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Abstract

In a recent article we introduce the feasible region for consecutive patterns of permuta-
tions and we show that this region is a cycle polytope. Here, we study its pattern avoiding
counterpart. More precisely, given a permutation class C, we study the limit of proportions
of consecutive patterns on large permutations of C. These limits form a region, called the
pattern avoiding feasible region for C. We show that, when C is the class of τ -avoiding per-
mutations, with either τ of size three or τ a monotone pattern, the pattern avoiding feasible
region for C is still a polytope. Finally, we also determine its dimension, developing, in the
monotone pattern case, a new tool for this computation.

We further show some general results for the pattern avoiding feasible region for any
permutation class C and we conjecture a general formula for its dimension.

1 Introduction

1.1 The pattern avoiding feasible regions

In [BP19] the authors (us :)) introduce the feasible region for consecutive patterns, that is
defined for all k ∈ Z≥1 as

Pk :=
{
~v ∈ [0, 1]Sk

∣∣∃(σm)m∈Z≥1
∈ SZ≥1 s.t. |σm| → ∞ and c̃-occ(π, σm)→ ~vπ,∀π ∈ Sk

}
, (1)

where Sk denotes the set of permutations of size k, S the set of all permutations, and c̃-occ(π, σ)
the proportion of consecutive occurrences of a pattern π in a permutation σ (see Section 1.5 for
notation and basic definitions). We refer the reader to [BP19, Section 1.1] for motivations to
investigate this region and to [BP19, Section 1.2] for a summary of the related literature.

In this paper we study a restricted version of the feasible region for consecutive patterns.
Given a set of patterns B ⊂ S, we denote by Avn(B) the set of B-avoiding permutations of size
n and by Av(B) :=

⋃
n∈Z≥1

Avn(B) the set of B-avoiding permutations of arbitrary finite size.

We consider the pattern avoiding feasible region for consecutive patterns for Av(B) defined by

P
Av(B)
k :=

{
~v ∈ [0, 1]Sk

∣∣∃(σm)m∈Z≥1
∈ Av(B)Z≥1 s.t. |σm| → ∞ and c̃-occ(π, σm)→ ~vπ, ∀π ∈ Sk

}
.

For different choices of the class Av(B), we refer to these regions as pattern avoiding feasible
regions. Even though these are natural objects, we discuss here some motivations that lead us
to investigate them.

The study of limits of pattern avoiding permutations is a very active field in combinatorics
and discrete probability theory. There are two main ways of investigating those limits:
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• The most classical one is to look at the limits of various statistics for pattern avoiding
permutations. For instance, the limit distribution of the longest increasing subsequences in
uniform pattern avoiding permutations have been considered in [DHW03, MY19]. Another
example is the general problem of studying the limiting distribution of the number of
occurrences of a fixed pattern π in a uniform random permutation belonging to a fixed
class when the size tends to infinity (see for instance Janson [Jan18a, Jan17, Jan18b],
where the author studied this problem in the model of uniform permutations avoiding a
fixed family of patterns of size three). Many other statistics have been considered, for
instance in [BKL+18] the authors studied the distribution of ascents, descents, peaks,
valleys, double ascents, and double descents over pattern avoiding permutations.

• The second way is to look at the limiting shape of large pattern avoiding permutations.
Two main notions of convergence for permutations have been defined: a global notion of
convergence (called permuton convergence, [HKM+13]) and a local notion of convergence
(called Benjamini–Schramm convergence, [Bor20b]). For an intuitive explanation of them
we refer the reader to our previous paper [BP19], where additional references can be
found. We just mention here that permuton convergence is equivalent to the convergence
of all pattern density statistics (see [BBF+19, Theorem 2.5]); and Benjamini–Schramm
convergence is equivalent to the convergence of all consecutive pattern density statistics
(see [Bor20b, Theorem 2.19]), which are the objects of this paper.

The study of the pattern avoiding feasible regions is strongly related to both ways of studying
limits of pattern avoiding permutations. For the first one, the statistic that we consider is
the number of consecutive occurrences of a pattern. For the second one, the relation is with

Benjamini–Schramm limits. In particular, having a precise description of the regions P
Av(B)
k

for all k ∈ Z≥1 determines all the Benjamini–Schramm limits that can be obtained through
sequences of permutations in Av(B).

Another orthogonal motivation for investigating the pattern avoiding feasible regions is the
problem of packing patterns in pattern avoiding permutations. The classical question of packing
patterns in permutations is to describe the maximum number of occurrences of a pattern π
in any permutation of Sn (see for instance [AAH+02, Bar04, Pri97]). More recently, the same
question restricted to pattern avoiding permutations, i.e. to describe the maximum number
of occurrences of a pattern π in any pattern avoiding permutation, has been addressed by

Pudwell [Pud20]. Describing the pattern avoiding feasible region P
Av(B)
k gives an answer to the

question of finding the asymptotic maximum number of consecutive occurrences of a pattern
π ∈ Sk in large permutations of Av(B).

1.2 Previous results on the standard feasible region for consecutive patterns

Before presenting our results on the pattern avoiding feasible regions, we recall two key defini-
tions from [BP19] and review some results presented in this work.

Definition 1.1. The overlap graph Ov(k) is a directed multigraph with labeled edges, where
the vertices are elements of Sk−1 and for every π ∈ Sk there is an edge labeled by π from the
pattern induced by the first k − 1 indices of π to the pattern induced by the last k − 1 indices
of π.

For an example for k = 3 see the top-left side of Fig. 1. Given a permutation π, we denote
the pattern induced by the first k− 1 indices by begk−1(π) and the pattern induced by the last
k − 1 indices by endk−1(π).
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Definition 1.2. Let G = (V,E) be a directed multigraph. For each non-empty cycle C in G,
define ~eC ∈ RE so that

(~eC)e :=
# of occurrences of e in C

|C|
, for all e ∈ E.

We define the cycle polytope of G to be the polytope P (G) := conv{~eC | C is a simple cycle of G}.

We recall some results from [BP19].

Proposition 1.3 (Proposition 1.7 in [BP19]). The cycle polytope of a strongly connected directed
multigraph G = (V,E) has dimension |E| − |V |.

Theorem 1.4 (Theorem 1.6. in [BP19]). Pk is the cycle polytope of the overlap graph Ov(k).
Its dimension is k!− (k − 1)! and its vertices are given by the simple cycles of Ov(k).

An instance of the result above is depicted on the top of Fig. 1.
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Figure 1: Top: The overlap graph Ov(3) and the four-dimensional polytope P3 given by the six
patterns of size three. We highlight in light-blue one of the six three-dimensional faces of P3.
This face is a pyramid with a square base. The polytope itself is a four-dimensional pyramid,
whose base is the highlighted face. The coordinates of the vertices correspond to the pat-
terns (123, 231, 312, 213, 132, 321) respectively. From Theorem 1.4 we have that P3 is the cycle
polytope of Ov(3). Bottom-left: The overlap graph OvAv(312)(3) and the three-dimensional

polytope P
Av(312)
3 . Note that P

Av(312)
3 ⊆ P3. From Theorem 1.9 we have that P

Av(312)
3 is the

cycle polytope of OvAv(312)(3). Bottom-right: In grey the overlap graph OvAv(321)(3) and
the corresponding three-dimensional cycle polytope P (OvAv(321)(3)), that is strictly larger than

P
Av(321)
3 . The latter feasible region is highlighted yellow. From Theorem 1.17 we have that

P
Av(321)
k is the projection (defined precisely before Theorem 1.17) of the cycle polytope of the

coloured overlap graph COvAv(321)(3) (see Definition 1.16 for a precise description). This graph

is plotted on bottom-left side. Note that P
Av(312)
3 ⊆ P3.
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We also recall for later purposes the following construction related to the overlap graph
Ov(k). Given a permutation σ ∈ Sm, for some m ≥ k, we can associate to it a walk Wk(σ) =
(e1, . . . , em−k+1) in Ov(k) of size m− k + 1 defined by

lb(ei) := pat[i,i+k−1](σ), for all i ∈ [m− k + 1]. (2)

The map Wk is not injective, but in [BP19] we proved the following.

Lemma 1.5 (Lemma 3.8 in [BP19]). Fix k ∈ Z≥1 and m ≥ k. The map Wk, from the set Sm
of permutations of size m to the set of walks in Ov(k) of size m− k + 1, is surjective.

This lemma was a key step in the proof of Theorem 1.4.

1.3 Main results on the pattern avoiding feasible regions

We start with a natural generalization of Definition 1.1 to pattern avoiding permutations.

Definition 1.6. Fix a set of patterns B ⊂ S and k ∈ Z≥1. The overlap graph OvAv(B)(k) is
a directed multigraph with labeled edges, where the vertices are elements of Avk−1(B) and for
every π ∈ Avk(B) there is an edge labeled by π from the pattern induced by the first k − 1
indices of π to the pattern induced by the last k − 1 indices of π.

Informally, OvAv(B)(k) arises simply as the restriction of Ov(k) to all the edges and vertices
in Av(B). We have the following result, that is proved in Section 2.

Theorem 1.7. Fix k ∈ Z≥1. For all sets of patterns B ⊂ S, the feasible region P
Av(B)
k is a

closed set and satisfies P
Av(B)
k ⊆ P (OvAv(B)(k)).

Moreover, if Av(B) is closed either for the direct or skew sum then the feasible region P
Av(B)
k

is convex and dim(P
Av(B)
k ) ≤ |Avk(B)| − |Avk−1(B)|.

In particular, P
Av(τ)
k is always convex for any pattern τ ∈ S, as Av(τ) is either closed for

the ⊕ operation (whenever τ is ⊕-indecomposable) or closed for the 	 operation (whenever τ
is 	-indecomposable).

We will show later (see Theorem 1.17) that sometimes P
Av(B)
k 6= P (OvAv(B)(k)) (see also

the bottom-right side of Fig. 1) but we believe that the bound on the dimension of the feasible
regions given above is tight whenever |B| = 1.

Conjecture 1.8. Fix k ∈ Z≥1. For all patterns τ ∈ S, we have that

dim(P
Av(τ)
k ) = |Avk(τ)| − |Avk−1(τ)|.

We state this conjecture for the case |B| = 1, but it is natural to wonder what happens for
for |B| ≥ 2. Indeed, for some permutation classes, the space is not even convex. For instance,
if B = {132, 213, 231, 312}, then Av(B) is the set of monotone permutations. Therefore, the
resulting pattern avoiding feasible region is not connected (it is formed by two distinct points).

The main goal of this paper is to prove that Conjecture 1.8 is true when |τ | = 3 or τ is a
monotone pattern, i.e. τ = n · · · 1 or τ = 1 · · ·n, for n ∈ Z≥2. More precisely, we will completely

describe the feasible regions P
Av(τ)
k for such patterns τ . By symmetry, we only need to study

the cases τ = 312 and τ = n · · · 1 for n ∈ Z≥2.
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1.3.1 312-avoiding permutations

The overlap graph that we have to consider for τ = 312 is exactly the one given in Definition 1.6
as shown in the following theorem.

Theorem 1.9. Fix k ∈ Z≥1. The feasible region P
Av(312)
k is the cycle polytope of the overlap

graph OvAv(312)(k). Its dimension is Ck − Ck−1, where Ck is the k-th Catalan number, and its
vertices are given by the simple cycles of OvAv(312)(k).

An instance of the result above is depicted on the bottom-left side of Fig. 1.
Differently, the overlap graph that we have to consider for τ = n · · · 1 is defined using an

alternative construction based on permutation colourings (see Definition 1.16 below). The main

results for the feasible region P
Av(n···1)
k are given in Theorem 1.17 and Theorem 1.18 below. We

now introduce the notions needed to state these results.

1.3.2 Monotone-avoiding permutations

In this section we fix τ = n · · · 1 for n ∈ Z≥2, the decreasing pattern of size n, and an integer
k ∈ Z≥1.

We start with the following observation: by considering the overlap graph OvAv(τ)(k), the

corresponding cycle polytope P (OvAv(τ)(k)) is strictly larger than the feasible region P
Av(τ)
k

(see for instance the bottom-right side of Fig. 1). This is so because there are some paths
in the graph OvAv(τ)(k) that do not correspond to a suitable permutation, see for instance

Example 1.10 below. Thus, the feasible region P
Av(τ)
k cannot be directly described as the cycle

polytope of the overlap graph OvAv(τ)(k). We will consider an enriched overlap graph with
colourings (see Definition 1.11 below).

Example 1.10. Consider k = 3 and n = 3. We present a walk in OvAv(τ)(k) that cannot be
inverted via the map Wk presented at the end of Section 1.2.

In OvAv(τ)(k) take the following walk w = (312, 231). Notice that any permutation σ that
has the consecutive occurrences 312 and 231 arising in consecutive intervals {i, i+ 1, i+ 2} and
{i+1, i+2, i+3} respectively, necessarily has that pat{i,i+1,i+3}(σ) = 321, therefore σ 6∈ Av(321).
This means that it does not exist any permutation σ ∈ Av(321) such that Wk(σ) = w, and so
the map Wk is not surjective in this case.

In the following we will see that by considering a coloured version of the graph OvAv(τ)(k)
we can overcome this problem. We start by introducing colourings of permutations.

Definition 1.11 (Colourings and RITMO colourings). Fix an integer m ∈ Z≥1. For a permu-
tation σ, an m-colouring of σ is a map c : [|σ|]→ [m], which is to be interpreted as a mapping
from the set of indices of σ to [m]. An m-colouring c is said to be surjective when im(c) = [m].
For any permutation σ there is a unique right-top monotone colouring (simply RITMO colour-
ing henceforth), which we describe now, and we denote as C(σ). We construct this colouring
iteratively, starting with the highest value of the permutation and going down while assigning
the lowest possible colour that avoids an occurrence of a monochromatic 21. To be more precise,
start by defining ki = σ−1(|σ| − i+ 1) for all i ∈ [|σ|], so that ki is the index of the i-th largest
value of the permutation σ, and so σ(k1) = |σ| and σ(k|σ|) = 1. Define C(σ)(k1) = 1. On the
i-th step, we define C(σ)(ki) as

C(σ)(ki) = min{j ∈ Z≥1| if C(σ)(kι) = j then kι > ki for ι < i} .

If a permutation is coloured with its RITMO colouring, its highest and leftmost increasing
subsequence (i.e. the one formed by the left-to-right maxima) will correspond to the elements
coloured by 1, and iteratively for the remaining elements. We suggest the reader to keep in
mind both point of views (the one given in the definition and the one described now) on RITMO
colourings.
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Example 1.12. One can see in Fig. 2 an example of the RITMO colourings for permutations
312, 1427536 and 124376985. In all our examples, we paint in red the values coloured by one,
in blue the ones coloured by two, and in green the ones coloured by three.

Consider for instance the permutation σ = 1427536, which avoids the permutation 4321.
Let us compute its RITMO colouring C(σ) using both methods explained above:

1427536→ 1427536→ 1427536→ 1427536→ 1427536→ 1427536→ 1427536→ 1427536 ,

1427536→ 1427536→ 1427536→ 1427536 .

Figure 2: The RITMO colourings of 312, 1427536 and 124376985.

For the pair (σ,C(σ)) we simply write S(σ). If σ avoids the permutation τ , it is known that
its RITMO colouring is an (n− 1)-colouring (the origins of this result are hard to trace, but it
goes back at least to [Gre74] where it is already noted as something that is not hard to prove;
see also [B1́2, Chapter 4.3]).

We furthermore allow for taking restrictions of colourings. Given a permutation σ of size
k, a colouring c of σ and a subset I = {i1, . . . , ij} ⊆ [k], we consider the restriction patI(c) to
be the colouring of the permutation patI(σ). Observe that it may be the case that patI(C(σ))
and C(patI(σ)) are distinct colorings of the permutation patI(σ). For instance, if σ = 2134 and
I = {2, 3, 4} then patI(C(σ)) = pat{2,3,4}(2134) = 123 but C(patI(σ)) = C(123) = 123. The
following definition is fundamental in our results.

Definition 1.13. We say that an m-coloring c of a permutation π of size k is inherited if there
is some permutation σ of size ` ≥ k such that endk(S(σ)) = (π, c).

Let Cm(π) be the set of all inherited m-colourings of a permutation π. We also set Cm(k) =
{(π, c)|π ∈ Sk, c is an inherited m-colouring of π}, that is the set of all inherited m-colourings
of permutations of size k.

Example 1.14. In Table 1 we present all the inherited 2-colorings of permutations of size three.
Thus,

C2(3) = {123, 123, 123, 123, 132, 132, 213, 231, 312} .

The following simple result is a key step for the next definition.

Observation 1.15. For all permutations σ ∈ Av(n · · · 1) and all j ≤ |σ|, we have that

begj(C(σ)) = C(begj(σ)) .

Definition 1.16. The coloured overlap graph COvAv(τ)(k) is defined with the vertex set

V := Cn−1(k − 1) = {(π, c)|π ∈ Sk−1, c is an inherited (n− 1)-colouring of π},
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123 123 = C(123), 123 = pat{2,3,4}(2134), 123 = pat {2, 3, 4}(3124), 123 = pat{2,3,4}(4123)

132 132 = C(132), 132 = pat{2,3,4}(3142)

213 213 = C(213)

231 231 = C(231)

312 312 = C(312)

Table 1: The permutations of size three, and their corresponding inherited 2-colourings. Note
that the permutations of size four are coloured according to their RITMO colouring.

and the edge set

E := Cn−1(k) = {(π, c)|τ ∈ Sk, c is an inherited (n− 1)-colouring of π} ,

where the edge (π, c) connects v1 → v2 with v1 = begk−1(π, c) and v2 = endk−1(π, c).

In Fig. 3 we present the coloured overlap graph corresponding to k = 3 and n = 2.
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Figure 3: The coloured overlap graph for k = 3 and m = 2, that also appears in the bottom-
right side of Fig. 1. Note that in order to obtain a clearer picture we do not draw multiple edges,
but we use multiple labels (for example the edge 12→ 21 is labeled with the permutations 231
and 132 and should be thought of as two distinct edges labeled with 231 and 132 respectively).
Observe also that the coloured permutation 213 is not an edge of the coloured overlap graph
because it is not inherited.

We now justify that the coloured overlap graph is well-defined, i.e. that for any edge (π, c) ∈
Cn−1(k), then both begk−1(π, c) ∈ Cn−1(k− 1) and endk−1(π, c) ∈ Cn−1(k− 1). Equivalently, we
have to show that given an inherited (n − 1)-colouring (π, c) of size k, both begk−1(π, c) and
endk−1(π, c) are inherited (n− 1)-colourings of size k − 1.

By definition of inherited colouring, there exists a permutation σ such that endk(S(σ)) =
(π, c). Then, naturally, we have that endk−1(S(σ)) = endk−1(π, c), and therefore endk−1(π, c) ∈
Cn−1(k − 1). On the other hand, from Observation 1.15 we have that

begk−1(π, c) = begk−1(endk(S(σ))) = endk−1(beg|σ|−1(S(σ)))
1.15
= endk−1(S(beg|σ|−1(σ))) , (3)

and so begk−1(π, c) ∈ Cn−1(k − 1).

In the following, we denote Π : RCn−1(k) → RAvk(τ) for the projection mapping that sends
the basis elements ~e(π,c) := (δ(π,c)(x))x∈Cn−1(k) to ~eπ := (δπ(x))x∈Avk(τ), i.e. the mapping that
“forgets” colourings. The main results for the monotone patterns case are the following two.

Theorem 1.17. The pattern avoiding feasible region P
Av(τ)
k is the Π-projection of the cycle

polytope of the overlap graph COvAv(τ)(k). That is,

P
Av(τ)
k = Π(P (COvAv(τ)(k))) .
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An instance of this result above is depicted on the bottom-right side of Fig. 1.

Theorem 1.18. The dimension of P
Av(τ)
k is |Avk(τ)| − |Avk−1(τ)|.

For more information on the numbers A(n, k) = |Avk(τ)| we refer to [Slo96, A214015]. We
just recall that a closed formula for these numbers is not available. However, thanks to the
Robinson-Schensted correspondence, A(n, k) is equal to

∑
λ f

2
λ , where the sum runs over all

partitions λ of k with length at most n − 1 and fλ is the number of standard Young tableaux
with shape λ.

1.4 Future projects and open questions

We collect here some ideas for future projects and some open questions.

• Theorem 1.9 and Theorem 1.17 give a description of the feasible regions P
Av(τ)
k for all

patterns τ of size three. Can we describe the feasible regions P
Av(B)
k for all subsets B ⊆ S3?

It is easy to see that P
Av(B)
k ⊆

⋂
τ∈B P

Av(τ)
k , but the other inclusion is not trivial and

does not hold in general. We believe that it would be interesting to investigate it.

• We think that the feasible region P
Av(τ)
k can be precisely described for other specific

patterns τ different from the ones already considered in this paper. In particular, we
believe that a good choice would be the patterns τ for which the corresponding classes
Av(τ) have been enumerated through generating trees. Indeed, the first author of this
article has recently shown in [Bor20a] that generating trees behave well in the analysis
of consecutive patterns of permutations in the classes Av(τ). We belive that generating
trees would be particularly helpful to prove some analogues of Lemma 4.4 - that is the
key lemma in the proof of Theorem 1.17 - for other classes of permutations.

• The main open question of this article is obviously the Conjecture 1.8.

1.5 Notation

Permutations and patterns

We recall that we denoted by Sn the set of permutations of size n, and by S the set of all
permutations.

If x1, . . . , xn is a sequence of distinct numbers, let std(x1, . . . , xn) be the unique permutation
π in Sn whose elements are in the same relative order as x1, . . . , xn, i.e. π(i) < π(j) if and only
if xi < xj . Given a permutation σ ∈ Sn and a subset of indices I ⊆ [n], let patI(σ) be the
permutation induced by (σ(i))i∈I , namely, patI(σ) := std ((σ(i))i∈I) . We recall that we extend
this notation also to coloured permutations in Section 1.3.2. For example, if σ = 24637185
and I = {2, 4, 7}, then pat{2,4,7}(24637185) = std(438) = 213. In two particular cases, we use
the following more compact notation: for k ≤ |σ|, begk(σ) := pat{1,2,...,k}(σ) and endk(σ) :=
pat{|σ|−k+1,|σ|−k+2,...,|σ|}(σ).

Given two permutations, σ ∈ Sn for some n ∈ Z≥1 and π ∈ Sk for some k ≤ n, and a set of
indices I = {i1 < . . . < ik}, we say that σ(i1) . . . σ(ik) is an occurrence of π in σ if patI(σ) = π
(we will also say that π is a pattern of σ). If the indices i1, . . . , ik form an interval, then we say
that σ(i1) . . . σ(ik) is a consecutive occurrence of π in σ (we will also say that π is a consecutive
pattern of σ). We denote intervals of integers as [n,m] = {n, n+ 1, . . . ,m} for n,m ∈ Z≥1 with
n ≤ m.

Example 1.19. The permutation σ = 1532467 contains an occurrence of 1423 (but no such
consecutive occurrences) and a consecutive occurrence of 321. Indeed pat{1,2,3,5}(σ) = 1423 but
no interval of indices of σ induces the permutation 1423. Moreover, pat[2,4](σ) = pat{2,3,4}(σ) =
321.
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We denote by occ(π, σ) the number of occurrences of a pattern π in σ, more precisely

occ(π, σ) :=
∣∣∣{I ⊆ [n]|patI(σ) = π

}∣∣∣ .
We denote by c-occ(π, σ) the number of consecutive occurrences of a pattern π in σ, more
precisely

c-occ(π, σ) :=
∣∣∣{I ⊆ [n]| I is an interval, patI(σ) = π

}∣∣∣.
Moreover, we denote by õcc(π, σ) (resp. by c̃-occ(π, σ)) the proportion of occurrences (resp.
consecutive occurrences) of a pattern π in σ, that is,

õcc(π, σ) :=
occ(π, σ)(

n
k

) ∈ [0, 1], c̃-occ(π, σ) :=
c-occ(π, σ)

n
∈ [0, 1] .

Remark 1.20. The natural choice for the denominator of the expression in the right-hand side of
the equation above should be n−k+1 and not n, but we make this choice for later convenience.
Moreover, for every fixed k, there is no difference in the asymptotics when n tends to infinity.

For a fixed k ∈ Z≥1 and a permutation σ ∈ S≥k, we let õcck(σ), c̃-occk(σ) ∈ [0, 1]Sk be the
vectors

õcck(σ) := (õcc(π, σ))π∈Sk , c̃-occk(σ) :=
(
c̃-occ(π, σ)

)
π∈Sk

.

We say that σ avoids π if σ does not contain any occurrence of π. We point out that the
definition of π-avoiding permutations refers to occurrences and not to consecutive occurrences.
Given a set of patterns B ⊂ S, we say that σ avoids B if σ avoids π, for all π ∈ B. We denote by
Avn(B) the set of B-avoiding permutations of size n and by Av(B) :=

⋃
n∈Z≥1

Avn(B) the set

of B-avoiding permutations of arbitrary finite size. The set Av(B) is often called a permutation
class.

We also introduce two classical operations on permutations. We denote with ⊕ the direct
sum of two permutations, i.e. for τ ∈ Sm and σ ∈ Sn,

τ ⊕ σ = τ(1) . . . τ(k)(σ(1) +m) . . . (σ(n) +m) ,

and we denote with ⊕` σ the direct sum of ` copies of σ (we remark that the operation ⊕ is
associative). A similar definition holds for the skew sum 	, “gluing” permutations along the
decreasing diagonal instead of the increasing one as done for the operation ⊕.

If A,B are two disjoint sets, equipped with the partial orders ≤A,≤B, respectively, we
denote by ≤A • ≤B the partial order on A ] B that restricts to ≤A in A, that restricts to ≤B
in B and that has a ≤A • ≤B b for any a ∈ A, b ∈ B.

Directed graphs

All graphs, their subgraphs and their subtrees are considered to be directed multigraphs in
this paper (and we often refer to them as directed graphs or simply as graphs). In a directed
multigraph G = (V (G), E(G)), the set of edges E(G) is a multiset, allowing for loops and
parallel edges. An edge e ∈ E(G) is an oriented pair of vertices, (v, u), often denoted by
e = v → u. We write s(e) for the starting vertex v and a(e) for the arrival vertex u. We
often consider directed graphs G with labelled edges, and write lb(e) for the label of the edge
e ∈ E(G). In a graph with labelled edges we refer to edges by using their labels. Given an
edge e = v → u ∈ E(G), we denote by CG(e) (for “set of continuations of e”) the set of edges
e′ ∈ E(G) such that e′ = u→ w for some w ∈ V (G), i.e. CG(e) = {e′ ∈ E(G)| s(e′) = a(e)}.

A walk of size k on a directed graph G is a sequence of k edges (e1, . . . , ek) ∈ E(G)k such
that for all i ∈ [k − 1], a(ei) = s(ei+1). We also denote this walk by w = (e1, . . . , ek) to avoid
a heavy use of parenthesis. A walk is a cycle if s(e1) = a(ek). A walk is a path if all the
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edges are distinct, as well as its vertices, with a possible exception that s(e1) = a(ek) may
happen. A cycle that is a path is called a simple cycle. Given two walks w = (e1, . . . , ek) and
w′ = (e′1, . . . , e

′
k′) such that a(ek) = s(e′1), we write w • w′ for the concatenation of the two

walks, i.e. w •w′ = (e1, . . . , ek, e
′
1, . . . , e

′
k′). For a walk w, we denote by |w| the number of edges

in w.
Given a walk w = (e1, . . . , ek) and an edge e, we denote by ne(w) the number of times the

edge e is traversed in w, i.e. ne(w) := |{i ≤ k|ei = e}|.
The incidence matrix of a directed graph G is the matrix L(G) with rows indexed by V (G),

and columns indexed by E(G), such that for any edge e = v → u with v 6= u, the corresponding
column in L(G) has (L(G))v,e = 1, (L(G)))u,e = −1 and is zero everywhere else. Moreover, if
e = v → v is a loop, the corresponding column in L(G) has zero everywhere.

For instance, we show in Fig. 4 a graph G with its incidence matrix L(G).

G =

e1e3

e2

v1

v2

v3

, L(G) =

e1 e2 e3[ ]0 −1 1 v1

1 0 −1 v2

−1 1 0 v3

.

Figure 4: A graph G with its incidence matrix L(G).

2 Topological properties of the pattern avoiding feasible regions
and an upper-bound on their dimensions

This section is devoted to the proof of Theorem 1.7.

Proposition 2.1. Fix k ∈ Z≥1. For any set of patterns B ⊆ S, the feasible region P
Av(B)
k is a

closed set.

This is a classical consequence of the fact that P
Av(B)
k is a set of limit points. For com-

pleteness, we include a simple proof of the statement. Recall that we defined c̃-occk(σ) :=(
c̃-occ(π, σ)

)
π∈Sk

.

Proof. It suffices to show that, for any sequence (~vs)s∈Z≥1
in P

Av(B)
k such that ~vs → ~v for some

~v ∈ [0, 1]Sk , we have that ~v ∈ PAv(B)
k . For all s ∈ Z≥1, consider a sequence of permutations

(σms )m∈Z≥1
such that |σms |

m→∞−→ ∞ and c̃-occk(σ
m
s )

m→∞−→ ~vs, and some index m(s) of the
sequence (σms )m∈Z≥1

such that for all m ≥ m(s),

|σms | ≥ s and ||c̃-occk(σ
m
s )− ~vs|| ≤ 1

s .

Without loss of generality, assume that m(s) is increasing. For every ` ∈ Z≥1, define

σ` := σ
m(`)
` . It is easy to show that

|σ`| `→∞−−−→∞ and c̃-occk(σ
`)

`→∞−−−→ ~v ,

where we use the fact that ~vs → ~v. Furthermore, by assumption we have that σ` ∈ Av(B).

Therefore ~v ∈ PAv(B)
k .

10
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The following result is an analogue of [BP19, Proposition 3.2], where it was proved that the
feasible region Pk is convex.

Proposition 2.2. Fix k ∈ Z≥1. Consider a set of patterns B ⊂ S such that the class Av(B) is

closed for one of the two operations ⊕,	. Then, the feasible region P
Av(B)
k is convex.

Proof. We will present a proof for the case where Av(B) is closed for the ⊕ operation, however
the arguments hold equally for the 	 operation.

Since P Ck is a closed set (by Lemma 2.1) it is enough to consider rational convex combinations

of points in P
Av(B)
k , i.e. it is enough to establish that for all ~v1, ~v2 ∈ PAv(B)

k and all s, t ∈ Z≥1,
we have that

s

s+ t
~v1 +

t

s+ t
~v2 ∈ PAv(B)

k .

Fix ~v1, ~v2 ∈ Pk and s, t ∈ Z≥1. Since ~v1, ~v2 ∈ P
Av(B)
k , there exist two sequences (σ`1)`∈Z≥1

,

(σ`2)`∈Z≥1
such that |σ`i |

`→∞−−−→∞, σ`i ∈ Av(B) and c̃-occk(σ
`
i )

`→∞−−−→ ~vi, for i = 1, 2.

Define t` := t · |σ`1| and s` := s · |σ`2|.

σ`1

σ`2

σ`1

σ`2

s` copies t` copies

τ ` =

Figure 5: Schema for the definition of the permutation τ `.

We set τ ` :=
(
⊕s` σ`1

)
⊕
(
⊕t` σ`2

)
. For a graphical interpretation of this construction we refer

to Fig. 5. We note that for every π ∈ Sk, we have

c̃-occ(π, τ `) = s` · c̃-occ(π, σ`1) + t` · c̃-occ(π, σ`2) + Er,

where Er ≤ (s` + t` − 1) · |π|. This error term comes from the number of intervals of size |π|
that intersect the boundary of some copies of σ`1 or σ`2. Hence

c̃-occ(π, τ `) =
s` · |σ`1| · c̃-occ(π, σ`1) + t` · |σ`2| · c̃-occ(π, σ`2) + Er

s` · |σ`1|+ t` · |σ`2|

=
s

s+ t
c̃-occ(π, σ`1) +

t

s+ t
c̃-occ(π, σ`2) +O

(
|π|
(

1
|σ`1|

+ 1
|σ`2|

))
.

As ` tends to infinity, we have

c̃-occk(τ
`)→ s

s+ t
~v1 +

t

s+ t
~v2,

since |σ`i |
`→∞−−−→ ∞ and c̃-occk(σ

`
i )

m→∞−−−−→ ~vi, for i = 1, 2. Noting also that |τ `| → ∞, we can

conclude that s
s+t~v1 + t

s+t~v2 ∈ P
Av(B)
k . This ends the proof.

Proposition 2.3. Fix k ∈ Z≥1. For all set of patterns B ⊂ S, we have that

P
Av(B)
k ⊆ P (OvAv(B)(k)).
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Recall that the map Wk was defined at the end of Section 1.2.

Proof. Consider any point ~v ∈ P
Av(B)
k , and a corresponding sequence

(
σ`
)
`≥0 ∈ Av(B)Z≥0

such that c̃-occk(σ
`) → ~v. Because σ` ∈ Av(B), we know that for each `, Wk(σ

`) is a walk in
OvAv(B)(k). Using the same method as in the proof of Pk ⊆ P (Ov(k)) in [BP19, Theorem 3.12],
we can deduce that c̃-occk(σ

`) converges to a point in P (OvAv(B)(k)), and so ~v ∈ P (OvAv(B)(k)).

Because ~v is generic, it follows that P
Av(B)
k ⊆ P (OvAv(B)(k)).

Proposition 2.4. Fix k ∈ Z≥1 and a set of patterns B ⊂ S such that the class Av(B) is
closed for one of the two operations ⊕,	. Then the graph OvAv(B)(k) is strongly connected and
dim(P (OvAv(B)(k))) = |Avk(B)| − |Avk−1(B)|.

Proof. Consider v1, v2 two vertices of OvAv(B)(k), and assume that Av(B) is closed for ⊕, for
simplicity. Then lb(v1)⊕lb(v2) is a permutation in Av(B), so Wk(lb(v1)⊕lb(v2)) is a walk in the
graph OvAv(B)(k) that connects v1 to v2. We conclude that OvAv(B)(k) is strongly connected.

It follows from Proposition 1.3 that dim(P (OvAv(B)(k))) = |Avk(B)| − |Avk−1(B)|

Note that Propositions 2.1, 2.2, 2.3, 2.4 imply Theorem 1.7.

3 The feasible region for 312-avoiding permutations

This section is devoted to the proof of Theorem 1.9. The key step in this proof is to show an
analogue of Lemma 1.5 for 312-avoiding permutations. More precisely, we have the following.

Lemma 3.1. Fix k ∈ Z≥1 and m ≥ k. The map Wk, from the set Avm(312) of permutations
of size m to the set of walks in OvAv(312)(k) of size m− k + 1, is surjective.

To prove the lemma above we have to introduce the following.

Definition 3.2. Given a permutation σ ∈ Sn and an integer m ∈ [n + 1], we denote by σ∗m

the permutation obtained from σ by appending a new final value equal to m and shifting by +1
all the other values larger than or equal to m. Equivalently,

σ∗m := std(σ(1), . . . , σ(n),m− 1/2).

In order to prove the surjectivity stated in Lemma 3.1, given a walk w = (e1, . . . , es) in
OvAv(312)(k), we have to exhibit a permutation σ ∈ Av(312) of size s+k−1 such thatWk(σ) = w.
We do that by constructing a sequence of s permutations (σi)i≤s ∈ (Av(312))s with size |σi| =
i+k−1, in such a way that σ is equal to σs. Moreover, we will have that beg|σi+1|−1(σi+1) = σi.

The first permutation is defined as σ1 = lb(e1). To construct σi+1 from σi we will show that
there exists ` ∈ [|σi| + 1] such that endk(σ

∗`
i ) is equal to the pattern lb(ei+1) and σ∗`i avoids

the pattern 312. Then we define σi+1 := σ∗`i , determining the sequence (σi)i≤s ∈ (Av(312))s.
Finally, setting σ := σs we have by construction that Wk(σ) = w and that σ ∈ Avs+k−1(312).

Therefore, in order to prove Lemma 3.1 it is enough to prove the following result.

Lemma 3.3. Let σ be a permutation in Av(312) such that endk(σ) = π for some π ∈ Avk(312).
Let π′ ∈ Avk(312) such that π′ ∈ COvAv(312)(k)(π). Then there exists m ∈ [|σ| + 1] such that
σ∗m ∈ Av(312) and endk(σ

∗m) = π′.

Proof. We have to distinguish two cases.
Case 1: π′(k) ∈ {1, k}. We define h := 1{π′(k)=1} + (|σ|+ 1)1{π′(k)=k}. In this case one can

see that σ∗h ∈ Av(312) - the new final value h cannot create an occurrence of 312 in σ∗h - and
that endk(σ

∗h) = π′.
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Case 2: π′(k) ∈ [2, k − 1]. Assume that i is the index in the diagram of σ of the dot that
corresponds to the dot of height π′(k) in the diagram of the pattern endk−1(σ) (for an example
see the red dots in Fig. 6). We claim that σ∗σ(i) ∈ Av(312) and endk(σ

∗σ(i)) = π′. The latter is
immediate. It just remains to show that σ′ := σ∗σ(i) ∈ Av(312).

Assume by contradiction that σ′ contains an occurrence of 312. Since by assumption σ ∈
Av(312) then the value 2 of the occurrence 312 must correspond to the final value σ′(|σ′|) = σ(i)
of σ′. Moreover, since π′ ∈ Av(312), the 312-occurrence must not occur in the last k elements
of σ′, that is the 312-occurrence must occur at the values σ′(j), σ′(r), σ′(|σ′|) for some indexes
j ≤ |σ′| − k and j < r < |σ′|. As a consequence, σ′(j) > σ′(|σ′|). Moreover, since σ′(i) =
σ′(|σ′|) + 1 by construction, it follows that σ′(j) > σ′(i) . We have two cases:

• If r < i then σ′(j), σ′(r), σ′(i) is also an occurrence of 312. A contradiction with the fact
that σ ∈ Av(312).

• If r > i then σ′(i), σ′(r), σ′(|σ′|) is also an occurrence of 312. A contradiction with the
fact that π′ ∈ Av(312).

This concludes the proof.

Position for the new final value

π′(k) = 3

π =

π′ =

σ =

i

σ(i)

of the permutation σ∗σ(i)

last k − 1
elements

Figure 6: A schema for the proof of Lemma 3.3.

Building on Proposition 2.2 and Lemma 3.1 we can now prove Theorem 1.9.

Proof of Theorem 1.9. The fact that P
Av(312)
k = P (OvAv(312)(k)) follows using exactly the same

proof of [BP19, Theorem 3.12] replacing Lemma 3.8 and Proposition 3.2 of [BP19] by Lemma 3.1
and Proposition 2.2 of this paper (note that in the proof of [BP19, Theorem 3.12] we also use the

fact that the feasible region is closed and this is still true for P
Av(312)
k , thanks to Proposition 2.1).

The fact that the dimension of P
Av(312)
k is Ck − Ck−1 follows from Proposition 2.4 and the

well-known fact that the number of permutations of size k avoiding the pattern 312 is equal to

the k-th Catalan number. Finally the fact that the vertices of P
Av(312)
k are given by the simple

cycles of OvAv(312)(k) is a consequence of [BP19, Proposition 2.2].

4 The feasible region for monotone avoiding permutations

Fix τ = n · · · 1, the decreasing pattern of size n ∈ Z≥1. In this section we study P
Av(τ)
k and

we show that this is related to the cycle polytope of the coloured overlap graph COvAv(τ)(k) ,

presented in Definition 1.16 - this is Theorem 1.17. We also compute the dimension of P
Av(τ)
k -

this is Theorem 1.18.

13



P
ap
er
in
pr
ep
ar
at
io
n,
do

no
t
di
st
ri
bu
te

4.1 The feasible region is the projection of the cycle polytope of the coloured
overlap graph

Recall that we denote Π : RCn−1(k) → RAvk(τ) for the projection mapping that sends the basis

element ~e(π,c) to ~eπ. To prove Theorem 1.17, we start by recalling that P
Av(τ)
k is a convex set,

as established in Proposition 2.2. Thus we only need to describe its extremal points. The proof
that these are given by the simple cycles of COvAv(τ)(k) is split into two parts, following the
strategy laid out in the first paper of this series [BP19]: we first establish that, for any vertex
~v ∈ P (COvAv(τ)(k)), we have that Π(~v) is in the feasible region. This is done by way of the

walk map CW
Av(τ)
k (see Definition 4.1 below) that transforms a permutation σ ∈ Av(τ) into a

walk on the graph COvAv(τ)(k). Lastly, we see via a factorization theorem that any point in
the feasible region results from a sequence of walks in COvAv(τ)(k) that can be asymptotically
decomposed into simple cycles; so the feasible region must be in the convex hull of the vectors
given by simple cycles.

We recall that we denote e1 • e2 • . . . for the walk (e1, e2, . . . ), to avoid a heavy use of
parenthesis, and for two walks w1, w2 we denote their concatenation as w1 • w2.

Definition 4.1 (The coloured walk function). Let σ be a permutation in Avm(τ). To it, it

corresponds the following walk CW
Av(τ)
k (σ) on COvAv(τ)(k) of size s = m− k + 1:

pat{1,...,k}(S(σ)) • · · · • pat{m−k+1,...,m}(S(σ)) ,

where we recall that C(σ) is the RITMO colouring of σ, presented in Definition 1.11.

Remark 4.2. Given a permutation σ that avoids τ , each of the restrictions

pat{`−k+1,...,`}(S(σ)), for all ` ∈ [k,m],

is an inherited (n − 1)-colouring. The fact that these are (n − 1)-colourings follows because σ
avoids τ , and the fact that these are inherited colouring follows from Observation 1.15 after
computations similar to Eq. (3).

Example 4.3. We present the walk CW
Av(τ)
k (σ) corresponding to the permutation σ = 1243756,

for k = 3 and τ = 321. The RITMO colouring of σ is 1243756, and the corresponding walk is

(123, 132, 213, 132, 312) .

We can see in Fig. 7 this walk highlighted on the coloured overlap graph COvAv(321)(3).

12

12

12

31
2

1
2
3

1
3
2

123 12
3

1
2
3

1
3
2

231

1
3
2

2
1
3

21

Figure 7: The walk CW
Av(321)
3 (1243756) in the coloured overlap graph COvAv(321)(3) is high-

lighted in orange.

With the following preliminary lemma (whose proof is postponed to Section 4.3), we can
now present the proof of Theorem 1.17.
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Lemma 4.4. There exists a constant C = C(k, n) such that, for any walk w = (e1, . . . , ej) in
COvAv(τ)(k) there exists a walk w′ in COvAv(τ)(k) of length |w′| ≤ C and a permutation σ of

size j + k − 1 + |w′| that satisfies CW
Av(τ)
k (σ) = w′ • w.

Proof of Theorem 1.17. Let us first establish a formula for c̃-occk(σ) with respect to the walk

CW
Av(τ)
k (σ). Given a permutation ρ with a colouring c we set per(ρ, c) = ρ. Given a walk w

in COvAv(τ)(k) and a permutation π, define [π : w] as the number of edges e in w such that
per(e) = π. Thus, it easily follows that

c̃-occk(σ) =
1

|σ|
∑

π∈Avk(τ)

[π : CW
Av(τ)
k (σ)]~eπ . (4)

On the other hand, from [BP19, Proposition 2.2], the vertices of the cycle polytope P (COvAv(τ)(k))
are given by the simple cycles of the graph COvAv(τ)(k). Specifically, the vertices are given by
the vectors ~eC ∈ RCk(n−1), for each simple cycle C of COvAv(τ)(k), as follows:

(~eC)(π,c) =
1[(π, c) ∈ C]
|C|

,

for each inherited coloured permutation (π, c). In this way, we have that

Π(~eC) =
1

|C|
∑

π∈Avk(τ)

[π : C]~eπ . (5)

Now let us start by proving the inclusion Π(P (COvAv(τ)(k))) ⊆ P
Av(τ)
k . Take ~v a vertex

of the polytope P (COvAv(τ)(k)), that is a vector ~eC for some simple cycle C of COvAv(τ)(k).
Because C is a cycle, we can define the walks C•` obtained by concatenating ` times the cycle
C. From Lemma 4.4, there exists a walk w′` with |w′`| ≤ C(k, n) and a τ -avoiding permutation

σ` of size |w′`|+ `|C|+ k − 1, such that CW
Av(τ)
k (σ`) = w′` • C•`. Now we see that

c̃-occk(σ
`)

`→∞−−−→ Π(~v).

In fact, we have that

c̃-occk

(
σ`
)

(4)
=

1

|σ`|
∑

π∈Avk(τ)

[π : CW
Av(τ)
k (σ`)]~eπ

=
`

|σ`|

 ∑
π∈Avk(τ)

[π : C]~eπ

+
1

|σ`|
∑

π∈Avk(τ)

[π : w′`]~eπ

(5)
=
`|C|
|σ`|

Π(~eC) +
1

|σ`|
~z`

=

(
1−

k − 1 + |w′`|
|σ`|

)
Π(~eC) +

1

|σ`|
~z` ,

where ~z` =
∑

π∈Avk(τ)
[π : w′`]~eπ. However, because |w′`| ≤ C(k, n), we have that

k − 1 + |w′`|
|σ`|

`→∞−−−→ 0 ,

1

|σ`|
||~z`|| ≤

1

|σ`|
∑

π∈Avk(τ)

[π : w′`] =
|w′`|
|σ`|

`→∞−−−→ 0 .
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Therefore c̃-occk(σ
`)→ Π(~eC). This, together with Proposition 2.2, shows the desired inclusion.

For the other inclusion, consider a vector ~v ∈ PAv(τ)
k , so that there is a sequence of τ -avoiding

permutations σ` such that c̃-occk(σ
`)

`→∞−−−→ ~v and that |σ`| `→∞−−−→ +∞. Fix ε > 0, and let M be
an integer such that ` ≥ M implies ||c̃-occk(σ

`) − ~v|| < 1
2ε and |σ`| > 6k!

ε . The set of edges of

the walk CW
Av(τ)
k (σ`) can be split into C(`)1 ] · · · ] C

(`)
j ] T (`), where each C(`)i is a simple cycle

of COvAv(τ)(k) and T (`) is a path that does not repeat vertices, so |T (`)| < V (COvAv(τ)(k)) ≤
(k − 1)! (for a precise explanation of this fact see [BP19, Lemma 3.13]). Thus, we get

c̃-occk(σ
`)

(4)
=

1

|σ`|
∑

π∈Avk(τ)

[π : CW
Av(τ)
k (σ`)]~eπ

=
1

|σ`|

j∑
i=1

∑
π∈Avk(τ)

[π : C(`)i ]~eπ +
1

|σ`|
∑

π∈Avk(τ)

[π : T (`)]~eπ

(5)
=
|σ`| − |T (`)| − k + 1

|σ`|

j∑
i=1

|C(`)i |
|σ`| − |T (`)| − k + 1

Π(~eC) +
1

|σ`|
∑

π∈Avk(τ)

[π : T (`)]~eπ .

Now we set ~x :=
∑j

i=1
|C(`)i |

|σ`|−|T (`)|−k+1
Π(~eC(`)i

) and ~y := 1
|σ`|
∑

π∈Avk(τ)
[π : T (`)]~eπ, in such a way

that ~x ∈ Π(P (COvAv(τ)(k))) arises as a convex combination of vectors corresponding to simple

cycles - note that
∑j

i=1 |C
(`)
i | = |σ`| − |T (`)| − k + 1. We simply get that

c̃-occk(σ
`) =

|σ`| − |T (`)| − k + 1

|σ`|
~x+ ~y .

Thus,

dist
(

c̃-occk(σ
`),Π

(
P (COvAv(τ)(k))

))
≤ ||c̃-occk(σ

`)− ~x|| ≤ |T
(`)|+ k − 1

|σ`|
||~x||+ ||~y|| . (6)

Observe that ||~y|| ≤ 1
|σ`|
∑

π∈Avk(τ)
[π : T (`)] = |T (`)|

|σ`| ≤
(k−1)!
|σ`| . Also, because the sum of

the non-negative coordinates of ~x is one, we have that ||~x|| ≤ 1 and so that |T
(`)|+k−1
|σ`| ||~x|| ≤

(k−1)!+k−1
|σ`| . Then, we can simplify Eq. (6) to

dist(c̃-occk(σ
`),Π(P (COvAv(τ)(k)))) ≤ (k − 1)! + k − 1 + (k − 1)!

|σ`|
≤ 3k!

|σ`|
,

so for ` ≥ M we have that dist(c̃-occk(σ
`),Π(P (COvAv(τ)(k)))) < 1

2ε. As a consequence, for
` ≥M ,

dist(~v,Π(P (COvAv(τ)(k)))) ≤ ||~v − c̃-occk(σ
`)||+ dist(c̃-occk(σ

`),Π(P (COvAv(τ)(k)))) < ε .

Noting that Π(P (COvAv(τ)(k))) is a closed set, since ε is generic, we obtain that ~v is in the
polytope Π(P (COvAv(τ)(k))), concluding the proof of the theorem.

It just remains to prove Lemma 4.4. This is the goal of the next two sections.

4.2 Preliminary results: basic properties of RITMO colourings and their
relations with active sites

We begin by stating (without proof) some basic properties of the RITMO colouring. We suggest
to compare the following lemma with Fig. 8.
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Lemma 4.5. Let σ be a permutation, and consider C(σ) its RITMO colouring.

1. If i < j ∈ [|σ|] such that σ(i) > σ(j), then C(σ)(i) < C(σ)(j).

2. If i < j ∈ [|σ|] such that σ(i) < σ(j) and C(σ)(i) < C(σ)(j), then there exists k > i such
that σ(k) > σ(j) and C(σ)(k) = C(σ)(i).

3. If i < j ∈ [|σ|] such that σ(i) < σ(j) and C(σ)(i) < C(σ)(j), then there exists h > i such
that σ(h) > σ(j) and C(σ)(h) = C(σ)(j)− 1.

We remark that Properties 2 and 3 arise as particular cases of the same general result: if
i < j ∈ [|σ|] with σ(i) < σ(j) and C(σ)(i) < C(σ)(j), then there are indices j > k1 > k2 >
· · · > kl > i, with l = C(σ)(j) − C(σ)(i), such that C(σ)(ks) = C(σ)(j) − s for all s ∈ [`], and
σ(j) < σ(k1) < · · · < σ(kl). We opt to single out Properties 2 and 3 because these will be
enough for our applications.

i j i jk h

Figure 8: A schema for Lemma 4.5. The left-hand side is usefull for Property 1 and the
right-hand side for Properties 2 and 3.

We now introduce a key definition.

Definition 4.6. Given a coloured permutation (π, c), and a pair (y, f) with y ∈ [|π|+1], f ≥ 1,
we define the coloured permutation (π, c)∗(y,f) to be the permutation π∗y together with the
colouring c∗f : [|π|+ 1]→ Z≥1 that has pat[|π|](c

∗f ) = c and c∗f (|π|+ 1) = f .
Let (π, c) be an inherited (n− 1)-coloured permutation. An active site is a pair (y, f) with

y ∈ [|π|+ 1] and f ∈ [n− 1], such that (π, c)∗(y,f) is an inherited (n− 1)-coloured permutation.

We present the following analogue of Lemma 4.5.

Lemma 4.7. Let (y, f) be an active site of an inherited coloured permutation (π, c), and consider
some index i ∈ [|π|]. Then

1. if c(i) ≥ f , then y > π(i);

2. if π(i) < y and c(i) < f , then there exists k > i such that π(k) ≥ y and c(k) = c(i).

3. if π(i) < y and c(i) < f , then there exists k > i such that π(k) ≥ y and c(k) = f − 1.

Proof. Let σ be a permutation such that end|π|+1(S(σ)) = (π, c)∗(y,f), which exists because
(y, f) is an active site of (π, c). The lemma is an immediate consequence of Lemma 4.5, applied
to the RITMO colouring C(σ), and for j = |σ|.

We now observe a correspondence between edges of COvAv(τ)(k) and active sites of some
coloured permutations.
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Observation 4.8. Fix an inherited coloured permutations (π1, c1) of size k − 1. Then there
exists a bijection between the set of edge e ∈ COvAv(τ)(k) from (π1, c1) and the set of active
sites (y, f) of (π1, c1). Specifically, this correspondence between edges and active sites is given
as follows:

e = (π, c) 7→ (π(k), c(k)), (y, f) 7→ (π1, c1)
∗(y,f) .

Fix now an inherited coloured permutation (π, c). By definition, there exists some σ0 that
satisfies end|π|(S(σ0)) = (π, c). The goal of the next section is to show that regardless of the
permutation σ0 chosen, if (y, f) is an active site of (π, c) then there exists an index i ∈ [|σ0|+ 1]
such that

end|π|+1(S(σ∗i0 )) = (π, c)∗(y,f) .

We already know that there exists a permutation σ1 such that end|π|+1(S(σ1)) = (π, c)∗(y,f);
here we are interested in finding out if σ1 can arise as an extension of σ0. In this way it is easy
to see that the main hurdle in establishing the proof of Lemma 4.4 - that for a walk we can
iteratively construct the corresponding permutation - can be surpassed.

The following two definitions refer to important values of permutations and their patterns.

Definition 4.9. Let π and σ be two permutations such that π = endk−1(σ). For a dot at
height ` ∈ [|π|] in the diagram of π, we define ˜̀ to be the height of the corresponding dot in
the diagram of σ. Algebraically we have that ˜̀= σ(|σ| − |π1|+ π−11 (`)). We use the convention

that ˜|π1|+ 1 = |σ|+ 1 and 0̃ = 0.

See Fig. 9 for an example. We have the following simple result.

σ

π = end3(σ) if ` = 0 then ˜̀= 0

if ` = 1 then ˜̀= 1

if ` = 2 then ˜̀= 3

if ` = 3 then ˜̀= 5

if ` = 4 then ˜̀= 6

Figure 9: A schema for the Definition 4.9. On the left-hand side the permutation σ = 24351,
in the middle the pattern π = 231 induced by the last three indices of σ, and on the right-hand
side the quantities ˜̀.

Lemma 4.10. Let σ, π be permutations such that π = endk−1(σ). Now let y ∈ [|π| + 1] and
ι ∈ [|σ|+ 1]. Then we have that

endk(σ
∗ι) = π∗y ⇐⇒ ỹ − 1 < ι ≤ ỹ .

Definition 4.11. Given a permutation σ and a colour c ∈ {1, 2, . . . }, we define zσ(c) to be
the smallest number ι ∈ [|σ| + 1] such that C(σ∗ι)(|σ| + 1) ≤ c. We use the convention that
zσ(0) = |σ|+ 2.

See Fig. 10 for an example.

Remark 4.12. Fix a permutation σ and a colour f . Assume that there exists a maximal index p
of σ such that C(σ)(p) = f . Then it is immediate to observe that zσ(f) = σ(p) + 1. Otherwise,
if such a p does not exist, then zσ(f) = 1.

We have the following simple result.

Lemma 4.13. Let σ be a permutation, f ∈ Z≥1 a colour and ι ∈ [|σ|+ 1]. Then we have that

C(σ∗ι)(|σ|+ 1) = f ⇐⇒ zσ(f) ≤ ι < zσ(f − 1) .
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zσ(1) = 11

zσ(2) = 7

zσ(3) = 6

π = end7(σ)

σ

Figure 10: Left: A permutation σ ∈ Av(4321) colored with its RITMO colouring. Right: The
inherited permutation π = end7(σ). We draw with some coloured circles on the right of each dia-
gram the active sites of the two coloured permutations. Finally the quantities zσ(1), zσ(2), zσ(3),
defined in Definition 4.11, are highlighted on the right of the diagram of the permutation σ.

4.3 The proof of main lemma

In the following we will prove Lemma 4.4, where we find for any walk w in the overlap graph

COvAv(τ)(k), a permutation σ such that CW
Av(τ)
k (σ) = w′ • w, where w′ is an additional walk

in COvAv(τ)(k) of length |w′| ≤ C(k, n).

This is done by induction. In the inductive step, given ρ such that CW
Av(τ)
k (ρ) = w′ • w,

we observe that by taking CW
Av(τ)
k (ρ∗ι) we extend the walk w by precisely one edge, and by

choosing the correct ι we can force the last entry of ρ∗ι to have the correct height and the
correct colour in order to obtain the envisaged extension of the walk. To see that, we will
use Lemma 4.10 and Lemma 4.13 in order to argue that we can always choose such a ι in the
intersection of two intervals. The crucial part of the proof is to establish that these intervals
have always non-trivial intersection.

Proof of Lemma 4.4. We start by defining the desired constant C = C(k, n). Recall that the
edges of the coloured overlap graph COvAv(τ)(k) are inherited permutations. Therefore, for
each edge e = (π, c) ∈ E(COvAv(τ)(k)) we can chose σe, one among the smallest permutations
such that (π, c) = endk(S(σe)). Define C(k, n) := maxe∈E(COvAv(τ)(k)) |σe|+n− k− 1. We claim
that this is the desired constant.

We will prove a stronger version of the lemma, by constructing a permutation σ such that

C(σ) is a surjective (n−1)-colouring and CW
Av(τ)
k (σ) = w′•w. This will be proven by induction

on the length of the walk j = |w|.

We first consider the case j = 1. In this case, the walk w = (e1) has a unique edge, and we
can select σ = (n−1) · · · 1⊕σe1 . In this way, it is clear that C(σ) is a surjective (n−1)-colouring,
because σ has a monotone decreasing subsequence of size n − 1, while it is clearly τ -avoiding.

Furthermore, because endk(S(σ)) = endk(S(σe1)) = e1, we have that CW
Av(τ)
k (σ) = w′ • e1 for

some path w′ such that |w′ • e1| = |w′|+ 1 = |σ| − k+ 1 = |σe1 |+n− k. Therefore we have that
|w′| = |σe1 |+ n− 1− k ≤ C, concluding the base case.
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We now consider the case j ≥ 2. Take a walk w = (e1, . . . , ej) in COvAv(1...n)(k), and consider

(by inductive hypothesis) the permutation σ such that CW
Av(τ)
k (σ) = w′•(e1, . . . , ej−1) for some

walk w′ of size at most C and such that C(σ) is a surjective (n − 1)-colouring. We are going

to show that there exists a suitable ι ∈ [|σ|+ 1] such that CW
Av(τ)
k (σ∗ι) = w′ • (e1, . . . , ej) and

such that C(σ∗ι) is a surjective (n− 1)-colouring.
It is enough to show that we can find an index ι ∈ [|σ|+ 1] such that endk(C(σ∗ι)) = ej and

that σ∗ι is τ -avoiding. Indeed, in this case the colouring C(σ∗ι) is clearly a surjective (n − 1)-

colouring. Furthermore, we have that CW
Av(τ)
k (σ∗ι) = w′ • (e1, . . . , ej−1, ej), concluding the

induction step, as |w′| ≤ C by hypothesis.
We now show that we can find an index ι ∈ [|σ|+ 1] such that endk(C(σ∗ι)) = ej . If so, the

RITMO colouring of σ∗ι has precisely n− 1 colours, so it follows that σ∗ι is τ -avoiding. First,
let (π, c) = beg(ej). For an entry of height l ∈ [|π|] in the diagram of π, we recall that l̃ ∈ [|σ|]
denotes the height of the corresponding entry in the diagram of σ, as in Definition 4.9. Let (y, f)
be the active site of (π, c) corresponding to the edge ej , so that f ∈ [n− 1] and y ∈ [|π|+ 1].

From Lemma 4.10, we have that endk(σ
∗ι) = per(ej) if and only if

ỹ − 1 < ι ≤ ỹ . (7)

From Lemma 4.13, we have that C(σ∗ι)(|σ|+ 1) = f if and only if

zσ(f) ≤ ι < zσ(f − 1) . (8)

This gives us two intervals, and our goal is to show that these intervals have a non-trivial
intersection, concluding that the desired number ι exists.

Claim. zσ(f) ≤ ỹ.

Assume by sake of contradiction that zσ(f) > ỹ. If y = |π|+1, then ỹ = |σ|+1 by convention.
This gives a contradiction because f ≥ 1 and so zσ(f) ≤ |σ|+ 1. Thus y < |π|+ 1. Let p ∈ [|σ|]
be the maximal index such that C(σ)(p) = f . We know that such a p exists, because C(σ) is
a surjective (n − 1)-colouring. By maximality of p, it follows that σ(p) + 1 = zσ(f) > ỹ (see
Remark 4.12). We now split the proof into two cases; when p is included in the last |π| indexes
of σ and when it is not:

• Assume that p > |σ| − |π|. Let q = p − (|σ| − |π|) > 0. Because by assumption
endk−1(S(σ)) = (π, c), we have that f = C(σ)(p) = c(q). Since we know that σ(p) + 1 =
zσ(f) > ỹ, we have that π(q) + 1 > y. This contradicts the Property 1 of Lemma 4.7, as
the active site (y, f) satisfies both c(q) ≥ f and π(q) ≥ y.

• Assume that p ≤ |σ| − |π|. Then σ(p) 6= ỹ, so σ(p) > ỹ. Using the Property 1 of
Lemma 4.5 with i = p and j = σ−1(ỹ), we have that f = C(σ)(p) < C(σ)(σ−1(ỹ)). So
c(π−1(y)) = C(σ)(σ−1(ỹ)) > f . But this contradicts again the Property 1 of Lemma 4.7
for i = π−1(y), as the active site (y, f) satisfies both c(π−1(y)) > f and y ≤ π(π−1(y)).

Therefore, in both cases we have a contradiction.

Claim. zσ(f − 1) > ỹ − 1 + 1.

Assume by contradiction that zσ(f−1) ≤ ỹ − 1+1. If f = 1, then recall that we convention

zσ(0) = |σ|+2, so we have ỹ − 1 ≥ |σ|+1. But y ≤ |π|+1 so ỹ − 1 ≤ |σ|, a contradiction. Thus
f > 1. Let p be the maximal index in [|σ|] such that C(σ)(p) = f − 1. We know that such a p
exists, because C(σ) is a surjective (n− 1)-colouring. By construction, σ(p) + 1 = zσ(f − 1) ≤
ỹ − 1 + 1 (see Remark 4.12), so σ(p) ≤ ỹ − 1. As above, we now split the proof into two cases;
when p is included in the last |π| indexes of σ and when it is not:
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• Assume that p > |σ| − |π|. Let q = p − (|σ| − |π|) > 0. Because by assumption
endk−1(S(σ)) = (π, c), we have that f − 1 = C(σ)(p) = c(q). Since we know that σ(p) ≤
ỹ − 1, we have that π(q) ≤ y − 1. Thus, by Property 2 of Lemma 4.7, there exists some
k > q such that c(k) = c(q) = f − 1. The existence of such k contradicts the maximality
of p, as we get that k + (|σ| − |π|) > p has C(σ)(k + (|σ| − |π|)) = c(k) = f − 1.

• Assume that p ≤ |σ| − |π|. Let r = σ−1(ỹ − 1). Then r > |σ| − |π| ≥ p and so p 6= r. It

follows that σ(p) = zσ(f − 1) < ỹ − 1.

We now claim that C(σ)(r) < f − 1. Indeed, if C(σ)(r) = f − 1, because p < r we have
immediately a contradiction with the maximality of p. Moreover, if C(σ)(r) > f − 1,
Property 2 of Lemma 4.5 guarantees that there is some k > p such that σ(k) > σ(r) and
C(σ)(k) = f − 1. Again, we have a contradiction with the maximality of p.

Now let q = r − (|σ| − |π|), and observe that c(i) = C(σ)(r) < f − 1. On the other

hand, because r = σ−1(ỹ − 1), we have π(q) = y − 1. Because (y, f) is an active site
of (π, c), Property 3 of Lemma 4.7 guarantees that there is some index k > q of π such
that c(k) = f − 1. But this contradicts again the maximality of p, as we would have that
C(σ)(k + |σ| − |π|) = f − 1 all the while k + |σ| − |π| > q + |σ| − |π| = r > p.

Therefore, in both cases we have a contradiction.

Using the two claims above, we can conclude that the intervals in Eqs. (7) and (8) have a
non-trivial intersection, and therefore the desired index ι exists. Consequently, we can construct
the desired permutation σ∗ι.

4.4 Dimension of the feasible region

The computation of the dimension of P
Av(τ)
k is based on the description given in Theorem 1.17.

This allows us to compute a lower bound by carefully studying the kernel of the map Π.

Proof of Theorem 1.18. From Theorem 1.7 we have that dim(P
Av(τ)
k ) ≤ |Avk(τ)|− |Avk−1(τ)|.

Therefore, we just have to establish that dim(P
Av(τ)
k ) ≥ |Avk(τ)| − |Avk−1(τ)|.

First, recall that the projection Π : RCn−1(k) → RAvk(τ) maps ~e(π,c) 7→ ~eπ. Let V =

span{P (COvAv(τ)(k))}. From the rank nullity theorem applied to the restriction Π|V we have
that

dimV = dim im Π|V + dim ker Π|V . (9)

Note that the graph COvAv(τ)(k) is strongly connected (this can be proved with the argument
used in Proposition 2.4). Therefore, from Proposition 1.3 and the fact that ~0 is not in the affine
span of P (COvAv(τ)(k)), we have that

dimV = 1 + |E(COvAv(τ)(k))| − |V (COvAv(τ)(k))| = 1 + |Cn−1(k)| − |Cn−1(k − 1)| . (10)

In addition, from Theorem 1.17 we have im Π|V = span{Π(P (COvAv(τ)(k)))} = span{PAv(τ)
k },

and so
dim im Π|V = dim span{PAv(τ)

k } = 1 + dimP
Av(τ)
k , (11)

because ~0 is not in the affine span of P
Av(τ)
k . Eqs. (9) to (11) together give us that

1 + |Cn−1(k)| − |Cn−1(k − 1)| = 1 + dimP
Av(τ)
k + dim ker ΠV .

We now claim that dim ker Π|V ≤ |Cn−1(k)| − |Avk(τ)| − |Cn−1(k − 1)| + |Avk−1(τ)|. This is
enough to conclude, as we get that

dimP
Av(τ)
k = |Cn−1(k)| − |Cn−1(k − 1)| − dim ker Π|V ≥ |Avk(τ)| − |Avk−1(τ)| .
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To compute dim ker Π|V , notice that ker Π|V is a vector space given by two types of equations:
the ones defining ker Π and the ones defining V . It arises then as the kernel of an |Avk(τ)| +
|Cn−1(k − 1)| by |Cn−1(k)| matrix A.

We now describe this matrix A. It can be split as A =

[
Aker

AV

]
, where Aker is an |Avk(τ)|

by |Cn−1(k)| matrix defined for a permutation π ∈ Avk(τ) and a coloured permutation (π′, c) ∈
Cn−1(k) as (Aker)π,(π′,c) = 1{π=π′}, and AV is the |Cn−1(k− 1)| by |Cn−1(k)| incidence matrix of

COvAv(τ)(k). In Example 4.14 one can see an example of such matrix for k = 3, n = 3 and at
page 25 for k = 3, n = 4. We have that dim ker Π|V = nulA = |Cn−1(k)| − rkA, so our goal is
to establish that

rkA ≥ |Cn−1(k − 1)|+ |Avk(τ)| − |Avk−1(τ)| .

This will be done by finding a suitable non-singular minor of A with size |Cn−1(k − 1)| +
|Avk(τ)| − |Avk−1(τ)|.

Construction of the minor. We are going to select a subsets CE of columns and a subset
V of rows of the matrix A, both of cardinality |Cn−1(k − 1)|+ |Avk(τ)| − |Avk−1(τ)|.

We start by determining the set CE . For each vertex v of COvAv(τ)(k), consider the active
site (k, 1), which is always an active site, and the corresponding edge e (which we write from now
on as comp(v)), according to Observation 4.8. We call this the completion process of v. Notice
that in this case we have beg(e) = v. As a result, we can define the set of edges CEk(k) obtained
by the completion process of all v ∈ COvAv(τ)(k) - note that the notation CEk(k) recalls that
the permutations in CEk(k) are colored, end with the value k and have size k. Because for each
vertex v ∈ COvAv(τ)(k) there is exactly one distinct edge e ∈ CEk(k) such that beg(e) = v, we
have that |CEk(k)| = |V (COvAv(τ)(k))| = |Cn−1(k − 1)|.

Let NEk(k) be the set of permutations σ ∈ Avk(τ) that satisfy σ(k) 6= k - note that the
notation NEk(k) recalls that the permutations in NEk(k) are not colored (indeed there is no C),
do not end with the value k and have size k. Let CNEk(k) be a set of edges of COvAv(τ)(k) such
that for each permutation σ ∈ NEk(k), there is exactly one distinct edge e ∈ CNEk(k) such that
e = (σ, c) for some colouring c. It is clear that |CNEk(k)| = |NEk(k)| = |Avk(τ)| − |Avk−1(τ)|.
It is also clear that the sets CEk(k) and CNEk(k) are disjoint. Define CE := CEk(k)]CNEk(k),
so that |CE| = |Cn−1(k − 1)|+ |Avk(τ)| − |Avk−1(τ)|.

Consider γ = 1 · · · k to be the increasing permutation of size k. We prove (for later use)
that CEk(k) has a unique cycle, which is the loop S(γ) = 1 · · · k at the vertex begk−1(S(γ)) =
1 · · · k − 1. For a coloured permutation, we define the number of trailing reds to be the number
of consecutive elements that are coloured red in the end of the permutation. In this way, for
any edge e ∈ CEk(k) \ {S(γ)}, the number of trailing reds of begk−1(e) is strictly smaller than
the number of trailing reds of endk−1(e) (by definition of completion process), so a cycle cannot
be formed.

We now determine the set V. On Avk(τ) ] Cn−1(k − 1), consider the set

V = NEk(k) ] {γ} ]
(
Cn−1(k − 1) \ {begk−1(S(γ))}

)
,

where we note that begk−1(S(γ)) is an an inherited permutation. Observe that |V| = |Avk(τ)|−
|Avk−1(τ)|+ |Cn−1(k − 1)|.

Proof that the minor is non-singular. We establish now that the minor of A determined
by CE and V is non-singular, by presenting two orders on these sets so that the corresponding
minor becomes upper-triangular with non-zero entries in the diagonal. Recall that

CE = {S(γ)} ] (CEk(k) \ {S(γ)}) ] CNEk(k)

and that
V = {γ} ]

(
Cn−1(k − 1) \ {begk−1(S(γ))}

)
]NEk(k).
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We will define two total orders in these sets that preserves the order described by the decom-
positions above.

Let us denote by ≤S(γ) and ≤γ the trivial orders in {S(γ)} and {γ}. Consider a total order

≤NEk(k) in the set NEk(k), and construct the corresponding total order ≤CNEk(k) in CNEk(k)

according to the bijection described above between NEk(k) and CNEk(k).
Additionally, in Cn−1(k−1)\{begk−1(S(γ))} define the partial order ≤C by setting v1 ≤C v2 if

there is an edge e ∈ CEk(k) such that e = v2 → v1. Equivalently, v1 ≤C v2 if endk−1(comp(v2)) =
v1, that is, if the completion process of v2 gives an edge pointing to v1. We extend transitively
≤C to become a partial order. This is a partial order because the edges in CEk(k) \ {S(γ)} do
not form any cycle, as explained above. We fix an extension of the partial order ≤C to a total
order on Cn−1(k − 1) \ {begk−1(S(γ))} and we still denote it by ≤C .

Finally, by identifying the edges e ∈ CEk(k) \ {S(γ)} with the edges in the set Cn−1(k −
1) \ {begk−1(S(γ))} via the mapping e 7→ begk−1(e), the total order ≤C on Cn−1(k − 1) \
{begk−1(S(γ))} induces a total order also on the set CEk(k) \ {S(γ)} that we denote ≤C̃ .

Now define the following two total orders:

≤CE := ≤S(γ) • ≤C̃ • ≤CNEk(k), on CE ,
≤V := ≤γ • ≤C • ≤NEk(k), on V.

Under these total orders, one can see that the minor V × CE of the matrix A becomes

A|V×CE =

S(γ) CEk(k) \ {S(γ)} CNEk(k)[ ]1 A1 A2 γ
Z1 B A3 Cn−1(k − 1) \ {begk−1 S(γ)}
Z2 Z3 C NEk(k)

.

It is immediate to argue that Z1 and Z2 are zero matrices. That Z3 is a zero matrix follows
from the observation that for any edge (σ, c) ∈ CEk(k) we have that σ(k) = k, so σ 6∈ NEk(k).
The matrix C is the identity matrix by definition of the two orders ≤NEk(k) on NEk(k) and

≤CNEk(k) on CNEk(k).
We finally claim that the matrix B is upper triangular. Recall that the matrix B is a minor

of the incidence matrix AV of the graph COvAv(τ)(k). Consider a non-zero off-diagonal entry
Be,v. Since it is off-diagonal then beg(e) 6= v by definition of the orders ≤C ,≤C̃ . Moreover, since
it is non-zero, we must have endk−1(e) = v, and so v ≤C begk−1(e) by definition of ≤C . We
conclude, by definition of ≤C̃ , that the entry Be,v is above the diagonal. Conversely, if Be,v is a
diagonal entry, then beg(e) = v and so Be,v = 1 is non-zero.

We conclude that A|V×CE is an upper triangular matrix with non-zero entries on the diagonal.
This concludes the proof that rkA ≥ |Avk(τ)|+ |Cn−1(k − 1)| − |Avk−1(τ)|.

Example 4.14 (The case n = 3 and k = 3). As alluded to above, we present the matrix A,
introduced in the proof of Theorem 1.18 for the case n = 3 and k = 3:

A :=

123 123 123 123 132 132 213 231 312



123 1 1 1 1 0 0 0 0 0
132 0 0 0 0 1 1 0 0 0
213 0 0 0 0 0 0 1 0 0
231 0 0 0 0 0 0 0 1 0
312 0 0 0 0 0 0 0 0 1
12 0 −1 0 0 1 0 0 1 0
12 0 1 −1 0 0 1 −1 0 0
12 0 0 1 0 0 0 0 0 −1
21 0 0 0 0 −1 −1 1 −1 1

.
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We also present the corresponding upper triangular minor of dimension |Av3(321)|+ |C2(2)| −
|Av2(321)|. Some choices were made to obtain this matrix that we clarify here. The set
CNE3(3) of edges in bijection with NE3(3) = {231, 132, 312} via the mapping per was chosen
to be CNE3(3) = {231, 132, 312}, but could have been, for instance, {231, 132, 312}. The
ordering on these sets must be coherent with the mapping per, thus we fix

{132 < 231 < 312}, {132 < 231 < 312} .

For the order on the set Cn−1(k − 1) \ {begk−1 S(γ)} = {12, 12, 21}, we have to choose a linear
order such that 12 ≤ 12 and 12 ≤ 21, thus the following works:

{12 < 12 < 21} .

Finally, the corresponding order in CEk(k) \ {S(γ)} = {123, 123, 213} is

{comp(12) < comp(12) < comp(21}) = {123 < 123 < 213} .

In this way, the matrix A|V×CE is upper triangular:

A|V×CE :=

123 123 123 213 132 231 312



123 1 1 1 0 0 0 0
12 0 1 −1 −1 0 0 0
12 0 0 1 0 0 0 −1
21 0 0 0 1 −1 −1 1
132 0 0 0 0 1 0 0
231 0 0 0 0 0 1 0
312 0 0 0 0 0 0 1

.

Acknowledgements
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