
EXERCISE SHEET 9

LORENZO MANTOVANI

Exercise 1 (Principal open subsets). Let X be a scheme and f ∈ OX(X). Define the non-vanishing locus
of f as

Xf := {x ∈ X s.t. fx ∈ O×X,x}.
Show that

(1) Xf is an open subset of X;
(2) Show that f is invertible in ∈ OX(Xf ) and deduce that the inclusion Xf ⊂ X induces a map
OX(X)f −→ OX(Xf );

(3) Assume that X has a finite affine covering Ui such that Ui ∩Uj has itself a finite affine covering.
Show that the map constructed above is an isomorphism. [Hint: use the sheaf condition with
respect to a finite open affine cover.]

Exercise 2 (Criterion for Affineness). (1) Let X −→ Y be a map of schemes. Show that f is an
isomorphism iff there exists an affine open covering {Vi}i of Y the map X ×Y Vi −→ Vi is an
isomorphism. In other words being an isomorphism is a Zariski-local condition on the target.

(2) Let X be a scheme. show that X is affine iff there exists a collection of elements f1, . . . , fr ∈
OX(X)} such that the Xfi ’s are affine and (f1, . . . , fr) = OX(X).

Exercise 3 (Reduced structure). Let R be a ring and N(R) := {x ∈ Rs.t. xn = 0 for some n ∈ N}.
Recall that a ring is defined to be reduced if N(R) = 0. Show that

(1) if S is a multiplicative closed subset of R, then S−1(N(R)) ' N(S−1R);
(2) the following are equivalent:

(a) R is reduced;
(b) Rp is reduced for every p ∈ SpecR;
(c) Rmis reduced for every m ∈ SpecmaxR;

(3) the forgetful functor CRngred −→ CRng has a left adjoint. (Here CRngred denotes the category
of reduced commutative rings and morphisms of rings).

Let’s globalize these notions to schemes.

Definition 3.1. A scheme X is defined to be reduced at x ∈ X if the ring OX,x is reduced. X is defined
to be reduced if it’s reduced at each of its points.

Show that:

(1) The following are equivalent:
(a) X is reduced;
(b) for every affine covering {Ui = SpecAi}i of X, the Ai’s are reduced;
(c) for every open subset U ⊂ X, the ring OX(U) is reduced.

(2) The assignement U 7→ N (U) := {x ∈ OX(U) s.t. x ∈ N(OX,x) ∀x ∈ U} together with the
restrictions induced by those of OX , defines a sheaf of OX -modules on X; if U is an affine open
subset of X, then N(OX(U)) = N (U).

(3) Let’s show that the locally ringed space (X,OX/N ) is a scheme:
(a) Show that you can reduce to the case of X is an affine scheme;
(b) In the case X = SpecA: describe OX/N in terms of the functor ˜ of Exercise 4 of the

exercise sheet 4 and conclude;
(4) Denote (X,OX/N ) by (Xred,OXred) the scheme constructed at the previous point. Show that

there is a natural map r : Xred −→ X and this data satisfy the following universal property:
for every map f : Y −→ X with Y reduced, f factors uniquely through r. In a picture, given
the solid diagram (i.e. the non dashed part) there exists a unique dashead arrow making the
diagram

Xred

r

��

Y

==

f
// X

commutative.
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(5) Assume that X admits a finite covering by open affine subschemes: show that the following
sequence is exact:

0 −→ N(OX(X)) −→ OX(X)
r#(X)−→ r∗Ored

X (X).

(6) Show that if Z is a closed subset of X then Z has a canonical scheme structure. [Hint: Cover X
by affine open subschemes Ui = SpecAi where Z∩Ui =: Zi writes as V (Ii) for some ideal Ii ⊆ Ai

and define the reduced scheme structure on the Zi’s. Show that with such scheme structures the
Zi’s glue.]

Exercise 4 (Noetherian schemes).

Definition 4.1. A scheme X is defined to be Locally Noetherian if it has an open affine cover {Ui =
SpecAi}i where Ai is a noetherian ring. A scheme is Noetherian if it is quasi-compact (i.e. the underlying
space is quasi-compact; in other words every open cover of X can be refined to a finite open cover) and
locally noetherian.

Let X be a locally noetherian scheme. Show that

(1) Any open or closed subscheme of X is locally noetherian;
(2) For every point x ∈ X the ring OX,x is noetherian;
(3) An affine scheme Y = SpecA is noetherian iff A is noetherian. (In particular, if X is noetherian

and U ⊆ X is an affine subscheme, then OX(U) is a noetherian ring.) In order to achieve this
point observe that one implication is obvious; for the oher we can follow these steps:
(a) Prove that if Z is any scheme, U, V ⊆ X are open affine subschemes and z ∈ U ∩ V , then

there exists an open subscheme z ∈W ⊆ U ∩ V such that W is a principal open subscheme
of both V and U .

(b) Prove that you can cover X = SpecA by principal open subsets {D(fi)}i∈{1,...,n} where
fi ∈ A and Afi is noetherian.

(c) Suppose that A is any ring and that {f1, . . . fn} ⊂ A generate the unit ideal of A. Then
for every A-module M , we have that M is finitely generated iff Mfi is finitely generated for
every i.

(d) Conclude.

Definition 4.2. A space X is called noetherian if it satisfies the ”d.c.c” on closed subsets, i.e.
any decreasing chain of closed subsets of X stabilizes. Show that:

(4) if X is a noetherian space and Y ⊆ X is a subspace, then X is quasi-compact and Y is noetherian;
(5) the following are equivalent:

(a) X is noetherian;
(b) Every open subspace of X is quasi-compact;
(c) Every subspace Y ⊆ X is quasi-compact;

(6) if A is a noetherian ring, then X = SpecA is noetherian space;
(7) Find a non-noetherian ring A such that SpecA is a noetherian space;
(8) Let A be a ring such that SpecA is noetherian: show that the set of prime ideals satisfis the

”a.c.c”. Does the converse hold?
Let’s get back to schemes. Let X be a scheme.

(9) If X is noetherian, then the underlying topological space (usually denoted by |X|) is a noetherian
space; the converse is false.

Exercise 5 (Varieties).

Definition 5.1. Let S be any scheme. A scheme over S is a pair (X, pX) where X is a scheme and
pX : X −→ S is a morphism of schemes (sometimes pX is called structure map and, with abuse, is often
omitted from the notation). A morphism of schemes over S (sometimes called S-morphism) is a map
f : X −→ Y compatible with the structure maps; in other words it’s a commutative diagram

X
f

//

pX
��

Y

pY
��

S

.

Schemes over S and S-morphisms form a category denoted by SchS . When S = SpecR we simply
write SchR. Note that if S = SpecZ then SchZ = Sch: why? Note also that the functor Spec restricts
to CAlgR −→ SchR. Given a scheme over S, call it X, a T point of X over S is an S-map f : T −→ X;
they are denoted by XS(T ); in particular the S-points of X over S, denoted by XS(S), are those maps
σ : S −→ X such that pX ◦ σ = idS : S −→ S. If no confusion arises one removes the subscript S form
the notation. If T = SpecB then it’s customary to call T -points ”B-points”.

Let k be a field, X be a scheme over k and Y be any scheme. Show that:
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(1) The set of k-points over k of X is in bijection with {x ∈ X s.t. κ(x) ' k}. Here κ(x) := OX,x/mx.
(2) Assume K is any field: then X(K) is in bijection wtth the set of pairs (y, iy), where y ∈ Y and

iy : κ(y) −→ K.
(3) Let Z ⊆ Y be a open (or closed) subschme of Y then Z(K) = Y (K) ∩ Z. [Hint: compare the

residue fields in Y and in Z of a K-point].
(4) Let A be a finitely generated k-algebra and X = SpecA the associated k-scheme. In particular

A ' k[X1, . . . , Xn]/(f1, . . . fr). Let K ⊃ k be a field extension. Describe Xk(k) and Xk(K).
(5) Assume that X is a k-scheme admitting a (possibly infinite) open cover by affine schemes SpecAi

where Ai is a finitely generated k-algebra for every i (in such a case we say that pX is a map of
finite type). Show that the following are equivalent:
(a) x ∈ X is a closed point (i.e. {x} is a closed subset of X);
(b) the natural map k −→ κ(x) is a finite extension of fields;
(c) the natural map k −→ κ(x) is an algebraic extension of fields;

Deduce that x ∈ X is a closed point iff there exists an open affine subscheme SpecA ⊆ X
such that x is closed in SpecA.

Remark 5.2. Given a topological space T , a subspace Z ⊆ T is closed iff the exists an open
cover (and then for every open cover) Ti of T it holds that Z ∩ Ti is closed in Ti.

(6) Find a scheme Y with an open subset U and a point x ∈ U such that x is closed in U but x is
not closed in Y .

Exercise 6 (Glueing). (1) Let R be a ring; mimic the construction of P1
R to construct the scheme

Pn
R:

• Start with n+1 affine spaces An
R ' SpecR[X̂i] =: Xi, where R[X̂i] := R[X0, . . . , X̂i, . . . , Xn]

is a free polynomial ring in n indeterminates, X̂i means that Xi is missing. Define open

subschemes Xi,j := SpecR[X̂i]Xj
.

• Define adequate isomoprphisms φi,j : Xi,j −→ Xj,i that satisfy the cocycle condition, so
that you actually get a scheme by gluing the Xi’s. Be careful in the definition of the φi,j so
that you don’t axcidentally glue lines with double origins.

• Observe that this produces a scheme over SpecR, and that Pn
R ' Pn

Z ×SpecZ SpecR in the
category SchSpecR.

• Let k be a field: show that Pn
k (k) coincides with the set of non-zero n + 1-tuples modulo

invertible scalars.
(2) Consider the polynomial F := X0X

2
2 = X1(X1 −X0)(X1 + X0) ∈ Z[X0, X1, X2] and let Ei :=

Z[X̂i]/Fi where F0 := F (1, X1, X2) and similiarly for F1 and F2. Show that the gluing data for
P2
Z induce gluing data for the Ei’s, giving rise to a scheme E.

(3) Let R be any ring and show that the previous argument applies to any homonegenous ideal of
R[X0, . . . , Xn].

(4) Let k be a field, R := k[T ], and consider the polynomial F := X0X
2
2 = X1(X1−X0)(X1+TX0) ∈

R[X0, X1, X2]: by applying the construction above we get a map f : E −→ SpecR.
• Compute the fibres of the map f .
• Construct a scheme and a map f̄ : Ē −→ P1

k that extends the map f; [in other words if
i : A1

k ' U0 ' SpecR −→ P1
k is the map missing ∞ we want a cartesian diagram as follows.

E
j
//

f

��

Ē

f̄

��

A1
k

i // P1
k

In particular j : E −→ Ē needs to be an open subscheme and f = f̄|E ].

• Compute the fibres of f̄ : you just need to compute the fibre at infinity.
• Construct the projections onto the three ”axes” p0, p1, p2 : E −→ P1 as maps of schemes.

Exercise 7 (Fibred products). (1) Let A,B be two rings: describe and briefly prove the universal
property of B⊗Z C in the category CRng of commutative rings with morphisms of rings (maps
of rings respect 1). Assume now that, in addition, A,B are R-algebras. Describe the universal
property of A ⊗R B in the category of CAlgR of commutative R-algebras and in the category
of CAlgZ = CRng. Deduce that CAlgR has coproducts and pushouts.

(2) Le A be a commutative ring; show that:
• A[x]⊗A A[Y ] ' A[X,Y ];
• If I is an ideal of A, then A/I ⊗A B ' B/BI;
• If I, J are ideals of A, then A/I ⊗A A/J ' B/(I + J);
• Compute the following tensor products:
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– Z/n⊗Z Z/m (m,n ≥ 2 ∈ N);
– Z/n⊗Z Z(p) where p is a prime;
– Z/n⊗Z Z[1/p];
– Q⊗Z Q;

– C⊗R R[X]/(X2 + 1);
– A[X]/(X)⊗A A[X]/(X − 1);
– A[X]/(X)⊗A[X] A[X]/(X − 1);
– A[X,Y ]⊗A[X] A[X]/(X − 1).

(3) Let S be a scheme and X,Y, Z be schemes over S. Show that:
• The following natural maps are isomorphisms of S-schemes: X ×S S −→ X, S×S Y −→ Y ,
X ×S Y −→ Y ×S X, and (X ×S Y )×S Z −→ X ×S (Y ×S Z).
• Assume that the map Z −→ S making Z an S-scheme factors as Z −→ Y −→ S. Then the

canonical map (X ×S Y )×Y Z −→ X ×S Z is an isomorphism.
• Given S-morphisms f : X −→ X ′ and g : Y −→ Y ′ there exists a unique morphism over S,

denoted by f × g : X ×S X
′ −→ Y ×S Y

′ such that the following diagram commutes:

X ×S Y

��

$$

f×g
// X ′ ×S Y

′

��

$$
Y

g
//

��

Y ′

��

X
f

//

$$

X ′

$$
S S

• Show that (X ×S Y )(S) ' X(S) × Y (S) and that HomX(X,YX) ' HomS(X,Y ), where
YX := Y ×S X is a X-scheme via the second projection.

• Assume that the right hand side square, in the following diagram, is cartesian. Then the
outer suqare is cartesian iff the left hand side square is.

X ′′ //

��

X ′ //

��

X

��

S′′ // S′ // S

Exercise 8 (Fibres). (1) Let φ : A −→ B ba a map of commutative rings, p ∈ SpecA, and f =
Spec(φ). Show that under the homoeomorphic identification SpecAp with the subspace (with
induced topology) {p ∈ SpecAs.t. p ∩ (A \ p = ∅)} ⊆ SpecA, the restriction of f to SpecAp

coincides with the map Specφp : SpecAp −→ SpecBp.
(2) Let φ : A −→ B ba a map of commutative rings, let I be an ideal of A, and f = Spec(φ). Show

that under the homeomorphic indentification SpecA/I with the subspace {p ∈ SpecAs.t. p ⊇
I} ⊆ SpecA, the restriction of f to SpecA/I coincides with the map Spec f̄ : SpecA/I −→
SpecB/IB.

(3) By combining the previous points and observing that we have a commutative diagram

A

��

// Ap

��

// Ap/pAp

��

B // Bp
// Bp/pBp

show that the fibre of the map f = Specφ : SpecB −→ SpecA in p ∈ SpecA, denoted as f−1(p)
is identified, as topological space, to Spec(B ⊗A κ(p)) where κ(p) := Ap/pAp.

Definition 8.1. Let f : Y −→ X be a map of schemes and let x ∈ X be a point of X. We call
OX,x/mx =: κ(x) residue field at x: it is endowed with a natural map Spec(κ(x)) −→ X (see
exercise 5). The scheme-theoretic fibre of f in x is the κ(x)-scheme Y ×X Spec(κ(x)), where the
structure of κ(x)-scheme is induced by the projection on the second factor. It’s customary to
make an abuse of notation and denoted it by Yx, omitting the map f from the notation.

(4) Show that the second projection Yx −→ Y identifies the underlying topological space of Yx with
the subspace f−1(x) ⊂ Y (with the induced topology).

(5) Explicitely compute some example taking inspiration from 7.
(6) Some computations:

(a) Consider the map f : SpecR[T ] −→ SpecR[T ] induced by T 7→ T 2. Compte the fibres of f
in (X − 1), (X), (X + 1), (0).
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(b) Let k be a field, X = Spec k[T ], Y = Spec(k[X,Y, T ]/(X2 − Y 2 − T )) and f : Y −→ X the
map induced by the inclusion k[T ] ⊂ k[X,Y, T ]/(X2 − Y 2 − T ). Observe that if x is the
point of X corresponding to the prime ideal (X − a), then the map ix : Spec k −→ X is
induced by the projection πx : k[T ] −→ k[T ]/(T − a). Show that, for x = (X − a), we have
Yx ' Spec k[X,Y ]/(X2 − Y 2 − a). Compute the fibre over the point (0) ∈ X. Prove that
the map of rings k[T ] −→ k[X,Y, T ]/(X2 − Y 2 − T ) is flat: what can we deduce about the
fibres of the map?

(c) Let Y := SpecZ[i], X := SpecZ, and f : Y −→ X the map induced by the inclusion
Z ⊂ Z[i]. Compute the fibres of the map at the points (2), (3), (5), (0) ∈ SpecZ. Try to give
a meaning to the imprecise sentence ”For every x ∈ X the fibre of f in x has two points”.
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