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/ ‘1. Known Conjecturesl \

This talk presents a connection between the Hadamard
matrix conjecture, the circulant Hadamard matrix
conjecture (which if proved true would imply the Barker

conjecture) and the AG inequality.

Conjecture 1 (Hadamard Conjecture) Ifn is a
multiple of 4, then there exists a Hadamard matriz H,,,
i.e, there exists H, € {—1,1}"*™ such that

H,H! = H'H, =n-1,.

\Remark: H, Hadamard <= det H,, = n"/? /
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Circ,lag, ..., @p_1] =

Conjecture 2 (Circulant Hadamard Conjecture)
If n > /4 then there does not exist a circulant Hadamard

matriz in dimension n, i.e, a Hadamard matrix of the

~
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Conjecture 3 (Barker conjecture) There is no

Barker sequence of even length n > 13, i.e., there s no
a € {—1,1}" with

n—j

Y apaps;| <1, j=1,...,n—1
k=1

Barker sequences are sequences with optimal energy

configuration. It is known that no such sequence exists
of odd length.

The Circulant Hadamard Conjecture implies the Barker

Conjecture.
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‘2. J.Cohn’s result'

J.Cohn (1963) has shown that the following equality
holds:

2"~ 1. max{determinant of {0, 1}-matrix of size n— 1}

max{determinant of {—1, 1}-matrix of size n} < n"/?
Moreover his proof leads to a method that produces a
n x n Hadamard matrix from a n—1 x n—1 {0, 1}-matrix

with maximal determinant, i.e., when det = 2 - (n/4)"/2.
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‘ Strategy for building Hadamard matrices? I

Based on J.Cohn’s equality, we would like to construct

n—1 x n—1 {0, 1}-matrices with maximal determinant
to produce Hadamard matrices. We focus on circulant

matrices and use the classical identity

n—2

det Circy,—1bo, ..., bp—2] = HP( ff;,—1)a

j=0
where p(x) = Z;g brz® and (,_1 = exp(2mi/(n — 1)).
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‘3. The case of {0, 1}-matrices'

Theorem 4 Let M be a circulant matriz with first line
bg, -y 2], b; € {0,1}, and p(x) = Z;”:_g bix’. The
following conditions are equivalent:

1. det M is mazimal, i.e., equal to 2 - (n/4)"/2.

2. The polynomial p satisfies the following equalities:

([ (n—1)+1 s
|p(j )| =4 ( 2) if 3 =0,
\ \/(n_i)_l_l otherwise,

K and n =0 mod 4. /

0|g®ﬂ[ﬁ]ﬂ June 28, 2003.

oire d'algarithmique
iques elgarithmigua




-

Let k£ := p(1). Using the AG inequality, we have

n—2
n—2
1 .
(det M)? < p(1)° ?Zm( ha)|?
j=1
_afno1 TSGR K
B n— 2 n—1

\_

Proof:
n—2 ‘ n—2 ‘
(det M)* =[] p(¢Z_1)* =p(1)* T In(&2_1) P
7=0 j=1
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Thus

(det M)?

/N

K (n—1—Fk)" 2.
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Finally, we have found Cohn’s inequality for circulant
{0, 1}-matrices

n/2
det M < 2 (%)

based on the AG inequality. Equality holds if and only if
1. n=0 mod 4.

2. k=p(1) = 5

3. Ip(Gh_)l =%, i=1,..,n—1

This finishes the proof.
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Corollary 5 Constructing an n X n Hadamard matriz

from a circulant {0, 1}-matriz of size n — 1 based on

Cohn’s construction is possible if and only if

e n =0 mod 4,

o the set D:={j|b; =1} isa (n—1,n/2,n/4)
Hadamard difference set in Z/(n—1)Z.

Remark: There does not exist a Hadamard difference
set when n — 1 = 55 but a Hadamard matrix of order 56

does exist. Hence this strategy is not complete.
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‘4. The case of {—1, 1}-matrices'

Theorem 6 Let N be a circulant matriz with first line

lag, .-, an_1], a; € {—1,1}, and p(x) = Z?:_ol a;x’. The
following conditions are equivalent:

1. N is a Hadamard matrix,

2. [p(¢A) = v/n for all j.

The proof of Theorem 6 follows the same line as in the

case of {0, 1}-matrix.
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Example: The case n = 4 is well known and a

a cyclic permutation of the coefficients. These

polynomials give rise to the following equalities

p(Ql) — QCZva k€ {0717273}

This is clearly a sign that if a circulant Hadamard
matrix N exists of degree > 4, then the associated

polynomial p might satisfy p((,) = /n - ¢

\_

circulant Hadamard matrix is given by the polynomial
p(z) =1+ — 2 + z° and all polynomials obtained by

~
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It turns out that the dimension n = 4 is the only one

with this property:

Corollary 7 If a circulant Hadamard matriz of

dimenston n > 1 exists with associated polynomial p
such that p((,) = +/n - CF, then n = 4.

\_

~
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Corollary 8 The existence of a Barker sequence of
length n > 13 implies the existence of a polynomzial of
degree > 4 with coefficients in {—1,1} that satifies the

above conditions.

Due to the recent work of B.Schmidt, it is known that

there is no Barker sequence of length [ with
13 <1< 25-10°

and the smallest open case is

| =4-5%.101% - 157 = 25, 144, 444, 900.
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‘ Li-norm of {—1, 1}-polynomials I

Cauchy-Schwarz inequality:

In a 1960 paper, D.J. Newman considers polynomials of
degree n — 1 with coefficients in {—1,1} and proves that

any such polynomial P satisfies a stronger form of the

~

although Cauchy-Schwarz would only give the
inequality < +/n.

\_

1 27
/ Pt dt = — [ |P(e)|dt < v/m —0.03,
0 21 Jo
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The circulant Hadamard conjecture can be seen as a

discrete version of this result since the conjecture is
equivalent to the conjecture that for such polynomials,

we have
1 n—1 N
=3 (i) < v
=0

for n > 4. Once again, Cauchy-Schwarz would only give

< n.
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/ ‘ Conclusion ' \

e In this talk, we have described the use of the AG
inequality in proving extremal properties of
{0, 1}-polynomials and {—1,1}-polynomials that
lead to circulant Hadamard matrices.

e Necessary and sufficient conditions have been found

for such matrices to exist.

e A connection with the L;-norm of polynomials has

been shown.

For references and details, please have a look at

\ http://algo.epfl.ch/~gerard/ /
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