa · b =
∑

a=a1·a2 pa1(b) pa2 . It follows that

span{pa · b}b∈G(h) ⊆ span{pa2}a2∈G(h)
|a2|≤|a|

,

which is finite dimensional.

2.3 Freeness of commutative presheaves

We start this section with a discussion on factorization theorems on combinatorial

presheaves. We will observe that the factorizations of objects in connected associa-

tive presheaves into irreducibles is unique up to some possible commutativity. this is a

general fact on associative presheaves, and is a central point in establishing freeness of

any pattern Hopf algebra so far in the literature.

We also dedicate some attention to commutative presheaves. An almost immediate con-

sequence of the general fact discussed above is that the pattern algebra of a commutative

presheaf is free.

We also explore specific combinatorial presheaves that can be endowed with a commu-

tative structure. The main examples are graphs, already studied in [Whi32], marked

graphs (see Section 2.3.3), set partitions (see Section 2.3.4), simplicial complexes and

posets.
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2.3.1 Relations in general connected associative presheaves

Consider a connected associative presheaf (h, ∗, 1). In this section we will not assume

that h is commutative. Recall that for objects a ∈ h[I], b ∈ h[J ], if A ⊆ I t J then

(a ∗ b)|A = a|A∩I ∗ a|A∩J , as described in Observation 2.1.5. We recall as well that an

object t ∈ h[I] is called irreducible if t 6= 1 and if t = a ∗ b only has trivial solutions. We

define as well an irreducible coinvariant in G(h).

Definition 2.3.1 (Set composition and set partition). Let I be a finite set. A set

composition of I is a list (B1, . . . Bk), that can also be written as B1| . . . |Bk, of pairwise

disjoint nonempty subsets of I, such that I =
⋃
iBi. We denote by ΠI the family of set

compositions of I. A set partition of I is a family π = {I1, . . . , Ik} of pairwise disjoint

nonempty sets, such that
⋃
i Ii = I. We write ΣI for the family of set partitions of I.

If ~π ∈ ΠI is a set composition, we can define its underlying set partition of I by

disregarding the order of the list. We denote it by λ(~π).

Definition 2.3.2 (Factorization of objects and coinvariants). Consider an associative

presheaf h that is connected, and an object o ∈ h[I]. A factorization of o is a word

(x1, . . . , xk) of objects such that x1 ∗ · · · ∗ xk = o.

A factorization (x1, . . . , xk) of o is said to be into irreducibles when each xi is an irre-

ducible object for i = 1, . . . , l.

A factorization of a coinvariant a ∈ G(h) is a decomposition of the form a = s1 · · · sk.
This factorization is said to be into irreducibles if each si is irreducible.

It is clear to see that an object is irreducible if and only if its coinvariant is irreducible.

To a factorization (x1, . . . , xk) of o ∈ h[I], it corresponds a set composition ~π =

(I1, . . . , Ik) |= I, where xi ∈ h[Ii]. This is indeed a set composition of I by defini-

tion of ∗. This correspondence is injective, that is to any two distinct factorizations of o

it corresponds distinct underlying set compositions. Indeed, assume otherwise, that to

the factorizations (x1, . . . , xk) and (y1, . . . , yk) it corresponds the same set composition

(I1, . . . , Ik), Then, for any i = 1, . . . , k we have

o|Ai = x1|A1∩Ai ∗ . . . ∗ xl|Al∩Ai
= x1|∅ ∗ . . . ∗ xi|Ai ∗ . . . ∗ xl|∅
= 1 ∗ . . . ∗ xi ∗ . . . ∗ 1 = xi ,

and similarly we have that o|Ai = yi, so that xi = yi.
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Conversely, not all set compositions yield a factorization, and the irreducible elements

are precisely the ones where only the trivial set composition with one block yields a

factorization.

Theorem 2.3.3. Let h be an associative presheaf and o ∈ h[I] an object. If ~π1, ~π2

are factorizations into irreducibles of o, then their underlying set partitions λ(~π1) and

λ(~π2) are the same.

In particular, the number of irreducible factors j(o) and the multiset of irreducible

factors fac(o) of an object are well defined and do not depend on the factorization into

irreducibles at hand.

Proof. Suppose that o has two distinct factorizations

o = l1 ∗ . . . ∗ lk = r1 ∗ . . . ∗ rs , (2.11)

where ~π1 = A1| . . . |Ak and ~π2 = B1| . . . |Bs are set compositions of X such that li = o|Ai
and ri = o|Bi . Note that

lj = o|Aj = r1|B1∩Aj ∗ . . . ∗ rs|Bs∩Aj .

Because lj is irreducible, for each j there is exactly one i such that Bi ∩ Aj 6= ∅, so

Aj ⊆ Bi, and τ (~π1) is coarser than τ (~π2). By a symmetrical argument, we obtain

that τ (~π1) is finer than τ (~π2), so we conclude that τ (~π1) = τ (~π2). It follows that the

number of factors and the multiset of factors are well defined.

This implies the following for factorizations on G(h):

Corollary 2.3.4. Consider an associative presheaf (h, ∗, 1), together with the usual

product in G(h), denoted by ·. Consider also a ∈ G(h). If a = x1 · · ·xl = s1 · · · ss
are two factorizations into irreducibles, then the multisets {x1, . . . , xl} and {s1, . . . , st}
coincide.

In particular, the number of irreducible factors j(a) and the multiset of irreducible

factors fac(a) of a coinvariant are well defined and do not depend on the factorization

into irreducibles at hand.

The algebraic structure of span(G(h), ·) is determined by the set I(h) together with

the relations between irreducible elements. Corollary 2.3.4 imposes restrictions on the

possible relations. This is different from the case with groups: these can be described

by generators and relations, but these relations have more flexibility.
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The following consequence is immediate:

Corollary 2.3.5. Let h be an associative presheaf. Then, the n-th component of its

coradical filtration is precisely span{pa |j(a) ≤ n}.

Given an alphabet Ω, denote the set of words on Ω by W(Ω).

Problem 2.3.6 (Factorization theorems in associative presheaves). Given an associative

presheaf (h, ∗, 1), describe E(h), the collection of fibers of the map

Π :W(I(h))→ G(h) ,

defined by taking the product of the letters of a word in G(h).

The fibers of this map, that is the sets of words Π−1(a), correspond to the different

factorizations of an object a ∈ G(h). In general, according to Corollary 2.3.4, a fiber

consists of a set of words of irreducible elements that result from one another by per-

muting its letters. Whenever h is a commutative presheaf, Corollary 2.3.8 tells us that

the fibers are as big as possible, restricted to Corollary 2.3.4. This means that, in this

case, each fiber is a set of words resulting from a permutation of a word in W(I(h)).

Take the example of the combinatorial presheaf Per, where no non-trivial rearrangement

of the irreducible factors of a factorization of an object yields a distinct factorization of

the same object. In this example, the fibers Π−1(a) are singletons. In the case of marked

permutations, in Theorem 3.2.7 we show that only transpositions of specific irreducible

marked permutations remain factorizations of the same coinvariant a.

Remark 2.3.7. It can be seen that the freeness proof in Theorem 2.3.9 depends solely

on the corresponding unique factorization theorem, that is on E(h). That is also the

case on the proof given in [Var14] for the presheaf on permutations, and the proof below

for marked permutations.

This motivates Conjecture 1.6.4, as it seems that the freeness of the pattern Hopf algebra

only depends on the description of the fibers E(h). In this way, for instance, we can

immediately see that the pattern Hopf algebra A(SComp), defined below, is free. This

follows because it has a unique factorization theorem of the type of the one in the

associative presheaf on permutations.

2.3.2 Proof of freeness on commutative presheaves

Recall that a commutative presheaf is an associative presheaf (h, ∗, 1) such that ∗A,B =

∗B,A ◦ twistA,B, see Definition 2.1.4. In the case of commutative presheaves, we have
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that any rearrangement of a factorization of an object o yields another factorization of o.

For this reason, in the context of commutative presheaves, a set partition is also referred

to as a factorization, and we have the following.

Corollary 2.3.8. Let (h, ∗, 1) be a connected commutative presheaf, and a ∈ G(h) an

object. Then, a has a unique factorization into irreducibles l1, . . . , lj(a) ∈ I(h) up to

commutativity of factors. Equivalently, if a ∈ h[X], there is a unique set partition that

corresponds to a factorization of o into irreducibles.

Theorem 2.3.9 (Freeness of pattern algebras with commutative products). Let (h, ∗, 1)

be a connected commutative presheaf. Consider I(h) ⊆ G(h) the family of irreducible

elements of h.

Then A(h) is free commutative, and {pι | ι ∈ I(h)} is a set of free generators of A(h).

Proof. We will show that the family{∏
ι∈L

pι

∣∣∣L multiset of elements in I(h)

}
, (2.12)

is a basis for A(h). The proof follows the strategy described in Section 2.1.3, by build-

ing an order ≤ in G(h) that is motivated in the unique factorization theorem in Theo-

rem 2.3.3.

Define the following partial strict order <p in G(h): we say that α <p β if:

• |α| < |β|, or;

• |α| = |β| and j(α) < j(β).

In this way, ≤p is the order that we use to establish freeness.

Consider α ∈ G(h) with α = ι1 · · · ιj(α) its unique factorization into irreducibles. Then

we claim
k∏
i=1

pιi =
∑

β∈G(h)

(
β

ι1, . . . , ιj(α)

)
pβ =

∑
β≤pα

cβ pβ , (2.13)

where ca ≥ 1. This concludes that (2.12) is a basis of A(h), and gives us the result.

Let us prove (2.13). Pick representatives li for ιi such that li ∈ h[Ai] and let also

a = l1 ∗ · · · ∗ lj(α) be an object. Observe that the coinvariant of a is α.

Observe that a is a quasi-shuffle of l1, . . . , lj(α) by considering the patterns A1, . . . , Aj(α)

(see Remark 2.1.6). Thus we have cα ≥ 1.
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To show that any term β in (2.13) with cβ 6= 0 has β ≤p α, consider the maximal

β ∈ G(h) that is a quasi-shuffle of l1, . . . , lj(α), and let b be a representative in β, such

that b ∈ h[Y ]. By maximality, we have that β ≥ α. Our goal is to show that b ∼ a. Let

b = s1 ∗ · · · ∗ sj(b) be the unique factorization of b into irreducibles, corresponding to the

set partition {C1, . . . , Cj(b)}. Because b is a quasi-shuffle of l1, . . . , lj(α), we can consider

B1, . . . , Bj(α) ⊆ Y sets such that
⋃
iBi = Y and

b|Bi ∼ li for i = 1, . . . , j(α) .

In particular, we have that

li ∼ b|Bi = s1|C1∩Bi ∗ · · · ∗ sj(b)|Cj(b)∩Bi ,

for i = 1, . . . , j(α).

By indecomposability of li, we have that, for each i, there is exactly one j such that

Cj ∩ Bi 6= ∅. From tjCj =
⋃
iBi = Y , we get that each Bi is contained in some Cj .

So we can define a map f : [j(α)] → [j(b)] such that Bi ⊆ Cf(i). Thus, we have that

Ci =
⋃
k∈f−1(i)Bk.

First observe that |a| =
∑

i |Ai| =
∑

i |li| =
∑

i |Bi| and |b| =
∑

j |Cj | but |b| = |Y | ≤∑
j

∑
i∈f−1(j) |Bi| = |a|. However, from b ≥p a we have that |b| ≥ |a| and thus we have

|b| = |a| and that the family {B1, . . . , Bj(α)} is disjoint. Further, f is a surjection, so we

immediately have that j(α) ≥ j(b) and because b ≥p a, we must have an equality. Thus,

f is a bijective map and we conclude that Cf(i) = Bi for each i = 1, . . . , j(α) = j(b).

We then conclude that

si = b|Bi = b|Cf(i) ∼ lf(i) ,

and so, by commutativity,

b = s1 ∗ · · · ∗ sj(b) = l1 ∗ · · · ∗ lj(α) = a ,

as desired.

2.3.3 Marked graphs

Definition 2.3.10 (Marked graphs and two products). For a finite set I, a marked

graph G∗ on I is a graph on the vertex set It{∗}. This defines a combinatorial presheaf

MGr via the usual notion of relabeling and induced subgraphs.
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We can further endow the combinatorial presheaf MGr with two different associative

presheaf structures.

First, the joint union, ∨, which is defined as follows: If G∗1 ∈ MGr[I], G∗2 ∈ MGr[J ] with

I ∩ J = ∅, then G∗1 ∨I,J G∗2 has no edges between I and J , and the marked vertices are

merged.

The second product, the inflation product ? is defined as follows: If G∗1 ∈ MGr[I], G∗2 ∈
MGr[J ] with I ∩J = ∅, then two vertices i ∈ I, j ∈ J are connected in G∗1 ?I,J G

∗
2 if j and

∗ are connected in G∗1. The unit of both products is the marked graph 1 with a unique

vertex and no edges.

Remark 2.3.11. The graphs that are irreducible with respect to the ∨ product are

the graphs G∗ such that the graph resulting from removing the marked vertex and its

incident edges is a connected graph. In this case, we say that G∗ is ∨-connected.

In Fig. 2.1 we have an example of a ∨ -connected marked graph and a ∨-disconnected

marked graph.

G1 G2

Figure 2.1: A marked graph G1 with three ∨-connected components and a ∨-
connected graph G2.

Observe that G∗1 ∨I,J G∗2 = G∗2 ∨J,I G∗1, so ∨ is a commutative operation, whereas ? is

not. It follows from Theorem 2.3.9 that A(MGr) is a free algebra. This is something

that cannot be done directly with the inflation product of marked graphs. Indeed, a

unique factorization theorem on this associative presheaf has not yet been found, and

only small irreducible marked graphs can be constructed (see Fig. 2.2). It is worthwhile

to observe that the fibers under the map Π described in Problem 2.3.6 are non-trivial,

as an example of a non-trivial relation can be seen in Fig. 2.3

2.3.4 Set partitions

We define here associative presheaves on set partitions SPart and set compositions

SComp, and show that Sym, the Hopf algebra of symmetric functions, is the pattern
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Figure 2.2: The ?-irreducible marked graphs of size up to three.

= ? = ?

= =? ?

Figure 2.3: The first relations between irreducible marked graphs over ?.

Hopf algebra on set partitions. The functoriality of A also gives us a Hopf algebra

morphism Sym→ A(SComp).

Definition 2.3.12 (The presheaf on set partitions). If π is a set partition of I and

J ⊆ I, then π|J = {I1 ∩ J, . . . , Ik ∩ J} is a set partition of J , after disregarding the

empty sets. This defines a presheaf structure SPart with SPart[I] = ΣI , the family of

set partitions of I.

We further endow SPart with an associative structure t as follows: if π = {I1, . . . , Iq},
τ = {J1, . . . , Jp} are set partitions of the disjoint sets I, J , respectively, let π t τ =

{I1, . . . , Iq, J1, . . . , Jp} be a set partition of I t J . It is straightforward to observe that

(SPart,t, ∅) is a commutative connected presheaf.

Note that by Theorem 2.3.9, the pattern Hopf algebra A(SPart) is free and the gener-

ators correspond to the irreducible elements of G(SPart). These correspond to the set

partitions with only one block, and up to relabeling there is a unique such set partition

of each size. We write I(SPart) = {{[n]}|n ≥ 1}.

Proposition 2.3.13. Let ζ : A(SPart)→ Sym be the unique algebra morphism map-

ping ζ : p{[n]} 7→ pn, where pn is the power sum symmetric function. This defines a Hopf

algebra isomorphism.
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Proof. As ζ sends a free basis to a free basis, it is an isomorphism of algebras. Fur-

thermore, we observe that both p{[n]} and pn are a primitive element in their respective

Hopf algebras, so the described map is a bialgebra morphism. Because the antipode is

unique, it must send the antipode of A(SPart) to the one of Sym. Thus, this is a Hopf

algebra isomorphism.

Definition 2.3.14 (The presheaf on set compositions). Let I be a finite set, and recall

the definition of a set composition in Definition 2.3.1. If J ⊆ I and ~π = (I1, . . . , Ik) is

a set composition of I, then ~π|J = (I1 ∩ J, . . . , Ik ∩ J) is a set composition of J , after

disregarding the empty sets. This defines a presheaf structure SComp with SComp[I] = ΠI ,

the family of set compositions of I.

We further endow SComp with an associative structure t as follows: if ~π = (I1, . . . , Iq),

~τ = (J1, . . . , Jp) are set partitions of the disjoint sets I, J , respectively, let ~π t ~τ =

(I1, . . . , Iq, J1, . . . , Jp) be a set composition of I t J .

It is straightforward to observe that (SComp,t, ∅) is an associative connected presheaf.

Further, we can also observe that the map λ : SComp⇒ SPart is an associative presheaf

morphism.

From the map λ : SComp⇒ SPart we get a Hopf algebra morphism

A(λ) : Sym→ A(SComp) .

Observe that A(SComp) is a free algebra, because it has a unique factorization theorem

of the same type of permutations under the ⊕ product, so according to Remark 2.3.7 the

proof in [Var14] holds also in this associative presheaf. This is also the case for the well

known Hopf algebra QSym, where it was established that it is free in [Haz01], and when

we regard both Hopf algebras as filtered Hopf algebras, the enumeration of generators

for each degree coincide with the number of Lyndon words of a given size.

Conjecture 2.3.15 (QSym conjecture). Consider the associative presheaf (SComp,t, ∅)
introduced in Definition 2.3.14. Then the pattern algebra A(SComp) is isomorphic to

QSym.



Chapter 3

Pattern Hopf algebra structure

on marked permutations

This chapter is based on the article [Pen20], which is submitted for publication. The

work in [Pen20] is split into this chapter and Chapter 2.

In this section we consider the algebra structure of A(MPer), and show that this pat-

tern algebra on marked permutations is freely generated. This will be done using a

factorization theorem on marked permutations on the inflation product.

Our strategy is as follows: we describe a unique factorization of marked permutations

with the inflation product, in Corollary 3.2.11. This unique factorization theorem de-

scribes all possible factorizations of a marked permutation into irreducibles.

We further consider the Lyndon words on the alphabet of irreducible marked permu-

tations, as introduced in [CFL58]. This leads us to a notion of stable Lyndon marked

permutations LSL, in Definition 3.3.7. Finally, we prove the following result, which is

the main theorem of this section, as a corollary of Theorem 3.4.1:

Theorem 3.0.1. The algebra A(MPer) is freely generated by {pι∗ |ι∗ ∈ LSL}.

In the end of this section we compute the dimension of the space of primitive elements of

the pattern Hopf algebra on marked permutations. This, according to Proposition 2.2.10,

can be done by enumerating the irreducible elements in G(MPer).

This chapter is organized as follows: we start in Section 3.1 by describing the presheaf

structures on permutations and marked permutations. In Section 3.2 and in Section 3.3

we establish a unique factorization theorem in marked permutations. In Section 3.4 we

state and prove the main theorem of this section. The proofs of technical lemmas used

58
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in these sections are left to Sections 3.5 and 3.6. Finally, in Section 3.7, we enumerate

the irreducible marked permutations.

3.1 Non-commutative presheaves

We return to the presheaf on permutations. This is an example of a non-commutative

associative presheaf.

Example 3.1.1 (Permutations and their pattern Hopf algebra). To the presheaf Per

it corresponds a pattern algebra A(Per) as discussed above. We can further consider

Per with a monoid structure via the direct sum of permutations ⊕, defined as follows:

Suppose that π ∈ Per[I], τ ∈ Per[J ] are two permutations based on the disjoint sets I, J ,

respectively. The permutation π ⊕ τ ∈ Per[I t J ] is the pair of total orders (≤⊕P ,≤
⊕
V )

extending both of the respective orders from π, τ to I t J by forcing that i ≤⊕P j and

i ≤⊕V j for any i ∈ I, j ∈ J . Correspondingly, the diagram of π⊕ τ results from the ones

from π, τ as follows”

π ⊕ τ =
τ

π
.

We note that this is not a commutative presheaf: in general, π⊕ τ is a different permu-

tation than τ ⊕ π.

As mentioned above, the pattern Hopf algebra on permutations is the one discussed

by Vargas in [Var14], where it is shown that it is free. There, free generators were

constructed. These generators correspond to Lyndon words of ⊕-indecomposable per-

mutations, see [CFL58] for an introduction to combinatorics of Lyndon words.

In this chapter we explore other associative presheaves that are non-commutative. Tak-

ing the presheaf on permutations as our starting point, we wish to study monoidal

structures that are more complex than the ⊕ product, but still allow to establish the

freeness property. We suggest the presheaf on marked permutations, which is equipped

with the inflation product. This product is motivated by the inflation procedure on

permutations described in [AAK03].

In this way, the presheaf on marked permutations introduced below will be one main

focus of this chapter: Chapter 3 will be dedicated to the freeness problem on this

presheaf, as well as enumerating the dimension of the primitive space of the pattern

Hopf algebra.

Example 3.1.2 (Marked permutations and their pattern Hopf algebra). A marked

permutation π∗ on I is a pair of orders (≤P ,≤V ) on the set It{∗}. Intuitively, this gives
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us a rearrangement of the elements of I t{∗}, where one element is special and marked.

The relabelings and restriction maps are the natural ones borrowed from orders, giving

us a combinatorial presheaf, that we call MPer. We can represent a marked permutation

in a diagram, as we do for permutations. Note that in this case the marked element

∗ never changes position after relabelings. Take for instance the marked permutations

π∗ = (1 <P 2 <P ∗, 2 <V 1 <V ∗), τ∗ = (∗ <P 1 <P 2, 1 <V ∗ <V 2), and σ∗ =

(∗ <P 2 <P 1, 2 <V ∗ <V 1). Observe that there is no isomorphism between π∗ and τ∗,

whereas there is one between τ∗ and σ∗, via the relabeling 1 7→ 2, 2 7→ 1.

π∗ =

∗
1

2

τ∗ =

2

∗
1

σ∗ =

1

∗
2

.

In this way, there are ((n + 1)!)2 many elements in MPer[n]. Up to relabeling, we

can represent a marked permutation as a diagram with one dot in each column and

row, where a particular dot is the distinguished element ∗. Therefore, G(MPer) has

(n+ 1)× (n+ 1)! many isomorphism classes of marked permutations of size n.

Definition 3.1.3 (Inflation product). The inflation product ? in marked permutations

is defined as follows: Given two marked permutations τ∗ ∈ MPer[I] and π∗ ∈ MPer[J ]

with I, J disjoint sets, the inflation product τ∗?π∗ ∈ MPer[ItJ ] is a marked permutation

resulting from replacing in the diagram of τ∗ the marked element with the diagram of

π∗. Here is an example:

τ∗ = π∗ =

τ∗ ? π∗ =

.

Remark 3.1.4. Note that if π∗?τ∗ = π∗?σ∗, then τ∗ = σ∗. Similarly, if τ∗?π = σ∗?π∗,

then τ∗ = σ∗.

It is straightforward to observe that this is an associative presheaf with MPer[∅], where

the unit is the unique marked permutation on ∅, denoted by 1̄. We call it the presheaf
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of marked permutations. Hence, from Theorem 3.1.5, the algebra A(MPat) is indeed a

Hopf algebra. This is not a commutative presheaf, so Theorem 1.6.2 does not apply.

However, we still have the following:

Theorem 3.1.5 (Freeness of A(MPat)). The pattern algebra A(MPat) is free.

To establish the freeness ofA(MPat) we present a unique factorization theorem on marked

permutations with the inflation product in Corollary 3.2.11. This is an analogue of

[AAK03, Theorem 1] for the inflation product on marked permutations. With it, we

find generators of the algebra on marked permutations, and use tools from word combi-

natorics, specifically the Lyndon factorization of words in [CFL58], to show that these

generators are free generators.

In fact, Lyndon words are commonly used to establish the freeness of algebras. Ex-

amples are the shuffle algebra in [Rad79] (see also [GR14, Chapter 6]), the algebra of

quasisymmetric functions in [Haz01, Theorem 8.1], and the algebra on word quasisym-

metric functions in non-commutative variables, in [BZ09].

In Chapter 3 we also enumerate the dimension of the primitive space of the pattern Hopf

algebra A(MPer), which corresponds to enumerating the marked permutations that are

irreducible with respect to the inflation product.

3.2 Unique factorizations

We work on the combinatorial presheaf of permutations (Per,⊕, ∅) and on the com-

binatorial presheaf of marked permutations (MPer, ?, 1̄), introduced in Example 1.5.2

and Definition 2.1.9.

Definition 3.2.1 (Decomposability on the operations ⊕ and 	). We say that a permu-

tation is ⊕-indecomposable if it has no non-trivial decomposition of the form τ1⊕τ2, and

⊕-decomposable otherwise. We say that a marked permutation is ⊕-indecomposable if

it has no decomposition of the form τ ⊕π∗ or π∗⊕ τ , where π∗ is a marked permutation

and τ is a non-trivial permutation, and ⊕-decomposable otherwise. Similar definitions

hold for 	. A permutation (resp. a marked permutation) is said to be indecomposable

if it is both ⊕ and 	-indecomposable, and is said to be decomposable otherwise.

We remark that a permutation is ⊕-indecomposable whenever it is irreducible on the

associative presheaf (Per,⊕, ∅) according to Definition 2.2.9. For marked permutations,

Definition 2.2.9 specializes to the definition of irreducible marked permutations as fol-

lows:
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Definition 3.2.2 (Irreducible marked permutations). A marked permutation π∗ is

called irreducible if any factorization π∗ = τ∗1 ? τ
∗
2 has either τ∗1 = 1̄ or τ∗2 = 1̄.

Example 3.2.3. Examples of irreducible marked permutations include 1̄423, 231̄ and

314̄2, see Fig. 3.1. These marked permutations are respectively an ⊕-decomposable,

	-decomposable and an indecomposable irreducible marked permutation.

Figure 3.1: Irreducible marked permutations

Remark 3.2.4 (decomposable irreducible marked permutations). If π is a permutation

that is ⊕-indecomposable, then 1̄ ⊕ π and π ⊕ 1̄ are irreducible marked permutations.

Similarly, if τ is an 	-indecomposable permutation, then 1̄	 τ and τ 	 1̄ are irreducible

marked permutations.

These are precisely the decomposable (resp. ⊕-decomposable, 	-decomposable) irre-

ducible marked permutations.

These decomposable irreducible marked permutations play an important role in the

description of a free basis of A(MPer), because they are the only ones that get in the

way of a unique factorization theorem for the inflation product. In the following we

carefully unravel all these issues.

Remark 3.2.5 (⊕-relations and 	-relations). Consider τ1, τ2 ⊕-indecomposable per-

mutations. Then we have the following relations, called ⊕-relations

(1̄⊕ τ1) ? (τ2 ⊕ 1̄) = (τ2 ⊕ 1̄) ? (1̄⊕ τ1) = τ2 ⊕ 1̄⊕ τ1 .

Consider now π1, π2 permutations that are 	-indecomposable. Then we have the fol-

lowing relation, called 	-relations

(1̄	 π1) ? (π2 	 1̄) = (π2 	 1̄) ? (1̄	 π1) = π2 	 1̄	 π1 .

We wish to establish in Theorem 3.2.7 that these generate all the inflation relations

between irreducible marked permutations.

We define the alphabet Ω := {irreducible marked permutations}, and consider the set

W(Ω) of words on Ω. This set forms a monoid under the usual concatenation of words
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(we denote the concatenation of two words w1, w2 as w1 ·w2). When w ∈ W(Ω), we write

w∗ for the consecutive inflation of its letters. So for instance (1̄2, 2̄1)∗ = 1̄2 ? 2̄1 = 2̄13.

We use the convention that the inflation of the empty word on Ω is 1̄. This defines the

star map, a morphism of monoids ? :W(Ω)→ G(MPer).

For the sake of clarity, we avoid any ambiguity on the notation a∗ by using Greek letters

for marked permutations, lowercase Latin letters to represent words on any alphabet,

and upper case Latin letters to represent sets with an added marked element (see Defi-

nition 2.1.9).

Definition 3.2.6 (Monoidal equivalence relation on W(Ω)). We now define an equiva-

lence relation onW(Ω). For a word w ∈ W(Ω), if w = (ξ∗1 , . . . , ξ
∗
k) is such that ξ∗i ?ξ

∗
i+1 =

ξ∗i+1 ? ξ
∗
i is an ⊕-relation or an 	-relation, we say that w ∼ (ξ∗1 , . . . ξ

∗
i−1, ξ

∗
i+1, ξ

∗
i , . . . , ξ

∗
k).

We further take the transitive and reflexive closure to obtain an equivalence relation on

W(Ω).

We trivially have that if w1 ∼ w2 and z1 ∼ z2, then w1 ·z1 ∼ w2 ·z2. This means that the

quotient W(Ω)/∼ is a monoid. Further, because of Remark 3.2.5, the star map factors

to a monoid morphism W(Ω)/∼ → G(MPer).

Theorem 3.2.7. The star map ? : w 7→ w∗ defines an isomorphism from W(Ω)/∼ to

the monoid of marked permutations with the inflation product.

We postpone the proof of Theorem 3.2.7 to Section 3.5, and explore its consequences

here.

Informally, this theorem states that any two factorizations of a marked permutation π∗

into irreducible marked permutations are related by ∼. As a consequence, we recover

the following corollary, which was already obtained in Corollary 2.3.4 in a more general

context:

Corollary 3.2.8. Consider α∗ a marked permutation, together with factorizations α∗ =

ξ∗1 ? · · · ? ξ∗k = ρ∗1 ? · · · ? ρ∗j into irreducible marked permutations. Then k = j and

{ξ∗1 , . . . , ξ∗k} = {ρ∗1, . . . , ρ∗j} as multisets.

We was done in Section 2.3, we define j(α∗) to be the number of irreducible factors

in any factorization of α∗ into irreducible factors, and define fac(α∗) as the multiset

of irreducible factors of α∗ in G(MPer). These are well defined as a consequence of

Corollary 3.2.8.
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Definition 3.2.9 (Stability conditions). A factorization of a marked permutation α∗

into irreducible marked permutations,

α∗ = ξ∗1 ? · · · ? ξ∗j ,

or the corresponding word (ξ∗1 , . . . , ξ
∗
j ) in W(Ω), is said to be

• i-⊕-stable if there is no π, τ ⊕-indecomposable permutations such that

ξ∗i = 1̄⊕ π and ξ∗i+1 = τ ⊕ 1̄ ;

• i-	-stable if there is no π, τ 	-indecomposable permutations such that

ξ∗i = τ 	 1̄ and ξ∗i+1 = 1̄	 π .

Such factorization or word is said to be ⊕-stable (resp. 	-stable) if it is i-⊕-stable

(resp. i-	-stable ) for any i = 1, . . . , j − 1. Finally, such a factorization or word is said

to be stable if it is both ⊕-stable and 	-stable.

Remark 3.2.10 (Stability reduction). If we are given a factorization of α∗ = ξ∗1 ? · · ·?ξ∗j
that is not i-⊕-stable or i-	-stable for some i = 1, . . . , j − 1, we can perform an i-

reduction, that maps (ξ∗1 , . . . , ξ
∗
i , ξ
∗
i+1, · · · ? ξ∗j ) to (ξ∗1 , . . . , ξ

∗
i+1, ξ

∗
i , · · · ? ξ∗j ).

It is immediate to see that this procedure of finding some i and applying an i-reduction

always terminates. The final word is stable and is independent of the order in which we

apply the reductions.

Because of the above, any equivalence class in W(Ω)/∼ admits a unique stable word,

and a consequence of Theorem 3.2.7 is the following.

Corollary 3.2.11 (Unique stable factorization). Let α∗ be a marked permutation.

Then, α∗ has a unique stable factorization into irreducible marked permutations. We

refer to it as the stable factorization of α∗.

3.3 Lyndon factorization on marked permutation

We introduce an order on permutations, two orders on marked permutations and an

order in W(Ω).
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Definition 3.3.1 (Orders on marked permutations). The lexicographic order on permu-

tations is the lexicographic order when reading the one-line notation of permutations,

and is written π ≤per τ .

Recall that, for a marked permutation α∗ = (≤P ,≤V ) in I, we define its rank rk(α∗) as

the rank of ∗ in I t {∗} with respect to the order ≤P . We also write α for referring to

the corresponding permutation in the set I t {∗}. We define the lexicographic order on

marked permutations, also denoted ≤per, as follows: we say that π∗ ≤per τ∗ if π <per τ

or if π = τ and rk(π∗) ≤ rk(τ∗).

This in particular endows our alphabet Ω of irreducible marked permutations with an

order. When we compare words on W(Ω) we order them lexicographically according to

≤per, and denote it simply as ≤.

We define the factorization order ≤fac on marked permutations as follows: Let π∗ =

ξ∗1 ? · · · ? ξ∗k and τ∗ = τ∗1 ? · · · ? τ∗j be the respective unique stable factorizations of π∗ and

τ∗. Then, we say that π∗ ≤fac τ∗ if (ξ∗1 , . . . , ξ
∗
k) ≤ (τ∗1 , . . . , τ

∗
j ) in W(Ω).

Example 3.3.2. On permutations we have 12345 ≤per 132 ≤per 231 ≤per 4123. Observe

that the empty permutation is the smallest permutation.

On marked permutations, we have 13̄2 ≤per 132̄ ≤per 2̄31 ≤per 4123̄. Observe that the

trivial marked permutation 1̄ is the smallest marked permutation.

On words, we have the following examples: (241̄3, 314̄2) ≤ (314̄2, 241̄3), (1̄32, 213̄) ≤
(1̄432) and (24̄13, 1̄423, 24̄13) ≤ (24̄13, 24̄13, 1̄423).

On marked permutations, because (241̄3, 314̄2) and (314̄2, 241̄3) are stable, we have that

241̄3 ? 314̄2 ≤fac 314̄2 ? 241̄3. Notice however, that (1̄32, 213̄) is not a stable word, as it

does not satisfy the 1-⊕-stability condition. Instead, we have (1̄32, 213̄)∗ = 213̄?1̄32 ≥fac
1̄432.

Sometimes the orders ≤per and ≤fac on marked permutations do not agree, as exempli-

fied in Fig. 3.2.

Remark 3.3.3. If w1 ≥ w2 are stable words in W(Ω), then these correspond precisely

to the stable irreducible factorizations of w∗1, w
∗
2. Thus, w∗1 ≥fac w∗2.

Remark 3.3.4. If a word w = (ρ∗1, . . . , ρ
∗
k) in W(Ω) is not i-⊕-stable or i-	-stable,

then ρ∗i <per ρ
∗
i+1. Thus, from Theorem 3.2.7 and Remark 3.2.10, for a fixed marked

permutation α∗, among all words w on irreducible marked permutations such that w∗ =

α∗, the stable factorization is the biggest one in the lexicographical order.

We start the discussion on the topic of Lyndon words. This is useful because the

unique factorization theorem obtained in Corollary 3.2.11 for marked permutations is
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≥fac

≤per

31574̄62 57314̄26

314̄2 ? 241̄3 241̄3 ? 314̄2

Figure 3.2: Two marked permutations and their order relations.

not enough to establish the freeness of A(MPer) and, as in [Var14], Lyndon words are

the tool that allows us to describe an improved unique factorization theorem in Theo-

rem 3.3.9.

Definition 3.3.5 (Lyndon words). Given an alphabet A with a total order, a word

l ∈ W(A) is said to be a Lyndon word if, for any concatenation factorization l = a1 · a2

into non-empty words, we have that a2 ≥ l.

Example 3.3.6 (Examples of Lyndon words). Consider the (usual) alphabet

Ω = {1̄ <per 1̄2 <per 1̄32 <per · · · <per 231̄ <per 241̄3 <per . . . } ,

then (1̄2, 1̄32, 1̄2, 241̄3) is a Lyndon word in this alphabet. Meanwhile, (1̄, 1̄) is not a

Lyndon word.

Definition 3.3.7 (Stable Lyndon marked permutations). A word on irreducible marked

permutations w = (ξ∗1 , . . . , ξ
∗
j ) ∈ W(Ω) is called stable Lyndon, or SL for short, if it is a

Lyndon word and satisfies the stability conditions introduced in Definition 3.2.9.

A marked permutation π∗ is called stable Lyndon, or SL for short, if there exists an

SL word l = (ξ∗1 , . . . , ξ
∗
j ) such that l∗ = π∗. We write LSL for the set of SL marked

permutations. Observe that, from Corollary 3.2.11, if such an SL word exists it is unique.

We see latter in Theorem 3.4.1 that LSL is precisely the set that indexes a free basis

of A(MPer). To establish the unique factorization theorem in the context of marked

permutations, we first recall a classical fact in Lyndon words.

Theorem 3.3.8 (Unique Lyndon factorization theorem, [CFL58]). Consider a finite al-

phabet A with a total order. Then any word has a unique factorization, in the concatena-

tion product, into Lyndon words l1, . . . , lk such that l1 ≥ · · · ≥ lk for the lexicographical

order in W(A).
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This theorem is central in establishing the freeness of the shuffle algebra in [Rad79]. So

is the unique factorization into Lyndon marked permutations below, in establishing the

freeness of A(MPer).

Theorem 3.3.9 (Unique stable Lyndon factorization theorem). Let α∗ be a marked

permutation. Then there is a unique sequence of SL words on Ω, l1, . . . , lk such that

li ≥ li+1 and α∗ = l∗1 ? · · · ? l∗k.

To such a sequence of words, we call the SL factorization of α∗.

Proof. The existence follows from Corollary 3.2.11 and Theorem 3.3.8. Indeed, for any

marked permutation α∗, there is a unique stable factorization ξ∗1 , . . . , ξ
∗
j(α∗), and from

the Lyndon factorization theorem, the word (ξ∗1 , . . . , ξ
∗
j(α∗)) ∈ W(Ω) admits a factoriza-

tion into Lyndon words l1, . . . , lk such that li ≥ li+1. These words are stable because

(ξ∗1 , . . . , ξ
∗
j(α∗)) is stable, and from (ξ∗1 , . . . , ξ

∗
j(α∗)) = l1 · · · lk we have that α∗ = l∗1 ? · · ·?l∗k.

We then obtain the desired sequence of SL words l1, . . . , lk.

For the uniqueness of such a factorization, suppose we have SL words m1 ≥ · · · ≥ mk′

that form an SL factorization of α∗. We wish to show that this is precisely the sequence

l1, . . . , lk constructed above. Write mk = (ρ∗k,1, . . . , ρ
∗
k,zk

) for v = 1, . . . , k′ − 1, where

zv = |mv| and, for readability purposes, consider as well the re-indexing m1 · · ·mk′ =

(ρ∗1, . . . , ρ
∗
z).

First observe that from α∗ = m∗1 ? · · · ? m∗k′ we get that ρ∗1 ? · · · ? ρ∗z is a factorization

of α∗ into irreducibles. Further, because each mj is stable, the i-⊕-stability and i-	-

stability of this factorization is given for any i that is not of the form z1 + · · ·+ zv, for

some v = 1, . . . , k′ − 1. On the other hand, it follows from the Lyndon property that

ρ∗k,zk >per ρ
∗
k,1; further, because mk ≥ mk+1, we have that ρ∗k,1 ≥per ρ∗k+1,1. We conclude

that ρ∗k,zk >per ρ
∗
k+1,1. Comparing with Remark 3.3.4, we have the i-⊕-stability and i-

	-stability condition for any i that is of the form z1 + · · ·+zv, for some v = 1, . . . , k′−1.

Thus, ρ∗1 ? · · · ? ρ∗z is the stable factorization of α∗, so that (ρ∗1, . . . , ρ
∗
z) = (ξ∗1 , . . . , ξ

∗
k).

Further, the sequence m1 ≥ · · · ≥ mk′ is the Lyndon factorization of (ρ∗1, . . . , ρ
∗
z), so

(m1, . . . ,mk′) = (l1, . . . , lk) by the uniqueness in Theorem 3.3.8.

We define k(α∗) to be the number of factors in the stable Lyndon factorization of α∗.

Note that for any marked permutation α∗, k(α∗) ≤ j(α∗) where we recall that j(α∗)

is the number of irreducible factors in a factorization of α∗ into irreducible marked

permutations.
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Definition 3.3.10 (Word shuffle). Consider Ω an alphabet, and let w, l1, . . . , lk ∈ W(Ω).

We say that w = (w1, . . . , wj) is a word shuffle of l1, . . . , lk if [j] can be partitioned into

k many disjoint sets {q(i)
1 < · · · < q

(i)
|li|}, where i runs over i = 1, . . . , k, such that

li = (w
q
(i)
1

, . . . , w
q
(i)
|li|

) ,

for all i = 1, . . . , k.

The following theorem is proven in [Rad79, Theorem 2.2.2] and is the main property

of Lyndon factorizations on words that we wish to use here. This is also the main

ingredient in showing that the shuffle algebra is free.

Theorem 3.3.11 (Lyndon shuffles - [Rad79]). Take Ω an ordered alphabet, and l1 ≥
· · · ≥ lk Lyndon words on W(Ω). Consider w ∈ W(Ω), and assume that w is a word

shuffle of l1, . . . , lk. Then w ≤ l1 · · · lk.

We remark that there are substantial notation differences: particularly, in [Rad79] a

prime factorization is what we call here the Lyndon factorization. Our notation follows

[GR14].

3.4 Freeness of the pattern algebra in marked permuta-

tions

In this section we state the main steps of the proof of Theorem 3.0.1. The proof of the

technical lemmas is postponed to Section 3.6.

We consider the set of SL marked permutations LSL, which play the role of free gener-

ators, and consider a multiset of SL marked permutations {ι∗1 ≥fac · · · ≥fac ι∗k} and the

marked permutation α∗ = ι∗1 ? · · · ? ι∗k.

Then, all the terms that occur in the right hand side of

k∏
i=1

pι∗i =
∑
β∗

(
β∗

ι∗1, . . . , ι
∗
k

)
pβ∗ , (3.1)

correspond to quasi-shuffles of ι∗1, . . . , ι
∗
k. Below we establish that the marked permu-

tation α∗ = ι∗1 ? · · · ? ι∗k is the biggest such marked permutation occurring on the right

hand side of (3.1), with respect to a suitable total order related to ≤fac.
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Theorem 3.4.1. Let α∗ be a marked permutation, and suppose that ι∗1, . . . , ι
∗
k is its

Lyndon factorization. Then there are coefficients cβ∗ ≥ 0 such that

k∏
i=1

pι∗i =
∑

|β∗|<|α∗|

cβ∗ pβ∗ +
∑

|β∗|=|α∗|
j(β∗)<j(α∗)

cβ∗ pβ∗ +
∑

|β∗|=|α∗|
j(β∗)=j(α∗)
β∗≤facα∗

cβ∗ pβ∗ . (3.2)

Furthermore, cα∗ ≥ 1.

With this, the linear independence of all products of the form
∏k
i=1 pι∗i follows from

the linear independence of {pα∗ |α∗ ∈ G(MPer)}, established earlier in Remark 2.2.2. In

other terms, Theorem 3.4.1 implies Theorem 3.0.1. The technical lemmas necessary to

prove Theorem 3.4.1 are the following:

Lemma 3.4.2. Let β∗ be a quasi-shuffle of the marked permutations ι∗1, . . . , ι
∗
k. Then,

|β∗| ≤ |α∗|. Further, if |β∗| = |α∗|, then j(β∗) ≤ j(α∗).

Lemma 3.4.3 (Factor breaking lemma). Let β∗ be a quasi-shuffle of the marked per-

mutations ι∗1, . . . , ι
∗
k, such that |β∗| = |α∗| and j(β∗) = j(α∗). Then fac(β∗) = fac(α∗).

Furthermore, if for each i = 1, . . . , k,

ι∗i = ζ∗1,i ? · · · ? ζ∗j(ι∗i ),i

is the stable factorization of ι∗i , then there is a marked permutation γ∗ with a factoriza-

tion into irreducibles given by γ∗ = τ∗1 ? · · · ? τ∗j(γ∗) such that

• we have fac(γ∗) = fac(β∗). In particular, |γ∗| = |β∗| = |α∗| and j(γ∗) = j(β∗) =

j(α∗);

• we have γ∗ ≥fac β∗;

• the word (τ∗1 , . . . , τ
∗
j(γ∗)) is a word shuffle of the words {(ζ∗1,i, . . . , ζ∗j(ι∗i ),i)}i=1,...,k.

These lemmas will be proven below, in Section 3.6. We remark that, here, the chosen or-

dering ≤per on the irreducible marked permutations plays a role. That is, in proving that

γ∗ ≥fac β∗ we use properties of the order ≤per introduced above, like Remark 3.3.4. This

is unlike the work in [Var14], where any order in the ⊕-indecomposable permutations

gives rise to a set of free generators.

Lemma 3.4.4 (Factor preserving lemma). Let γ∗ be a marked permutation with a

factorization into irreducibles given by γ∗ = τ∗1 ? · · · ? τ∗j(γ∗), and let l1, . . . , lk be SL

words, such that
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• li ≥ li+1 for each i = 1, . . . , k − 1 and;

• The word (τ∗1 , . . . , τ
∗
j(γ∗)) is a word shuffle of the words {li}i=1,...,k.

Then, γ∗ ≤fac l∗1 ? · · · ? l∗k.

In the remaining of the section we assume these lemmas and conclude the proof of the

freeness of the pattern algebra, by establishing Theorem 3.4.1.

Proof of Theorem 3.4.1. Because a product is a quasi-shuffle of its factors, it follows

from Remark 2.1.6 and from α∗ = ι∗1 ? · · · ? ι∗k that cα∗ ≥ 1. We conclude the proof if we

show that any β∗ that is a quasi-shuffle of ι∗1 . . . , ι
∗
k satisfies either

• |β∗| < |α∗|;

• or |β∗| = |α∗| and j(β∗) < j(α∗);

• or |β∗| = |α∗|, j(β∗) = j(α∗) and β∗ ≤fac α∗.

Suppose that β∗ is a quasi-shuffle of ι∗1, . . . , ι
∗
k. For each i = 1, . . . k, let li be the SL

word corresponding to the SL marked permutation ι∗i . From Lemma 3.4.2 we only need

to consider the case where |β∗| = |α∗| and j(β∗) = j(α∗).

From Lemma 3.4.3 we have that in this case, fac(β∗) = fac(α∗), and there is a marked

permutation γ∗ that satisfies fac(γ∗) = fac(β∗), γ∗ ≥fac β∗, and also has a factorization

into irreducibles that is a word shuffle of l1, . . . , lk. Thus, from Lemma 3.4.4 we have

that γ∗ ≤fac l∗1 ? · · · ? l∗k = α∗. It follows that β∗ ≤fac γ∗ ≤fac α∗, as desired.

3.5 Proof of unique factorization theorem

We start this section with the concept of DC intervals and DC chains of a marked

permutation α∗. We will see that these are closely related to factorizations of α∗, and we

will exploit this correspondence to prove the unique factorization theorem Theorem 3.2.7.

Recall that if β∗ is a marked permutation in X, and I ⊆ X, we denote I∗ := I t {∗} for

simplicity of notation. We also write X(β∗) = X.

Definition 3.5.1. Let β∗ be a marked permutation on the set X, i.e., β∗ = (≤P ,≤V )

is a pair of orders on the set X∗. A doubly connected interval on β∗, or a DC interval

for short, is a set I ⊆ X such that I∗ is an interval on both orders ≤P ,≤V . A proper

DC interval is a DC interval I such that I 6= X.
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Note that X and ∅ are always DC intervals. Note as well that if I1, I2 are DC intervals,

then I1 ∪ I2 is also a DC interval.

Remark 3.5.2. Suppose that β∗ = (≤P ,≤V ) is a marked permutation, and I is a DC

interval of β∗. Consider mP ,MP ∈ X∗ the minimal, respectively maximal, element for

the order ≤P . If mP ,MP ∈ I∗, then I = X.

Symmetrically, if mV ,MV ∈ X∗ are the minimal, respectively maximal, elements for the

order ≤V , and mV ,MV ∈ I∗, then I = X.

For a marked permutation β∗, we use the notation mP ,MP ,mV ,MV in the remaining

of the section to refer to its respective extremes, as in Remark 3.5.2.

Definition 3.5.3. For a DC interval I of a marked permutation α∗ = (≤P ,≤V ), we

define the permutation α∗\I∗ in the set Ic resulting from the restriction of the orders

≤P ,≤V to the set Ic. Alternatively, this is the permutation resulting from the removal

of the marked element in α∗|Ic .

Remark 3.5.4. If α∗ = a∗1 ? a
∗
2, then X(a∗2) is a DC interval in α∗. On the other hand,

if I is a DC interval of α∗, then α∗ = α∗|Ic ? α∗|I , so right factors of α∗ are in bijection

with DC intervals of α∗. Furthermore, I is a maximal proper DC interval of α∗ if and

only if α∗|Ic is irreducible.

To a factorization β∗ = ρ∗1? · · ·?ρ∗j of a marked permutation β∗ ∈ MPer[X] it corresponds

a chain of DC intervals

∅ = Jj+1 ( Jj ( · · · ( J1 = X .

The chain is defined by Jk = X(ρ∗k ? · · · ? ρ∗j ) and satisfies β∗|Jk\Jk+1
= ρ∗k for any

k = 1, . . . , j. This chain of DC intervals is maximal if and only if the original factorization

has only irreducible factors.

Remark 3.5.5. The marked permutation α∗ is ⊕-decomposable if and only if there is

a DC interval I of α∗ such that I∗ contains both mP ,mV , or contains both MP ,MV .

In the first case, α∗ factors as β∗1 ⊕ β2, where β∗1 = α∗|I and β2 = α∗\I∗ . In the second

case, α∗ factors as β1 ⊕ β∗2 , where β1 = α∗\I∗ and β∗2 = α∗|I .

Similarly, α∗ is 	-decomposable if and only if there is a DC interval I of α∗ such that

I∗ contains both MP ,mV , or contains both mP ,MV .

In the first case, α∗ factors as β∗1 	 β2, where β∗1 = α∗|I and β2 = α∗\I∗ . In the second

case, α∗ factors as β1 	 β∗2 , where β1 = α∗\I∗ and β∗2 = α∗|I .



72

This characterization of ⊕-decomposable marked permutations will be useful in the proof

of the classification of the factorizations below, specifically in Lemma 3.5.10. It is also

useful to characterize all ⊕-decomposable marked permutations that are irreducible in

Section 3.7.

Observation 3.5.6 (⊕-factorization in marked permutations). Let α∗ be a marked per-

mutation. Then there are unique ⊕-indecomposable permutations ε1, . . . , εk, λ1, . . . , λj

and β∗ an ⊕-indecomposable marked permutation such that

α∗ = ε1 ⊕ · · · ⊕ εk ⊕ β∗ ⊕ λj ⊕ · · · ⊕ λ1 .

In this case, we say that α∗ is q-⊕-decomposable, where q = k + j.

Example 3.5.7 (q-⊕-decomposition). Consider the marked permutation 213̄54. This

is a 2-decomposable marked permutation, as it admits the ⊕-factorization

213̄54 = 21⊕ 1̄⊕ 21 .

A marked permutation is ⊕-indecomposable if and only if it is 0-⊕-decomposable.

Lemma 3.5.8 (Irreducible ⊕-factor lemma). Suppose that α∗ is a marked permutation

that has the following ⊕-factorization

α∗ = ε1 ⊕ · · · ⊕ εu ⊕ β∗ ⊕ λv ⊕ · · · ⊕ λ1 ,

where u + v > 0. Consider any factorization α∗ = σ∗ ? γ∗, where σ∗ is an irreducible

marked permutation.

• If both u > 0 and v > 0, then either σ∗ = 1̄⊕ λ1 or σ∗ = ε1 ⊕ 1̄.

• If u = 0, then σ∗ = 1̄⊕ λ1.

• If v = 0, then σ∗ = ε1 ⊕ 1̄.

Proof. Let us deal with the case where both u > 0 and v > 0 first. Assume that neither

σ∗ = 1̄⊕ λ1 nor σ∗ = ε1 ⊕ 1̄. Consider the following DC intervals, that are all distinct

Y1 = X(ε2 ⊕ · · · ⊕ εu ⊕ β∗ ⊕ λv ⊕ · · · ⊕ λ1) ,

Y2 = X(ε1 ⊕ · · · ⊕ εu ⊕ β∗ ⊕ λv ⊕ · · · ⊕ λ2) ,

Y = X(γ∗) .
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Note that mP ∈ Y ∗2 \Y ∗1 and MP ∈ Y ∗1 \Y ∗2 by construction. Note also that α∗|Y c1 = ε1⊕1̄

and α∗|Y c2 = 1̄ ⊕ λ1 are irreducible marked permutations, so both Y1, Y2 are maximal

proper DC intervals. Furthermore, Y is also a maximal proper DC interval. This

maximality gives us that Y ∪ Y1 = X = Y ∪ Y2.

From Y ∪ Y1 = X and mP 6∈ Y ∗1 , we have that mP ∈ Y ∗, and from Y ∪ Y2 = X and

MP 6∈ Y ∗2 we get that MP ∈ Y ∗. From Remark 3.5.2, this is a contradiction with the

fact that Y is a proper DC interval, thus contradicting the assumption that neither

σ∗ = 1̄⊕ λ1 nor σ∗ = ε1 ⊕ 1̄, as desired.

Now suppose that u = 0, and v > 0. Assume for the sake of contradiction that σ∗ 6=
1̄⊕ λ1, and define the following distinct DC intervals

Y2 = X(β∗ ⊕ λv ⊕ · · · ⊕ λ2) and Y = X(γ∗) .

Because both σ∗ and 1̄ ⊕ λ1 are irreducible, the DC intervals Y2, Y are both maximal

proper, so X = Y ∪Y2. Further, mP ∈ Y ∗2 by construction, so MP ∈ Y ∗ by Remark 3.5.2.

Consider the DC interval I = X(β∗), and notice that mP ∈ I∗ by construction. Thus

we have that I∗ ∪ Y ∗ = X∗, and Y c ⊆ I.

α∗ =

λ1

λ2

λvλv

Y

Y2

I

Y

β∗

These regions are empty
because T is a DC interval

Figure 3.3: A decomposition of β∗, whenever the DC interval Y is proper

We have the following decomposition, depicted in Fig. 3.3:

β∗ = α∗ \Y ∗ ⊕α∗|I∩Y .
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Notice that α∗\Y ∗ is not the empty permutation, because Y is a proper DC interval.

This is a contradiction with the fact that β∗ is ⊕-indecomposable, so σ∗ = 1̄⊕ λ1.

The case where u > 0 and v = 0 is done in a similar way, so the result follows.

Corollary 3.5.9. Consider a marked permutation α∗ that is q-⊕-decomposable, so that

α∗ = ε1 ⊕ · · · ⊕ εu ⊕ β∗ ⊕ λv ⊕ · · · ⊕ λ1 is the ⊕-decomposition of α∗. If σ∗1 ? · · · ? σ∗j is a

factorization of α∗ into irreducibles, then j ≥ q and

1. σ∗q+1 ? · · · ? σ∗j = β∗.

2. By applying ⊕-relations to (σ∗1, . . . , σ
∗
q ) we can obtain

(1̄⊕ λ1, . . . , 1̄⊕ λv, ε1 ⊕ 1̄, . . . , εu ⊕ 1̄) .

Proof. We use induction on q. The base case is q = 0, where there is nothing to establish

in 2. and we need only to show that

σ∗1 ? · · · ? σ∗j = β∗ ,

which follows because σ∗1 ? · · · ? σ∗j = α∗ = β∗.

Now for the induction step, we assume that q ≥ 1 . From Lemma 3.5.8, σ∗1 is either

ε1 ⊕ 1̄ or 1̄⊕ λ1, thus according to Remark 3.1.4 ζ∗ := σ∗2 ? · · · ? σ∗k is either

ε2 ⊕ · · · ⊕ εu ⊕ β∗ ⊕ λv ⊕ · · · ⊕ λ1 ,

or

ε1 ⊕ · · · ⊕ εu ⊕ β∗ ⊕ λv ⊕ · · · ⊕ λ2.

Without loss of generality, assume the first case. Then ζ∗ is (q− 1)-⊕-decomposable, so

the induction hypothesis applies to the factorization of ζ∗. That is, we have that

σ∗q+1 ? · · · ? σ∗j = β∗ .

Furthermore, the induction case gives us that (1̄⊕ λ1, . . . , 1̄⊕ λv, ε2 ⊕ 1̄, . . . , εu ⊕ 1̄) can

be obtained from (σ∗2, . . . , σ
∗
q ) by a series of ⊕-relations.
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So, by only using ⊕-relations,

(1̄⊕ λ1, . . . , 1̄⊕ λv, ε1 ⊕ 1̄, ε2 ⊕ 1̄, . . . , εu ⊕ 1̄)

∼ (ε1 ⊕ 1̄, 1̄⊕ λ1, . . . , 1̄⊕ λv, ε2 ⊕ 1̄, . . . , εu ⊕ 1̄)

∼ind.hip. (σ∗1, σ
∗
2, . . . , σ

∗
q )

(3.3)

concluding the the proof.

We remark that Observation 3.5.6, Lemma 3.5.8, and Corollary 3.5.9 have counterparts

for the 	 operation.

Lemma 3.5.10 (Indecomposable irreducible factor lemma). Suppose that α∗ is a non-

trivial marked permutation that is both ⊕-indecomposable and 	-indecomposable.

Consider two factorizations of α∗, σ∗1?β
∗
1 and σ∗2?β

∗
2 , where σ∗1, σ

∗
2 are irreducible marked

permutations. Then σ∗1 = σ∗2 and β∗1 = β∗2 .

Proof. According to Remark 3.5.4, it suffices to see that α∗ only has one maximal

proper DC interval. Suppose otherwise, that there are Y1, Y2 distinct proper maximal

DC intervals, for the sake of contradiction. Further, consider mP ,MP ,mV ,MV the usual

maximal and minimal elements in X(α∗)∗.

We have that Y1 ∪ Y2 = X, so mP ,MP ,mV ,MV ∈ Y ∗1 ∪ Y ∗2 . Without loss of generality

suppose that mP ∈ Y ∗1 . We know that {mV ,MV } 6⊆ Y ∗2 , so there are only two cases to

consider:

• We have that mP ,mV ∈ Y ∗1 . Then α∗ is ⊕-decomposable, according to Re-

mark 3.5.5.

• We have that mP ,MV ∈ Y ∗1 . Then α∗ is 	-decomposable, according to Re-

mark 3.5.5.

In either case, we reach a contradiction. It follows that β∗1 = β∗2 and σ∗1 = σ∗2.

Proof of Theorem 3.2.7. Consider a marked permutation α∗, and take words w1 =

(ξ∗1 , . . . , ξ
∗
k) and w2 = (ρ∗1, . . . , ρ

∗
j ) in W(Ω) such that

ξ∗1 ? · · · ? ξ∗k = ρ∗1 ? · · · ? ρ∗j =: α∗ , (3.4)

and assume for the sake of contradiction that these can be chosen with w1 6∼ w2. Further

choose such words minimizing k + j = |w1|+ |w2|. We need only to consider four cases:
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The marked permutation α∗ = 1̄ is trivial: then by a size argument we have that

both words w1 and w2 are empty, thus w1 = w2.

The marked permutation α∗ is indecomposable: in this case, from Lemma 3.5.10

we know that ξ∗1 = ρ∗1 and that ξ∗2 ? · · · ? ξ∗k = ρ∗2 ? · · · ? ρ∗j . Thus, by minimality,

(ξ∗2 , . . . , ξ
∗
k) ∼ (ρ∗2, . . . , ρ

∗
j ), which implies (ξ∗1 , . . . , ξ

∗
k) ∼ (ρ∗1, . . . , ρ

∗
j ) and that is a contra-

diction.

The marked permutation α∗ is ⊕-decomposable: Assume now that α∗ is q-⊕-

decomposable, for some q > 0. That is, there are ⊕-indecomposables such that

α∗ = ε1 ⊕ · · · ⊕ εu ⊕ β∗ ⊕ λv ⊕ · · · ⊕ λ1, u+ v = q .

Then Corollary 3.5.9 tells us that q ≤ k, j and that

ξ∗q+1 ? · · · ? ξ∗k = β∗ = ρ∗q+1 ? · · · ? ρ∗j . (3.5)

Further, we also have that

(ξ∗1 , . . . , ξ
∗
q ) ∼ (1̄⊕ λ1, . . . , 1̄⊕ λv, ε1 ⊕ 1̄, . . . , εu ⊕ 1̄) ∼ (ρ∗1, . . . , ρ

∗
q) . (3.6)

Because q > 0, from (3.5) and the minimality of (ξ∗1 , . . . , ξ
∗
k), (ρ∗1, . . . , ρ

∗
j ) we have that

(ξ∗q+1, . . . , ξ
∗
k) ∼ (ρ∗q+1, . . . , ρ

∗
j ) .

This, together with (3.6) gives us (ξ∗1 , . . . , ξ
∗
k) ∼ (ρ∗1, . . . , ρ

∗
j ) and that is a contradiction.

The marked permutation α∗ is 	-decomposable: This case is similar to the

previous one.

We conclude that a factorization of a marked permutation into irreducibles is unique up

to the relations in Remark 3.2.5.

3.6 Proofs of Lemmas 3.4.4 to 3.4.2

We start by fixing some notation. Consider a multiset {ι∗1 ≥ · · · ≥ ι∗k} of SL marked per-

mutations, and let α∗ be the marked permutation with Lyndon factorization (ι∗1, . . . , ι
∗
k)

which exists and is unique by Theorem 3.3.9, and has α∗ = ι∗1 ? · · · ? ι∗k.

Note that S :=
⊎k
i=1 fac(ι

∗
i ) = fac(α∗) as multisets, from Corollary 3.2.8.
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Proof of Lemma 3.4.2. Let β∗ be a marked permutation in X. By Definition 2.2.5, there

are sets I1, . . . , Ik such that:

I1 ∪ · · · ∪ Ik = X and β∗|Ii ∼ ι∗i ∀i = 1, . . . , k . (3.7)

Suppose that β∗ has stable factorization β∗ = ρ∗1 ? · · · ? ρ∗j , where j = j(β∗), with a

corresponding maximal DC interval chain

∅ = Jj+1 ( Jj ( · · · ( J1 = X ,

as given in Remark 3.5.4, so that β∗|Jp\Jp+1
= ρp for p = 1, . . . , j.

Since β∗ is a quasi-shuffle of ι∗1, . . . , ι
∗
k, the sets I1, . . . , Ik cover X and so

|β∗| = |X| ≤
k∑
i=1

|Ii| =
k∑
i=1

|ι∗i | = |α∗| , (3.8)

so we conclude that |β∗| ≤ |α∗|.

Now, assume that we have |β∗| = |α∗|, so we have equality in (3.8), thus the sets Ii are

mutually disjoint. Recall that j(α∗) =
∑

i j(ι
∗
i ), as shown in Corollary 3.2.8. Therefore,

we only need to establish that
∑

i j(ι
∗
i ) ≥ j. For each i = 1, . . . , k, the following is a DC

interval chain of ι∗i , which is not necessarily a maximal one:

∅ = Jj+1 ∩ Ii ⊆ Jj ∩ Ii ⊆ · · · ⊆ J1 ∩ Ii = Ii , (3.9)

so let us consider the set Up := {i ∈ [k]|Jp+1 ∩ Ii 6= Jp ∩ Ii}.

First it is clear that each Up is non empty, as otherwise we would have

Jp+1 =
⋃
i

Jp+1 ∩ Ii =
⋃
i

Jp ∩ Ii = Jp .

On the other hand, the length of the DC chain is given precisely by the number of strict

inequalities in (3.9), that is by |{p ∈ [j]|i ∈ Up}|. From Corollary 3.2.8 and Remark 3.5.4,

this is at most j(β∗|Ii) = j(ι∗i ), so

∑
i

j(ι∗i ) ≥
∑
i

|{p ∈ [j]|i ∈ Up}| =
j∑

p=1

|Up| ≥ j . (3.10)

So we conclude that j(α∗) ≥ j(β∗).
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Proof of Lemma 3.4.3. Assume now that |β∗| = |α∗| and j(β∗) = j(α∗). As a corollary

of the proof above, and using the same notation, we have that the sets Ii are pairwise

disjoint, and we obtain equality all through (3.10), so that each Up is in fact a singleton.

We wish to split the indexing set [j(γ∗)] into k many disjoint increasing sequences

q
(i)
1 < · · · < q

(i)
j(ι∗i ) for i = 1, . . . , k such that

ι∗i = τ∗
q
(i)
1

? · · · ? τ∗
q
(i)

j(ι∗
i
)

, (3.11)

is precisely the stable factorization of each ι∗i .

Define the map ζ : [j] → [k] that sends p to the unique element in Up. This map will

give us the desired increasing sequences. It satisfies

|ζ−1(i)| = |{p ∈ [j]|i ∈ Up}| = j(ι∗i ) for i = 1, . . . , k .

Write ζ−1(i) = {q(i)
1 < · · · < q

(i)
j(ι∗i )} ⊆ [j] and set q

(i)
j(ι∗i )+1 = j + 1. In the following, we

identify the marked permutations ι∗i and β∗|Ii in order to find a factorization of ι∗ into

irreducibles. Specifically, we get that

ι∗i = β∗|Ii = ρ∗1|Ii∩J1\J2 ? · · · ? ρ
∗
j |Ii∩Jj\Jj+1

(3.12)

is a factorization of ι∗i . Because each Up is a singleton, Ii ∩ Jp \ Jp+1 is either Jp \ Jp+1

or ∅, thus ρ∗p|Ii∩Jp\Jp+1
is either ρ∗p of 1̄, and the factorization in (3.12), after removing

the trivial terms, becomes the following factorization into irreducibles:

ιi = ρ∗
q
(i)
1

? · · · ? ρ∗
q
(i)

j(ι∗
i
)

. (3.13)

Then, we indeed have that fac(β∗) =
⊎k
i=1 fac(ι

∗
i ). We now construct the desired marked

permutation γ∗.

According to Corollary 3.2.8, for each i, the unique stable factorization of ι∗i results from

ι∗i = ρ∗
q
(i)
1

? · · · ? ρ∗
q
(i)

j(ι∗
i
)

by a permutation of the factors. Thus, for each i we can find

indices p
(i)
1 , . . . , p

(i)
j(ι∗i ) such that {p(i)

1 , . . . , p
(i)
j(ι∗i )} = {q(i)

1 , . . . , q
(i)
j(ι∗i )} and

ι∗i = ρ∗
q
(i)
1

? · · · ? ρ∗
q
(i)

j(ι∗
i
)

= ρ∗
p
(i)
1

? · · · ? ρ∗
p
(i)

j(ι∗
i
)

is the stable factorization of ι∗i .
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For each s ∈ [j], if s = q
(i)
u for some integers i, u, define τs := ρ∗

p
(i)
u

and finally define

γ∗ = τ∗1 ? · · · ? τ∗j .

α∗ = ι∗1 ? ι
∗
2 ? ι

∗
3 ι∗1 = ρ∗5 ? ρ

∗
2 ? ρ

∗
8

ι∗2 = ρ∗3 ? ρ
∗
4 ? ρ

∗
1

Stable Factorizations

β∗ = ρ∗1 ? ρ
∗
2 ? ρ

∗
3 ? ρ

∗
4 ? ρ

∗
5 ? ρ

∗
6 ? ρ

∗
7 ? ρ

∗
8

γ∗ = ρ∗3 ? ρ
∗
5 ? ρ

∗
4 ? ρ

∗
1 ? ρ

∗
2 ? ρ

∗
6 ? ρ

∗
7 ? ρ

∗
8

ι∗3 = ρ∗6 ? ρ
∗
7

Figure 3.4: Example of construction of γ∗ for j = 8.

A graphical description of this construction for j = 8 is given in Fig. 3.4. We claim that

γ∗ satisfies the three conditions described in the lemma. First, it is clear that fac(β∗) =⊎k
i=1 fac(ι

∗
i ) = fac(γ), and that the disjoint increasing sequences q

(i)
1 < · · · < q

(i)
j(ι∗i ) are

such that

τ∗
q
(i)
1

? · · · ? τ∗
q
(i)

j(ι∗
i
)

= ρ∗
p
(i)
1

? · · · ? ρ∗
p
(i)

j(ι∗
i
)

is precisely the stable factorization of ι∗i . Thus, we need only to establish that β∗ ≤fac γ∗.

We claim that (τ∗1 , . . . , τ
∗
j ) ≥ (ρ∗1, . . . , ρ

∗
j ). Indeed, (τ∗1 , . . . , τ

∗
j ) is obtained from the word

(ρ∗1, . . . , ρ
∗
j ) by the stabilization procedure in its subwords. From the stabilization pro-

cedure we obtain bigger words in the lexicographical order, according to Remark 3.3.4.

This still holds true even if only applied to a subword, thus the resulting word (τ∗1 , . . . , τ
∗
j )

is lexicographically bigger than (ρ∗1, . . . , ρ
∗
j ).

Now, if γ∗ = ε∗1 ? · · · ? ε∗j is the stable factorization of γ∗, because γ∗ = τ∗1 ? · · · ? τ∗j we

have that from Remark 3.3.4 that

(τ∗1 , . . . , τ
∗
j ) ≤ (ε∗1, . . . , ε

∗
j ) ,

Thus

(ρ∗1, . . . , ρ
∗
j ) ≤ (ε∗1, . . . , ε

∗
j ) ,

and so β∗ ≤fac γ∗, as desired.
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In the following proof, we will start by showing that the given factorization of γ∗ can

be assumed to be the stable factorization. Then, using Theorem 3.3.8 and the fact that

the factorization of γ∗ is a shuffle of Lyndon words to establish the desired inequality.

Proof of Lemma 3.4.4. Write j = j(γ∗). We first see that if γ∗ has some factorization

that is a word shuffle of stable words l1, . . . , lk, then the stable factorization is also a

word shuffle of these words.

Indeed, take a factorization τ∗1 ? · · · ? τ∗j such that (τ∗1 , . . . , τ
∗
j ) is a word quasi-shuffle of

l1, . . . , lk, and say that there is some u ∈ {1, . . . , j−1} such that this factorization is not

u-⊕-stable or is not u-	-stable. According to Remark 3.2.10, to show that the stable

factorization is also a word shuffle of l1, . . . , lk, it suffices to show that the word resulting

from swapping τ∗u and τ∗u+1 in (τ∗1 , . . . , τ
∗
j ) is still a word quasi-shuffle of l1, . . . , lk.

When we apply a u-stability reduction (see Remark 3.2.10), we can still find a suitable

partition of [j] into k many disjoint increasing sequences. Say that [j] is partitioned into

the blocks {q(i)
1 < · · · < q

(i)
j(ι∗i )}, then there are integers i1, i2, v1, v2 such that u = q

(i1)
v1

and u+ 1 = q
(i2)
v2 . Because (τ∗

q
(i)
1

, . . . , τ∗
q
(i)

j(ι∗
i
)

) is stable for each i, we cannot have i1 = i2.

Therefore, by swapping the elements u, u + 1 we obtain a new partition for the new

factorization, thus showing that it is a word quasi-shuffle of l1, . . . , lk.

Now let ρ∗1 ? · · · ? ρ∗j be the stable factorization of γ∗. Since (ρ∗1, . . . , ρ
∗
j ) is a word

shuffle of l1, . . . , lk, which are Lyndon words in W(Ω), we have from Theorem 3.3.11

that (ρ∗1, . . . , ρ
∗
j ) ≤ l1 · · · lk, and so γ∗ ≤fac l∗1 ? · · · ? l∗k.

3.7 Primitive elements, growth rates and asymptotic anal-

ysis

Recall that in Section 2.2.3 we define the space of primitive elements P (H) of a Hopf

algebra H is the subspace of H given by {a ∈ H|∆a = a ⊗ 1 + 1 ⊗ a}. In the par-

ticular case of the pattern Hopf algebra A(MPer), its primitive space is spanned by

{pπ∗ |π∗ is irreducible marked permutation}, according to Proposition 2.2.10. So, we

are interested in enumerating the irreducible marked permutations. We consider some

generating functions:

• The power series P ∗(x) =
∑

π∗ marked permutation x
|π∗| =

∑
n≥1 n · n!xn−1 counts

marked permutations.

• The power series P (x) =
∑

π permutation x
|π| =

∑
n≥0 n!xn counts permutations.
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• The power series S∗(x) =
∑

k≥0 skx
k =

∑
π∗ irreducible marked permutation x

|π∗| counts

irreducible marked permutations. This is the main generating function that we

aim to enumerate here.

• The power series S∗o(x) =
∑

k≥0 sokx
k =

∑
π∗ irreducible and indecomposable

marked permutation

x|π
∗| counts

irreducible marked permutations that are indecomposable, that is marked permu-

tations that are neither ⊕-decomposable nor 	-decomposable.

• The power series P⊕(x) =
∑

π is ⊕− decomposable x
|π| counts permutations that are

⊕-indecomposable. This also counts the permutations that are 	-indecomposable.

Because we have a unique factorization theorem on permutations under the ⊕ product,

the coefficients of P⊕(x) can be easily extracted via the following power series relation

1

1− P⊕(x)
= P (x) =

∑
n≥0

n!xn , which implies P⊕(x) = 1− P (x)−1 .

Observation 3.7.1. Any ⊕-decomposable irreducible marked permutation is either of

the form 1̄ ⊕ π or of the form π ⊕ 1̄ for π an ⊕-indecomposable permutation, and

symmetrically for 	-decomposable irreducible marked permutations.

Thus, we have

S∗(x)− S∗o(x) = 4P⊕(x) . (3.14)

The following proposition allows us to enumerate easily the irreducible marked permu-

tations and the irreducible indecomposable marked permutations, as done in Table 3.1.

Proposition 3.7.2 (Power series of irreducible marked permutations).

S∗(x) = 3 +
2

P (x)2
− 1

P ′(x)
− 4

P (x)
.

S∗o(x) = −1 +
2

P (x)2
− 1

P ′(x)

where P ′ is the formal differential of the power series P .

We compare this result with the enumeration of simple permutations in [AAK03, Equa-

tion 1], where the power series enumerating simple permutations is given as the solution

of a functional equation that is not rational. Thus, we expect it to be simpler to compute

the coefficients explicitly.

Lemma 3.7.3. Let π∗ be a marked permutation. Then, there are four cases

• There are unique marked permutations σ∗ and α∗ such that σ∗ is indecomposable

and irreducible, and π∗ = σ∗ ∗ α∗.
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n 0 1 2 3 4 5 6 7 8 9

son 0 0 0 8 78 756 7782 85904 1016626 12865852

sn 0 4 4 20 130 1040 9626 99692 1132998 13959224

Table 3.1: First elements of the sequences son and sn.

• The marked permutation π∗ is ⊕-decomposable.

• The marked permutation π∗ is 	-decomposable.

• π∗ = 1̄.

In particular, we have the following equation

P ∗(x) = S∗o(x)P ∗(x) + 2(P (x)− P⊕(x))′ + 1 . (3.15)

Proof. If π∗ is indecomposable, then, either π∗ = 1̄, or there are unique marked permu-

tations σ∗ and α∗ such that σ∗ is indecomposable and irreducible, and π∗ = σ∗ ∗ α∗,
according to Lemma 3.5.10. This concludes the first part of the lemma.

Further, we observe that

(P (x)− P⊕(x))′

counts the marked permutations that are ⊕-decomposable (and by symmetry, the ones

that are 	-decomposable).

Proof of Proposition 3.7.2. From (3.15) along with the fact that P ∗(x) = P ′(x), we have

that

S∗o(x) = −1 + 2P (x)−2 − P ′(x)−1 ,

S∗(x) = 3 + 2P (x)−2 − P ′(x)−1 − 4P (x)−1 ,

as desired.



Chapter 4

The kernel of chromatic

quasi-symmetric functions on

graphs and hypergraphic

polytopes

This chapter is a work based on the article [Pen18], to be published in Journal of

Combinatorial Theory A. A short version was published in the proceedings of Formal

Power Series and Algebraic Combinatorics (talk presentation). The article [Pen18] is

split into this chapter and Chapter 5. The work in Section 4.5 is original to this thesis.

4.1 Introduction

Chromatic function on graphs

For a graph G with vertex set V (G), a coloring f of the graph G is a function f :

V (G)→ N. A coloring is proper in G if no edge is monochromatic.

We denote by G the graph Hopf algebra, which is a vector space freely generated by

the graphs whose vertex sets are of the form [n] for some n ≥ 0. This can be endowed

with a Hopf algebra structure, as described by Schmitt in [Sch94, Chapter 12], and also

presented below in Section 4.2.2.

Stanley defines in [Sta95] the chromatic symmetric function of G in commuting variables

{xi}i≥1 as

ΨG(G) =
∑

f
xf , (4.1)

83
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where we write xf =
∏
v∈V (G) xf(v), and the sum runs over proper colorings of G.

Note that ΨG(G) is in the ring Sym of symmetric functions. The ring Sym is a Hopf

subalgebra of QSym, the ring of quasi-symmetric functions introduced by Gessel in

[Ges84]. A long standing conjecture in this subject, commonly referred to as the tree

conjecture, is that if two trees T1, T2 are not isomorphic, then ΨG(T1) 6= ΨG(T2).

When V (G) = [n], the natural ordering on the vertices allows us to consider a non-

commutative analogue of ΨG, as done by Gebhard and Sagan in [GS01]. They define

the chromatic symmetric function on non-commutative variables {ai}i≥1 as

ΥG(G) =
∑

f
af ,

where we write af = af(1) . . .af(n), and we sum over the proper colorings f of G.

Note that ΥG(G) is homogeneous and symmetric in the variables {ai}i≥1. Such power

series are called word symmetric functions. The ring of word symmetric functions,

WSym for short, was introduced in [RS06], and is sometimes called the ring of sym-

metric functions in non-commutative variables, or NCSym, for instance in [BZ09].

Here we adopt the former name to avoid confusion with the ring of non-commutative

symmetric functions.

In this chapter we describe generators for ker ΨG and ker ΥG. A similar problem was

already considered for posets. In [Fér15], Féray studies ΨPos, the Gessel quasi-symmetric

function defined on the poset Hopf algebra, and describes a set of generators of its kernel.

Some elements of the kernel of ΨG have already been constructed in [GP13] by Guay-

Paquet and independently in [OS14] by Orellana and Scott. These relations, called

modular relations, extend naturally to the non-commutative case. We introduce them

now.

Given a graph G and an edge set E that is disjoint from E(G), let G ∪ E denote the

graph G with the edges in E added. If we have edges e3 ∈ G and e1, e2 6∈ G such that

{e1, e2, e3} forms a triangle, then we also have

ΥG(G)−ΥG(G ∪ {e1})−ΥG(G ∪ {e2}) + ΥG(G ∪ {e1, e2}) = 0 . (4.2)

− − +

Figure 4.1: Example of a modular relation.
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We call the formal sum G−G∪{e1}−G∪{e2}+G∪{e1, e2} in G a modular relation on

graphs. An example is given in Fig. 4.1. Our first result is that these modular relations

span the kernel of the chromatic symmetric function in non-commuting variables. The

structure of the proof also allows us to compute the image of the map.

Theorem 4.1.1 (Kernel and image of ΥG : G→WSym). The modular relations span

ker ΥG. The image of ΥG is WSym.

Two graphs G1, G2 are said to be isomorphic if there is a bijection between the vertices

that preserves edges. For the commutative version of the chromatic symmetric function,

if two isomorphic graphs G1, G2 are given, it holds that ΨG(G1) and ΨG(G2) are the

same. The formal sum in G given by G1 − G2 is called an isomorphism relation on

graphs.

Theorem 4.1.2 (Kernel and image of ΨG : G → Sym). The modular relations and

the isomorphism relations generate the kernel of the commutative chromatic symmetric

function ΨG. The image of ΨG is Sym.

It was already noticed that ΨG is surjective. For instance, in [CvW15], several bases of

Symn are constructed, which are the chromatic symmetric function of graphs, namely

are of the form {ΨG(Gλ)|λ ` n} for suitable graphs Gλ on n vertices. Here we present

a new such family of graphs.

At the end of Section 4.3 we introduce a new graph invariant Ψ̃, called the augmented

chromatic invariant. We observe that modular relations on graphs are in the kernel of

the augmented chromatic invariant. It follows from Theorem 4.1.2 that ker ΨG = ker Ψ̃.

This reduces the tree conjecture in ΨG to a similar conjecture on this new invariant Ψ̃,

which contains seemingly more information.

Generalized Permutahedra

Another goal of this chapter is to look at other kernel problems of chromatic flavor. In

particular, we establish similar results to Theorems 4.1.1 and 4.1.2 in the combinato-

rial Hopf algebra of hypergraphic polytopes, which is a Hopf subalgebra of generalized

permutahedra.

Generalized permutahedra form a family of polytopes that include permutahedra, asso-

ciahedra and graph zonotopes. This family has been studied, for instance, in [PRW08],

and we introduce it now.



86

Recall that the Minkowski sum of two polytopes a, b is set as a+b = {a+b| a ∈ a, b ∈ b}.
The Minkowski difference a − b is only sometimes defined: it is the unique polytope c

that satisfies b + c = a, if it exists. We denote as
∑

i ai the Minkowski sum of several

polytopes.

If we let {ei|i ∈ I} be the canonical basis of RI , a simplex is a polytope of the form

sJ = conv{ej |j ∈ J} for non-empty J ⊆ I. A generalized permutahedron in RI is

a polytope given by real numbers {aJ}∅6=J⊆I as follows: Let A+ = {J |aJ > 0} and

A− = {J |aJ < 0}. Then, the corresponding generalized permutahedron is

q =

 ∑
J∈A+

aJsJ

−
 ∑
J∈A−

|aJ |sJ

 , (4.3)

if the Minkowski difference exists. We identify a generalized permutahedron q with

the list {aJ}∅6=J⊆I . Note that not every list of real numbers will give us a generalized

permutahedron, since the Minkowski difference is not always defined.

In [Pos09], generalized permutahedra are introduced in a different manner. A polytope

is said to be a generalized permutahedron if it can be described as

q =

x ∈ Rn|
∑
i∈I

xi ≤ zI for I ( [n] non-empty ;
∑
i∈[n]

xi = z[n]

 ,

for reals {zJ}∅6=J⊆I .

A third definition of generalized permutahedra is present in [AA17]. Here, a generalized

permutahedron is a polytope whose normal fan coarsens the one of the permutahedron.

These three definitions are equivalent, and a discussion regarding this can be seen in

Section 4.2.4.

A hypergraphic polytope is a generalized permutahedron where the coefficients aJ in

(4.3) are non-negative. For a hypergraphic polytope q, we denote by F(q) ⊆ 2I \ {∅}
the family of sets J ⊆ I such that aJ > 0. A fundamental hypergraphic polytope on

RI is a hypergraphic polytope
∑
∅6=J⊆I aJsJ such that aJ ∈ {0, 1}. Finally, for a set

A ⊆ 2I \ {∅}, we write F−1(A) for the hypergraphic polytopes q =
∑

J∈A sJ . Note that

a fundamental hypergraphic polytope is of the form F−1(A) for some family A ⊆ 2I\{∅}.

One can easily note that the hypergraphic polytope q and F−1(F(q)) are, in general,

distinct, so some care will come with this notation. However, the face structure is the

same, and we give an explicit combinatorial equivalence in Proposition 4.4.9. If q is a

hypergraphic polytope such that F(q) is a building set, then q is called a nestohedron, see
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[Pil17] and [AA17]. Hypergraphic polytopes and its subfamilies are studied in [AA17,

Part 4], where they are also called y-positive generalized permutahedra.

In [AA17], Aguiar and Ardila define GP, a Hopf algebra structure on the linear space

generated by generalized permutahedra in Rn for n ≥ 0. The Hopf subalgebra HGP is

the linear subspace generated by hypergraphic polytopes. We warn the reader of the use

of the same notation for Minkowski operations (Minkowski sum and dilations) and for

algebraic operations in GP. However, the distinction should be clear from the context.

In [Dok11], generalized permutahedra are also debated.

In [Gru16], Grujić introduced a quasi-symmetric map in generalized permutahedra

ΨGP : GP → QSym that was extended to a weighted version in [GPS19]. For a

polytope q ⊆ RI , Grujić defines a function f : I → N to be q-generic if the face of q

that minimizes
∑

i∈I f(i)xi, denoted qf , is a point. Equivalently, f is q-generic if it lies

in the interior of the normal cone of some vertex of q. Then, Grujić defines for a set

{xi}i≥1 of commutative variables, the quasi-symmetric function:

ΨGP(q) =
∑

f is q-generic

xf . (4.4)

This quasi-symmetric function is called the chromatic quasi-symmetric function on gen-

eralized permutahedra, or simply chromatic quasi-symmetric function.

We discuss now a non-commutative version of ΨGP, where we establish an analogue

of Theorem 4.1.1 for hypergraphic polytopes. For that, consider the Hopf algebra of

word quasi-symmetric functions WQSym, an analogue of QSym in non-commutative

variables introduced in [NT06] that is also called non-commutative quasi-symmetric

functions, or NCQSym, for instance in [BZ09]. For a generalized permutahedron q and

non-commutative variables {ai}i≥1, let af = af(1) · · ·af(n) and define

ΥGP(q) =
∑

f is q-generic

af .

We see from Proposition 4.2.11 that ΥGP(q) is a word quasi-symmetric function. More-

over, a straightforward computation shows that ΥGP defines a Hopf algebra morphism

between GP and WQSym. Let us call ΨHGP and ΥHGP the restrictions of ΨGP and

ΥGP to HGP, respectively.

Our next theorems describe the kernel of the maps ΨHGP and ΥHGP, using two types

of relations:
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• the simple relations, which are presented in Proposition 4.4.9, and convey that

ΥGP(q) only depends on which coefficients aI are positive;

• the modular relations, which are exhibited in Theorem 4.4.10. We note for future

reference that these generalize the ones for graphs: some of the modular relations

on hypergraphic polytopes are the image of modular relations on graphs by a

suitable embedding map Z, introduced below.

The simple relations allow us to reduce the kernel problem to the subspace of HGP

spanned by fundamental hypergraphic polytopes, that is polytopes of the form F−1(A).

Remark 4.1.3. Note that the span of the fundamental hypergraphic polytopes does

not form a Hopf algebra, as it is not stable for the coproduct.

Theorem 4.1.4 (Kernel and image of of ΥHGP : HGP → WQSym). The space

ker ΥHGP is generated by the simple relations and the modular relations on hypergraphic

polytopes. The image of ΥHGP is SC, a proper subspace of WQSym introduced in

Definition 4.4.4 below.

Let us denote by WQSymn the linear space of homogeneous word quasi-symmetric

functions of degree n, and let SCn = SC ∩WQSymn. A monomial basis for SC is

presented in Definition 4.4.4. An asymptotic for the dimension of SCn is computed in

Proposition 4.4.14, where in particular it is shown that it is exponentially smaller than

the dimension of WQSymn.

Two generalized permutahedra q1, q2 are isomorphic if q1 can be obtained from q2 by

rearranging the coordinates of the points in q1. If q1, q2 are isomorphic, the chromatic

quasi-symmetric functions ΨGP(q1) and ΨGP(q2) are the same. We say that q1 − q2 is

an isomorphism relation on hypergraphic polytopes.

Theorem 4.1.5 (Kernel and image of ΨHGP : HGP → QSym). The linear space

ker ΨHGP is generated by the simple relations, the modular relations and the isomor-

phism relations. The image of ΨHGP is QSym.

In [AA17], Aguiar and Ardila define the graph zonotope, a Hopf algebra embedding

Z : G → GP discussed above. Remarkably, we have that ΨG ◦ Z = ΨGP. They

also define other polytopal embeddings from other combinatorial Hopf algebras H, like

matroids, to GP. One associates a universal morphism ΨH to these Hopf algebras that

also satisfy ΨGP ◦ Z = ΨH. These universal morphisms are discussed below.

In particular, we can see that Z(ker ΨH) = ker ΨGP ∩ Z(H). This relation between

ker ΨH and ker ΨGP is the main motivation to describe ker ΨGP, and indicates that
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ker ΨGP is the kernel problem that deserves most attention. In this chapter, we leave

the description of ker ΨGP as an open problem.

Most of the combinatorial objects embedded in GP are also embedded in HGP, such

as graphs and matroids, so a description of ker ΨGP is already interesting.

We remark that a description of the generators of ΨGP or ker ΨHGP does not entail a

description of the generators of a generic ker ΨH. For that reason, the kernel problem

on matroids and on simplicial complexes is still open, despite these Hopf algebras being

realized as Hopf subalgebras of HGP.

Universal morphisms

For a Hopf algebra H, a character η of H is a linear map η : H→ K that preserves the

multiplicative structure and the unit of H. We define a combinatorial Hopf algebra as

a pair (H, η) where H is a Hopf algebra and η : H→ K a character of H. For instance,

consider the ring of quasi-symmetric functions QSym introduced in [Ges84] with its

monomial basis {Mα}, indexed by compositions. Then, QSym has a combinatorial

Hopf algebra structure (QSym, η0), by setting η0(Mα) = 1 whenever α has one or zero

parts.

In [ABS06], Aguiar, Bergeron, and Sottile showed that any combinatorial Hopf algebra

(H, η) has a unique combinatorial Hopf algebra morphism ΨH : H → QSym, i.e., a

Hopf algebra morphism that satisfies η0 ◦ ΨH = η. In other words, (QSym, η0) is a

terminal object in the category of combinatorial Hopf algebras. The construction of ΨH

is given in [ABS06] and also presented below in Section 4.2. We will refer to these maps

as the universal maps to QSym.

The commutative invariants previously shown on graphs ΨG, on posets ΨPos and on

generalized permutahedra ΨGP can be obtained as universal maps to QSym. If we

take the character η(G) = 1[G has no edges] on the graphs Hopf algebra, the unique

combinatorial Hopf algebra morphism G → QSym is exactly the map ΨG. With the

Hopf algebra structure imposed on GP in [AA17], if we consider the character η(q) =

1[q is a point], then ΨGP is the universal map from GP to QSym. On posets, the Hopf

algebra structure considered is the one presented in [GR14] and the character that is

considered is η(P ) = 1[P is an antichain].

To see the maps ΥG : G→WSym and ΥGP : GP→WQSym as universal maps, we

need a parallel of the universal property of QSym in the non-commutative world. The

fitting property is better described in the context of Hopf monoids in vector species.

Consider the Hopf monoid WQSym, which is presented in [AM10] as the Hopf monoid of
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faces. It is seen that for any connected Hopf monoid h there is a unique Hopf monoid

morphism Υh between h and WQSym. In the last chapter we establish another proof

of this fact, using resources from character theory, and expand on that showing that

instead of a connected Hopf monoid we can take any combinatorial Hopf monoid, for a

suitable notion of combinatoric Hopf monoid.

The relationship between Hopf algebras and Hopf monoids is very well captured with

the so called Fock functors, mapping Hopf monoids to Hopf algebras, and Hopf monoid

morphisms to Hopf algebra morphism. In particular, the full Fock functor K satisfies

K(WQSym) = WQSym. Then, the universal property of WQSym gives us a Hopf algebra

morphism K(Υh) from K(h) to WQSym. The maps ΥG,ΥGP arise precisely in this

way, when applying K to the unique combinatorial Hopf monoid morphism from the

Hopf monoid on graphs Gr and of generalized permutahedra GP to WQSym. In partic-

ular, we observe that K(Gr) = G and K(GP) = GP. If we consider the poset Hopf

monoid Pos, the universal property of the combinatorial Hopf monoid WQSym gives us a

non-commutative analogue ΥPos of the Gessel invariant, which coincides with the one

presented in [Fér15]. In particular, K(Pos) = Pos. We will refer to these Hopf algebra

morphisms as the universal maps to WQSym.

Finally, our previous results have an interesting consequence. We show that, because

ΥHGP is not surjective, there is no combinatorial Hopf monoid morphism from the

Hopf monoid on posets to the Hopf monoid on hypergraphic polytopes. However, in

[AA17] a Hopf monoid morphism from posets to extended generalized permutahedra

is constructed. With this result we obtain that this map cannot be restricted from

extended generalized permutahedra to generalized permutahedra.

This chapter and the following one are organized as follows: In Section 4.2 we address the

preliminaries, where the reader can find the linear algebra tools that we use, the intro-

duction to the main Hopf algebras of interest, and the proof that the several definitions

of a generalized permutahedra are equivalent. In Section 4.3 we prove Theorems 4.1.1

and 4.1.2, and we study the augmented chromatic invariant. In Section 4.4 we prove

Theorems 4.1.4 and 4.1.5, and we present asymptotics for the dimension of the graded

Hopf algebra SC. In Chapter 5 we present the universal property of WQSym. In Sec-

tion 4.3.2 we find some relations between the coefficients of the augmented chromatic

symmetric function and the coefficients of the original chromatic symmetric function on

graphs.
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4.2 Preliminaries

There are natural maps WSym → Sym and WQSym → QSym by allowing the

variables to commute. We denote these maps by comu.

For an equivalence relation ∼ on a set A, we write [x]∼ for the equivalence class of x

in ∼, and write [x] when ∼ is clear from context. We write both E(∼) and A/ ∼ for

the set of equivalence classes of ∼. All the vector spaces and algebras are over a generic

field K of characteristic zero.

4.2.1 Linear algebra preliminaries

The following linear algebra lemmas will be useful to compute generators of the kernels

and the images of Ψ and Υ. These lemmas describe a sufficient condition for a set B to

span the kernel of a linear map φ : V →W .

Lemma 4.2.1. Let V be a finite dimensional vector space with basis {ai|i ∈ [m]},
φ : V →W be a linear map, and B = {bj |j ∈ J} ⊆ kerφ be a family of relations.

Assume that there exists I ⊆ [m] such that:

• the family {φ(ai)}i∈I is linearly independent in W ,

• for i ∈ [m] \ I we have ai = b +
∑m

k=i+1 λk,iak for some b ∈ B and some scalars

λk,i;

Then B spans kerφ. Additionally, we have that {φ(ai)}i∈I is a basis of the image of φ.

The following lemma will help us dealing with the composition Ψ = comu ◦Υ: we give a

sufficient condition for a natural enlargement of the set B to generate ker Ψ, given that

B already generates ker Υ.

Lemma 4.2.2. We will use the same notation as in Lemma 4.2.1. Additionally, consider

φ1 : W → W ′ linear map and write φ′ = φ1 ◦ φ. Take the equivalence relation ∼ in

{ai}i∈[m] that satisfies ai ∼ aj whenever φ′(ai) = φ′(aj). Let C = {ai − aj | ai ∼ aj} and

write φ′([ai]) = φ′(ai) with no ambiguity.

B V W

C W ′

φ

φ′
φ1 (4.5)



92

Assume the hypotheses in Lemma 4.2.1 and, additionally, suppose that the family

{φ′([ai])}[ai]∈E(∼) is linearly independent in W ′.

Then, kerφ′ is generated by B ∪ C. Furthermore, {φ′([ai])}[ai]∈E(∼) is a basis of imφ′.

Proof of Lemma 4.2.1. Suppose, for sake of contradiction, that there is some element

c ∈ kerφ \ spanB. In particular c 6= 0. Write

c =
m∑
k=1

τkak , (4.6)

and note that if τi = 0 for every i 6∈ I, then

0 = φ(c) = φ

(∑
k∈I

τkak

)
=
∑
k∈I

τkφ(ak),

which, by linear independence of {φ(ak)}k∈I , implies that τk = 0 for every k ∈ I,

contradicting c 6= 0. Therefore, we have τi 6= 0 for i 6∈ I whenever c ∈ kerφ \ spanB.

Consider the smallest index ic ∈ [m]\ I such that τi is non-zero. Consider c ∈ kerφ\ 〈B〉
that maximizes ic.

Thus, we can write

c =
∑
j∈I

τjaj +
∑

j∈[m]\I
j≥ic

τjaj . (4.7)

By hypotheses, because ic 6∈ I, there is some b′ ∈ B such that:

aic = b′ +
m∑

j=ic+1

λj,icaj .

So applying this to (4.7) gives us:

c− τicb′ =
∑
j∈I

τjaj +
∑

j∈[m]\I
j≥ic

τjaj − τicaic +
m∑

k=ic+1

τicλk,icak

=
∑
j∈I

τjaj +
∑

j∈[m]\I
j>ic

τjaj +
m∑

j=ic+1

τicλj,icaj .

(4.8)

Note that c − τicbj ∈ kerφ \ spanB which contradicts the maximality of ic. From this

we conclude that there are no elements c in kerφ \ spanB.
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To show that the family {φ(ai)}i∈I is a basis of imφ, we just need to establish that this

is a generating set. Naturally, {φ(ai)}i∈I ∪ {φ(ai)}i∈[m] is a generating set because it

is the image of a basis of V . We show by induction that {φ(ai)}i∈I ∪ {φ(ai)}i∈[m]\[k] is

a generating set for any non-negative k ≤ m + 1. This concludes the proof, since the

original claim is this for k = m+ 1.

Indeed, if {φ(ai)}i∈I ∪ {φ(ai)}i∈[m]\[k] is a generating set of imφ, then we note ak =

b+
∑m

j=k+1 λj,kaj for some b ∈ B, so

φ(ak) ∈ span{φ(ai)}i∈I ∪ {φ(ai)}i∈[m]\[k+1] .

This concludes the induction step.

Proof of Lemma 4.2.2. Define I ′ = {maxA∩I|A ∈ E(∼)}. Note that for every j ∈ I \I ′

there is c ∈ C such that aj = c +
∑m

k=j+1 λk,jak. Indeed it is enough to choose i ∼ j

with i ∈ I ′, to write aj = aj − ai︸ ︷︷ ︸
∈C

+ai.

So, the set I ′ ⊆ [m] satisfies both that:

• We have by hypothesis that {φ′(ai)}i∈I′ = {φ′([ai])}i∈I′ is linearly independent in

W ′;

• For i ∈ [m] \ I ′ we can write ai = b+
∑m

k=j+1 λk,iak for some b ∈ B ∪ C and some

scalars λk,i.

Now applying Lemma 4.2.1 to I ′ instead of I, to φ′ instead of φ and to B ∪ C instead of

B tells us that B ∪ C generates kerφ′, and that {φ′([ai])|i ∈ I ′} = {φ′(ai)|i ∈ I} spans

the image of φ′, as desired.

4.2.2 Hopf algebras and associated combinatorial objects

In the following, all the Hopf algebras H have a grading, denoted by H = ⊕n≥0Hn.

An integer composition, or simply a composition, of n, is a list α = (α1, · · · , αk) of

positive integers whose sum is n. We write α |= n. We denote the length of the list by

l(α) and we denote the set of compositions of size n by Cn.

An integer partition, or simply a partition, of n, is a non-increasing list of positive

integers λ = (λ1, · · · , λk) whose sum is n. We write λ ` n. We denote the length of

the list by l(λ) and we denote the set of partitions of size n by Pn. By disregarding the

order of the parts on a composition α we obtain a partition λ(α).
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A set partition π = {π1, · · · ,πk} of a set I is a collection of non-empty disjoint subsets

of I, called blocks, that cover I. We write π ` I. We denote the number of parts of the

set partition by l(π), and call it its length. We denote the family of set partitions of I

by PI , or simply by Pn if I = [n]. By counting the elements on each block of π, we

obtain an integer partition denoted by λ(π) ` |I|. We identify a set partition π ∈ PI

with an equivalence relation ∼π on I, where x ∼π y if x, y ∈ I are on the same block of

π.

A set composition ~π = S1| · · · |Sl of I is a list of non-empty disjoint subsets of I that

cover I, which we call blocks. We write ~π |= I. We denote the size of the set composition

by l(~π). We write CI for the family of set compositions of I, or simply Cn if I = [n].

By disregarding the order of a set composition ~π, we obtain a set partition λ(~π) ` I.

By counting the elements on each block of ~π, we obtain a composition denoted by

α(~π) |= |I|. A set composition is naturally identified with a total preorder R~π on I,

where xR~πy if x ∈ Si, y ∈ Sj for i ≤ j.

Permutations act on set compositions and set partitions: for a set composition ~π =

(S1, · · · , Sk), a set partition π = {π(1), · · · , π(k)} on I, and a permutation φ : I → I,

we define the set composition φ(~π) = (φ(S1), · · · , φ(Sk)) and the set partition φ(π) =

{φ(π(1)), · · · , φ(π(k))}.

A coloring of the set I is a function f : I → N. The set composition type ~π(f) of

a coloring f : I → N is the set composition obtained after deleting the empty sets of

f−1(1)|f−1(2)| · · · . This notation is extended to function f : I → R.

Definition 4.2.3. In partitions and in set partitions, we use the classical coarsening

orders ≤ with the same notation, where we say that π ≤ τ (resp. π ≤ τ ) if τ is obtained

from π by adding some parts of the original parts together (resp. if τ is obtained from

π by merging some blocks).

These objects relate to the Hopf algebras Sym, QSym, WSym and WQSym. The ho-

mogeneous component Symn (resp. QSymn, WSymn and WQSymn) of the Hopf alge-

bra Sym (resp. QSym, WSym, WQSym) has a monomial basis indexed by partitions

(resp. compositions, set partitions, set compositions), which we denote by {mλ}λ∈Pn
(resp. {Mα}α∈Cn , {mπ}π∈Pn and {M~π}~π∈Cn

).

4.2.3 Hopf algebras on graphs

Recall that for graphs, Gebhard and Sagan defined in [GS01] the non-commutative

chromatic morphism. The following expression is given:
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Lemma 4.2.4 ([GS01, Proposition 3.2]). For a graph G we say that a set partition τ

of V (G) is proper if no block of τ contains an edge. Then have that

ΥG(G) =
∑
τ

mτ ,

where the sum runs over all proper set partitions of V (G).

4.2.4 Faces and a Hopf algebra structure of generalized permutahedra

In the following we identify I with [n]. For a set composition ~π = Sk| . . . |S1 on [n],

recall that R~π is a partial order on [n]. For a non-empty set J ⊆ [n], define the set

J~π = {minima of J in R~π} = J ∩ Si, where i is the smallest index with J ∩ Si 6= ∅. A

coloring on [n] is a map f : [n]→ N. A real coloring on [n] is a map f : [n]→ R, and we

identify the real coloring f with the linear function f : R[n] → R.

x 7→
n∑
i=1

f(i)xi .

In the space R[n], we define the simplices sJ = conv{ev| v ∈ J} for each J ⊆ [n]. Recall

that a generalized permutahedron is a Minkowski sum and difference of the form

q =

∑
J 6=∅
aJ>0

aJsJ

−
∑

J 6=∅
aJ<0

|aJ |sJ

 ,

for reals L(q) = {aJ}∅6=J⊆[n] that can be either positive, negative or zero.

Recall as well that a hypergraphic polytope is a generalized permutahedron of the form

q =
∑
J 6=∅

aJsJ ,

for non-negative reals L(q) = {aJ}∅6=J⊆[n].

For a polytope q and a real coloring f on [n], we denote by qf the subset of q on which

f is minimized, that is

qf := arg min
x∈q

∑
i∈I

f(i)xi .

A face of q is the solution to such a linear optimization problem on q. A real coloring is

said to be q-generic if the corresponding face is a point.
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Note that if J1 ⊆ J2, then sJ1 is a face of sJ2 . Incidentally, whenever f is a coloring

that is minimal exactly in J1, we have that sJ1 = (sJ2)f . In fact, for a real coloring

f : [n] → N the face corresponding to f of a simplex is another simplex, specifically it

we can directly compute that

(sJ)f = sJ~π(f)
. (4.9)

The following fact describes faces of the Minkowski sums and differences:

Lemma 4.2.5. Let f be a real coloring and a, b two polytopes. Then (a+b)f = af +bf

and, if the difference a− b is well defined, (a− b)f = af − bf .

Proof. Suppose that ma,mb are the minima of f in the polytopes a, b. Let x ∈ a + b.

So x = a+ b for some a ∈ a, b ∈ b.

Then f(x) = f(a) +f(b) ≥ ma +mb. We have equality if and only if we have a ∈ af , b ∈
bf , that is when x ∈ af + bf .

Now (a− b)f = af − bf follows because (a− b)f + bf = af by the above.

Definition 4.2.6 (Normal fan of a polytope). A cone is a subset of an R-vector space

that is closed for addition and multiplication by positive scalars. For a polytope q and

F ⊆ q one of its faces, we define its normal cone

Nq(F ) := {f : [n]→ R| qf = F} .

This is a cone in the dual space of Rn. Moreover, the normal cones of all the faces of q

partition (Rn)∗ into cones Nq = {Nq(F )|F is a face of q}. This is the normal fan of q.

Example 4.2.7 (The normal fan of the n-permutahedron - The braid fan). The faces

of the permutahedron are indexed by Cn. In particular, the corresponding normal cone

of the face F~π, corresponding to ~π ∈ Cn, is

N (F~π) = {f : [n]→ R|~π(f) = ~π} .

In the introduction we referred two other definitions of generalized permutahedra that

are present in the literature. We recover them here, and justify their equivalence:

Lemma 4.2.8 (Definition 1 of generalized permutahedra, see [AA17]). A polytope q is a

generalized permutahedron in the sense of (4.3) if and only if its normal fan coarsens the

one of the permutahedron. Specifically, for any two real colorings f1, f2, if ~π(f1) = ~π(f2)

then qf1 = qf2 .
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Define the polytope Pzn({zI}∅6=I⊆[n]) in the plane
∑

i xi = z[n] given by the inequalities

∑
i∈I

xi ≥ zI ,

for some real numbers {zI}∅6=I⊆[n].

Lemma 4.2.9 (Definition 2 of generalized permutahedra, see [Pos09]). A polytope is

a generalized permutahedron if it can be expressed as Pzn({zI}∅6=I⊆[n]) for real numbers

{zI}I⊆[n] such that

zI + zJ ≤ zI∪J + zI∩J ,

for all non-empty sets I, J ⊆ [n] that are not disjoint.

In [AA17, Theorem 12.3], is it shown that these two last notions of generalized per-

mutahedra are equivalent. That is, a polytope q is of the form q = Pzn({zI}∅6=I⊆[n])

for real numbers {zI}∅6=I⊆[n] if and only if its normal fan coarsens the one from the

permutahedron.

In [ABD10, Proposition 2.4], Ardila, Benedetti and Doker show that any generalized

permutahedron has an expression of the from given by Eq. (4.3). The main feature in

that proof is the following: for real numbers {zI}∅6=I⊆[n] such that zI +zJ ≥ zI∪J +zI∩J ,

if we choose reals {aJ}∅6=J⊆[n] such that zI =
∑
∅6=J⊆I aJ , then Eq. (4.3) gives us a well

defined polytope and in fact defines the same polytope as Pzn({zI}∅6=I⊆[n]).

In the following we establish that the normal fan of a polytope of the form Eq. (4.3)

coarsens the one of the n-permutahedron, concluding with the above that the three

definitions of generalized permutahedra presented are equivalent.

Proposition 4.2.10. Let q be a polytope of the form

q =

 ∑
J∈A+

aJsJ

−
 ∑
J∈A−

|aJ |sJ

 ,

for reals L(q) = {aJ}∅6=J⊆[n] that can be either positive, negative or zero, and A+ =

{J |aJ > 0} and A− = {J |aJ < 0}. Then its normal fan coarsens the one of the

permutahedron.

Proof. Let f be a real coloring of [n]. As a consequence of Example 4.2.7 and as discussed

in the end of Lemma 4.2.8, it is enough to establish that if f1, f2 satisfy ~π(f1) = ~π(f2)

then qf1 = qf2 . In fact, from Lemma 4.2.5 and (4.9), we have

qf =

 ∑
J∈A+

aJ(sJ)f

−
 ∑
J∈A−

|aJ |(sJ)f

=

 ∑
J∈A+

aJsJ~π(f)

−
 ∑
J∈A−

|aJ |sJ~π(f)

 ,
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which clearly only depend on the set composition type of the real coloring f .

Denote by q~π the face on q that is the solution to any linear optimization problem on q

for a real coloring f with composition type ~π(f) = ~π, so that

q~π =

 ∑
J∈A+

aJsJ~π

−
 ∑
J∈A−

|aJ |sJ~π

 . (4.10)

The following is a consequence of Lemma 4.2.8:

Proposition 4.2.11. If q is a generalized permutahedron, then

ΥGP(q) =
∑

f q-generic

af =
∑

q~π=pt

M~π ∈WQSymn . (4.11)

We now turn away from the face structure of generalized permutahedra and debate its

Hopf algebra structure, introduced in [AA17]. As usual, consider a generalized permu-

tahedron q given by (4.3). If ~π = A|B is a set composition of [n], then q~π can be written

as a Minkowski sum of polytopes

q~π =: q|A + q\A ,

where q|A is a generalized permutahedron in RA and q\A is a generalized permutahedron

on RB. Note that B = Ac so the dependence of q|A and q\A on B is implicit.

We can obtain explicit expressions for q|A and q\A:

q|A=

 ∑
J∈A+
J 6⊆B

aJsJ∩A

−
 ∑
J∈A−
J 6⊆B

|aJ |sJ∩A

 , q\A=

 ∑
J∈A+
J⊆B

aJsJ

−
 ∑
J∈A−
J⊆B

|aJ |sJ

 .

4.3 Main theorems on graphs

In this section we prove Theorems 4.1.1 and 4.1.2, which follow from Lemmas 4.2.1

and 4.2.2. We also discuss an application of Theorem 4.1.2 on the tree conjecture, by

constructing a new graph invariant Ψ̃(G) that satisfies the modular relations.

For a set partition π, we define the graph Kπ where {i, j} ∈ E(Kπ) if i ∼π j. This

graph is the disjoint union of the complete graphs on the blocks of π. We denote the

complement of a graph G as Gc. Note that a set partition τ is proper in Kc
π if and
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only if τ ≤ π in the coarsening order on set partitions. Hence, as a consequence of

Lemma 4.2.4,

ΥG(Kc
π) =

∑
τ≤π

mτ . (4.12)

We now show that the kernel of ΥG is spanned by the modular relations.

Proof of Theorem 4.1.1. Recall that Gn is spanned by graphs with vertex set [n]. We

choose an order ≥̃ in this family of graphs in a way that the number of edges is non-

decreasing.

From (4.12), we know that the transition matrix of {ΥG(Kc
π)|π ∈ Pn} over the mono-

mial basis of WSym is upper triangular, hence forms a basis set of WSym. In partic-

ular, im ΥG = WSym.

In order to apply Lemma 4.2.1 to the set of modular relations on graphs, it suffices to

show the following: if a graph G is not of the form Kc
π, then we can find a formal sum

G−G∪{e1}−G∪{e2}+G∪{e1, e2} that is a modular relation. Indeed, G is the graph

with least edges in that expression, so it is the smallest in the order ≥̃. It follows from

Lemma 4.2.1 that the modular relations generate the space ker ΥG.

To find the desired modular relation, it is enough to find a triangle {e1, e2, e3} such that

e1, e2 6∈ E(G) and e3 ∈ E(G). Consider τ , the set partition given by the connected

components of Gc, so that G ⊇ Kc
τ . By hypothesis, G 6= Kc

τ , so there are vertices u,w

in the same block of τ that are not neighbors in Gc. Without loss of generality we can

take such u,w that are at distance 2 in Gc, so they have a common neighbor v in Gc

(see example in Fig. 4.2).

Figure 4.2: Choice of edges in proof of Theorem 4.1.1

The edges e1 = {v, u}, e2 = {v, w} and e3 = {u,w} form the desired triangle, concluding

the proof.

Proof of Theorem 4.1.2. It is clear that ΨG is surjective, since ΥG is surjective. Now,

our goal is to apply Lemma 4.2.2 to the map ΨG = comu ◦ΥG and the equivalence

relation corresponding to graph isomorphism. First, note that if λ(π) = λ(τ ) then Kc
π

and Kc
τ are isomorphic graphs. Define without ambiguity rλ(π) = ΨG(Kc

π).
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From the proof of Theorem 4.1.1, the hypotheses of Lemma 4.2.1 are satisfied. Therefore,

to apply Lemma 4.2.2 it is enough to establish that the family {rλ}λ∈Pn is linearly

independent. Indeed, it would follow that ker ΨG is generated by the modular relations

and the isomorphism relations, and {rλ}λ∈Pn is a basis of im ΨG concluding the proof.

Recall that for set partitions π1,π2 we have that π1 ≤ π2 ⇒ λ(π1) ≤ λ(π2). The

linear independence of {rλ}λ∈Pn follows from the fact that its transition matrix to the

monomial basis is upper triangular under the coarsening order in integer partitions.

Indeed, from (4.12), if we let τ run over set partitions and σ run over integer partitions,

we have

rλ(π) = ΨG(Kc
π) =

∑
τ≤π

mλ(τ ) =
∑

σ≤λ(π)

aπ,σ mσ ,

where aπ,σ = |{τ ` [n]|λ(τ ) = σ, τ ≤ π}|. Note that aπ,λ(π) = 1, so {rλ}λ∈Pn is linearly

independent.

Remark 4.3.1. We have obtained in the proof of Theorem 4.1.2 that {rλ}λ`n is a basis

for Symn. This basis is different from other “chromatic bases” proposed in [CvW15].

The proof gives us a recursive way to compute the coefficients ζλ on the span ΨG(G) =∑
λ ζλrλ. It is then natural to ask if combinatorial properties can be obtained for these

coefficients, which are isomorphism invariants.

Similarly in the non-commutative case, we obtain that {ΥG(Kc
π)}π`[n] is a basis of

WQSymn, and so other coefficients arise. We can again ask for combinatorial properties

of these coefficients.

4.3.1 The augmented chromatic invariant

Consider the ring of power series K[[x1, x2, . . . ; q1, q2, . . . ]] on two countably infinite col-

lections of commuting variables, and let R be such ring modulo the relations qi(qi−1)2 =

0.

Consider the graph invariant Ψ̃(G) =
∑

f xf
∏
i q
cG(f,i)
i in R, where the sum runs over

all colorings f of G, and cG(f, i) stands for the number of monochromatic edges of color

i in the coloring f ,i.e., edges {v1, v2} such that f(v1) = f(v2) = i.

For instance, if G = K2, then Ψ̃(G) = 2
∑

1≤i<j xixj+
∑

1≤i x
2
i qi. If we consider G = K3

then we have

Ψ̃(G) = 6
∑

1≤i<j<k
xixjxk + 3

∑
i 6=j

xix
2
jqj +

∑
1≤i

x3
i q

3
i .

Note that we can simplify further with the relation q3
i = 2q2

i − qi.
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A main property of this graph invariant is that it can be specialized to the chromatic

symmetric function, by evaluating each variable qi to zero. Another property of this

graph invariant is the following:

Proposition 4.3.2. We have that ker Ψ̃ = ker ΨG. In particular, for graphs G1, G2 we

have ΨG(G1) = ΨG(G2) if and only if Ψ̃(G1) = Ψ̃(G2).

Take, for instance, the celebrated tree conjecture introduced in [Sta95]:

Conjecture 4.3.3 (Tree conjecture on chromatic symmetric functions). If two trees

T1, T2 are not isomorphic, then ΨG(T1) 6= ΨG(T2).

Consequently, from Proposition 4.3.2, the tree conjecture is equivalent to the following

conjecture:

Conjecture 4.3.4. If two trees T1, T2 are not isomorphic, then Ψ̃(T1) 6= Ψ̃(T2).

One strategy that has been employed to show that a family of non-isomorphic trees is

distinguished by their chromatic symmetric function is to construct said trees using its

coefficients over several bases, see for instance [OS14], [SST15] and [APZ14]. The graph

invariant Ψ̃ provides more coefficients to reconstruct a tree, because Ψ results from Ψ̃

after the specialization qi = 0. So, employing the same strategy to prove Conjecture 4.3.4

is a priori easier than to approach Conjecture 4.3.3 directly.

This shows us that the kernel method can also give us some light on other graph invari-

ants: they may look stronger than Ψ, but are in fact as strong as Ψ if they satisfy the

modular relations.

Proof of Proposition 4.3.2. Note that we have Ψ̃(G)|qi=0 i=1,2,... = ΨG(G). This readily

yields ker Ψ̃ ⊆ ker ΨG. To show that ker Ψ̃ ⊇ ker ΨG, we need only to show that the

modular relations and the isomorphism relations belong to ker Ψ̃. For the isomorphism

relations, this is trivial.

Let l = G−G∪ {e1}−G∪ {e2}+G∪ {e1, e2} be a generic modular relation on graphs,

i.e., {e1, e2, e3} are edges that form a triangle between the vertices {v1, v2, v3}, with

e3 ∈ G, e1, e2 6∈ G. Say that e1 = {v2, v3}, e2 = {v3, v1} and e3 = {v1, v2}. The

proposition is proved if we show that Ψ̃(l) = 0.

For a coloring f of a graph H and a monochromatic edge e in H, define c(e) the color

of the vertices of e. Abbreviate 1[e is monochromatic] = m(e). With this, we use
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the abuse of notation q
m(e)
c(e) even when e is not monochromatic, in which case we have

q
m(e)
c(e) = q0

c(e) = 1. Then

∏
i

q
cH(f,i)
i =

∏
e monochromatic

qc(e) =
∏

e∈E(H)

q
m(e)
c(e) . (4.13)

Set

sf : =
∏
i

q
cG(f,i)
i −

∏
i

q
cG∪{e1}(f,i)

i −
∏
i

q
cG∪{e2}(f,i)

i +
∏
i

q
cG∪{e1,e2}(f,i)

i

=
(

1− qm(e1)
c(e1) − q

m(e2)
c(e2) + q

m(e1)
c(e1) q

m(e2)
c(e2)

) ∏
e∈E(G)

q
m(e)
c(e)

=
(

1− qm(e1)
c(e1)

)(
1− qm(e2)

c(e2)

) ∏
e∈E(G)

q
m(e)
c(e) ,

(4.14)

and observe that Ψ̃(l) =
∑

f xfsf . Fix a coloring f . We now show that sf is always

zero.

It is easy to see that if either e1 or e2 are not monochromatic, then q
m(e1)
c(e1) = 1, respec-

tively q
m(e2)
c(e2) = 1, which implies that sf = 0.

It remains then to consider the case where {v1, v2, v3} is monochromatic. Without loss

of generality, say it is of color a.

Then, q
m(e1)
c(e1) = qa = q

m(e2)
c(e2) . Further, we have that q

m(e3)
c(e3) = qa, so in R we have

sf = (1− qa)2qa
∏

e∈E(G)\{e3}

q
m(e)
c(e) = 0 .

So Ψ̃(l) =
∑

f xfsf = 0.

In conclusion, any modular relation and any isomorphism relation is in ker Ψ̃. From

Theorem 4.1.2 we have that ker ΨG ⊆ ker Ψ̃, so we conclude the proof.

It is clear that Proposition 4.3.2 was established in an indirect way, by studying the

kernel of the maps Ψ̃ and Ψ, instead of relating the coefficients of both invariants in

some basis.

In Section 4.3.2 we relate the coefficients of both invariants in Corollary 4.3.7. Our

original goal of establishing Proposition 4.3.2 without using Theorem 4.1.2 directly is

not accomplished, which lends more strength to this kernel method.
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4.3.2 Computing the augmented chromatic invariant on graphs

Recall that in Section 4.3, we define the ring R as the quotient ring of power series in

K[[x1, . . . ; q1, . . . ]] by the relations qi(qi − 1)2 = 0. We are then able to define a map

Ψ̃ : G→ R, and we observed that ker Ψ̃ = ker Ψ in Proposition 4.3.2.

Here, we consider some specializations of Ψ̃ and obtain a linear combination of chromatic

symmetric function of smaller graphs, in Theorem 4.3.5. The main motivation is to

explore how to obtain Proposition 4.3.2 without using Theorem 4.1.1, and instead use a

more direct way. This is not established in this chapter, which illustrates the strength

and difficulty of the kernel approach. Let us first set up some necessary notation.

For an element f ∈ R, denote by f
∣∣
qi=a

the specialization of the variable qi to a in f ,

whenever defined (for a = 0 or a = 1). Additionally, denote by f
∣∣
qi=1′

the specialization

of the variable qi to 1 in ∂
∂qi
f . This is naturally an abuse of notation that allows us

to denote the composition of several specializations in a more compact way. We also

use this notation for the xi variables. Further, we denote by f
∣∣
xi=0′′

the specialization
∂2

∂x2i
f
∣∣
xi=0

.

We note that, in this ring, we can specialize infinitely many variables to zero. This

however cannot be done with specializations to one, as the reader can readily check.

Taking specializations of qi to a 6∈ {0, 1, 1′} is not well defined in the quotient ring.

For an edge e ∈ E(G), denote by G \ N (e) the graph resulting after both endpoints of

e are deleted from G, along with all its incident edges.

We say that a k-tuple of edges m = (e1, . . . , ek) is an ordered matching if no two edges

share a vertex, and writeMk(G) for the set of ordered matchings of size k on a graph G.

We write G \ N (m) for the graph resulting after removing all vertices in the matching

m from G, along with all its incident edges.

Finally, for a symmetric function f over the variables x1, x2, . . . , let f ↑k be the sym-

metric function over the variables xk+1, xk+2, . . . with each index in f shifted up by

k.

We obtain now a formula for Ψ̃(G) that depends only on ΨG(Hi) for some graphs Hi

that have less vertices than G.

Theorem 4.3.5. Let k ≥ 0. We have the following relation between the graph invariant

Ψ̃ and the chromatic symmetric function ΨG:

1

2k
Ψ̃(G)

∣∣∣ qi=1′ i=1,...,k
qi=0 i>k

xi=0′′ i=1,...,k

=
∑

m∈Mk(G)

ΨG(G \ N (m)) ↑k . (4.15)
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Proof. Recall that cG(f, i) counts the number of monochromatic edges in G with color

i. With the expression given in Section 4.3 for the augmented chromatic symmetric

function, we have

Ψ̃(G)
∣∣∣
qi=1′ i=1,...,k

=
∑

f :V (G)→N

xf

(∏
i>k

q
cG(f,i)
i

)
k∏
i=1

cG(f, i) .

We say that a coloring of G is k-proper if all monochromatic edges have color j ≤ k.

Observe that for a fixed coloring f ,
∏k
i=1 cG(i, f) counts ordered matchings (e1, . . . , ek)

in G that satisfy f(v) = {i} for any vertex v of ei, i = 1, . . . , k. Then, it is clear that

Ψ̃(G)
∣∣∣qi=1′ i=1,...,k

qi=0 i>k

=
∑

f is k - proper

xf

k∏
i=1

cG(i, f) =
∑

f is k - proper

xf
∑

m∈Mk(G)
m=(e1,...,ek)
f(ei)={i}

1



=
∑

m∈Mk(G)
m=(e1,...,ek)

 ∑
f is k - proper
f(ei)={i}

xf


=

∑
m∈Mk(G)
m=(e1,...,ek)

∑
g coloring in G\N (m)

g is k - proper

xg(x1 · · ·xk)2 .

(4.16)

So after the specialization xi = 0′′ for i = 1, . . . , k, all colorings of G \ N (m) that use a

color j ≤ k vanish, so

Ψ̃(G)
∣∣∣ qi=1′ i=1,...,k

qi=0 i>k
xi=0′′ i=1,...,k

=
∑

m∈Mk(G)
m=(e1,...,ek)

∑
g proper in G\N (m)

im g⊆Z>k

2kxg

=2k
∑

m∈Mk(G)

ΨG(G \ N (m)) ↑k
(4.17)

as desired.

The right hand side of the expression of Theorem 4.3.5 can, in fact, be determined by

the chromatic symmetric function of the graph G.

Proposition 4.3.6. If G1, G2 are two graphs such that ΨG(G1) = ΨG(G2), and k a

positive number, then

∑
m∈Mk(G1)

ΨG(G1 \ N (m)) =
∑

m∈Mk(G2)

ΨG(G2 \ N (m)) .
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Proof. We use the power-sum basis {pλ}λ`n of Symn introduced in [Sta00].

We show that for a generic graph H, the coefficients of the symmetric function

∑
m ∈ Mk(H)

ΨG(H \ N (m)) ,

in the power-sum basis are a function of the coefficients of ΨG(H) in the power-sum

basis. Once this is established, the proposition follows.

For a graph G and a set of edges S ⊆ E(S), write τ(S) for the integer partition recording

the size of the connected components of the graph (V (G), S). In [Sta95] the following

expression for the coefficients in the power-sum basis is shown:

ΨG(G) =
∑
λ`n

pλ
∑

S⊆E(G)
τ(S)=λ

(−1)|S| .

Suppose that ΨG(H) =
∑

λ`n cλpλ. For an integer partition λ write m2(λ) for the

number of parts of size two, and write λ ∪ (2k) for the integer partition resulting from

λ by adding k extra parts of size two. Then we have that∑
m∈Mk(H)

ΨG(H \ N (m)) =
∑

m∈Mk(H)

∑
λ`n

pλ
∑

S⊆E(H\N (m))
τ(S)=λ

(−1)|S|

=
∑
λ`n

pλ
∑

m∈Mk(H)

∑
S⊆E(H\N (m))

τ(S)=λ

(−1)|S| .
(4.18)

Relabel the summands index by setting R = S ∪m, and note that for each R ⊆ E(H)

such that τ(R) = λ ∪ (2k), there are exactly
(m2(λ)+k

k

)
k! pairs (S,m) of m ∈ Mk(H)

and S ⊆ E(H) such that S ∪m = R, τ(S) = λ and S ⊆ E(H \ N (m)). Hence:

∑
m∈Mk(H)

ΨG(H \ N (m)) =
∑
λ`n

pλ
∑

R⊆E(H)

τ(R)=λ∪2k

(
m2(λ) + k

k

)
k!(−1)|R|−k

=
∑
λ`n

pλ(−1)kcλ∪(2k)

(
m2(λ) + k

k

)
k! .

(4.19)

Therefore, the sum
∑

m∈Mk(H) ΨG(H \ N (m)) is determined by ΨG(H).

It follows from Theorem 4.3.5 and Proposition 4.3.6 that:
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Corollary 4.3.7. If G1, G2 are graphs such that ΨG(G1) = ΨG(G2), then for every

integer k ≥ 0 we have:

Ψ̃(G1)
∣∣∣ qi=1′ i=1,...,k

qi=0 i>k
xi=0′′ i=1,...,k

= Ψ̃(G2)
∣∣∣ qi=1′ i=1,...,k

qi=0 i>k
xi=0′′ i=1,...,k

.

The following fact is immediate from the definition of R:

Proposition 4.3.8. Suppose that f1, f2 ∈ R are such that for every pair of finite disjoint

sets I, J ⊆ N we have

f1

∣∣∣qi=1′ i∈I
qi=0 i∈P
qi=1 i∈J

= f2

∣∣∣qi=1′ i∈I
qi=0 i∈P
qi=1 i∈J

where P = N \ (I t J). Then f1 = f2 in R.

In conclusion, to get an alternative proof of Proposition 4.3.2 we need to establish a

generalization of Corollary 4.3.7 that introduces specializations of the type qi = 1, in

order to apply Proposition 4.3.8. Such a generalization has not been found by the author.

4.4 The CSF on hypergraphic polytopes

4.4.1 Poset structures on compositions

In this chapter we consider generalized permutahedra and hypergraphic polytopes in Rn.

Recall that with a set composition ~π = S1| . . . |Sk ∈ Cn we have the associated total

preorder R~π, and for a non-empty set A ⊆ [n], we define the set A~π = A∩ Si where i is

as small as possible so that A~π 6= ∅. We refer to A~π as the minima of A in R~π.

Finally, recall as well that, for a hypergraphic polytope q, F(q) ⊆ 2I \ {∅} denotes

the family of sets J ⊆ I such that the coefficients in (4.3) satisfy aJ > 0. For a set

A ⊆ 2I \ {∅}, we write F−1(A) for the hypergraphic polytope q =
∑

J∈A sJ . We write

a = pt whenever a is a point polytope.

For a generalized permutahedron q and a real coloring f with set composition type

~π, recall that we write qf = q~π for the corresponding face, without ambiguity, see

Lemma 4.2.8.

Definition 4.4.1 (Basic hypergraphic polytopes and a preorder in set compositions).

For ~π ∈ Cn, the corresponding basic hypergraphic polytope is the fundamental hyper-

graphic polytope p~π = F−1{A s.t. |A~π| = 1}.
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Consider two set composition ~π1, ~π2 ∈ Cn. If for any non-empty A ⊆ [n] we have

|A~π1
| = 1 ⇒ |A~π2

| = 1, we write ~π1 � ~π2. Equivalently, ~π1 � ~π2 if F(p~π1) ⊆ F(p~π2).

With this, � is a preorder, called singleton commuting preorder or SC preorder. This

nomenclature is motivated by Proposition 4.4.3.

Additionally, we define the equivalence relation ∼ in Cn as ~π ∼ ~τ whenever |A~π| = 1⇔
|A~τ | = 1 for all non-empty sets A ⊆ [n]. Note that ~π ∼ ~τ if and only if p~π = p~τ . We

write [~π] for the equivalence class of ~π under ∼, and write p[~π] = p~π, without ambiguity.

The preorder � projects to an order in Cn/∼. In Proposition 4.4.14, we find an asymp-

totic formula for the number of equivalence classes of ∼.

Example 4.4.2. We see here the preorder � for n = 3, and the corresponding order

in the equivalence classes of ∼. The set compositions ~π such that λ(~π) = (1, 1, 1), are

in bijection with permutations on {1, 2, 3}, we call these the permutations in C3. For a

permutation ~π in C3 and a non-empty subset A ⊆ {1, 2, 3}, we have |A~π| = 1. Hence,

permutations are maximal elements in the singleton commuting preorder, and form an

equivalence class of ∼. This is called the trivial equivalence class.

We also observe that if A is such that |A23|1| = 1, then {2, 3} 6⊆ A and so we have

that |A1|23| = 1. It follows that 1|23 � 23|1. The remaining structure of the preorder

in C3 is in Fig. 4.3, where we collapse equivalence classes into vertices and draw the

corresponding poset in its Hasse diagram.

12|3

3|12
2|13

13|2

1|23

23|1

123

Permutations

Figure 4.3: The SC order in C3/∼.

For n = 4 things are more interesting, as we have non-trivial equivalence classes. For

instance, we have [12|3|4] = {12|3|4, 12|4|3}.

Proposition 4.4.3. Let ~π, ~τ ∈ Cn. Then we have that ~π � ~τ ⇒ λ(~π) ≥ λ(~τ ).

Additionally, ~π ∼ ~τ if and only if all the following happens:

1. We have λ(~π) = λ(~τ ), and;

2. For each pair (a, b) with a, b ∈ [n] that satisfies both aR~π b and bR~τ a, either

{a}, {b} ∈ λ(~π) or a ∼λ(~π) b.
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In particular, α(~π) = α(~τ ).

Property 2. will be called the SC property. The equivalence classes of ∼ have a clear

combinatorial description via Proposition 4.4.3. In particular, we see that ~π1 ∼ ~π2 if all

blocks are the same and in the same order, with possible exceptions between singletons.

For instance, we have that 12|3|4|5|67 ∼ 12|3|5|4|67 but 12|3|4|5|67 6∼ 3|12|4|5|67.

We are also told in Proposition 4.4.3 that the map λ : Cn → Pn flips the SC preorder

with respect to the coarsening order ≤ in Pn.

Proof of Proposition 4.4.3. Write π, τ for the underlying set partitions λ(~π),λ(~τ ), re-

spectively. Suppose that ~π � ~τ and take i, j elements of [n] such that i ∼τ j. Then

{i, j} 6∈ F(p~τ ) ⊇ F(p~π). This implies that |{i, j}~π| 6= 1, hence i ∼π j. Since i, j are

generic, we have that π ≥ τ . This concludes the first part.

For the second part, we will first show the direct implication. Suppose that p~π = p~τ . It

follows from above that π = τ . Our goal is to establish the SC property.

Take a, b that are in distinct blocks in π, such that both aR~π b and bR~τ a. For sake

of contradiction let c 6= a be such that c ∼π a. Then {a, b, c}~π = {a, c}, which is not a

singleton. However, we have that {a, b, c}~τ = {b} is a singleton, which is a contradiction

with ~π ∼ ~τ . This contradicts the assumption that a ∼π c, so we conclude that {a} ∈ π.

Similarly we obtain that {b} ∈ π. This shows the SC property.

For the reverse implication, suppose that ~π, ~τ are such that π = τ and satisfy the

SC property. Our goal is to show that ~π ∼ ~τ . For sake of contradiction, take some

nonempty set A ⊆ [n] such that A~π = {a} is a singleton, but |A~τ | 6= 1. Finally, take an

element b ∈ A~τ , so that a, b ∈ A. We immediately have aR~π b, bR~τ a.

Since π = τ , either A~π = A~τ or A~π ∩ A~τ = ∅. Since A~π 6= A~τ , they are disjoint

and in particular a 6∼π b. By the SC property we conclude that both {a}, {b} ∈ π,

contradicting that |A~τ | 6= 1. That |A~τ | = 1 ⇒ |A~π| = 1 follows similarly, concluding

the proof.

Finally, whenever ~π ∼ ~τ , the SC property gives us α(~π) = α(~τ ).

The following definition focus on the algebraic counterpart of ∼.

Definition 4.4.4. Consider the quasi-symmetric functions N[~π] =
∑

~τ∈[~π] M~τ , which

are linearly independent. The singleton commuting space, or SC for short, is the graded

vector subspace of WQSym spanned by
⊎
n≥0{N[~π] : [~π] ∈ Cn/ ∼} .
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In Lemma 4.4.7, we show that SC is the image of ΥHGP. As a consequence, SC is a

Hopf algebra.

We turn to some properties of hypergraphic polytopes in the next lemma:

Lemma 4.4.5 (Vertices of a hypergraphic polytope). Let q be a hypergraphic polytope

and let f be a real coloring.

Then, we have that qf = pt if and only if |A~π(f)| = 1 for each A ∈ F(q). In particular,

if ~π(f1) ∼ ~π(f2) then qf1 = pt⇔ qf2 = pt.

Proof. Write q =
∑

A∈F(q) aAsA, for coefficients aA ≥ 0. Computing the face corre-

sponding to f on both sides, we obtain that qf = pt if and only if

∑
A∈F(q)

aA(sA)f = pt ,

or equivalently, if (sA)f = pt for each A ∈ F(q).

We observed in Eq. (4.9) that (sA)f = sA~π(f)
. Hence, we conclude that qf = pt if and

only if |A~π(f)| = 1 for each A ∈ F(q), as desired.

To show the last part of the lemma, just observe that |A~π| = 1 only depends on the

equivalence class of ~π.

The following corollary is immediate from (4.11) and Lemma 4.4.5.

Corollary 4.4.6. The image of ΥHGP is contained in the SC space, i.e., for any

hypergraphic polytope q we have that

ΥHGP(q) ∈ SC .

Another consequence of Lemma 4.4.5 is that we have p~π~τ = pt precisely when |A~π| =

1⇒ |A~τ | = 1, i.e., when ~π � ~τ . It follow from (4.11) that:

ΥGP(p~π) =
∑
~π�~τ

M~τ . (4.20)

As presented, (4.20) seems to shows that the transition matrix of {ΥGP(p~π)}~π∈Cn
over

the monomial basis is upper triangular. Since � is not an order but a preorder, that is

not the case. The related result that we can establish is the following:
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Lemma 4.4.7. The family {ΥHGP(p[~π])}[~π]∈Cn/∼ forms a basis of SC. In particular,

we have im ΥHGP = SC.

Proof. From (4.20) we have the following triangularity relation:

Ψ(p[~π]) =
∑
~π∼~τ

M~τ +
∑
~π≺~τ
~π 6∼~τ

M~τ = N[~π] +
∑

[~π]≺[~τ ]

N[~τ ] , (4.21)

where we take the projection of the preorder � into the corresponding order in Cn/ ∼.

Thus, {ΥHGP(p[~π])}[~π]∈Cn/∼ is another basis of SC. From Corollary 4.4.6, we conclude

that im ΥHGP = SC.

In the commutative case, we wish to carry the triangularity of the monomial transition

matrix in (4.21) into a new smaller basis in QSym.

For that, we project the order � into an order ≤′ in Cn as follows: we say that α ≤′ β
if we can find set compositions ~π, ~τ that satisfy ~π � ~τ , α(~π) = α and α(~τ ) = β.

We will see that this projection is akin to the projection of the coarsening order of set

partitions to the coarsening order on partitions. In particular, it preserves the desired

upper triangularity.

Lemma 4.4.8. The relation ≤′ on Cn is an order and satisfies ~π � ~τ ⇒ α(~π) ≤′ α(~τ ).

Recall that permutations of [n] act on set compositions: if ~π = A1| . . . |Ak ∈ Cn, and

φ ∈ Sn, then φ(~π) ∈ Cn is the set composition φ(S1)| . . . |φ(Sk).

Proof of Lemma 4.4.8. We only need to check that ≤′ as defined is indeed an order, as

it is straightforward that ~π � ~τ ⇒ α(~π) ≤′ α(~τ ).

Reflexivity of ≤′ trivially follows from the definition of �. To show antisymmetry of

≤′, it is enough to establish that if ~π1 � ~τ2, ~τ1 � ~π2 are set compositions such that

α := α(~π1) = α(~π2) and β := α(~τ1) = α(~τ2), then α = β.

Indeed, if α(~π1) = α(~π2) then there is a permutation φ in [n] that satisfies φ(~π1) = ~π2.

Then, φ lifts to a bijection between F(p~π1) and F(p~π2); in particular, they have the

same cardinality. Similarly, F(p~τ1) and F(p~τ2) have the same cardinality.

But since ~π1 � ~τ2, ~τ1 � ~π2, i.e., F(p~π1) ⊆ F(p~τ2) and F(p~τ1) ⊆ F(p~π2), it follows that

F(p~π1) = F(p~τ1), and so ~π1 ∼ ~τ1. From Proposition 4.4.3, we have that α = α(~π1) =

α(~τ1) = β, and the antisymmetry follows.
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To show transitivity, take compositions such that α ≤′ β and β ≤′ σ, i.e., there are

set compositions ~π � ~τ1 and ~τ2 � ~γ such that α(~π) = α, α(~τ1) = α(~τ2) = β and

α(~γ) = σ. Take a permutation φ in [n] such that φ(~τ1) = ~τ2 and call ~δ = φ(~π), note

that α(~δ) = α(~π) = α.

We claim that ~δ � ~τ2. It follows that ~δ � ~γ and α ≤′ σ, so the transitivity of ≤′ also

follows. Take A ⊆ [n] nonempty such that |A~δ| = 1. Then |φ−1(A)~π| = 1 and from

~π ≤ ~τ1 it follows that |φ−1(A)~τ1 | = 1. From ~τ2 = φ(~τ1) we have that |A~τ2 | = 1. Since

A is generic such that |A~δ| = 1, we conclude that ~δ � ~τ2, as envisaged.

4.4.2 The kernel and image problem on hypergraphic polytopes

Recall that a fundamental hypergraphic polytope in R[n] is a polytope of the form∑
∅6=J⊆[n] aJsJ where each aJ ∈ {0, 1}. In particular, a fundamental hypergraphic poly-

tope can be written as q = F−1(A) for some family of non-empty subsets of [n].

In the following proposition, we reduce the problem of describing the kernel of ΥHGP

to the subspace of HGP spanned by the fundamental hypergraphic polytopes.

Proposition 4.4.9 (Simple relations for ΥHGP). If q1, q2 are two hypergraphic poly-

topes such that F(q1) = F(q2), then

ΥHGP(q1) = ΥHGP(q2) .

It remains to discuss the kernel of the map ΥHGP in the space of fundamental hy-

pergraphic polytopes {F−1(A)| A ⊆ 2[n] \ {∅}}. For non-empty sets A ⊆ [n], define

OrthA = {~π ∈ Cn s.t. |A~π| = 1}. We now exhibit some linear relations of the chromatic

function on fundamental hypergraphic polytopes.

Theorem 4.4.10 (Modular relations for ΥHGP). Let A,B be two disjoint families of

non-empty subsets of [n]. Consider the hypergraphic polytope q = F−1(A), and take

K = ∪A∈A(OrthA)c, and J = ∪B∈BOrth B, families of set compositions.

Suppose that K ∪ J = Cn. Then,

∑
T ⊆B

(−1)|T |ΥHGP

[
q + F−1(T )

]
= 0 ,

where the sum q + F−1(T ) is taken as the Minkowski sum.

The sum
∑
T ⊆B (−1)|T |

[
q + F−1(T )

]
is called a modular relation on hypergraphic poly-

topes. An example can be observed in Fig. 4.4 for n = 4, where we take the families

A = {{1, 4}, {1, 2, 4}}, B = {{1, 2}, {2, 3}, {2, 3, 4}}.
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Figure 4.4: A modular relation on hypergraphic polytopes with eight terms, with the
polytope q = F−1({1, 4}, {1, 2, 4}).

Proof of Theorem 4.4.10. Write ηf (q) = 1[f is q − generic ]. The expansion of ΥHGP

for general hypergraphic polytopes q is given by

ΨHGP(q) =
∑
f

xfηf (q) =
∑

f is q-generic

xf .

For short, write MRN for the modular relation for hypergraphic polytopes at hand.

Hence:

ΨHGP(MRN) =
∑
T ⊆B

(−1)|T |ΨHGP

[
q +

∑
T∈T

sT

]

=
∑
T ⊆B

(−1)|T |
∑
f

xfηf

(
q +

∑
T∈T

sT

)

=
∑
f

xf

∑
T ⊆B

(−1)|T |ηf

(
q +

∑
T∈T

sT

) .
(4.22)

We note from Lemmas 4.2.5 and 4.4.5 that for hypergraphic polytopes q, p, any coloring

f that is not q-generic is not (q + p)-generic. Hence, if ηf (q) = 0 then it follows that

ηf
(
q +

∑
T∈T sT

)
= 0 for any T ⊆ B. We restrict the sum to q-generic colorings.

Further, define B(f) = {B ∈ B|f is sB − generic }. Again according to Lemmas 4.2.5

and 4.4.5, we have that ηf
(
q +

∑
T∈T sT

)
= 1 exactly when T ⊆ B(f), so the equation
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(4.22) becomes

ΨHGP(MRN) =
∑
f

xf

∑
T ⊆B

(−1)|T |ηf

(
q +

∑
T∈T

sT

)
=
∑
f

xf

 ∑
T ⊆B(f)

(−1)|T |

 =
∑

f q- generic
B(f)=∅

xf .

(4.23)

It suffices to show that no coloring f is both q-generic and satisfies B(f) = ∅. Suppose

otherwise, and take such f . If f is q-generic, we have ~π(f) 6∈ K. If B(f) = ∅ we have

that ~π(f) 6∈ OrthBj for any j, hence ~π(f) 6∈ J . Given that f ∈ K ∪ J = Cn, we have

a contradiction. It follows that Eq. (4.23) becomes ΨHGP(MRN) = 0, which concludes

the proof.

Remark 4.4.11. Recall that Z : G→ GP is the graph zonotope map. It can be noted

that, if l = G−G∪ {e1}−G∪ {e2}+G∪ {e1, e2} is a modular relation on graphs, then

Z(l) is the modular relation on hypergraphic polytopes corresponding to q = Z(G), i.e.,

A = E(G), and B = {e1, e2} ) . In this case, the condition K∪J = Cn follows from the

fact that no proper coloring of G is monochromatic in both e1 and e2.

Recall that we set p~π = F−1({A ⊆ [n] s.t. |A~π| = 1}). This only depends on the equiv-

alence class [~π] under ∼, and we may write the same polytope as p[~π]. These are called

basic hypergraphic polytopes and are a particular case of fundamental hypergraphic

polytopes.

To prove Theorem 4.1.4, we follow roughly the same idea as in the proof of Theorem 4.1.1:

We use the family of hypergraphic polytopes {p[~π]}[~π]∈Cn/∼ to apply Lemma 4.2.1, whose

image by ΥGP is linearly independent. Recall that in Lemma 4.4.7, we established that

it spans the image of ΥHGP.

Proof of Theorem 4.1.4. First recall that HGPn is a linear space generated by the hy-

pergraphic polytopes in Rn. According to Proposition 4.4.9, to compute the kernel of

ΥHGP, it suffices us study the span of the fundamental hypergraphic polytopes. Fix a

total order ≥̃ on fundamental hypergraphic polytopes q so that |F(q)| is non decreasing.

We apply Lemma 4.2.1 with Theorem 4.4.10 to this finite dimensional subspace of

HGPn.

Lemma 4.4.7 guarantees that {ΥGP(p[~π])}[~π]∈Cn/∼ is linearly independent. Therefore,

it suffices to show that for any fundamental hypergraphic polytopes q that is not a basic
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hypergraphic polytope, we can write some modular relation b as b = q +
∑

i λiqi, where

|F(q)| < |F(qi)| ∀i. Indeed, it would follow from Lemma 4.2.1 that the simple relations

and the modular relations on hypergraphic polytopes span ker ΥHGP.

The desired modular relation is constructed by taking A = F(q) and B = F(q)c in

Theorem 4.4.10. Let us write K = ∪A∈F(q)(OrthA)c and J = ∪B∈F(q)c OrthB. We

claim that K ∪ J = Cn.

Take, for sake of contradiction, some ~π 6∈ K∪J . Note that from ~π 6∈ K we have |A~π| = 1

for every A ∈ F(q). Note as well that from ~π 6∈ J we have that |B~π| 6= 1 for every

B 6∈ F(q). Therefore, if ~π 6∈ K ∪ J , then q = p~π, contradicting the assumption that q

is not a basic hypergraphic polytope. We obtain that K ∪ J = Cn. Finally, note that

q +
∑
T ⊆F(q)c

(−1)|T |
[
q + F−1(T )

]
,

is a modular relation that respects the order ≥̃. This shows that the hypotheses of

Lemma 4.2.1 are satisfied.

For the commutative case we use Lemma 4.2.2. Note that we already have a generator

set of ker ΥHGP, so similarly to the proof of Theorem 4.1.2, we just need to establish

some linear independence.

Recall that two hypergraphic polytopes q1 and q2 are isomorphic if there is a permutation

matrix P such that x ∈ q2 ⇔ xP ∈ q1. If ~π1 and ~π2 share the same composition

type, then p~π1 and p~π2 are isomorphic, and so we have ΨHGP(p~π1) = ΨHGP(p~π2). Set

Rα(~π) := ΨHGP(p~π) without ambiguity.

Proof of Theorem 4.1.5. We use Lemma 4.2.2 with the map ΨHGP = comu ◦ΥHGP.

From the proof of Theorem 4.1.4, to apply Lemma 4.2.2 it is enough to establish that

the family {Rα}α∈Cn is linearly independent. It would follow that ker ΨHGP is generated

by the modular relations, the simple relations and the isomorphism relations, and that

{Rα}α∈Cn is a basis of im ΨG, concluding the proof.

To show that {Rα}α∈Cn is linear independent, write Rα on the monomial basis of QSym,

and use the order ≤′ mentioned in Lemma 4.4.8.

As a consequence of (4.20), if we write A~π,β = |{~τ ∈ Cn|~π � ~τ , α(~τ ) = β}|, from

Lemma 4.4.8 we have:

Rα(~π) = ΨHGP(p~π) =
∑
~π�~τ

Mα(~τ ) = A~π,α(~π)Mα(~π) +
∑

α(~π)<′β

A~π,βMβ . (4.24)
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It is clear that A~π,α(~π) > 0, so independence follows, which completes the proof.

Remark 4.4.12. We have obtained in the proof of Theorem 4.1.5 that {Rα}α∈Cn is

a basis for Qymn. The proof gives us a recursive way to compute the coefficients ζα

on the expression ΨHGP(q) =
∑

α∈Cn ζαRα. It is then natural to ask if combinatorial

properties can be obtained for these coefficients, which are isomorphism invariants.

Similarly, in the non-commutative case, we can write the chromatic quasi-symmetric

function of a hypergraphic polytope as

ΥHGP(q) =
∑

[~π]∈Cn/∼

ζ[~π](q)ΥHGP(p[~π]) ,

and ask for the combinatorial meaning of the coefficients (ζ[~π])[~π]∈Cn/∼. These questions

are not answered in this chapter.

4.4.3 The dimension of SC space

Let scn := dim SCn. Recall that, from Definition 4.4.4, the elements of the Hopf algebra

SC are of the form
∑

~π|=[n] M~πa~π, where a~π1
= a~π2

whenever ~π1 ∼ ~π2 in the SC

equivalence relation. Hence, scn counts the equivalence classes of ∼.

The goal of this section is to compute the asymptotics of scn, by using the combinatorial

description in Proposition 4.4.3.

Proposition 4.4.13. Let F (x) =
∑

n≥0 scn
xn

n! be the exponential power series enumer-

ating the dimensions of SCn. Then

F (x) =
ex

1 + (1 + x)ex − e2x
,

where e is the Napier constant.

Proposition 4.4.14. The dimension of SC has an asymptotic growth of

scn = n!γ−n
(
τ + o(δ−n)

)
,

where δ < 1 is some real number, γ u 0.814097 u 1.1745 log(2) is the unique positive

root of the equation

e2x = 1 + (1 + x)ex ,

and τ = Resγ(F ) u 0.588175 is the residue of the function F at γ.
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In particular, dim SCn is exponentially smaller than dim WQSymn = |Cn|, which is

asymptotically

n! log(2)−n
(

1

2 log(2)
+ o(1)

)
,

according to [Bar80]. Before we prove Propositions 4.4.13 and 4.4.14, we introduce a

useful combinatorial family.

A barred set composition of [n] is a set composition of [n] where some of the blocks may

be barred. For instance, 13|45|2 and 12|4|35 are bared set compositions of {1, 2, 3, 4, 5}.
A barred set composition is integral if

• No two barred blocks occur consecutively, and;

• Every block of size one is barred;

An integral barred set composition is also called an IBSC for short. In Table 4.1 we

have all the integral barred set compositions of small size:

n IBSC Equivalent classes under ∼
0 ∅ {~∅}
1 1 {1}
2 12, 12 {1|2, 2|1}, {12}
3 123, 1|23, 2|13, 3|12, [1|2|3)], {1|23}, {2|13}, {3|12},

12|3, 13|2, 23|1, 123 {12|3}, {13|2}, {23|1}, {123}

Table 4.1: Small IBSCs and equivalence classes of ∼

According to Proposition 4.4.3, we can construct a map from equivalence classes of ∼
and integral barred set compositions: from a set composition, we squeeze all consecutive

singletons into one bared block. This map is a bijection, as is inverted by splitting

all bared blocks into singletons, and the equivalence classed obtained is independent

on the order that this splitting is done. So, for instance, 13|24 ↔ {1|3|24, 3|1|24} and

13|24↔ {13|24}. See Table 4.1 for more examples.

Proof of Proposition 4.4.13. We use the framework developed in [FS09] of labeled com-

binatorial classes. In the following, a calligraphic style letter denotes a combinatorial

class, and the corresponding upper case letter denotes its exponential generating func-

tion. Let B and U be the collections {1, 12, · · · } and {12, 123, 1234, · · · }, respectively,

with exponential generating functions B(x) = ex−1 and U(x) = ex−1−x. Additionally,

let O = {∅} with O(x) = 1.

Let F be the class of IBSCs, and we denote by Fo the class of IBSCs that start with an

unbarred set. Denote by F the class of IBSCs that start with a barred set.
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n 0 1 2 3 4 5 6 7 8 9

scn 1 1 2 8 40 242 1784 15374 151008 1669010

πn 1 1 3 13 75 541 4683 47293 545835 7087261

Table 4.2: First elements of the sequences scn and πn = dimWQSymn.

Our goal is to show that F (x) = ex

1+(1+x)ex−e2x . By definition we have that F = FtFot
O. Further, we can recursively describe F and Fo as F = B×(FotO) and Fo = U×F .

According to the dictionary rules in [FS09], this implies that F = F + F o +O and that

F (x) = (ex − 1)(F o(x) + 1) ,

F o(x) = (ex − 1− x)(F (x) + F o(x) + 1) ,

The unique solution of the system has F o(x) = e2x−(1+x)ex

1−1e2x+(x+1)ex
so it follows

F (x) =
ex

1 + (1 + x)ex − e2x

as desired.

With this we can easily compute the dimension of SCn for small n, and compare it with

dimWQSymn, as done in Table 4.2.

Proof of Proposition 4.4.14. Let l(x) := e2x − (1 + x)ex − 1, then F (x) = − ex

l(x) is the

quotient of two entire functions with non-vanishing numerator, so the poles are the

zeros of l(x). Note that F (x) is a counting exponential power series around zero, so it

has positive coefficients. By Pringsheim’s Theorem as in [FS09], one of the dominant

singularities of F (x) is a positive real number, call it γ.

We show now that any other singularity z 6= γ of F , that is, a zero of l, has to satisfy

|z| > |γ|. Thus, showing that γ is the unique dominant singularity and allowing us to

compute a simple asymptotic formula. Suppose, that z is a singularity of F distinct

from γ, such that |z| = |γ|. So, we have that l(z) = 0 and that z 6∈ R+. The equation

l(z) = 0 can easily be rewritten as

1 = l(z) + 1 =
∑
n≥1

zn
2n − 1− n

n!
.
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Note that 2n ≥ n + 1 for n ≥ 1. Now we apply the strict triangular inequality on the

right hand side to obtain

1 <
∑
n≥1

|z|n 2n − n− 1

n!
=
∑
n≥1

γn
2n − n− 1

n!
= l(γ) + 1 = 1 ,

where we note that the inequality is strict for z 6∈ R+ because some of the terms |z|n do

not lie in the same ray through the origin. This is a contradiction with the assumption

that there exists such a pole, as desired.

We additionally prove that γ is the unique positive real root, so we can easily approx-

imate it by some numerical method, for instance the bisection method. The function l

in the positive real line satisfies limx→+∞ l(x) = +∞ and l(0) = −1, so it has at least

one zero. Note that such zero is unique, as l′(x) > 0 for x positive. Also, since l′(γ) > 0,

the zero γ is simple.

Since the function F (x) is meromorphic in C, and γ is the dominant singularity, we

conclude that
scn
n!

= γ−n
(
Resγ(F ) + o(δ−n)

)
,

for any δ such that 1 > δ > |γ/γ2|, where γ2 is a second smallest singularity of F , if it

exists, and arbitrarily large otherwise.

We can approximate γ u 0.814097, and also estimate the residue of F (x) at γ as τ =

Resγ(F ) = eγ

l′(γ) u 0.588175. This proves the desired asymptotic formula.

4.5 Faces of generalized permutahedra and the singleton

commuting equivalence relation

This section is an original work of this thesis. The main result of this section is the

following:

Theorem 4.5.1 (Image of ΥGP). The image of ΥGP is precisely SC.

Recall that SC is the Hopf algebra spanned by
⋃
n≥0{N[~π]}~π∈Cn/∼ , a basis indexed by

equivalence classes of set compositions on the singleton commuting equivalence relation.

This Hopf algebra is precisely the image of ΥHGP. Because we have the following

inclusion of combinatorial Hopf algebras, HGP ⊆ GP, it follows that SC = im ΥHGP ⊆
im ΥHGP.

In the remaining of this section we present the proof of the other inclusion. We remark

that an immediate consequence of this result is Corollary 5.5.2, where we compare
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the image of the chromatic map on generalized permutahedra with the image of the

chromatic map on posets.

We first establish a lemma about generalized permutahedra and some other relevant

propositions:

Lemma 4.5.2. Let {aJ}J⊆[n]
J 6=∅

be a family of real numbers such that q =
∑

J⊆[n]
J 6=∅

aJsJ is

a well defined generalized permutahedron that is a point. Then, for any set J such that

|J | ≥ 2, we have that aJ = 0.

We remark that this lemma is trivial for hypergraphic polytopes (it is a simple applica-

tion of Lemma 4.2.5), and it follows that im ΥHGP = SC. Before we prove this lemma

let us establish first some general claims regarding the coefficients {aJ}J⊆[n]
J 6=∅

.

Proposition 4.5.3. Consider n ≥ 0, and fix a set of real numbers {aJ}J⊆[n]
J 6=∅

. Define for

each non-empty J ⊆ [n] the following

UJ =
∑

K∩J 6=∅
K⊆[n]

aK , WJ =
∑
K⊇J
K⊆[n]

aK .

Then, we have the following relation between {UJ}J⊆[n]
J 6=∅

and {WJ}J⊆[n]
J 6=∅

:

UJ =
∑
K⊆J
K 6=∅

(−1)|K|+1WK .

Furthermore, for J a singleton, we have that

UJ =WJ . (4.25)

Proof. First, (4.25) is immediate because we observe that the formulas for UJ and WJ

are the same.

Then, observe that for any finite set J , we have that

∑
K⊆X

(−1)|K| = 1[X = ∅] .
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Thus, we have that

∑
K⊆J
K 6=∅

(−1)|K|+1WK =
∑
K⊆J
K 6=∅

∑
S⊇K

(−1)|K|+1aS =
∑
S⊆[n]

∑
K⊆J
K⊆S
K 6=∅

(−1)|K|+1aS

=
∑
S⊆[n]

aS

(−1)|∅| −
∑

K⊆J∩S
(−1)|K|


=
∑
S⊆[n]
S∩J 6=∅

aJ = UJ ,

as desired.

Proposition 4.5.4. Consider n ≥ 0, and fix a set of real numbers {aJ}J⊆[n]
J 6=∅

such that

the generalized permutahedron q =
∑

J⊆[n]
J 6=∅

aJsJ is well defined. Consider UJ as in

Proposition 4.5.3, and for a set K ⊆ [n], let ~eK be the characteristic vector of K, that

is if i ∈ K, then (~eK)i = 1, and (~eK)i = 0 otherwise.

Then UK = maxx∈q{~eTK · x}.

Proof. If sJ is a simplex, then maxx∈sJ{~eTK · x} = 1[J ∩K 6= ∅]. Thus, as we have seen

in Lemma 4.2.5, optimization problems commute with the Minkowski operations, so we

have the following:

max
x∈q
{~eTK · x} =

∑
J⊆[n]
J 6=∅

aJ max
x∈sJ
{~eTK · x}

=
∑
J⊆[n]
K∩J 6=∅

aJ = UK ,
(4.26)

as desired.

We are now ready to present the proof of Lemma 4.5.2.

Proof of Lemma 4.5.2. Assume that
∑

J⊆[n]
J 6=∅

aJsJ is a well defined generalized permuta-

hedron that is a point, say q = {~x}. Define UJ ,WJ as in Proposition 4.5.3. We will

show that there is no set J such that WJ 6= 0 and |J | ≥ 2. This readily implies that

there is no set J such that aJ 6= 0 and |J | ≥ 2, concluding the lemma.

Assume otherwise, by contradiction, that there is some set J such that WJ 6= 0 and

|J | ≥ 2. Let J0 be the smallest such set. In particular, observe that WJ0 6= 0 but

WJ = 0 for any J ( J0 such that |J | ≥ 2.
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Then, from Proposition 4.5.4, for any set J we have that

UJ = max
x∈q
{~eTJ · x} =

∑
j∈J

~eT{j}

 · ~x
=
∑
j∈J

~eT{j} · ~x =
∑
j∈J
U{j} =

∑
j∈J
W{j} .

(4.27)

Comparing with Proposition 4.5.3, we have that

∑
K⊆J
|K|≥2

(−1)1+|K|WK = UJ −
∑
j∈J
W{j} = 0 ,

however, if we let J = J0, we get

∑
K⊆J0
|K|≥2

(−1)1+|K|WK = (−1)1+|J0|WJ0 6= 0 .

This is a contradiction with the fact that such set J0 exists, as desired.

Proof of Theorem 4.5.1. We know that

ΥGP(q) =
∑

~π is q−generic

M~π .

Suppose that ~π1 = A1| . . . |Ak, and ~π2 = B1| . . . |Bk are set compositions such that

q~π1
is a point and ~π1 ∼ ~π2. Define, for i = 1, . . . , k, the set Fi =

⋃k
j=i+1Aj , and

Gi =
⋃k
j=i+1Bj . Observe that Fk = Gk = ∅. From the assumption that ~π1 ∼ ~π2 we

get that for a given i = 1, . . . , k and K ⊆ Bi with |K| ≥ 2, we have that Ai = Bi and

Fi = Gi.

We wish to show that q~π2
is also a point. This concludes the proof, because in this way

we can group the sum above as

ΥGP(q) =
∑

all ~τ∈[~π] are q−generic

N[~π] ,

where the sum runs over equivalence classes [~π], and this is trivially an element of SC.

We can rearrange the sum obtained in Eq. (4.10) as follows: for each i = 1, . . . k and

non-empty K ⊆ Ai, we group together all the sets I such that I~π = K. Those are
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precisely all the sets I = J ∪K for some J ⊆ Fi. Thus, we have that

q~π1
=

k∑
i=1

∑
K⊆Ai
K 6=∅

sK

∑
J⊆Fi

aJ∪K

 .

From Lemma 4.5.2, we have that

∑
J⊆Fi

aJ∪K = 0, for each i = 1, . . . , k and each K ⊆ Ai with |K| ≥ 2. (4.28)

Similarly, we have that

q~π2
=

k∑
i=1

∑
K⊆Bi
K 6=∅

sK

∑
J⊆Gi

aJ∪K

 . (4.29)

The proof is concluded when we establish that
∑

J⊆Gi aJ∪K = 0 for each i = 1, . . . , k

and each K ⊆ Bi with |K| ≥ 2. This is precisely (4.28) because in this case we have

thatAi = Bi and Fi = Gi. Therefore q~π2
is a point, as desired.



Chapter 5

Hopf species and the

non-commutative universal

property

This chapter is a work based on the article [Pen18], to be published in Journal of

Combinatorial Theory A. A short version was published in the proceedings of Formal

Power Series and Algebraic Combinatorics (talk presentation). The article [Pen18] is

split into this chapter and Chapter 4.

In [ABS06], a character in a Hopf algebra is defined as a multiplicative linear map that

preserves unit, and a combinatorial Hopf algebra (or CHA, for short) is a Hopf algebra

endowed with a character. For instance, a character η0 in QSym is η0(Mα) = 1[l(α) = 1].

In fact, the CHA of quasi-symmetric functions (QSym, η0) is a terminal object in the

category of CHAs, i.e., for each CHA (H, η) there is a unique combinatorial Hopf algebra

morphism ΨH : H→ QSym.

Our goal here is to draw a parallel for Hopf monoids in vector species. We see that the

Hopf species WQSym plays the role of QSym. Specifically, we construct a unique Hopf

monoid morphism from any combinatorial Hopf monoid h to WQSym, in line with what

was done in [ABS06] and [Whi16].

In Section 5.5, we investigate this universal property applied to the Hopf structure of

generalized permutahedra and posets. We use Theorem 4.5.1 and Proposition 4.4.14 to

obtain that no combinatorial Hopf monoid morphism from GP to Pos exists.

Remark 5.0.1. The category of combinatorial Hopf monoids was introduced in two

distinct ways, by [AA17] in vector species, and by [Whi16] in pointed set species, which

123
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we call here a comonoidal combinatorial Hopf monoid. Here we consider the notion of

[AA17].

In [Whi16], White shows that a comonoidal combinatorial Hopf monoid in coloring

problems is a terminal object on the category of CCHM. Nevertheless, it is already

advanced there that, if we consider a weaker notion of combinatorial Hopf monoid, the

terminal object in such category is indexed by set compositions. No counterpart of

WQSym in pointed set species is discussed here.

5.1 Hopf monoids in vector species

In this section, we recall the basic notions on Hopf monoids in vector species introduced

in [AM10, Chapter 8]. We write Set× for the category of finite sets with bijections as

only morphisms, and write VecK for the category of vector spaces over K with linear

maps as morphisms. A vector species, or simply a species, is a functor a : Set× → VecK.

Species form a category SpK, where morphisms are natural transformations between

species. For a species a, we denote by a[I] the vector space mapped from I through

a. For a natural transformation η : a ⇒ b, we may write either η[I] or ηI to the

corresponding map a[I]→ b[I].

The Cauchy product is defined on species a, b as follows:

a� b[I] =
⊕

I=StT
a[S]⊗ b[T ] .

Two fundamental species are of interest. The first one E acts as the identity for the

Cauchy product, and is defined as E [∅] = K for the empty set, and E [A] = 0 otherwise.

The functor E maps morphisms to the identity. The exponential species Exp is defined

as Exp[A] = K for any set A, and maps morphisms to the identity as well.

A vector species a is called a bimonoid if there are natural transformations µ : a�a⇒ a,

ι : E ⇒ a, ∆ : a ⇒ a � a and ε : a ⇒ E that satisfy some properties which we recover

here only informally. We address the reader to [AM10, Section 8.2 - 8.3] for a detailed

introduction of bimonoids in species.

• The natural transformation µ is associative.

• The natural transformation ι acts as unit on both sides.

• The natural transformation ∆ is coassociative.
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• The natural transformation ε acts as a counit on both sides.

• Both µ,∆ are determined by maps

µA,B : a[A]⊗ a[B]→ a[A tB] ,

∆A,B : a[A tB]→ a[A]⊗ a[B] .

• The natural transformations satisfy some coherence relations typical for Hopf al-

gebras. In particular it satisfies diagram 5.1 below, which enforces that the multi-

plicative and comultiplicative structure agree.

a[I]⊗ a[J ] a[S]

a[R]⊗ a[T ]⊗ a[U ]⊗ a[V ] a[M ]⊗ a[N ]

µI,J

∆R,T⊗∆U,V ∆M,N

(µR,U⊗µT,V )◦twist

(5.1)

We consider the canonical isomorphism β : V ⊗W → W ⊗ V , and also refer to any

composition of tensors of identity maps and β as a twist. Whenever needed, we consider

a suitable twist function without defining it explicitly, by letting the source and the

target of the map clarify its precise definition. For instance, that is done above in

Diagram (5.1).

We use µA,B and ·A,B interchangeably for the monoidal product. Namely, ·A,B will be

employed for in line notation

We say that a bimonoid h is connected if the dimension of h[∅] is one. A bimonoid is

called a Hopf monoid if there is a natural transformation s : h⇒ h, called the antipode,

that satisfies

µ ◦ (idh�s) ◦∆ = ι ◦ ε = µ ◦ (s� idh) ◦∆ .

Proposition 5.1.1 (Proposition 8.10 in [AM10]). If h is a connected bimonoid, then

there is an antipode on h that makes it a Hopf monoid.

Example 5.1.2 (Hopf monoids).

• The exponential vector species can be endowed with a trivial product and coprod-

uct. This is a connected bimonoid, hence it is a Hopf monoid.

• The vector space Gr[I] (resp. Pos, GP and HGP has a basis given by all graphs

on the vertex set I (resp. partial orders on the set I, generalized permutahedra

in RI , hypergraphic polytopes in RI) defines a Hopf monoid with the operations

introduced above.
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5.2 Combinatorial Hopf monoids

The notion of characters in Hopf monoids was already brought to light in [AA17], where

it is used to settle, for instance, a conjecture of Humpert and Martin [HM12] on graphs.

Definition 5.2.1. Let h be a Hopf monoid. A Hopf monoid character η : h ⇒ Exp, or

simply a character, is a monoid morphism such that η∅ = ε∅ and the following diagram

commutes:

h[I]⊗ h[J ] h[A]

K⊗ K K

µI,J

ηI⊗ηJ ηA

∼=

(5.2)

A combinatorial Hopf monoid is a pair (h, η) where h is a Hopf monoid, and η a character

of h.

The condition that η and ε coincide in the ∅ level is commonly verified in Hopf monoids

of combinatorial objects. In particular, this condition is always verified in connected

Hopf monoids.

Example 5.2.2 (Combinatorial Hopf monoids). From the examples on Hopf monoids

above and the characters defined in Section 4.2, we can construct combinatorial Hopf

monoids: in Gr with the character η(G) = 1[G has no edges], in Pos with the character

η(P ) = 1[P is antichain], and in GP with the character given by η(q) = 1[q is a point ].

A combinatorial Hopf monoid morphism α : (h1, η1) ⇒ (h2, η2) is a Hopf monoid mor-

phism α : h1 ⇒ h2 such that the following diagram commutes:

h1 h2

Exp

α

η1
η2

(5.3)

We introduce the Fock functors, that give us a construction of several graded Hopf

algebras from a Hopf monoid and, more generally, construct graded vector spaces from

vector species. The topic is carefully developed in [AM10, Section 3.1, Section 15.1].

Definition 5.2.3 (Fock functors). Denote by gVecK the category of graded vector spaces

over K. We focus on the following Fock functors K,K : SpK → gVecK, called full Fock

functor and bosonic Fock functor, respectively, defined as:
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K(q) :=
⊕
n≥0

q[{1, . . . , n}] and K(q) :=
⊕
n≥0

q[{1, . . . , n}]Sn ,

where VSn stands for the vector space of coinvariants on V over the action of Sn, i.e.,

the quotient of V under all relations of the form x− σ(x), for σ ∈ Sn.

If h is a combinatorial Hopf monoid with structure morphisms µ, ι,∆, ε, then K(h) and

K(h) are Hopf algebras with related structure maps. If η is a character of h, then K(h)

and K(h) also have a character.

Example 5.2.4 (Fock functors of some Hopf monoids).

• The Hopf algebra K(E) is the linear Hopf algebra K. The Hopf algebra K(Exp) is

the polynomial Hopf algebra K[x].

• The Hopf algebras K(Gr), K(Pos) and K(GP) are the Hopf algebras of graphs G,

of posets Pos and of generalized permutahedra GP introduced above.

• The Hopf algebra K(HGP) is the Hopf algebra HGP, the Hopf subalgebra of GP

introduced above.

5.3 The word quasi-symmetric function Hopf monoid

Recall that a coloring of a set I is a map f : I → N, and that CI be the set of colorings

of I. Recall as well that a set composition ~π = S1| · · · |Sl can be identified with a

total preorder R~π, where we say aR~π b if a ∈ Si and b ∈ Sj satisfy i ≤ j. For a set

composition ~π of A and a non-empty subset I ⊆ A, we define ~π|I as the set composition

of I obtained by restricting the preorder R~π to I.

If I, J are disjoint sets, and f ∈ CI and g ∈ CJ , then we set f ∗ g ∈ CItJ as the unique

coloring in I t J that satisfies both f ∗ g|I = f and f ∗ g|J = g.

For a set composition ~π ∈ CI , let M~π =
∑

f∈CI
~π(f)=~π

[f ] be a formal sum of colorings, and

define WQSym[I] as the span of {M~π}~π∈CI
. This gives us a K-linear space with basis

enumerated by CI , so that WQSym is a species.

Further, define the monoidal product operation with

M~π ·A,B M~τ =
∑
f∈CA
~π(f)=~π

∑
g∈CB
~π(g)=~τ

[f ∗ g] =
∑
~λ|A=~π
~λ|B=~τ

M~λ
. (5.4)
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We write I <~π J whenever there is no i ∈ I and j ∈ J such that j R~π i. The coproduct

∆I,JM~π is defined as

M~π|I ⊗ M~π|J ,

whenever I <~π J , and is zero otherwise.

If we set the unit as ι∅(1) = M∅ and the counit acting on the basis as ε(M~π) = 1[~π = ∅]
we get a Hopf monoid. In fact, this is the dual Hopf monoid of faces Σ∗ = Σ∗1 in [AM10].

Proposition 5.3.1 ([AM10, Definition 12.19]). With these operations, the species

WQSym becomes a Hopf monoid.

Proposition 5.3.2 ([AM10, Section 17.3.1]). The Hopf algebra K(WQSym) is the Hopf

algebra on word quasi-symmetric functions WQSym, and K(WQSym) is the Hopf algebra

on quasi-symmetric functions QSym.

The identification is as follows: K(WQSym) and WQSym by identifying a coloring f :

[n] → N with the non-commutative monomial
∏n
i=1 af(i) =: af , and extend this to

identify M~π with M~π.

Proposition 5.3.3 (Combinatorial Hopf monoid on WQSym). Take the character η :

WQSym⇒ Exp defined in the basis elements as

η0[I](M~π) = 1[l(~π) ≤ 1] . (5.5)

This turns (WQSym, η0) into a combinatorial Hopf monoid.

Proof. We write η0,I = η0[I] for short. That η0 is a natural transformation is trivial,

and also η0,∅(M∅) = 1, so it preserves the unit.

To show that η0 is multiplicative, we just need to check that the diagram (5.2) commutes

for the basis elements, i.e., if A = I t J , then

η0,I(M~π)η0,J(M~τ ) = η0,A(M~πM~τ ) =
∑
~γ∈CA
~γ|I=~π
~γ|J=~τ

η0,A(M~γ) . (5.6)

Note that if ~γ is a set composition of A such that ~γ|I = ~π, then trivially we have that

l(~π) ≤ l(~γ), so from (5.5), η0,I(M~π) = 0⇒ η0,A(M~γ) = 0. Similarly, if ~γ|J = ~τ , we have

η0,J(M~τ ) = 0⇒ η0,A(M~γ) = 0.

So it is enough to consider the case where η0,I(M~π) = η0,J(M~τ ) = 1, i.e., l(~π), l(~τ ) ≤ 1.

Now, if γ has only one part, it does indeed hold that γ|I = ~π and γ|J = ~τ , so there is a
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unique ~γ on the right hand side of (5.6) that satisfies l(~γ) ≤ 1, and this concludes the

proof.

5.4 Universality of WQSym

The following theorem is the main theorem of this section. For connected Hopf monoids,

this is a corollary of [AM10, Theorem 11.23].

Theorem 5.4.1 (Terminal object in combinatorial Hopf monoids). Given h a Hopf

monoid with a character η : h ⇒ Exp, there is a unique combinatorial Hopf monoid

morphism Υh : h ⇒ WQSym, i.e., a unique Hopf monoid morphism Υh such that the

following diagram commutes:

h WQSym

Exp

Υh

η

η0
(5.7)

We remark that this is a claim motivated in [AM10, Theorem 11.23], which applies to any

connected Hopf monoid. There, the notion of positive monoid was introduced, a monoid

in species such that h[∅] = 0 and with no unit axioms. Any Hopf monoid h can become

a positive monoid h+ by setting h+[∅] = 0 and h+[I] = h[I] for any non-empty set I. A

functor T ∨, mapping positive monoids to Hopf monoids, was constructed, so that any

positive monoid q, connected Hopf monoid h and monoid morphism η : h+ ⇒ q, there

exists a unique Hopf monoid morphism η∨ : h ⇒ T ∨(q) with the following commuting

diagram on positive monoids:

h+ T ∨(q)+

q

η+∨

η

ε(q)

(5.8)

where ε(q) : T ∨(q)+ ⇒ q is a map that comes from the construction of T ∨. In the case

where q is the positive exponential monoid, the resulting Hopf monoid T ∨(q) is precisely

WQSym, thus obtaining Theorem 5.4.1 for connected Hopf monoids.

In fact, the result presented in Theorem 5.4.1 is a minor extension of [AM10, Theorem

11.23] to Hopf monoids that are not necessarily connected, but whose character agrees

with the counit in h[∅]. First we will present a self contained proof by means of multi-

characters. In Remark 5.4.6, we present a more direct proof, using [AM10, Theorem
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11.23] and a suitably constructed connected Hopf monoid. This proof was kindly pointed

out by a reviewer.

Definition 5.4.2 (Multi-character and other notations). For a set composition on a

non-empty set I, say ~π = S1| · · · |Sl with k 0, denote for short

h[~π] =
l⊗

i=1

h[Si] ,

and similarly define for a natural transformation ζ : h ⇒ b the linear transformation

ζ[~π] : h[~π]→ b[~π] as ζ[~π] =
⊗l

i=1 ζ[Si]. For a character, ζ[~π] : h[~π]→ K⊗l ∼= K.

For a set composition ~π on I of length k, let us define ∆~π as a map

∆~π : h[I]→ h[~π] ,

inductively as follows:

• If the length of ~π is 1, then ∆~π = idh[I].

• If ~π = S1| · · · |Sk for k > 1, let ~τ = S1| · · · |Sk−1 and define

∆~π = (∆~τ ⊗ idSk) ◦∆I\Sk,Sk . (5.9)

Note that, by coassociativity, this definition of ∆~π is independent of the chosen order in

the inductive definition in (5.9), i.e., for any set I = AtB and set composition ~π ∈ CI

such that A <~π B, we have

∆~π = (∆~π|A ⊗∆~π|B ) ◦∆A,B . (5.10)

We can define f~π,η : h[I]→ K as

h[I]
∆~π−−→ h[~π]

η[~π]−−→ K⊗l ∼= K ,

Finally, if A = I t J with I 6= ∅ 6= J and ~π ∈ CI , ~τ ∈ CJ , then we write both ~π|~τ and

(~π, ~τ ) for the unique set composition ~γ ∈ CA such that ~γ|I = ~π, ~γ|J = ~τ , and I <~γ J .

Example 5.4.3. In the graph combinatorial Hopf monoid Gr, take the labeled cycle C5

on {1, 2, 3, 4, 5} given in Fig. 5.1. Denote by KJ the complete graph on the labels J and

by 0J the empty graph on the labels J .

Consider the set compositions ~π1 = 13|2|45 and ~π2 = 24|13|5. Then

∆~π1
(C5) = 0{1,3} ⊗ 0{2} ⊗K{4,5} ,
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Figure 5.1: Cycle on the set [5]

∆~π2
(C5) = 0{2,4} ⊗ 0{1,3} ⊗ 0{5} ,

in particular, f~π1,η(C5) = 0 and f~π2,η(C5) = 1. Generally,

f~π,η(G) = 1[λ(~π) is a stable set partition on G] . (5.11)

From (5.11) and from Lemma 4.2.4 we have that K(ΥGr) = ΥG is the chromatic sym-

metric function in non-commutative variables, and that K(ΥGr) = ΨG is the chromatic

symmetric function.

In a similar way we can establish that K(ΥPos) = ΥPos, that K(ΥPos) = ΨPos, that

K(ΥGP) = ΥGP and that K(ΥGP) = ΨGP, where GP is the combinatorial species on

generalized permutahedra.

With this notation, we can rephrase diagram (5.1) in a different way:

Proposition 5.4.4. Consider a Hopf monoid (h, µ, ι,∆, ε). Let ~γ = C1| . . . |Ck be a

set composition on S = I t J , where I, J are non-empty sets. Write Ai := Ci ∩ I and

Bi := Ci ∩ J , and let ~π := (~γ|I , ~γ|J) = A1| . . . |Ak|B1| . . . |Bk, erasing the empty blocks.

Define µ(~γ,I,J) : h[~π]→ h[~γ] as the tensor product of the maps

h[Ai]⊗ h[Bi]
µAi,Bi−−−−→ h[Ci] ,

composed with the necessary twist so that it maps h[~π] → h[~γ]. Then the following

diagram commutes:

h[I]⊗ h[J ] h[S]

h[~π] h[~γ]

µI,J

(∆~γ|I⊗∆~γ|J ) ∆~γ

µ(~γ,I,J)

(5.12)

Note that diagram (5.1) corresponds to diagram (5.12) when k = 2. We prove now that

Diagram (5.12) is obtained by gluing diagrams of the form of Diagram (5.1):
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Proof. We act by induction on the length of ~γ, k := l(~γ). The base case is for k = 2,

where we recover diagram (5.1).

Suppose now that k ≥ 3. Applying I = A1 t A2, J = B1 t B2 to (5.1) we have the

following commuting diagram:

h[A1 tA2|B1 tB2] h[C1 t C2]

h[A1|A2|B1|B2] h[C1|C2]

µA1tA2,B1tB2

∆A1,A2
⊗∆B1,B2

∆C1,C2

(µA1,B1
⊗µA2,B2

)◦twist

(5.13)

Write I ′ = I \ (C1 t C2) and J ′ = J \ (C1 t C2), let ~γ ′ = C3| . . . |Cl and take ~γo =

C1tC2|C3| . . . |Cl = {C1tC2}|γ′. Observe that γ′ is a partition of a non-empty set. By

tensoring diagram (5.13) with

h[A3|B3|A4| . . . |Bl] h[C3| . . . |Cl]

h[A3|B3|A4| . . . |Bl] h[C3| . . . |Cl]

µ(~γ′,I′,J′)

id id

µ(~γ′,I′,J′)

(5.14)

we have:

h[A1 tA2|B1 tB2|A3|B3| . . . ] h[~γo]

h[A1|A2|B1|B2|A3|B3|A4| . . . ] h[~γ]

µA1tA2,B1tB2
⊗µ(~γ′,I′,J′)

∆A1,A2
⊗∆B1,B2

⊗id ∆C1,C2
⊗id

(µA1,B1
⊗µA2,B2

⊗µ(~γ′,I′,J′))◦twist

(5.15)

Note that

µA1,B1 ⊗ µA2,B2 ⊗ µ(~γ′,I′,J ′) = µ(~γ,I,J) ,

µA1tA2,B1tB2 ⊗ µ(~γ′,I′,J ′) = µ(~γo,I,J) .

So, by induction hypothesis, (5.12) commutes for the set composition ~γo = C1 t
C2|C3| . . . |Cl. Apply the necessary twists so as to glue with with diagram (5.15) as
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follows:

h[I]⊗ h[J ] h[S]

h[A1 tA2|B1 tB2|A3|B3| . . . |Bl] h[~γ ′]

h[A1|B1|A2| . . . |Bl] h[~γ]

µI,J

twist◦(∆~γo|I⊗∆~γo|J ) ∆~γo

µ(~γo,I,J)

twist◦(∆A1,A2
⊗∆B1,B2

⊗id) ∆C1,C2
⊗id

µ(~γ,I,J)◦twist

(5.16)

We note that absorbing the twist in the bottom left vector space and erasing the middle

line gives us the desired diagram.

Proposition 5.4.5. Consider a combinatorial Hopf monoid (h, η). Let ~π, ~τ be set com-

positions of the disjoint non-empty sets I and J , respectively, and take ~λ set composition

of S = I t J . Take a ∈ h[I], b ∈ h[J ], c ∈ h[I t J ]. Then we have that

f~λ,η(a ·I,J b) = f~λ|I ,η(a)f~λ|J ,η(b) , (5.17)

and that

f~π,η ⊗ f~τ ,η ◦∆I,J(a) = f(~π,~τ ),η(a) . (5.18)

Proof. Note that (5.17) reduces to

f~γ,η ◦ µI,J = f~γ|I ,η ⊗ f~γ|J ,η. (5.19)

Now Proposition 5.4.4 tells us that

∆~γ ◦ µI,J = µ(~γ,I,J) ◦ (∆~γ|I ⊗∆~γ|J ) . (5.20)

Suppose that ~γ = C1| . . . |Ck for k ≥ 1. Then by tensoring diagrams of the form (5.2)

for each decomposition (I ∪ Ci) t (J ∪ Ci) = Ci, we obtain

η[~γ] ◦ µ(~γ,I,J) = η[(~γ|I , ~γ|J)] . (5.21)

From (5.20) and (5.21) we get that

η[~γ] ◦∆~γ ◦ µI,J = η[~γ] ◦ µ(~γ,I,J) ◦ (∆~γ|I ⊗∆~γ|J ) = η[(~γ|I , ~γ|J)] ◦ (∆~γ|I ⊗∆~γ|J ) .

So

f~γ,η ◦ µI,J = (η[~γ|I ]⊗ η[~γ|J ]) ◦ (∆~γ|I ⊗∆~γ|J ) = η~γ|I ⊗ η~γ|J .
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This concludes the proof of (5.19). Remains to show (5.18), which follows from (5.10)

via

(f~π,η ⊗ f~τ ,η) ◦∆I,J = (η[~π]⊗ η[~τ ]) ◦ (∆~π ⊗∆~τ ) ◦∆I,J = η[(~π, ~τ )] ◦∆(~π,~τ ) = f(~π,~τ ),η ,

whenever both I and J are non empty, establishing the equality as desired.

Proof of Theorem 5.4.1. Let a ∈ h[I]. We define

Υh(a) =
∑
~π∈CI

M~πη~π(a) ,

The commutativity of Diagram (5.7) follows because f~π,η = η whenever ~π has length 1

or 0. Remains to show that such map is a combinatorial Hopf monoid morphism, i.e.,

that we have:

• Υh(a ·I,J b) = Υh(a)Υh(b).

• Υh�h(∆I,Ja) = ∆I,J ◦Υh(a).

• Υh ◦ ιh = ιWQSym.

• εWQSym ◦Υh = εh.

The last two equations follow from direct computation. Taking the coefficients on the

monomial basis for the first two items, this reduces to Proposition 5.4.5 whenever I, J

are non empty.

Further, when I = ∅, we can assume a = λM~∅ and the first equation follows immediately.

Also, when I = ∅, ∆I,J(a) = a ⊗ M~∅, and the second equation follows. This concludes

that Υh is a combinatorial Hopf monoid morphism.

It remains to establish the uniqueness. Suppose that φ : h ⇒ WQSym is a combinatorial

Hopf monoid morphism. Note that η0[∅] is an isomorphism, so from (5.7) applied to

both φ and Υh we get η0[∅]−1η[∅] = φ[∅] = Υh[∅].

Now take I non-empty. For each a ∈ h[I], write φ[I](a) =
∑

~π∈CI
M~πφ~π(a) and apply

∆~π on both sides. Since φ is a comonoid morphism, we have:

φ[~π]∆~π(a) = ∆~πφ[I](a) =
∑
~τ

φ~τ (a)∆~πM~τ = φ~π(a)∆~πM~π , (5.22)
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because ∆~π(M~τ ) = 0 whenever ~π 6= ~τ and |~π| = |~τ |.

However, since η0φ = η, we have that η0[~π]φ[~π] = η[~π], so

η0[~π]φ[~π]∆~π(a) = η[~π]∆~π(a) = f~π,η(a) . (5.23)

Applying η0[~π] on (5.22) and using (5.23), gives us φ~π(a)f~π,η0(M~π) = η~πa. However,

f~π,η0(M~π) = 1, so we have that

φ~π(a) = f~π,η(a) .

which concludes the uniqueness.

Remark 5.4.6. We would like to point out that this theorem also follows from [AM10,

Theorem 11.23] directly. However, we present here a proof with multi-characters in the

interest of self containment.

Specifically, let (η, h) be a combinatorial Hopf monoid, and consider the following Hopf

submonoid h′, where h′[I] = h[I] for I 6= ∅, and h′[∅] = K. This is also a combinatorial

Hopf monoid, as the maps ε and η, suitably redefined to be the relevant restriction to

h′[∅], satisfy the Hopf monoid axioms. The unit and bialgebra axioms guarantee that

h′[∅] is stable for the product and the coproduct.

Therefore, because this a connected Hopf monoid, from [AM10, Theorem 11.23] there

is a unique Hopf monoid morphism Ψ : h′ ⇒ WQSym. This map can be extended to a

Hopf monoid morphism Ψ : h⇒ WQSym by setting Ψ∅ = η∅. It must be checked that this

map satisfies the Hopf monoid morphism axioms. It is a direct observation that (5.7)

commutes, making this a Hopf monoid morphism.

Conversely, if there are two distinct combinatorial Hopf monoids Ψ1,Ψ2 : h ⇒ WQSym,

then they must agree on h[∅] in accordance with (5.7). On the other hand, if we consider

the compositions inc ◦Ψ1, inc ◦Ψ2, these correspond to two combinatorial Hopf monoid

morphisms h′ ⇒ WQSym, so they must coincide in accordance with [AM10, Theorem

11.23]. Thus, Ψ1,Ψ2 must agree on h[I] for any non-empty set I.

5.5 Generalized permutahedra and posets

In the following, we see that the universal map that we constructed above in Theo-

rem 5.4.1 is well behaved with respect to combinatorial Hopf monoid morphisms. This

is in fact a classical property of terminal objects in any category.
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Lemma 5.5.1. If φ : h1 ⇒ h2 is a combinatorial Hopf monoid morphism between

two Hopf monoids with characters η1 and η2 respectively, then the following diagram

commutes

h1 h2

WQSym

φ

Ψh1

Ψh2

(5.24)

Proof. It is a direct observation that the composition of combinatorial Hopf monoids

morphism is still a combinatorial Hopf monoid morphism. Hence, we have that Υh2 ◦φ :

h1 → WQSym is a combinatorial Hopf monoid morphism. By uniqueness it is Υh2 ◦ φ =

Υh1 .

Corollary 5.5.2. There are no Hopf monoid morphisms φ : Pos → GP that preserve

the corresponding characters.

Proof. For sake of contradiction, suppose that such φ exists, hence it satisfies K(ΥGP) ◦
K(φ) = K(ΥPos), according to Lemma 5.5.1, so

ΥPos = ΥGP ◦ K(φ) .

However, ΥPos is surjective, whereas we have seen in Theorem 4.5.1 that ΥGP is not

surjective. This is the desired contradiction.



Chapter 6

The feasible region for

consecutive patterns of

permutations is a cycle polytope

(1,0,0,0,0,0)
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Figure 6.1: The four-dimensional polytope P3 given by the six patterns of size three
(see Eq. (6.2) for a precise definition). We highlight in light-blue one of the six three-
dimensional facets of P3. This facet is a pyramid with square base. The polytope itself

is a four-dimensional pyramid, whose base is the highlighted facet.

This chapter is a joint work with Jacopo Borga, based on the article [BP19] submitted for

publication. A short version of this chapter is accepted for publication in the proceedings

of Formal Power Series and Algebraic Combinatorics (poster presentation).
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6.1 Introduction

There are two central notions of patterns in permutations that we wish to study in

this chapter: the notion of classical pattern and the notion of consecutive pattern.

Classical patterns match the definition of pattern in the presheaf of permutations given

in Definition 1.5.3, while for the consecutive patterns we require the occurrence to be

an interval.

We will consider a feasible regions for each of these types of patterns. The feasible

region for classical patterns has been already studied in the literature, whereas the

feasible region for consecutive patterns is new. Both were introduced in Chapter 1 and

we recall them now.

We denote by Sn the set of permutations of size n, by S the space of all permutations, and

by õcc(π, σ) (resp. c̃-occ(π, σ)) the proportion of classical occurrences (resp. consecutive

occurrences) of a permutation π in σ (see Section 6.1.7 for notation and basic definitions).

We consider the classical pattern limiting sets, sometimes called the feasible region for

(classical) patterns, defined as

clPk := {~v ∈ [0, 1]Sk
∣∣∃(σm)m∈N ∈ SN s.t. (6.1)

|σm| → ∞ and õcc(π, σm)→ ~vπ,∀π ∈ Sk} ,

and we introduce the consecutive pattern limiting sets, called here the feasible region

for consecutive patterns,

Pk := {~v ∈ [0, 1]Sk
∣∣∃(σm)m∈N ∈ SN s.t. (6.2)

|σm| → ∞ and c̃-occ(π, σm)→ ~vπ,∀π ∈ Sk} .

We will present some known facts regarding clPk in Section 6.1.1. The main results on

this chapter relate to Pk, the feasible region for consecutive patterns. Specifically, we

will describe Pk as a cycle polytope of an explicit graph in Section 6.3, and furthermore

detail on its face structure in Theorem 6.2.12. Lastly, we will attempt to describe the

feasible region when we mix classical and consecutive patterns.

6.1.1 The feasible region for classical patterns

The feasible region clPk was first studied in [KKRW15] with a different technical defi-

nition, for a generic family of patterns instead of the whole Sk. More precisely, given a
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list of finite sets of permutations (P1, . . . ,P`), the authors considered the feasible region

for (P1, . . . ,P`), that is, the set~v ∈ [0, 1]`

∣∣∣∣∣∃(σm)m∈N ∈ SN s.t. |σm| → ∞,
∑
τ∈Pi

õcc(τ, σm)→ ~vi, for i = 1, . . . , `

 .

They first studied the simplest case when P1 = {12} and P2 = {123, 213} showing that

the corresponding feasible region for (P1,P2) is the region of the square [0, 1]2 bounded

from below by the parameterized curve (2t− t2, 3t2 − 2t3)t∈[0,1] and from above by the

parameterized curve (1− t2, 1− t3)t∈[0,1] (see [KKRW15, Theorem 13]).

They also proved in [KKRW15, Theorem 14] that if each Pi = {τi} is a singleton, and

there is some value p such that, for all permutations τi, the final element τi(|τi|) is equal

to p , then the corresponding feasible region is convex. They remarked that one can

construct examples where the feasible region is not strictly convex: e.g. in the case where

P1 = {231, 321} and P2 = {123, 213}.

They finally studied two additional examples: the feasible regions for ({12}, {123}) (see

[KKRW15, Theorem 15]) and for the patterns ({123}, {321}) (see [KKRW15, Section

10]). In the first case, they showed that the feasible region is equal to the so-called

“scalloped triangle” of Razborov [Raz08, Raz07] (this region also describes the space

of limit densities for edges and triangles in graphs). For the second case, they showed

that the feasible region is equal to the limit of densities of triangles versus the density

of anti-triangles in graphs, see [HLN+14, HLN+16].

The set clPk was also studied in [GHK+17], even though with a different goal. There,

it was shown that clPk contains an open ball B with dimension |Ik|, where Ik is the set

of ⊕-indecomposable permutations of size at most k. Specifically, for a particular ball

B ⊆ RIk , the authors constructed permutons P~x such that ∆π(P~x) = ~xπ, for each point

~x ∈ B.

This work opened the problem of finding the maximal dimension of an open ball con-

tained in clPk, and placed a lower bound on it. In [Var14] an upper bound for this

maximal dimension was indirectly given as the number of so-called Lyndon permuta-

tions of size at most k, whose set we denote Lk. In this article, the author showed that

for any permutation π that is not a Lyndon permutation, õcc(π, σ) can be expressed as

a polynomial on the functions {õcc(τ, σ)|τ ∈ Lk} that does not depend on σ. It follows

that clPk sits inside an algebraic variety of dimension |Lk|. We expect that this bound

is sharp since, as referred in Conjecture 1.7.1.
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6.1.2 First main result

Unlike with the case of classical patterns, we are able to obtain here a full description of

the feasible region Pk as the cycle polytope of a specific graph, called the overlap graph

Ov(k).

The graph Ov(k) is a directed multigraph with labeled edges, where the vertices are

elements of Sk−1 and for every π ∈ Sk there is an edge labeled by π from the pattern

induced by the first k − 1 indices of π to the pattern induced by the last k − 1 indices

of π.

The overlap graph Ov(4) is displayed in Fig. 6.2.
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Figure 6.2: The overlap graph Ov(4). The six vertices are painted in red and the
edges are drawn as labeled arrows. Note that in order to obtain a clearer picture we did
not draw multiple edges, but we use multiple labels (for example the edge 231→ 312 is
labeled with the permutations 3412 and 2413 and should be thought of as two distinct
edges labeled with 3412 and 2413 respectively). The role of the green arrows is clarified

in Example 6.3.7.

Our first main result is the following.

Theorem 6.1.1. Pk is the cycle polytope of the overlap graph Ov(k). Its dimension is

k!− (k − 1)! and its vertices are given by the simple cycles of Ov(k).

In addition, we also determine the equations that describe the polytope Pk (for a precise

statement see Theorem 6.3.12).
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In order to establish the dimension, the vertices and the equations describing Pk, we

first prove general results for cycle polytopes of directed multigraphs (see Section 6.1.4)

and then we transfer them to the specific case of our graph of interest.

6.1.3 The overlap graph

Overlap graphs were already studied in previous works. We give here a brief summary of

the relevant literature. The overlap graph Ov(k) is the line graph of the de Bruijn graph

for permutations of size k−1. The latter was introduced in [CDG92], where the authors

studied universal cycles (sometime also called de Bruijn cycles) of several combinatorial

structures, including permutations. In this case, a universal cycle of order n is a cyclic

word of size n! on an alphabet of N letters that contains all the patterns of size n as

consecutive patterns. In [CDG92] it was conjectured (and then proved in [Joh09]) that

such universal cycles always exist when the alphabet is of size N = n+ 1.

The de Bruijn graph for permutations was also studied under the name of graph of over-

lapping permutations in [KPV19] again in relation with universal cycles and universal

words. Further, in [AF18] the authors enumerate some families of cycles of these graphs.

We mainly use overlap graphs as a tool to state and prove our results on Pk, rather than

exploiting its properties. We remark that, applying the same ideas used to show the

existence of Eulerian and Hamiltonian cycles in classical de Bruijn graphs (see [CDG92]),

it is easy to prove the existence of both Eulerian and Hamiltonian cycles in Ov(k). In

particular, with an Eulerian path in Ov(k), we can construct (although not uniquely) a

permutation σ of size k! + k − 1 such that c-occ(π, σ) = 1 for any π ∈ Sk.

6.1.4 Polytopes and cycle polytopes

As said before, we obtain general results for cycle polytopes of directed multigraphs:

Theorem 6.1.2. The cycle polytope of a strongly connected directed multigraph G =

(V,E) has dimension |E| − |V |.

We also determine the equations defining the polytope (see Theorem 6.2.12) and we

show that all its faces can be identified with some subgraphs of G (see Theorem 6.2.13).

This gives us a description of the face poset of the polytope. Further, the computation

of the dimension is generalized for any cycle polytope, even those that do not come from

strongly connected graphs (see Theorem 6.2.11).

Some weaker versions of our results already appeared in the literature. Polytopes similar

to the cycle polytopes studied here, called unrescaled cycle polytopes (U-cycle polytopes
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for short), were introduced in [BO00] in the directed version and in [CP89] in the undi-

rected version1. Balas & Oosten [BO00] and Balas & Stephan [BS09] computed the

dimension of the U-cycle polytope of the complete graph (that is, the complete directed

graph without loops) and described the facets of the corresponding polytope. Notice

that we study cycle polytopes for general directed multigraphs and we do not restrict

to the case of complete graphs as in [BO00, BS09].

The U-cycle polytopes for undirected graphs were initially considered to tackle the Sim-

ple Cycle Problem (SCP) [GP02], that also goes by the name of Weighted Girth Problem

[Bau97]. This problem consists in finding a minimum weighted simple cycle in an undi-

rected graph with costs associated with each edge. The related decision problem is

known to be NP-hard, as it can be reduced to the “traveling salesman” problem (TSP),

that asks the following question: “Given a list of cities and the distances between each

pair of cities, what is the shortest possible route that visits each city and returns to the

origin city?”. The Simple Cycle Problem was also considered later in [LdCS13].

Remark 6.1.3. In [BO00, Proposition 4], the dimension of the U-cycle polytope for

the complete graph on n vertices without loops is computed as (n− 1)2. We point out

that in Theorem 6.1.2 we compute the dimension of the cycle polytope of the complete

graph as (n2− n)− n = (n− 1)2− 1. This is coherent with the previous result, because

a cycle polytope has an extra equation given by
∑

e xe = 1 when compared with its

corresponding U-cycle polytope.

We point out that other instances of polytopes related to paths in graphs were also

investigated. For instance, there is a path version of U-cycle polytopes, considered in

[Ste09]. Specifically, the (s, t)-p-path polytope of a directed graph G is the convex hull

of the incidence vectors of simple directed (s, t)-paths in G of size p. There, the authors

gave some characterizations of the facets of the path polytopes. More concerning this

polytope can be found, for instance, in [DG04, DR00].

6.1.5 Mixing classical patterns and consecutive patterns

We saw in Section 6.1.1 that the feasible region clPk for classical pattern occurrences

has been studied in several papers. In this chapter we study the feasible region Pk of

limiting points for consecutive pattern occurrences. A natural question is the following:

what is the feasible region if we mix classical and consecutive patterns?

1The cycle polytopes introduced in this chapter are intrinsically related to the U-cycle polytopes.
The vertices of the U-cycle polytope of a directed multigraph G are defined as the incidence vectors of
simple cycles of G. We additionally rescale each of the vertices so that the coordinates sum up to one.
The U-cycle polytopes were considered in the literature simply under the name of cycle polytopes. We
adapt the name of cycle polytopes to our family of polytopes for the sake of simplifying the terminology
in this chapter.
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We answer this question showing that:

Theorem 6.1.4. For any two points ~v1 ∈ clPk and ~v2 ∈ Pk, there exists a sequence of

permutations (σm)m∈N such that |σm| → ∞, satisfying

(õcc(π, σm))π∈Sk → ~v1 and (c̃-occ(π, σm))π∈Sk → ~v2.

This result shows a sort of independence between classical patterns and consecutive

patterns, in the sense that knowing the proportion of classical patterns of a certain

sequence of permutations gives no constraints for the proportion of consecutive patterns

of the same sequence and vice versa.

We stress that we provide an explicit construction of the sequence (σm)m∈N in the

theorem above (for a more precise and general statement, see Theorem 6.4.1).

We conclude this section with the following observation on local and scaling limits of

permutations.

Observation 6.1.5. In Theorems 1.7.2 and 1.7.3 we saw that the proportion of oc-

currences (resp. consecutive occurrences) in a sequence of permutations (σm)m∈N char-

acterizes the permuton limit (resp. Benjamini–Schramm limit) of the sequence. The-

orem 6.1.4 proves that the permuton limit of a sequence of permutations induces no

constraints for the Benjamini–Schramm limit and vice versa. For instance, we can con-

struct a sequence of permutations where the permuton limit is the decreasing diagonal

and the Benjamini–Schramm limit is the classical increasing total order on the integer

numbers.

We remark that a particular instance of this “independence phenomenon” for local/s-

caling limits of permutations was recently also observed by Bevan, who pointed out in

the abstract of [Bev19] that “the knowledge of the local structure of uniformly random

permutations with a specific fixed proportion of inversions reveals nothing about their

global form”. Here, we prove that this is a universal phenomenon which is not specific

to the framework studied by Bevan.

6.1.6 Outline of the chapter

This chapter is organized as follows:

• In Section 6.2 we analyze directed multigraphs and consider their cycle polytopes.

There, we prove Theorem 6.1.2 and the results mentioned immediately below it.

• Our results regarding Pk come in Section 6.3, where we prove Theorem 6.1.1.
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• Finally, we prove in Section 6.4 a more precise version of Theorem 6.1.4.

6.1.7 Notation

We summarize here the notation and some basic definitions used in this chapter.

Permutations and patterns

For every n ∈ N, we view permutations of [n] = {1, 2, . . . , n} as words of size n, and

write them using the one-line notation σ = σ(1)σ(2) . . . σ(n). We denote by Sn the set

of permutations of size n, by S≥n the set of permutations of size at least n, and by S
the set of permutations of finite size.

We often view a permutation σ ∈ Sn as a diagram, specifically as an n× n board with

n points at positions (i, σ(i)) for all i ≤ n.

If x1, . . . , xn is a sequence of distinct numbers, let std(x1, . . . , xn) be the unique permuta-

tion π in Sn whose elements are in the same relative order as x1, . . . , xn, i.e., π(i) < π(j)

if and only if xi < xj . Given a permutation σ ∈ Sn and a subset of indices I ⊆ [n], let σ|I
be the permutation induced by (σ(i))i∈I , namely, σ|I := std ((σ(i))i∈I) . For example, if

σ = 87532461 and I = {2, 4, 7}, then 87532461|{2,4,7} = std(736) = 312.

Given two permutations, σ ∈ Sn, π ∈ Sk for some positive integers n ≥ k, we say that σ

contains π as a pattern if there exists a subset I ⊆ [n] such that σ|I = π, that is, if σ has

a subsequence of entries order-isomorphic to π. Denoting by i1, i2, . . . , ik the elements

of I in increasing order, the subsequence σ(i1)σ(i2) . . . σ(ik) is called an occurrence of π

in σ. In addition, we say that σ contains π as a consecutive pattern if there exists an

interval I ⊆ [n] such that σ|I = π, that is, if σ has a subsequence of adjacent entries

order-isomorphic to π. Using the same notation as above, σ(i1)σ(i2) . . . σ(ik) is then

called a consecutive occurrence of π in σ.

Recall that we denote by pπ(σ) the number of occurrences of a pattern π in σ, more

precisely

pπ(σ) :=
∣∣∣{I ⊆ [n] s.t. σ|I = π

}∣∣∣ .
We denote by c-occ(π, σ) the number of consecutive occurrences of a pattern π in σ,

more precisely

c-occ(π, σ) :=
∣∣∣{I ⊆ [n]| I is an interval, σ|I = π

}∣∣∣.
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Moreover, we denote by õcc(π, σ) (resp. by c̃-occ(π, σ)) the proportion of occurrences

(resp. consecutive occurrences) of a pattern π in σ, that is,

õcc(π, σ) :=
pπ(σ)(

n
k

) ∈ [0, 1], c̃-occ(π, σ) :=
c-occ(π, σ)

n
∈ [0, 1] .

For a fixed k ∈ N and a permutation σ ∈ S≥k, we let õcck(σ), c̃-occk(σ) ∈ [0, 1]Sk be the

vectors

õcck(σ) := (õcc(π, σ))π∈Sk , c̃-occk(σ) :=
(
c̃-occ(π, σ)

)
π∈Sk

.

Finally, we denote with ⊕ the direct sum of two permutations, i.e., for τ ∈ Sm and

σ ∈ Sn,

τ ⊕ σ = τ(1) . . . τ(k)(σ(1) +m) . . . (σ(n) +m) ,

and we denote with σ⊕` the direct sum of ` copies of σ.

Polytopes

Given a set S ⊆ Rn, we define the convex hull (resp. affine span, linear span) of S as the

set of all convex combinations (resp. affine combinations, linear combinations) of points

in S, that is,

conv(S) =

{
k∑
i=1

αi~vi

∣∣∣∣∣~vi ∈ S, αi ∈ [0, 1] for i = 1, . . . k ,

k∑
i=1

αi = 1

}
,

Aff(S) =

{
k∑
i=1

αi~vi

∣∣∣∣∣~vi ∈ S, αi ∈ R for i = 1, . . . k ,

k∑
i=1

αi = 1

}
,

span(S) =

{
k∑
i=1

αi~vi

∣∣∣∣∣~vi ∈ S, αi ∈ R for i = 1, . . . k

}
.

Definition 6.1.6 (Polytope). A polytope p in Rn is a bounded subset of Rn described

by m linear inequalities. That is, there is some m×n real matrix A and a vector b ∈ Rm

such that

p = {~x ∈ Rn|A~x ≥ b} .

The dimension of a polytope p in Rn is the dimension of Aff p as an affine space, and we

denote it as dim p.

For any polytope, there is a unique minimal finite set of points P ⊂ Rn such that

p = convP, see [Zie12]. This family P is called the set of vertices of p.
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Definition 6.1.7 (Faces of a polytope). Let p be a polytope in Rn. A linear form in Rn

is a linear map f : Rn → R. Its minimizing set on p is the subset pf ⊆ p where f takes

minimal values. This set always exists because p is compact.

A face of p is a subset f ⊆ p for which there exists a linear form f that satisfies pf = f.

A face is also a polytope, and any vertex of p is a face of p. The faces of a polytope p

form a poset when ordered by inclusion, called the face poset.

We observe that the vertices of a polytope are exactly the singletons that are faces.

Remark 6.1.8 (Computing faces and vertices of a polytope). If f is a linear form in

Rn and p = convA ⊆ Rn, then

pf = conv{arg min
a∈A

f(a)} = arg min
a∈p

f(a) . (6.3)

In particular, the vertices V of convA satisfy V ⊆ A. Also, when computing pf , it

suffices to evaluate f on A.

Directed graphs

All graphs, their subgraphs and their subtrees are considered to be directed multigraphs

in this chapter (and we often refer to them as directed graphs or simply as graphs). In a

directed multigraph G = (V (G), E(G)), the set of edges E(G) is a multiset, allowing for

loops and parallel edges. An edge e ∈ E(G) is an oriented pair of vertices, (v, u), often

denoted by e = v → u. We write s(e) for the starting vertex v and a(e) for the arrival

vertex u. We often consider directed graphs G with labeled edges, and write lb(e) for

the label of the edge e ∈ E(G). In a graph with labeled edges we refer to edges by using

their labels. Given an edge e = v → u ∈ E(G), we denote by NG(e) the neighboring

edges, that is set of edges e′ ∈ E(G) such that e′ = u → w for some w ∈ V (G), i.e.,

NG(e) = {e′ ∈ E(G)| s(e′) = a(e)}.

A walk of size k on a directed graph G is a sequence of k edges (e1, . . . , ek) ∈ E(G)k

such that for all i ∈ [k− 1], a(ei) = s(ei+1). A walk is a cycle if s(e1) = a(ek). A walk is

a path if all the edges are distinct, as well as its vertices, with a possible exception that

s(e1) = a(ek) may happen. A cycle that is a path is called a simple cycle. Given two

walks w = (e1, . . . , ek) and w′ = (e′1, . . . , e
′
k′) such that a(ek) = s(e′1), we write w •w′ for

the concatenation of the two walks, i.e., w • w′ = (e1, . . . , ek, e
′
1, . . . , e

′
k′). For a walk w,

we denote by |w| the number of edges in w.

Given a walk w = (e1, . . . , ek) and an edge e, we denote by ne(w) the number of times

the edge e is traversed in w, i.e., ne(w) := |{i ≤ k|ei = e}|.
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For a vertex v in a directed graph G, we define degiG(v) to be the number of incoming

edges to v, i.e., edges e ∈ E(G) such that a(e) = v, and degoG(v) to be the number of

outgoing edges in v, i.e., edges e ∈ E(G) such that s(e) = v. Whenever it is clear from

the context, we drop the subscript G. A vertex v that satisfies degi(v) = 0 is called a

source.

The incidence matrix of a directed graph G is the matrix L(G) with rows indexed by

V (G), and columns indexed by E(G), such that for any edge e = v → u, the corre-

sponding column in L(G) has (L(G))v,e = −1, (L(G)))u,e = 1 and is zero everywhere

else.

For instance, we show in Fig. 6.3 a graph G with its incidence matrix L(G).

G =

e1e3

e2

v1

v2

v3

, L(G) =

e1 e2 e3[ ]0 1 −1 v1

−1 0 1 v2

1 −1 0 v3

.

Figure 6.3: A graph G with its incidence matrix L(G).

A directed graph G is said to be strongly connected if for any two vertices v1, v2 ∈ V (G),

there is a path starting in v1 and arriving in v2. For instance, the graph in Fig. 6.3 is

strongly connected.

For a graph G with a distinguished vertex r, we say that T is a rooted spanning tree with

root r if T is tree with T ⊆ G such that V (T ) = V (G) and any edge of T is directed

away from the root.

6.2 The cycle polytope of a graph

In this section we establish general results about the cycle polytope of a graph. Here,

all graphs are considered to be directed multigraphs that may have loops and parallel

edges, unless stated otherwise. We recall the definition of cycle polytope.

We set, for each non-empty cycle C in G, define ~eC ∈ RE(G) so that

(~eC)e :=
ne(C)
|C|

, for all e ∈ E(G),
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and the cycle polytope of G as P (G) := conv{~eC | C is a simple cycle of G}.

6.2.1 Vertices of the cycle polytope

We start by giving a full description of the vertices of this polytope.

Proposition 6.2.1. The vertices of P (G) are precisely {~eC | C is a simple cycle of G}.

Proof. We only need to show that any point of the form ~eC is indeed a vertex. Consider

now a simple cycle C, and recall that vertices of a polytope are characterized by being

the only singletons that are faces. Define:

fC(~x) := −
∑
e∈C

xe, for all ~x = (xe)e∈E(G) ∈ RE(G),

where we identify C with the set of edges in C. We will show that P (G)fC = {~eC}. That

is, that ~eC is the unique minimizer of fC in P (G), concluding the proof.

It is easy to check that fC(~eC) = −1. From Eq. (6.3), we only need to establish that

any simple cycle C̃ that satisfies fC(~eC̃) ≤ −1 is equal to C. Take a generic simple cycle

C̃ in G such that fC(~eC̃) ≤ −1. Then,
∑

e∈C(~eC̃)e ≥ 1. Since ~eC̃ satisfies the equation∑
e∈E(G) (~eC̃)e = 1 and has non-negative coordinates, we must have that (~eC̃)e = 0 for

all e 6∈ C. Thus C̃ ⊆ C as sets of edges. However, because both C̃, C are simple cycles, we

conclude that C = C̃, as desired.

6.2.2 Dimension of the cycle polytope

The goal of this section is to prove the following result.

Theorem 6.2.2 (Dimension of the cycle polytope). If G is a strongly connected graph,

then the cycle polytope of G has dimension |E(G)| − |V (G)|.

To compute the dimension of the polytope P (G) we start by finding some linear relations

that are satisfied in P (G) and that define an affine space of dimension |E(G)| − |V (G)|
(see Lemma 6.2.4). This gives us an upper bound on the dimension of P (G). For

the lower bound, we first assume that the graph G has a loop lp. We find a rooted

spanning tree T of G, and construct |E(G)| − |V (G)| many distinct points ~v(e) (indexed

by E(G)\ (E(T )∪{lp}) ) in a suitable translation of P (G). Finally we observe that the

set

{~v(e)|e ∈ E(G) \ (E(T ) ∪ {lp})} ,
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is linearly independent. Finally, we reduce the problem on loopless graphs G to the

remaining ones.

The construction of the rooted spanning tree is done in Lemma 6.2.3, the construction of

~v(e) is done with the help of Lemma 6.2.5, and the desired linear independence is proved

in Lemma 6.2.9. In Theorem 6.2.11, we establish a generalization of this theorem, where

we compute the dimension of P (G) for any graph G, not only the ones that are strongly

connected.

Lemma 6.2.3. Let G be a directed graph that is strongly connected, and r be a vertex

of G. Then, there exists a rooted spanning tree T of G with root r.

Proof. We construct the desired tree T algorithmically. Start with a tree T with only

one vertex r and no edges. Order the vertices in V (G) \ {r} and successively for each v,

consider the shortest path P from a vertex of the tree T to v in G. This exists because

G is strongly connected and it has at most one vertex in common with T .

After going through all vertices, we obtain a spanning tree of G. Further, it is easy to

see that all the edges are oriented away from r at every step of the algorithm. So this is

a rooted spanning tree, as desired.

In what follows we assume that we have a strongly connected graph G with at least one

loop. We fix a particular loop lp in G, and a spanning rooted tree T with a root r, which

exists by Lemma 6.2.3 above.

Lemma 6.2.4. The points ~x ∈ P (G) satisfy the following relations:

∑
e∈E(G)

xe = 1 , (6.4)

∑
s(e)=v

xe =
∑

a(e)=v

xe ,∀v ∈ V (G) . (6.5)

Moreover, these equations define an affine space with dimension |E(G)| − |V (G)|.

Proof. Because these equations are linear, to observe that any ~x ∈ P (G) satisfies

Eqs. (6.4) and (6.5) we only need to show that the vertices {~eC | C is a simple cycle of G}
satisfy them, which is trivial.

Thus, the claim is proven once we establish the dimension of the affine space. Let A be

the matrix with rows indexed by {/} ∪ V (G), where / is a formal symbol, and columns
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indexed by E(G) defined as

A/,e = 1 Av,e =


−1, if s(e) = v, a(e) 6= v,

1, if s(e) 6= v, a(e) = v,

0, otherwise,

for any vertex v in V (G), and any edge e in E(G).

Then, Eqs. (6.4) and (6.5) are equivalent to

A~x =


1

0
...

0

 .

We want to show that this equation defines an affine space with dimension |E(G)| −
|V (G)|. First, we observe that this system has a non-empty set of solutions. For instance

~elp satisfies Eqs. (6.4) and (6.5). Hence, it suffices to show that rank(A) = |V (G)|. We

claim that rank(A) ≤ |V (G)|. Indeed[
0 1 · · · 1

]
A = ~0 ,

and by the rank nullity theorem on AT , rank(A) + 1 ≤ rank(AT ) + dim ker(AT ) =

|V (G)| + 1. Then, the result is established if we find a non-singular |V (G)| × |V (G)|
minor of A.

Let V ′ = V (G) \ {r}, where r is the root of the tree T in G, and consider the minor M

given by the rows indexed with {/}∪V ′ and the columns indexed with {lp}∪E(T ). We

denote by L′(H) the incidence matrix of a subgraph H of G, with one row (corresponding

to r) removed. We define

M :=

lp E(T )


1 1 · · · 1 /

0
... L′(T ) V ′

0

.

Note that because T is a spanning tree, |E(T ) ∪ {lp}| = |V (G)| = |{/} ∪ V ′|, and so

M is a square matrix. Observe that M is non-singular whenever L′(T ) is non-singular.
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Then, it suffices to establish that L′(T ) is non-singular. We proceed by induction on the

size of T .

The base case is when the tree T has one vertex. Then, L′(T ) is the empty matrix,

which is by convention non-singular. For the induction step, consider a leaf w of T .

We reorder the rows and columns of L′(T ), so that the column corresponding to the

edge e incident to w is the leftmost one, and the row corresponding to the leaf w is the

uppermost one. Then we have

L′(T ) =

e E(T ′)


1 0 · · · 0 w

∗
... L′(T ′) V (T ′)

∗

,

where T ′ is the tree corresponding to T after deleting the vertex w, along with its incident

edge e. By induction hypothesis, this is a non-singular matrix, and that completes the

proof.

Lemma 6.2.5. Let e ∈ E(G) \ (E(T )∪{lp}) be an edge in G. Then there are two non-

empty cycles C(e)
1 , C(e)

2 such that e ∈ C(e)
1 , e 6∈ C(e)

2 and {f ∈ E(G)|nf (C(e)
1 ) 6= nf (C(e)

2 )} ⊆
E(T ) ∪ {e, lp}.

Recall that we denote the concatenation of walks by •.

r

v1

e

v2

D

P1

P2

Figure 6.4: The construction of the cycles C(e)1 , C(e)2 .

Proof. Let v1 = s(e), v2 = a(e) and recall that r is the root of the rooted spanning tree

T . We suggest to compare what follows with Fig. 6.4. We can find a path P1 (resp. P2)
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from r to v1 (resp. v2) in T . Let D be a walk from v2 to r, in G. Such a path exists

because G is strongly connected. We further choose a minimal path D such that e 6∈ D.

Suppose that r = v2. Then, the path D is the empty path (by minimality), and the

cycles C(e)
1 = P1 • e and C(e)

2 = lp satisfy the desired properties.

If r 6= v2, we show that the cycles C(e)
1 = D•P1•e and C(e)

2 = D•P2 are as desired. First,

observe that they satisfy {f ∈ E(G)|nf (C(e)
1 ) 6= nf (C(e)

2 )} ⊆ E(T ) ∪ {e, lp}. Indeed, any

f 6∈ E(T ) ∪ {e, lp} is neither in P1 nor in P2, so f ∈ D or f 6∈ C(e)
1 ∪ C

(e)
2 . In either case

we have that nf (C(e)
1 ) = nf (C(e)

2 ). In addition, e 6∈ C(e)
2 and e ∈ C(e)

1 . Finally, observe

that the cycles obtained are non-empty.

Before stating the next result on the cycle polytope, we take the following detour that

is useful also for later purposes.

Lemma 6.2.6. Let G be a directed graph and w a walk on it. Then the multiset of

edges of w can be decomposed into ` simple cycles (for some ` ≥ 0) C1, . . . , C` and a

tail T that does not repeat vertices (but is possibly empty). Specifically, we have the

following relation of multisets of edges of G:

w = C1 t · · · t C` t T .

When w is a cycle, then this decomposition can be further refined to include only simple

cycles, that is we have the following relation of multisets of edges in G:

w = C1 t · · · t C`,

for some ` ≥ 0.

Proof. This decomposition is obtained inductively on the number of edges. If w has no

repeated vertices, the decomposition w = T satisfies the desired conditions. If w has

repeated vertices, it has a simple cycle corresponding to the first repetition of a vertex.

By pruning from the walk this simple cycle, we obtain a smaller walk which decomposes

by the induction hypothesis. This gives us the first result.

If w is a cycle, apply to w the above decomposition for walks, and observe that the

walk w′ = T forms a smaller cycle or is the empty walk. However, T should not repeat

vertices, so it is the empty walk, and we obtain the desired decomposition.

Remark 6.2.7. The decomposition obtained above, of a walk w into cycles C1, . . . , C`
and a tail T , is a decomposition of the edge multiset. In particular, each of the cycles Ci
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or the tail T are not necessarily formed by consecutive sequences of edges of w. Explicit

examples can be readily found.

Lemma 6.2.8. For a non-empty cycle C in G, we have that ~eC ∈ P (G).

Proof. We have seen in Lemma 6.2.6, that a cycle C has a decomposition into simple

cycles as C = C1 t · · · t C`. It follows that, for an edge e ∈ E(G), we have

~eC =
∑̀
j=1

~eCj
|Cj |
|C|

. (6.6)

Note that
∑`

j=1 |Cj | = |C|. Therefore, ~eC is a convex combination of the vertices of P (G),

as desired.

For e ∈ E(G) \ (E(T ) ∪ {lp}), consider the cycles C(e)
1 , C(e)

2 constructed in Lemma 6.2.5

and define the vector

~v(e) := |C(e)
1 |(~eC(e)1

− ~elp)− |C
(e)
2 |(~eC(e)2

− ~elp) .

In particular, observe that for f ∈ E(G) \ (E(T ) ∪ {lp}) we have

(~v(e))f = nf (C(e)
1 )− nf (C(e)

2 ) is non-zero if and only if e = f . (6.7)

Lemma 6.2.9. The set {~v(e)|e ∈ E(G) \ (E(T ) ∪ {lp})} is linearly independent.

Proof. This follows immediately from Eq. (6.7).

For a set S ⊆ RE(G), recall that we defined the affine span as

Aff(S) =

{
k∑
i=1

αi~vi

∣∣∣∣∣~vi ∈ S, αi ∈ R for i = 1, . . . k ,
k∑
i=1

αi = 1

}
.

In particular, note that if ~0 ∈ S, then Aff(S) = span(S).

Proof of Theorem 6.2.2. We first assume that G has a loop lp. Then, from Lemma 6.2.4,

we know that

dimP (G) = dim Aff(P (G)) ≤ |E(G)| − |V (G)| .

Define the translation P (G)′ = P (G) − ~elp. Observe that ~0 ∈ P (G)′, hence Aff(P (G)′)

is a linear space. Furthermore, observe that for each edge e ∈ E(G) \ (E(T ) ∪ {lp}),
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each vector ~v(e) is a linear combination of ~eC(e)1

− ~elp and ~eC(e)2

− ~elp, which are both in

P (G)′, so ~v(e) ∈ Aff(P (G)′).

Moreover, this is a linearly independent set of vectors, from Lemma 6.2.9, from which we

conclude that dimP (G)′ = dim Aff(P (G)′) ≥ |E(G) \ (E(T )∪{lp})| = |E(G)| − |V (G)|.
The theorem follows, for the case where G has a loop, from dimP (G) = dimP (G)′.

Now suppose that G has no loops, and consider the graph G∪ {lp} obtained from G by

adding a loop lp to one of its vertices. By the above result, the polytope P (G ∪ {lp})
has dimension |E(G)| − |V (G)|+ 1. We can write

P (G ∪ {lp}) = conv(P (G) ∪ ~elp) ,

where P (G) ⊆ RE(G) \ {~0} and ~elp ∈ (RE(G))⊥ \ {~0}. It follows that

|E(G)| − |V (G)|+ 1 = dimP (G ∪ {lp}) = dimP (G) + 1 ,

concluding the proof of the theorem.

We now generalize Theorem 6.2.2 to any graph. We start with the following technical

result.

Proposition 6.2.10. Let a1 ⊂ RA, a2 ⊂ RB be polytopes such that Aff(a1),Aff(a2) do

not contain the zero vector.

Then the dimension of the polytope c = conv(a1 × {~0}, {~0} × a2) ⊂ RAtB is

dim(c) = dim(a1) + dim(a2) + 1.

For simplicity of notation, in this proof we let d(p) be the dimension of a polytope or

affine space.

Proof. In this proof, for sake of simplicity, we will identify a1 ∈ RA and a2 ∈ RB with

a1 × {~0} and {~0} × a2, respectively. In particular, we will refer to points ~x ∈ ai for

i = 1, 2 as their suitable extensions (~x,~0) or (~0, ~x), respectively, in RAtB without further

notice.

Suppose that Aff(a1) = W1 + ~x1, Aff(a2) = W2 + ~x2 and Aff(c) = W + ~x1, where

W1,W2,W are vector subspaces of V := RAtB with dimension d(a1), d(a2) and d(c)

respectively. A choice of ~x1, ~x2 such ~xi ∈ ai for i = 1, 2 is always possible. Since

~0 6∈ Aff ( a1),~0 6∈ Aff ( a2), we have that ~x1 6∈W1, ~x2 6∈W2.
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The dimension that we wish to compute is d(c) = dim (W ). We will do this by estab-

lishing both underlying inequalities.

We start with a lower bound for d(c). Consider bases of W1,W2, {~v(1)
1 , . . . , ~v

(1)
d(a1)}

and {~v(2)
1 , . . . , ~v

(2)
d(a2)}, respectively. It is clear that ~v

(1)
i ∈ Aff(a1) − ~x1 ⊆ W for i =

1, . . . , d(a1), and that ~x2 − ~x1 ∈W . In addition we have that

~v
(2)
i ∈ Aff(a2)− ~x2 ⊆ Aff(c)− ~x2 = Aff(c) + (~x2 − ~x1)− ~x2 = W, for i = 1, . . . , d(a2).

This proves that {~v(1)
1 , . . . , ~v

(1)
d(a1), ~v

(2)
1 , . . . , ~v

(2)
d(a2), ~x2 − ~x1} ⊆ W . We now show that this

set is linearly independent.

Because W1∩W2 = {~0}, the set {~v(1)
1 , . . . , ~v

(1)
d(a1), ~v

(2)
1 , . . . , ~v

(2)
d(a2)} forms a basis of W1⊕W2.

Because ~x1 ∈ RA \W1 and ~x2 ∈ RB \W2, adding the vectors ~x1, ~x2 extends this basis.

It follows that

{~v(1)
1 , . . . , ~v

(1)
d(a1), ~v

(2)
1 , . . . , ~v

(2)
d(a2), ~x2 − ~x1}

is linearly independent.

Observe that we found a linearly independent set with d(a1) + d(a2) + 1 many vectors

in W . This gives us a lower bound for dim c.

For an upper bound, observe that Aff(c) ⊆ span c, and that

dim(span c) ≤ dim(span a1) + dim(span a2) = d(a1) + d(a2) + 2 .

We now prove that 0 6∈ Aff(c) by contradiction. Assume otherwise that
∑

i αi~ai +∑
j βj

~bj = 0, where ~ai ∈ a1, ~bj ∈ a2 and
∑

i αi +
∑

j βj = 1. But
∑

i αi~ai ∈ RA, and

−
∑

j βj
~bj ∈ RB, so

∑
i αi~ai = −

∑
j βj

~bj ∈ RA ∩RB = {~0}. Because
∑

i αi +
∑

j βj = 1,

without loss of generality we can assume that
∑

i αi 6= 0. Then we have
∑
i αi~ai∑
i αi

= 0 ∈
Aff(a1), a contradiction.

Since 0 ∈ span(c), we conclude that Aff(c) 6= span c. It follows that

dim Aff(c) < d(a1) + d(a2) + 2 .

This concludes the proof.

With the help of Proposition 6.2.10, we can generalize Theorem 6.2.2 to the cycle poly-

tope of any graph: We say that a graph G = (V,E) is full if any edge e ∈ E is part of

a cycle of G. It is easy to see that if G is not full, then P (G) = P (H), where H ⊆ G
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is the largest full subgraph of G. Equivalently, H is obtained from G by removing all

edges from G that are not part of a cycle.

If G is a full graph, there are no bridges, that is an edge e connecting two distinct strongly

connected components. Hence, we can decompose G as the disjoint union of strongly

connected components and a set of isolated vertices V ′: G = H1 t · · · tHk t V ′. It can

be seen that P (G) = conv{P (Hi)|i = 1, . . . k}, where identify P (Hi) with its canonical

image in RE(G). Noting that P (Hi) ⊆ Aff(P (Hi)) ⊆ RE(Hi) and that Aff(P (Hi)) does

not contain the origin for any i = 1, . . . , k, from Proposition 6.2.10 we have that

dimP (G) = k − 1 +
∑
i

dimP (Hi) = k − 1 + |E| − |V \ V ′| = |E| − |V |+ |V ′|+ k − 1 .

Theorem 6.2.11. If G is a directed multigraph and H ⊆ G its largest full subgraph,

then the dimension of the polytope P (G) is

dimP (G) = |E(H)| − |V (G)|+ |{ connected components of H}| − 1.

6.2.3 Faces of the cycle polytope

We now focus on the faces of a cycle polytope P (G). We prove two results: in Theo-

rem 6.2.12 we describe the equations that define P (G), then in Theorem 6.2.13 we find

a bijection between faces of P (G) and the subgraphs of G that are full.

Theorem 6.2.12. Let G be a directed graph. The polytope P (G) is given by the

equations in Lemma 6.2.4 together with the inequalities ~x ≥ 0. Specifically

P (G) =

~x ∈ RE(G)

∣∣∣∣∣ ∑
e∈E(G)

xe = 1 ,
∑

s(e)=v

xe =
∑

a(e)=v

xe , ∀v ∈ V (G) , ~x ≥ ~0

 .

Proof. For simplicity of notation, let H1 = {~x ∈ RE(G)|
∑

e xe = 1} and

P+(G) =

~x ∈ RE(G)

∣∣∣∣∣ ∑
s(e)=v

xe =
∑

a(e)=v

xe ,∀v ∈ V (G) , ~x ≥ ~0

 .

We wish to show that

P (G) = P+(G) ∩H1 . (6.8)

The inclusion P (G) ⊆ P+(G)∩H1 is trivial. Suppose now, for the sake of contradiction

that there is a point ~x ∈ (P+(G) ∩H1) \ P (G), and pick one that minimizes the size of

the edge set Z(~x) := {e ∈ E(G)|xe 6= 0}. First observe that ~0 6∈ H1, so Z(~x) 6= ∅.
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We now show that any source v of the graph (V (G),Z(~x)) is an isolated vertex. In fact,

if no edge e ∈ Z(~x) satisfies a(e) = v, we have

∑
s(e)=v

xe =
∑

a(e)=v

xe = 0 ,

and because xe ≥ 0 for any edge e, we have that xe = 0 for any edge e such that s(e) = v.

Hence, v ∈ V (G) is an isolated vertex in (V (G),Z(~x)).

Because (V (G),Z(~x)) is a graph with at least one oriented edge where any source is

isolated, it must have a simple cycle C. Let e ∈ C be the edge in C that minimizes xe,

and consider ~y := ~x− xe|C|~eC .

In the case that we have ~y = ~0, then ~x = xe|C|~eC ∈ H1 by assumption. But ~eC ∈ H1, so

then ~x = ~eC ∈ P (G), which is a contradiction. In the case that ~y is a non-zero vector

with non-negative coefficients, we have that
∑

e ye 6= 0, and

~z :=
~y∑
e ye
∈ P+(G) ∩H1 .

Now suppose that ~z ∈ P (G). Then ~x = (
∑

e ye)~z + xe|C|~eC is a convex combination of

points in P (G), so ~x ∈ P (G), which contradicts our assumption that ~x ∈ (P+(G)∩H1)\
P (G). Thus ~z 6∈ P (G). But, Z(~z) = Z(~y) ⊆ Z(~x) \ {e}, contradicting the minimality of

~x. We conclude that there is no ~x ∈ (P+(G) ∩H1) \ P (G), hence P+(G) ∩H1 ⊆ P (G),

as desired.

Recall that a subgraph H = (V,E′) of a graph G is called a full subgraph if any edge

e ∈ E′ is part of a cycle of H.

Theorem 6.2.13. The face poset of P (G) is isomorphic to the poset of non-empty full

subgraphs of G according to the following identification:

H 7→ P (G)H := {~x ∈ P (G)|xe = 0 for e 6∈ E(H)} .

Further, if we identify P (H) with its image under the canonical inclusion RE(H) ↪→
RE(G), we have that P (H) = P (G)H .

In particular, dimP (G)H = |E(H)| − |V |+ |{connected components of H}| − 1.

Proof. From Theorem 6.2.12, a face of P (G) is given by setting some of the inequalities

of ~x ≥ 0 as equalities. So, a face is of the form P (G)H for some subgraph H =

(V (G), E(H)), where E(G)\E(H) corresponds to the inequalities of ~x ≥ 0 that become
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Figure 6.5: The face structure of the cycle polytope of a graph. On the left-hand
side of the picture (inside the dashed black ball) we have a graph G with two vertices
and five edges. On the right-hand side, we draw the associated cycle polytope P (G)
that is a pyramid with squared base. The blue dashed balls correspond to the simple
cycles corresponding to the five vertices of the polytope. We also underline the relation
between two edges of the polytope (in purple and orange respectively) and a face
(in green) and the corresponding full subgraphs. Note that, for example, the graph
corresponding to the green face is just the union of the three graphs corresponding to

the vertices of that face.

equalities. It is immediate to observe that the identification RE(H) ↪→ RE(G) gives us

that P (H) = P (G)H .

We show that it suffices to take H a full subgraph: consider an edge e0 = v → w in H

that is not contained in any cycle in H. Then (~eC)e0 = 0 for any simple cycle C in H,

and so xe0 = 0 for any point ~x ∈ P (H) = P (G)H . It follows that P (G)H = P (G)H\e0 .

Conversely, we can see that if H1 6= H2 are two full subgraphs of G, then we have that

P (G)H1 6= P (G)H2 , that is, H1, H2 correspond to two different faces of P (G). Indeed,

without loss of generality we can assume that there is an edge e ∈ E(H1) \E(H2). This

edge is, by hypothesis, contained in a simple cycle C, so ~eC ∈ P (G)H1 \ P (G)H2 , so

P (G)H1 6= P (G)H2 .

It is clear that if H1 ⊆ H2 then P (G)H1 ⊆ P (G)H2 , so the identification H 7→ P (G)H

preserves the poset structure. Finally, we obtained the dimension of P (G)H = P (H) in

Theorem 6.2.11.

Example 6.2.14 (Face structure of a specific cycle polytope). Consider the graph G

given on the left-hand side of Fig. 6.5, that has two vertices and five edges. It follows
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that the corresponding cycle polytope has dimension three, and its face structure is

partially depicted in the right-hand side Fig. 6.5.

In fact, from Theorem 6.2.13, to each face of the polytope we can associate a full subgraph

of G. Some of these correspondences are highlighted in Fig. 6.5 and described in its

caption.

Given a simple cycle C in a graph G, a path P is a chord of C if it is edge-disjoint from C
and it starts and arrives at vertices of C. In particular, given two simple cycles sharing

a vertex, any one of them forms a chord of the other.

Remark 6.2.15 (The skeleton of the polytope P (G)). We want to characterize the

pairs of vertices of P (G) that are connected by an edge. The structure behind this is

usually called the skeleton of the polytope. Suppose that we are given two vertices of

the polytope P (G), ~eC1 , ~eC2 corresponding to the simple cycles C1, C2 of the graph G,

according to Proposition 6.2.1.

With the description of the faces in Theorem 6.2.13, we have that a face P (G)H is an

edge when it has dimension one, that is

|E(H)| − |V (G)|+ |{connected components of H}| − 1 = 1 .

This happens if and only if the undirected version of H is a forest with two edges added.

Because H is full, each connected component must contain a cycle, so H has either one or

two connected components. Hence, it results either from the union of two vertex-disjoint

simple cycles, or from the union of a simple cycle and one of its chords. Equivalently,

~eC1 , ~eC2 are connected with an edge when C1 \ C2 forms a unique chord of C2, or when

C1, C2 are vertex-disjoint.

For instance, in Fig. 6.5, there are two pairs of vertices of P (G) that are not connected,

and each pair corresponds to two cycles C1, C2 such that C1 \ C2 forms two chords of C2.

Remark 6.2.16 (Computing the volume of P (G)). The problem of finding the volume

of a polytope is a classical one in convex geometry. We propose an algorithmic approach

that uses the face description of P (G) in Theorem 6.2.13 and the following facts:

• Let A be a polytope and v a point in space. If v 6∈ Aff(A), then

vol(conv(A ∪ {v})) = vol(A) dist(v,Aff(A))
1

dimA+ 1
.
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• If v is vertex of the polytope p of dimension d, then we have the following decom-

position of the polytope p:

p =
⋃

v 6∈q(p

conv(q ∪ {v}) ,

where the union runs over all high-dimensional faces q that do not contain the

vertex v. This decomposition is such that the intersection of each pair of blocks

has volume zero, and each block has a non-zero d− 1 dimensional volume.

If C is a simple cycle of G, the following decomposition holds:

P (G) =
⋃

C6⊆H(G

conv(~eC , P (G)H) ,

where the union runs over all maximal full proper subgraphs of G that do not contain

C.

Hence, we obtain the volume of P (G) as follows:

vol(P (G)) =
∑
C6⊆H(G

conv(~eC , P (G)G\e) =
∑
C6⊆H(G

vol(P (H)) dist(~eC ,Aff(P (G)H))

dimP (G) + 1
,

where the sum runs over all maximal full proper subgraphs of G that do not contain

C. This gives us a recursive way of computing the volume vol(P (G)) by computing the

volume of cycle polytopes of smaller graphs. We have unfortunately not been able to

find a general formula for volP (G), and leave this as an open problem.

6.3 The feasible region Pk is a cycle polytope

Recall that we defined

Pk :=
{
~v ∈ [0, 1]Sk

∣∣∃(σm)m∈N ∈ SN s.t. |σm| → ∞ and c̃-occ(π, σm)→ ~vπ,∀π ∈ Sk
}
.

The goal of this section is to prove that Pk is the cycle polytope of the overlap graph

Ov(k) (see Theorem 6.3.12). We first prove that Pk is closed and convex (see Propo-

sition 6.3.2), then we use a correspondence between permutations and paths in Ov(k)

(see Definition 6.3.5) to prove the desired result.
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6.3.1 The feasible region Pk is convex

We start with a preliminary result.

Lemma 6.3.1. The feasible region Pk is closed.

This is a classical consequence of the fact that Pk is a set of limit points. For complete-

ness, we include a simple proof of this. Recall that c̃-occk(σ) :=
(
c̃-occ(π, σ)

)
π∈Sk

.

Proof. It suffices to show that, for any sequence (~vs)s∈N in Pk such that ~vs → ~v for some

~v ∈ [0, 1]Sk , we have that ~v ∈ Pk. For all s ∈ N, consider a sequence of permutations

(σms )m∈N such that |σms |
m→∞−→ ∞ and c̃-occk(σ

m
s )

m→∞−→ ~vs, and some index m(s) of the

sequence (σms )m∈N such that for all m ≥ m(s),

|σms | ≥ s and ||c̃-occk(σ
m
s )− ~vs|| ≤ 1

s .

W.l.o.g. assume that m(s) is increasing. For every ` ∈ N, define σ` := σ
m(`)
` . It is easy

to show that

|σ`| `→∞−→ ∞ and c̃-occk(σ
`)

`→∞−→ ~v ,

where we use that ~vs → ~v. Therefore ~v ∈ Pk.

We can now prove the first important result of this section.

Proposition 6.3.2. The feasible region Pk is convex.

Proof. Since Pk is closed (by Lemma 6.3.1) it is enough to consider rational convex

combinations of points in Pk, i.e., it is enough to establish that for all ~v1, ~v2 ∈ Pk and

all s, t ∈ N, we have that
s

s+ t
~v1 +

t

s+ t
~v2 ∈ Pk.

Fix ~v1, ~v2 ∈ Pk and s, t ∈ N. Since ~v1, ~v2 ∈ Pk, there exist two sequences (σm1 )m∈N,

(σm2 )m∈N such that |σmi |
m→∞−→ ∞ and c̃-occk(σ

m
i )

m→∞−→ ~vi, for i = 1, 2.

Define tm := t · |σm1 | and sm := s · |σm2 |.

We set τm := (σm1 )⊕sm ⊕ (σm2 )⊕tm . For a graphical interpretation of this construction

we refer to Fig. 6.6. We note that for every π ∈ Sk, we have

c-occ(π, τm) = sm · c-occ(π, σm1 ) + tm · c-occ(π, σm2 ) + Er,
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σm1

σm2

σm1

σm2

sm copies tm copies

τm =

Figure 6.6: Schema for the definition of the permutation τm.

where Er ≤ (sm + tm − 1) · |π|. This error term comes from the number of intervals of

size |π| that intersect the boundary of some copies of σm1 or σm2 . Hence

c̃-occ(π, τm) =
sm · |σm1 | · c̃-occ(π, σm1 ) + tm · |σm2 | · c̃-occ(π, σm2 ) + Er

sm · |σm1 |+ tm · |σm2 |

=
s

s+ t
c̃-occ(π, σm1 ) +

t

s+ t
c̃-occ(π, σm2 ) +O

(
|π|
(

1
|σm1 |

+ 1
|σm2 |

))
.

As m tends to infinity, we have

c̃-occk(τ
m)→ s

s+ t
~v1 +

t

s+ t
~v2,

since |σmi |
m→∞−→ ∞ and c̃-occk(σ

m
i )

m→∞−→ ~vi, for i = 1, 2. Noting also that

|τm| → ∞,

we can conclude that s
s+t~v1 + t

s+t~v2 ∈ Pk. This ends the proof.

6.3.2 The feasible region Pk as the limit of random permutations

Using similar ideas to the ones used in the proof above, we can establish the equality

between the sets in Eq. (6.2). We first recall the following.

Definition 6.3.3. For a total order (Z,4), its shift (Z,4′) is defined by i+ 1 4′ j+ 1 if

and only if i 4 j. A random infinite rooted permutation, or equivalently a random total

order on Z, is said to be shift-invariant if it has the same distribution as its shift.

We refer to [Bor19, Section 2.6] for a full discussion on shift-invariant random permuta-

tions.
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Proposition 6.3.4. The following equality holds

Pk =
{

(Γπ(σ∞))π∈Sk
∣∣σ∞ is a random infinite rooted shift-invariant permutation

}
.

Proof. In [Bor19, Proposition 2.44 and Theorem 2.45] it was proved that a random infi-

nite rooted permutation σ∞ is shift-invariant if and only if it is the annealed Benjamini–

Schramm limit of a sequence of random permutations2. Furthermore, we can choose this

sequence of random permutations σn in such a way that |σn| = n a.s., for all n ∈ N.

This result and Theorem 1.7.3 immediately imply that

Pk ⊆
{

(Γπ(σ∞))π∈Sk
∣∣σ∞ is a random infinite rooted shift-invariant permutation

}
.

To show the other inclusion, it is enough to show that for every random infinite rooted

shift-invariant permutation σ∞, there exists a sequence of deterministic permutations

that Benjamini–Schramm converges to σ∞.

By the above mentioned result of [Bor19], there exists a sequence (σn)n∈N of random

permutations such that |σn| = n a.s., for all n ∈ N, and (σn)n∈N converges in the

annealed Benjamini–Schramm sense to σ∞. Using [Bor19, Theorem 2.24] we know that,

for every π ∈ S,

E[c̃-occ(π, σn)]→ Γπ(σ∞) . (6.9)

Let, for all n ∈ N and ρ ∈ Sn,

pnρ := P(σn = ρ).

For every n ∈ N, we can find n! integers {qnρ }ρ∈Sn such that for every ρ ∈ Sn,∣∣∣∣ qnρ∑
θ∈Sn q

n
θ

− pnρ
∣∣∣∣ ≤ 1

nn
. (6.10)

Let us now consider the deterministic sequence of permutations of size n
∑

θ∈Sn q
n
θ de-

fined as

νn :=
⊕
ρ∈Sn

ρ⊕q
n
ρ ,

where we fixed any order on Sn. Using the same error estimates as in the proof of

Proposition 6.3.2, it follows that

c̃-occ(π, νn) =

∑
ρ∈Sn q

n
ρ · c-occ(π, ρ) + Er

n ·
∑

θ∈Sn q
n
θ

, for all π ∈ S,

2The annealed Benjamini–Schramm convergence is an extension of the Benjamini–Schramm conver-
gence to sequences of random permutations. For more details see [Bor19, Section 2.5.1].
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with Er ≤ (−1 +
∑

θ∈Sn q
n
θ ) · |π|. Therefore

∣∣c̃-occ(π, νn)− E[c̃-occ(π, σn)]
∣∣

≤

∣∣∣∣∣∣
∑
ρ∈Sn

qnρ∑
θ∈Sn q

n
θ

· c̃-occ(π, ρ)−
∑
ρ∈Sn

pnρ · c̃-occ(π, ρ)

∣∣∣∣∣∣+

∣∣∣∣ Er

n ·
∑

θ∈Sn q
n
θ

∣∣∣∣
≤ 1

nn
·
∑
ρ∈Sn

c̃-occ(π, ρ) +
|π|
n
,

where in the second inequality we used the bound in Eq. (6.10) and the bound for Er.

Since the size of π is fixed and the term
∑

ρ∈Sn c̃-occ(π, ρ) is bounded by n!, we can

conclude that
∣∣c̃-occ(π, νn)− E[c̃-occ(π, σn)]

∣∣ → 0. Combining this with Eq. (6.9) we

get

c̃-occ(π, νn)→ Γπ(σ∞), for all π ∈ S.

Therefore, using Theorem 1.7.3 we can finally deduce that the deterministic sequence

{νn}n∈N converges to σ∞ in the Benjamini–Schramm topology, concluding the proof.

6.3.3 The overlap graph

We now want to study the way in which consecutive patterns of permutations can

overlap.

We start by introducing some more notation. For a permutation π ∈ Sk, with k ∈ N≥2,

let beg(π) ∈ Sk−1 (resp. end(π) ∈ Sk−1) be the patterns generated by its first k − 1

indices (resp. last k − 1 indices). More precisely,

beg(π) := π|[1,k−1] and end(π) := π|[2,k].

The following definition, introduced in [CDG92], is key in the description of the feasible

region Pk.

Definition 6.3.5 (Overlap graph). Let k ∈ N≥1. We define the overlap graph Ov(k)

of size k as a directed multigraph with labeled edges, where the vertices are elements of

Sk−1 and for all π ∈ Sk we add the edge beg(π)→ end(π) labeled by π.

This gives us a directed graph with k! many edges, and (k − 1)! many vertices. Infor-

mally, the continuations of an edge τ in the overlap graph Ov(k) records the consecutive

patterns of size k that can appear after the consecutive pattern τ . More precisely, for a

permutation σ ∈ S≥k+1 and an interval I ⊆ [|σ| − 1] of size k, let τ := σ|I ∈ Sk, then we
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have that

σ|I+1 ∈ NOv(k)(τ), (6.11)

where I + 1 denotes the interval obtained from I shifting all the indices by +1, and we

recall that NOv(k)(τ) is the set of continuations of τ .

Example 6.3.6. We recall that the overlap graph Ov(4) was displayed in Fig. 6.2 on

page 140. The six vertices (in red) correspond to the six permutations of size three and

the twenty-four oriented edges correspond to the twenty-four permutations of size four.

Given a permutation σ ∈ Sm, for some m ≥ k, we can associate to it a walk Wk(σ) =

(e1, . . . , em−k+1) in Ov(k) of size m− k + 1 defined by

lb(ei) := σ|[i,i+k−1], for all i ∈ [m− k + 1]. (6.12)

Note that Eq. (6.11) justifies that this sequence of edges is indeed a walk in the overlap

graph.

Example 6.3.7. Take the graph Ov(4) from Fig. 6.2 on page 140, and consider the

permutation σ = 628451793 ∈ S9. The corresponding walk W4(σ) in Ov(4) is

(3142, 1423, 4231, 2314, 2134, 1342)

and it is highlighted in green in Fig. 6.2.

Note that the map Wk is not injective (see for instance the Example 6.3.9 below) but

the following holds.

Lemma 6.3.8. Fix k ∈ N≥2 and m ≥ k. The map Wk, from the set Sm of permutations

of size m to the set of walks in Ov(k) of size m− k + 1, is surjective.

Proof. We exhibit a greedy procedure that, given a walk w = (e1, . . . , es) in Ov(k),

constructs a permutation σ of size s + k − 1 such that Wk(σ) = w. Specifically, we

construct a sequence of s permutations (σi)i≤s, with |σi| = i+ k− 1, in such a way that

σ is equal to σs. For this proof, it is useful to consider permutations as diagrams.

The first permutation is defined as σ1 = lb(e1). To construct σi+1 we add to the diagram

of σi a final additional point on the right of the diagram between two rows, in such a way

that the last k points induce the consecutive pattern lb(ei+1) (the choice for this final

additional point may not be unique, but exists). Setting σ := σs we have by construction

that Wk(σ) = w.



166

We illustrate the construction above in a concrete example.

Example 6.3.9. Consider the walk w = (3142, 1423, 4231, 2314, 2134, 1342) obtained in

Example 6.3.7 and construct, as explained in the previous proof, a permutation σ such

that Wk(σ) = w. We set σ1 = 3142. Then, since e2 = 1423, we add a point between

the second and the third row of σ1 (see Fig. 6.7 for the diagrams of the considered

permutations), obtaining σ2 = 41523. Note that the pattern induced by the last 4 points

of σ2 is exactly e2 = 1423. We highlight that we could also add the point between

the third and the fourth row of σ1 obtaining the same induced pattern. However, in

this example, we always chose to add the points in the bottommost possible place.

We iterate this procedure constructing σ3 = 516342, σ4 = 6173425, σ5 = 71834256,

σ6 = 819452673. Setting σ := σ6 = 819452673 we obtain that W4(σ) = w. Note that

this is not the same permutation considered in Example 6.3.7, indeed the map Wk is

not injective.

σ1 = , σ2 = , σ3 = , σ4 = ,

σ5 = , σ6 = .

Figure 6.7: The diagrams of the six permutations considered in Example 6.3.9. Note
that every permutation is obtained by adding a new final point to the previous one.

We conclude this section with two simple results useful for the following sections.

Lemma 6.3.10. If σ is a permutation and w = Wk(σ) = (e1, . . . , es) is its corresponding

walk on Ov(k), then

c-occ(π, σ) = |{i ≤ s| lb(ei) = π}|.

Proof. This is a trivial consequence of the definition of the map Wk. See in particular

Eq. (6.12).

Observation 6.3.11. Let π1 and π2 be two permutations of size k − 1 ≥ 1, and take

τ = π1 ⊕ π2. Then the path Wk(τ) goes from π1 to π2. Consequently, Ov(k) is strongly

connected.
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6.3.4 A description of the feasible region Pk

The goal of this section is to prove the following result.

Theorem 6.3.12. The feasible region Pk is the cycle polytope of the overlap graph

Ov(k), i.e.,

Pk = P (Ov(k)). (6.13)

As a consequence, the vertices of Pk are precisely {~eC | C is a simple cycle of Ov(k)} and

the dimension of Pk is k! − (k − 1)!. Moreover, the polytope Pk is described by the

equations

Pk =

~v ∈ [0, 1]Sk

∣∣∣∣∣ ∑
π∈Sk

vπ = 1 ,
∑

beg(π)=ρ

vπ =
∑

end(π)=ρ

vπ , ∀ρ ∈ Sk−1 , ~v ≥ ~0

 .

Proof. The first step is to show that, for any simple cycle C of Ov(k), the vector ~eC is

in Pk. This, together with Proposition 6.3.2 implies that P (Ov(k)) ⊆ Pk.

According to Lemma 6.3.8, for every m ∈ N, there is a permutation σm such that

Wk(σ
m) is the walk resulting from the concatenation of m copies of C. We claim that

c̃-occk(σ
m)→ ~eC and |σm| → ∞. The latter affirmation is trivial since, by Lemma 6.3.8,

|σm| = |C|m + k − 1. For the first claim, according to Lemma 6.3.10, we have that

c-occ(π, σm) = m for any π that is the label of an edge in the simple cycle C, and

c-occ(π, σm) = 0 otherwise. Hence

c̃-occk(σ
m) = ~eC

m|C|
|σm|

→ ~eC .

as desired.

On the other hand, suppose that ~v ∈ Pk, so we have a sequence σm of permutations such

that |σm| → ∞ and c̃-occk(σ
m) → ~v. We will show that dist(c̃-occk(σ

m), P (Ov(k))) →
0. It is then immediate, since P (Ov(k)) is closed, that ~v ∈ P (Ov(k)), proving that

Pk = P (Ov(k)). We consider the walk wm = Wk(σ
m). Using Lemma 6.2.6, the edge

multiset of the walk wm can be decomposed into simple cycles and a tail (that does not

repeat vertices and may be empty) as follows

wm = Cm1 t · · · t Cm` t T m.
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Then from Lemma 6.3.10 we can compute c̃-occk(σ
m) as a convex combination of ~eC for

some simple cycles C, plus a small error term. Specifically,

c̃-occk(σ
m) = ~eCm1

|Cm1 |
|σm| + · · ·+ ~eCm`

|Cm` |
|σm| + ~Er

m
,

where | ~Erm| ≤ (k−1)!
|σm| since there are (k − 1)! distinct vertices in Ov(k) and the path

T m does not contain repeated vertices. In particular, | ~Erm| → 0 since k is constant and

|σm| → ∞.

Noting that

c̃-occk(σ
m) = ~Er

m
+

∑
i |Cmi |
|σm|

~wm,

where ~wm = 1∑
i |Cmi |

(
~eCm1 |C

m
1 |+ · · ·+ ~eCm` |C

m
` |
)
∈ P (Ov(k)), we can conclude that

dist
(
c̃-occk(σ

m), P (Ov(k))
)
≤ dist

(
~Er
m

+

∑
i |Cmi |
|σm|

~wm, ~wm

)
→ 0 ,

since | ~Erm| → 0,
∑
i |Cmi |
|σm| → 1 and ~wm is uniformly bounded. This concludes the proof

of Eq. (6.13).

The characterization of the vertices is a trivial consequence of Proposition 6.2.1. For the

dimension, it is enough to note thatOv(k) is strongly connected from Observation 6.3.11.

So by Theorem 6.2.2 it has dimension |E(Ov(k))|−|V (Ov(k))| = k!−(k−1)!, as desired.

Finally, the equations for Pk are determined using Theorem 6.2.12 and the definition of

overlap graph.

Remark 6.3.13. Since for two different simple cycles C1, C2 we have that ~eC1 6= ~eC2 ,

enumerating the vertices corresponds to enumerating simple cycles of Ov(k) (which

seems to be a difficult problem). This problem was partially investigated in [AF18].

There, all the cycles of size one and two are enumerated.

6.4 Mixing classical patterns and consecutive patterns

In Section 6.1.5 we explained that a natural question is to describe the feasible region

when we mix classical and consecutive patterns.



169

More generally, letA,B ⊆ S be two finite sets of permutations. We consider the following

sets of points

A =
{
~v ∈ [0, 1]A|∃ (σm)m∈N ∈ SN s.t. |σm| → ∞ and

(
c̃-occ(π, σm)

)
π∈A → ~v

}
,

B =
{
~v ∈ [0, 1]B|∃ (σm)m∈N ∈ SN s.t. |σm| → ∞ and (õcc(π, σm))π∈B → ~v

}
.

(6.14)

We want to investigate the set

C =
{
~v ∈ [0, 1]AtB

∣∣∣∃ (σm)m∈N ∈ SN s.t. |σm| → ∞,(
c̃-occ(π, σm)

)
π∈A → (~v)A and (õcc(π, σm))π∈B → (~v)B

}
.

(6.15)

For the statement of the next theorem we need to recall the definition of the substitution

operation on permutations. For θ, ν(1), . . . , ν(d) permutations such that d = |θ|, the

substitution θ[ν(1), ..., ν(d)] is defined as follows: for each i, we replace the point (i, θ(i))

in the diagram of θ with the diagram of ν(i). Then, rescaling the rows and columns

yields the diagram of a larger permutation θ[ν(1), ..., ν(d)]. Note that |θ[ν(1), ..., ν(d)]| =∑d
i=1 |ν(i)| (see Fig. 6.8 for an example).

4213[213, 21, 1, 12] = = = 76832145 .
12

21

213

1

Figure 6.8: Example of substitution of permutations.

Theorem 6.4.1. Let A,B ⊆ S be finite sets of permutations, and A,B,C be defined

as in Eqs. (6.14) and (6.15). It holds that

A×B = C . (6.16)

Specifically, given two points ~vA ∈ A,~vB ∈ B, consider two sequences (σmA )m∈N ∈ SN

and (σmB )m∈N ∈ SN such that

|σmA | → ∞ and
(
c̃-occ(π, σmA )

)
π∈A → ~vA,

|σmB | → ∞ and (õcc(π, σmB ))π∈B → ~vB,
(6.17)

then the sequence (σmC )m∈N defined by

σmC := σmB [σmA , . . . , σ
m
A ], for all m ∈ N, (6.18)
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satisfies

|σmC | → ∞,
(
c̃-occ(π, σmC )

)
π∈A → ~vA and (õcc(π, σmC ))π∈B → ~vB. (6.19)

Proof. Let (σmC )m∈N be defined as in Eq. (6.18). The fact that the size of σmC tends to

infinity follows from |σmC | = |σmA ||σmB | → ∞. For the second limit in Eq. (6.19), note

that for every pattern π ∈ A,

c̃-occ(π, σmC ) =
c-occ(π, σmC )

|σmB | · |σmA |
=

c-occ(π, σmA ) · |σmB |+ Er

|σmB | · |σmA |
= c̃-occ(π, σmA ) +

Er

|σmB | · |σmA |
,

where Er ≤ |σmB | · |π|. This error term comes from intervals of [|σmC |] that intersect more

than one copy of σmA . Since |π| is fixed and |σmA | → ∞ we can conclude the desired limit,

using the assumption in Eq. (6.17) that
(
c̃-occ(π, σmA )

)
π∈A → ~vA.

Finally, for the third limit in Eq. (6.19) we note that setting n = |σmC | and k = |π|,

õcc(π, σmC ) =
pπ(σmC )(

n
k

) = P (σmC |I = π) , (6.20)

where I is a random set, uniformly chosen among the
(
n
k

)
subsets of [n] with k elements

(we denote random quantities in bold). Let now Em be the event that the random set

I contains two indices i, j of [|σmC |] that belong to the same copy of σmA in σmC . Denote

by (Em)C the complement of the event Em. We have

P (σmC |I = π) = P (σmC |I = π|Em) · P (Em) + P
(
σmC |I = π|(Em)C

)
· P
(
(Em)C

)
. (6.21)

We claim that

P (Em) ≤
(
k

2

)
1

|σmB |
→ 0. (6.22)

Indeed, the factor
(
k
2

)
counts the number of pairs i, j in a set of cardinality k and the

factor 1
|σmB |

is an upper bound for the probability that given a uniform two-element set

{i, j} then i, j belong to the same copy of σmA in σmC (recall that there are |σmB | copies

of σmA in σmC ). Note also that

P
(
σmC |I = π|(Em)C

)
= õcc(π, σmB )→ ~vB, (6.23)

where the last limit comes from Eq. (6.17). Using Eqs. (6.20) to (6.23), we obtain that

(õcc(π, σmC ))π∈B → ~vB.
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This concludes the proof of Eq. (6.19). The result in Eq. (6.16) follows from the fact

that we trivially have C ⊆ A × B, and for the other inclusion we use the construction

above, which proves that (~vA, ~vB) ∈ C, for every ~vA ∈ A,~vB ∈ B.



Chapter 7

Open problems and further work

In this section we collect some of the open problems indicated in this thesis, and addi-

tionally remarks on future research directions in the topics are presented.

7.1 On combinatorial presheaves and pattern algebras

We have observed that some of the usual Hopf algebras in combinatorics arise as pat-

tern Hopf algebras. This contributes to the recognition of pattern Hopf algebras as an

object of interest. The central example is the Hopf algebra of symmetric functions (see

Section 2.3.4). Some other Hopf algebras seem to arise also in this way, for instance:

Problem 7.1.1. Show that the pattern Hopf algebra on set compositions is isomorphic

to QSym. Specifically, that the coproduct structure of the free generators of A(SComp)

constructed via Theorem 2.3.9 match the coproduct structure of the free generators of

QSym constructed in [BZ09].

We now address the freeness question on pattern algebras.

Problem 7.1.2. Does any associative presheaf generate a free pattern Hopf algebra?

This question is motivated by the several combinatorial presheaves that we have observed

in this thesis to have a free pattern Hopf algebra. Specifically, it is motivated by the

pattern Hopf algebra on permutations, as well as pattern Hopf algebras resulting from

the presheaf on marked permutations and the commutative presheaves presented in

Chapter 3 and Section 2.3, respectively.

Ditters’ conjecture, proven in [Haz01], strengthens the question of freeness of an algebra.

Specifically, it asks about freeness over the integers and over Zp of the Hopf algebra of

quasi-symmetric functions.
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Problem 7.1.3. Is the pattern Hopf algebra on permutations, A(Per), free over the

integers? How about the pattern Hopf algebra on marked permutations A(MPer)? Ad-

ditionally, can the methods used in [Haz01] to construct a family of free generators over

the integers Zp be applied to these pattern algebras?

A factorization theorem can be used not only to establish the freeness of a pattern algebra

(or of an algebra in general), but also to enumerate a basis of the primitive space of a

pattern Hopf algebra. We already know that the pattern algebra on the presheaf of

graphs with the inflation product is free. However, with a factorization theorem we can

additionally enumerate a basis of the primitive space, as done for marked permutations.

Problem 7.1.4. Does the inflation product on graphs have a factorization theorem?

7.2 On chromatic invariants

In Chapter 4, we have discussed the Hopf algebra morphisms ΨG : G → Sym and

ΨG : HGP → QSym. Specifically, we gave a set of generators for the kernel of these

maps. A direct consequence of this description is a structured strategy to solve the tree

conjecture. The first part of this strategy is the following:

Problem 7.2.1. Find other invariants of graphs Γ that satisfy ker Γ = ker ΨG.

With this, the tree conjecture on ΨG is equivalent to the tree conjecture on Γ. Remark

that the invariant Ψ̃, introduced in Section 4.3.1, is a possible answer to this result.

With new invariants like Ψ̃, we have access to new information that can be used to solve

the tree conjecture.

We also wish to study the chromatic invariant on other Hopf algebras. The description

of the kernel of ΨHGP is only a partial result in the following project:

Problem 7.2.2. Find generators for the kernel of ΨGP. Specifically, can we use the

description of the image of ΥGP, given in Section 4.5, to find a family of generators of

the kernel of ΨGP?

We single out two other interesting cases where the kernel problem is of interest. First,

we introduce the matroid Hopf algebra, introduced in [Sch94], that we denote by M.

This is a Hopf algebra spanned by matroids, which inherits a Hopf algebra structure via

the embedding Z : M→ GP defined as

Z(M) = conv{~eB|B is a basis of M} .

For more on this Hopf algebra, see [GR14].
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Problem 7.2.3. Consider the Malvenuto–Reutenauer Hopf algebra MR, and the Hopf

algebra on matroids M. What are the corresponding “modular relations” of ΨM and

ΨMR? Find generators for the kernel of these chromatic invariants.

7.3 On the antipode of pattern algebras

In a preliminary result, the author found a cancellation-free and grouping-free formula

for the antipode of the pattern Hopf algebra on permutations. This is a desirable result

in many Hopf algebras in combinatorics, and the methods therein seem to depend on

the particular factorization theorem of ⊕ in permutations.

Problem 7.3.1. Given an associative presheaf (h, ∗, 1) that satisfies a given factoriza-

tion theorem, find a cancellation-free and grouping-free formula for the antipode of

A(h).

With the discovery of a cancellation-free and grouping-free formula for the antipode of a

Hopf algebra comes a collection of questions that are interesting to study. These are, for

instance, describing chromatic polynomials or finding reciprocity results. Unfortunately

these questions only make sense if the Hopf algebra at hand is graded.

Problem 7.3.2. Can we adapt the filtered Hopf algebra structure of A(Per) to a graded

Hopf algebra structure?

In [Hof00], a method for transforming quasi-shuffle algebras into shuffle algebras is de-

scribed, and is a candidate procedure to give a satisfactory answer to this problem.

Once we have a graded Hopf algebra, we can further endow A(Per) with a character,

and study its chromatic invariants.

Problem 7.3.3. Find characters in the pattern Hopf algebra A(Per), and the cor-

responding chromatic polynomials χa(n). Does the antipode formula give a simple

description of χa(−1)?

We remark that, in pattern algebras, a large family of characters can be immediately

constructed by design. Specifically, given a combinatorial presheaf h and a coinvariant

a ∈ G(h), the following map is a character:

ζa : pb 7→ pb(a) .
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7.4 On feasible regions

Regarding feasible regions of classical patterns in permutations, we have already referred

to the dimension problem in Conjecture 1.7.1. This is a problem that started with

[GHK+17], where a lower bound was established. Latter on, in a seamingly unrelated

work in the area of algebraic combinatorics, an upper bound was given in [Var14] by

establishing the freeness of A(Per). We conjecture that this upper bound is tight:

Conjecture 7.4.1. Show that the feasible region clPk is full dimensional in a variety

of dimension |Lk|.

We now return to the topic of consecutive occurrences. Specifically, we talk about the

feasible region in the setting of consecutive occurrences, where we impose some sort of

restriction on the sequences of permutations along which we take the limit. For that, we

introduce permutation classes. Recall that we denote by S the set of all permutations.

A permutation class P ⊆ S is a family of permutations with the following property: if

π, σ are permutations such that π is a pattern of σ, and π ∈ P, then σ ∈ P. Given a

permutation π write Av(π) for the set of permutations that have no pattern matching

π. These are examples of permutation classes.

In this way, we can study the asymptotic behavior of sequences of permutations that

belong to a specific permutation class, resulting in what we call restricted feasible

regions.

Problem 7.4.2. Given a permutation class C, what is P Ck , the feasible region of consec-

utive occurrences for permutations, when we consider only sequences of permutations

on a permutation class. Specifically, is

P Ck = {~v ∈ [0, 1]Sk |∃{σm}m≥1 ⊆ C s.t.

lim
n→∞

|σn| = +∞, and lim
n→∞

c̃-occ(π, σn) = ~vπ for π ∈ Sk} .
(7.1)

a polytope? Furthermore, can we describe it as the cycle polytope of a particular graph?

The cases of permutation classes Av(1 . . . n), and Av(π) for each |π| = 3 are preliminary

results in an upcomming manuscript, [BP20].

Observe that, if P1 ⊆ P2, then PP1
k ⊆ PP2

k . Thus, for any two permutations π, τ and

integer k, we have that P
Av(π,τ)
k ⊆ PAv(π)

k ∩ PAv(τ)
k .

Problem 7.4.3. Do we have that P
Av(π,τ)
k = P

Av(π)
k ∩PAv(τ)

k for any integer k and any

permutation π, τ with |π|, |τ | ≤ 3?
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Other combinatorial objects also admit a notion of “consecutive” pattern, for instance

rooted graphs. Given a graph G = (V,E) and a vertex v of it, we can consider the ball

around v of radius δ, that is,

BG
δ (v) = {w ∈ V | there is a path connecting v and w of lenght at most δ} .

In this way, a consecutive pattern with radius δ of a marked graph G∗ on a graph H is

simply a vertex v of H such that G∗ is isomorphic to BH
δ (v) with the vertex v marked.

Problem 7.4.4. What is the feasible region for consecutive occurrences of rooted

graphs. Is it a polytope?

In [BLP20], a preliminary manuscript, the problem of describing the feasible region on

planar rooted trees is addressed. There, for a planar rooted tree T and a vertex v, we

define its ball of radius δ, or its fringe, inductively as BT
0 (v) = {v}, and

BT
δ+1(v) = {w ∈ T | is the offspring of some w′ ∈ Bδ(v)} .

For two planar rooted trees T1, T2 we define an occurrence of T2 in T1 to be a vertex v

of T1 such that T2 is isomorphic to BT1
δ (v) with v as its rooted vertex.

Problem 7.4.5. What is the feasible region for consecutive occurrences of rooted

graphs. Is it a polytope?



Appendix A

Hopf Algebras

In this section we will define the most important concepts in Hopf algebras. We introduce

algebras, coalgebras and Hopf algebras. Finally, we summarise some simple con-

structions on Hopf algebras, like the primitive space and the coradical filtration. Finally,

we present a structure theorem on Hopf algebras called the Milnor-Moore theorem.

Fix a field K, that we assume to have characteristic zero.

A.1 Algebras and coalgebas

We start by introducing algebras over a field. The claims presented here that are not

proven can be found in any introductory book in algebras and Lie algebras, for instance

[Bou03, Hal15, Stu18, GR14].

Definition A.1.1 (Algebra). An algebra over K is a triple (A,µ, ι) where A is a K-vector

space, and µ : A⊗ A→ A, ι : K→ A are linear maps such that the following diagrams

commute

A⊗A⊗A A⊗A

A⊗A A

µ⊗idA

idA⊗µ µ

µ

(A.1)

A⊗ K A⊗A K⊗A

A

idA⊗ι

µ

ι⊗idA

∼=∼= (A.2)

where we denote by idA the identity map on A.
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We require µ to be a map µ : A⊗A→ A, instead of a more usual way of thinking about

a multiplication as µ : A × A → A. Indeed, by requiring µ to have the vector space

A ⊗ A as source, we are by design making the product a distributive one with respect

to the addition in A.

It is probably unfamiliar when phrased in this way, but (A.1) is simply the associativity

axiom on the product µ.

Definition A.1.2 (Coalgebra). A coalgebra over k is a triple (C,∆, ε) where C is a

K-vector space, and ∆ : C → C ⊗ C, ε : C → K are maps such that

C ⊗ C ⊗ C C ⊗ C

C ⊗ C C

∆⊗idC

idC ⊗∆

∆

∆ (A.3)

C ⊗ K C ⊗ C K⊗ C

C

idC ⊗ε
ε⊗idC

∆ ∼=∼= (A.4)

If (A,µA, ιA), (B,µB, ιB) are K-algebras, then A⊗B inherits an algebra structure from

the composition:

A⊗B ⊗A⊗B A⊗A⊗B ⊗B A⊗BidA⊗twist⊗idB µA⊗µB
(A.5)

Symilarly, if (A,∆A, εA), (B,∆B, εB) are K-coalgebras, then A⊗B inherits a coalgebra

structure.

Definition A.1.3 (Bialgebra and Hopf algebra). A bialgebra over a field K is a 5-tuple

(B,µ, ι,∆, ε) where (B,µ, ι) is an algebra, (B,∆, ε) is a coalgebra and the following

diagrams commute:

B ⊗B B ⊗B ⊗B ⊗B B ⊗B ⊗B ⊗B

B B ⊗B

∆⊗∆

µ

idB ⊗twist⊗idB

µ⊗µ

∆

(A.6)
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B ⊗B K K B ⊗B

B B

B K

K

ε⊗ε

µ

ι⊗ι

ιε
∆

ε

ι
∼=

(A.7)

A Hopf algebra over k is a 6-tuple (H,µ, ι,∆, ε, S) such that (H,µ, ι,∆, ε) is a bialgebra,

and S : H → H a linear map that satisfies the antipode property:

H ⊗H H ⊗H

H K H

H ⊗H H ⊗H

S⊗idH

µ∆

∆

ε ι

idH ⊗S

µ

(A.8)

We recover here a simple example of a Hopf algebra from Chapter 1. Consider a finite

group G, and let K[G] be a vector space, with a basis {eg}g∈G indexed by G. The

product is defined as

egeh = eg·h ,

and the coproduct is defined as

∆(eg) = g ⊗ g .

In this way, the linear map S defined on a basis as S(eg) = eg−1 is the antipode map

and endows K[G] with a Hopf algebra structure.

If 1 is the identity of G, then e1 is the unit of K[G]. The counit map ε is defined in the

basis elements as ε(eg) = 1.

A.2 Connected Hopf algebras, filtered Hopf algebras and

Takeuchi’s formula

It is often the case that, for simple Hopf algebras, finding the antipode is just a mat-

ter of finding a suitable inductive construction. In this section, we will see what is

the Takeuchi’s formula, and that this formula gives us an expression for the antipode

whenever the bialgebra H is graded or filtered.
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The main use of this formula is that it allows us to introduce Hopf algebras without

explicitly presenting an antipode, a task that is often times dificult.

Observation A.2.1. A graded bialgebra is a bialgebra (H,µ, ι,∆, ε) such that H =

⊕n≥0Hn and

• Hi ⊆ Hi+1,

• µ(Hi ⊗Hj) ⊆ Hi+j ,

• ∆(Hm) ⊆ ⊕i+j=mHi ⊗Hj ,

• ι(1) ∈ H0,

• ε(Hk) = 0 for any k > 0.

Observe that (H0, µ, ι,∆, ε) is also a bialgebra. A graded bialgebra is said to be connected

if dimKH0 = 1.

Theorem A.2.2 ([GR14, Proposition 1.4.22.]). LetH = ⊕n≥0Hn be a graded connected

bialgebra.

Then, the following map S is an antipode of H

S =
∑
k≥0

(−1)kµ◦k−1 ◦ (idH −ι ◦ ε)⊗k ◦∆◦k−1 ,

where we use the convention that ∆◦−1 = ε and µ◦−1 = ι. In particular, H is a Hopf

algebra.

The proof of this claim can be found in [GR14, Proposition 1.4.22.]. The key observation

for the proof of this theorem is that the sum is always finite. In fact, if h ∈ H : n, the

sum above computed in S(h) has at most n+ 1 terms.

It is worth to point out that Takeushi’s formula can be extended to a result in filtered

bialgebras:

Definition A.2.3. A filtered bialgebra is a bialgebra (H,µ, ι,∆, ε) such that H =⋃
n≥0Hn is the union of vector spaces Hn such that:

• µ(Hi ⊗Hj) ⊆ Hi+j ,

• ∆(Hm) ⊆
∑

i+j=mHi ⊗Hj ,

• ι(1) ∈ H0.
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Observe that (H0, µ, ι,∆, ε) is also a bialgebra. A filtered bialgebra is said to be con-

nected if dimKH0 = 1.

Theorem A.2.4. Let H =
⋃
n≥0Hn be a filtered connected bialgebra such that H0 is

a Hopf algebra. Then H is a Hopf algebra.

We present a proof of this fact after introducing the convolution product.

A.3 The convolution product and characters

Definition A.3.1 (Convolution product). Consider now an algebra A and a coalgebra

C. Then we define a convolution product on the linear maps Hom(C,A) as follows. If

f, g ∈ Hom(C,A), define

f ? g = µA ◦ (f ⊗ g) ◦∆C .

Note that this is an associative operation with unit ιA ◦εC . Observe that a Hopf algebra

is a bialgebra H such that idH ∈ Hom(H,H) has an inverse under the convolution

product, which is S, the antipode. This is the two sided inverse by definition.

Observe that if H is either commutative or cocommutative, then Hom(H,H) is a com-

mutative group.

In general, we can see that if f1, . . . , fk ∈ Hom(C,A), then

f1 ? · · · ? fk = µA ◦ (f1 ⊗ · · · ⊗ fk) ◦∆C .

In this way, we define the shorthand notation f?k = f ? · · · ? f . Here, we assume the

convention that f?0 = ι ◦ ε.

The following proof is a technique due to [Tak71].

Proof of Theorem A.2.4. Let f ∈ Hom(H,H) be given as f = idH −ι◦ ε. We claim that

S =
∑
k≥0

(−1)kf?k =
∑
k≥0

(−1)kµ◦k−1 ◦ (idH −ι ◦ ε)⊗k ◦∆◦k−1 ,

is an antipode in a filtered connected bialgebra.

First, we observe that f is zero in H0. Indeed, because H0 is one dimensional, and ι(1)

is a non-zero element of H0, we have that H0 = ι(1)K. But f(ι(1)) = ι(1) − ι(ε(ι(1))),

thus f(ι(1)) = ι(1)− ι(1) = 0, see the last diagram in (A.7).
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Therefore, we have the following for f?k(h), if h ∈ Hn: after applying successively the

filtration assumption and disregarding the terms on H0 we get

f?k(h) ∈
∑
α|=n
l(α)=k

Hα1 ⊗ · · · ⊗Hαk , (A.9)

where the sum runs over compositions of n. Remarkably, if k ≥ n+ 1, the sum is empty

and we have that f?k(h) = 0.

Then, this function S is well defined, that is that for each h, S(h) is given by a finite

sum.

Now we observe the telescopic sum

S ? idH(h) =

n∑
k=0

(−1)kf?k ? idH(h)

=

n∑
k=0

(−1)k
(
f?k ? f + f?k ? (ι ◦ ε)

)
(h)

=

n∑
k=0

(−1)k
(
f?k+1 + f?k

)
(h)

= (−1)nf?n+1(h) + f?0(h) = ι ◦ ε(h) .

(A.10)

and similarly we obtain that idH ?S(h) = ι ◦ ε(h), so S is an antipode.

We remark that this technique can be used to compute inverses in the convolution group

of filtered bialgebras. That is, if φ ∈ Hom(H,H) such that (φ− ι◦ε)|H0 is the zero map,

then:

φ?−1 =
∑
k≥0

(−1)kµ◦k−1 ◦ (φ− ι ◦ ε)⊗k ◦∆◦k−1 .

A.4 Structures on Hopf algebras

In this section we introduce important structures in Hopf algebras. These are the group-

like elements, the primitive space and the coradical filtration. The structure theorem

known as Milnor Moore’s theorem uses the primitive space to present tight restrictions

on Hopf algebras that are graded connected and cocommutative.

Definition A.4.1 (Group-like elements and primitive space). Given a coalgebra C, the

group-like elements of C, G(C) is the set

G(C) = {g ∈ H|∆g = g ⊗ g} .
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The primitive space of C, written P (C), is the set

P (C) = {x ∈ C|∆x = 1⊗ x+ x⊗ 1} .

Group-like elements and primitive spaces in a Hopf algebra posess unique properties.

For instance, if H is a Hopf algebra, G(H) is a group, and the inverse of any element g ∈
G(H) is precisely S(g). Furthermore, the elements of G(H) are all linearly independent.

The space of primitive elements is a Lie algebra, under the usual bracket [a, b] = ab−ba.

To introduce the coradical filtration, we first introduce the wedge power of subspaces of

a coalgebra. Let C be a coalgebra. For any linear subspace X ⊆ C we define ∧0X = 0

and

∧n+1X = ∆−1(Xn ⊗ C + C ⊗X) = ∆−1(X ⊗ C + C ⊗Xn) .

Definition A.4.2 (Coradical filtration). Given a coalgebra C, a simple subcoalgebra

D ⊆ C is a coalgebra that has no non-trivial subcoalgebra D′ ⊆ D. The coradical of a

coalgebra C is the sum of all simple subcoalgebras of C:

C0 =
∑

D⊆C simple

D .

For any n ≥ 1, let Cn = ∧nC0. Then C0 ⊆ C1 ⊆ . . . , and we call (Ci)i≥0 the coradical

filtration of C. The fact that C =
⋃
n≥0Cn is shown in [Stu18].

We now start describing some preliminary objects in order to present the Milnor Moore

theorem.

Definition A.4.3 (Universal enveloping algebra of a Lie algebra). Given a Lie algebra

G, we define the universal enveloping algebra U(G) as the quocient

T (G)/I ,

where T (G) is the tensor algebra on G, and I is the two sided ideal generated by all the

relations of the form

a⊗ b− b⊗ a− [a, b] ,

for a, b ∈ G.

The universal enveloping algebra is usually regarded as the correct algebra over which one

should study representations of a Lie algerba. A universal property of this construction

can be found in [Hal15]. The following theorem is from [MM65] and deals with the

structure of a Hopf algebra.
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Theorem A.4.4 (Milnor Moore theorem). If H = ⊕n≥0Hn is a graded connected co-

commutative Hopf algebra, such that dimHn < +∞, then it is isomorphic to U(P (H)).

In particular, the isomorphism is U(P (H))→ H is the natural one, mapping h ∈ P (H)

to h ∈ H.
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Monoidal categories

In the following we will provide some details on monoidal categories. The reader can

also find this material in [AM10].

B.1 Monoids, comonoids, Hopf monoids

The notion of monoidal categories is driven by the motication of describing categories

that have a notion of a product in its objects. Most famously, the category of sets admits

the Cartesian product ×, and indeed this leads to a notion of a monoidal category.

Other examples are the categories of K-vector spaces with the tensor product ⊗, and

the category of combinatorial presheaves together with the Cauchy product �.

Definition B.1.1 (Monoidal categories). A monoidal category is a pair (C, •) where

C is a category and • : C × C → C is a functor such that there is a natural isomorphism

α : idC ×• ⇒ • × idC that satisfies the following pentagon rule:

(A •B) • (C •D)

((A •B) • C) •D A • (B • (C •D))

A • ((B • C) •D) (A • (B • C)) •D

αA,B,C•DαA•B,C,D

αA,B,C•idD
αA,B•C,D

idA •αB,C,D

(B.1)

and a distinguisehd object E of C that is equiped with natural isomorphisms

λA : A→ E •A, ρA : A→ A • E ,

185
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such that the following commutes

(A • E) •B A • (I •B)

A •B

αA,I,B

ρA•idB
idA •λB (B.2)

The pentagon diagram in (B.1) is a strengthening of the usual notion of associativity.

Not only we require that there is an isomorphism αA,B,C : (A • B) • C → A • (B • C),

but we also require this isomorphism to the natural in the variables A,B,C, as well as

self-coherent in that it satisfies the pentagon rule.

On monoidal categories, we will be able to define a monoid and a comonoid, respec-

tively generalizations of the notion of algebra and coalgebra.

A braided monoidal category is a monoidal category (C, •) together with a braiding

β. A braiding is a natural isomorphism β : • ⇔ (• ◦ twist) between the functors

• : (A,B) 7→ A •B and • ◦ twist : (A,B) 7→ B •A.

On a braided monoidal category is where we are able to define a bimonoid and a Hopf

monoid.

So, for instance, the category of vector spaces over K is a braided monoidal category,

where we take • to be the tensor product. The category of species is also a monoidal

category under the Cauchy product : given two species h1, h2, we can define the species

h1 � h2[I] = ⊕I=AtBh1[A]⊗ h2[B] .

Importantly, the category of combinatorial presheaves, defined in Definition 1.5.1, is

also a braided monoidal category, with the Cauchy product �. In all these cases, the

braiding is the expected natural isomorphism.

A monoid in (C, •) is a triple (M,µ, ι) where M ∈ Obj(C), µ : M • M → M and

ι : E →M are maps that make the following associativity and unit diagrams commute.

M •M •M M •M

M •M M

µ•idA

idM •µ µ

µ

(B.3)

M • E M •M E •M

M

idM •ι

µ
ι•idM
λMρM (B.4)
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If we are ginve a monoidal category C, then we write Mon(C) for the category of monoids

of C, where we only consider the morphisms that preserve the monoid structure maps.

A comonoid in (C, •) is a triple (M,∆, ε) where M ∈ Obj(C), ∆ : M → M •M and

ε : M → E are maps that satisfy make the following coassociativity and counit diagrams

commute

M •M •M M •M

M •M M

∆•idM
idM •∆

∆

∆ (B.5)

M • E M •M E •M

M

idM •ε
ε•idM

∆ λMρM (B.6)

In this way, monoids and comonoids in the monoidal category (VecK, •) correspond to

algebras and coalgebras over K. A monoid in the category of finite sets, Set, is a finite

monoid in the usual sense, a set with an associative map and a unit.

A bimonoid in the braided monoidal category (C, •) is a 5-tuple (M,µ, ι,∆, ε) where

(M,µ, ι) is a monoid, (M,∆, ε) is a comonoid, and the maps satisfy the following bi-

monoid diagrams:

B •B B •B •B •B B •B •B •B

B B •B

B •B E E B •B

B B

B E

E

∆•∆

µ

idB •β•idB

µ•µ

∆

ε•ε

µ

ι•ι

ιε
∆

ε

ι
∼=

(B.7)

Note that in the first diagram, we use the braiding in order to describe the compatibility

between µ and ∆.
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A Hopf monoid in the braided monoidal category (C, •) is a 6-triple (M,µ, ι,∆, ε, S)

such that (M,µ, ι,∆, ε) is a bimonoid, and S : M →M satisfies the following antipode

diagram:

M •M M •M

M E M

M •M M •M

S•idH

µ∆

∆

ε ι

idH •S

µ

(B.8)
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Maazoun, and Adeline Pierrot. Scaling limits of permutation classes with a

finite specification: a dichotomy. preprint arxiv:1903.07522, 2019.

[BBFS19] Jacopo Borga, Mathilde Bouvel, Valentin Féray, and Benedikt Stufler. A
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