EXERCISE SHEET 9

LORENZO MANTOVANI

Ezercise 1 (Principal open subsets). Let X be a scheme and f € Ox(X). Define the non-vanishing locus
of f as

Xp={z € Xst. f, € 0%}
Show that

(1) Xy is an open subset of X;

(2) Show that f is invertible in € Ox(Xy) and deduce that the inclusion Xy C X induces a map
Ox(X)y — Ox(Xy);

(3) Assume that X has a finite affine covering U; such that U; N U; has itself a finite affine covering.
Show that the map constructed above is an isomorphism. [Hint: use the sheaf condition with
respect to a finite open affine cover.]

Ezercise 2 (Criterion for Affineness). (1) Let X — Y be a map of schemes. Show that f is an
isomorphism iff there exists an affine open covering {V;}; of Y the map X xy V; — V; is an
isomorphism. In other words being an isomorphism is a Zariski-local condition on the target.

(2) Let X be a scheme. show that X is affine iff there exists a collection of elements f1,..., f, €
Ox(X)} such that the Xj,’s are affine and (f1,..., fr) = Ox(X).

Ezercise 3 (Reduced structure). Let R be a ring and N(R) := {z € Rs.t.2™ = 0 for some n € N}.
Recall that a ring is defined to be reduced if N(R) = 0. Show that

(1) if S is a multiplicative closed subset of R, then S™'(N(R)) ~ N(S~'R);
(2) the following are equivalent:
(a) R is reduced,;
(b) Ry is reduced for every p € Spec R;
(¢) Rmis reduced for every m € Specmax R;
(3) the forgetful functor CRng™! — CRng has a left adjoint. (Here CRng™? denotes the category
of reduced commutative rings and morphisms of rings).

Let’s globalize these notions to schemes.

Definition 3.1. A scheme X is defined to be reduced at € X if the ring Ox , is reduced. X is defined
to be reduced if it’s reduced at each of its points.

Show that:

(1) The following are equivalent:
(a) X is reduced,;
(b) for every affine covering {U; = Spec A;}; of X, the A;’s are reduced;
(c) for every open subset U C X, the ring Ox (U) is reduced.

(2) The assignement U — N (U) := {z € Ox(U)s.t. x € N(Ox_,) Yz € U} together with the
restrictions induced by those of Ox, defines a sheaf of Ox-modules on X; if U is an affine open
subset of X, then N(Ox(U)) = N (U).

(3) Let’s show that the locally ringed space (X, Ox /N) is a scheme:

(a) Show that you can reduce to the case of X is an affine scheme;
(b) In the case X = Spec A: describe Ox /N in terms of the functor ~ of Exercise 4 of the
exercise sheet 4 and conclude;

(4) Denote (X, Ox/N) by (X", Oxrea) the scheme constructed at the previous point. Show that
there is a natural map r : X" — X and this data satisfy the following universal property:
for every map f : Y — X with Y reduced, f factors uniquely through r. In a picture, given
the solid diagram (i.e. the non dashed part) there exists a unique dashead arrow making the
diagram
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commutative.



(5) Assume that X admits a finite covering by open affine subschemes: show that the following
sequence is exact:

(X ) r

0 — N(Ox(X)) — Ox(X) =5 r,0%4(X).

(6) Show that if Z is a closed subset of X then Z has a canonical scheme structure. [Hint: Cover X

by affine open subschemes U; = Spec A; where ZNU,; =: Z; writes as V(I;) for some ideal I; C A;

and define the reduced scheme structure on the Z;’s. Show that with such scheme structures the

Z;’s glue.]

Ezercise 4 (Noetherian schemes).

Definition 4.1. A scheme X is defined to be Locally Noetherian if it has an open affine cover {U; =
Spec A; }; where A; is a noetherian ring. A scheme is Noetherian if it is quasi-compact (i.e. the underlying
space is quasi-compact; in other words every open cover of X can be refined to a finite open cover) and
locally noetherian.

Let X be a locally noetherian scheme. Show that

(1) Any open or closed subscheme of X is locally noetherian;

(2) For every point z € X the ring Ox , is noetherian;

(3) An affine scheme Y = Spec A is noetherian iff A is noetherian. (In particular, if X is noetherian
and U C X is an affine subscheme, then Ox(U) is a noetherian ring.) In order to achieve this
point observe that one implication is obvious; for the oher we can follow these steps:

(a) Prove that if Z is any scheme, U,V C X are open affine subschemes and z € U NV, then
there exists an open subscheme z € W C U NV such that W is a principal open subscheme
of both V and U.

(b) Prove that you can cover X = Spec A by principal open subsets {D(f;)}icq1,....ny Where
fi € A and Ay, is noetherian.

(c) Suppose that A is any ring and that {fi,... f,} C A generate the unit ideal of A. Then
for every A-module M, we have that M is finitely generated iff My, is finitely generated for
every 4.

(d) Conclude.

Definition 4.2. A space X is called noetherian if it satisfies the "d.c.c” on closed subsets, i.e.
any decreasing chain of closed subsets of X stabilizes. Show that:

(4) if X is a noetherian space and Y C X is a subspace, then X is quasi-compact and Y is noetherian;
(5) the following are equivalent:

(a) X is noetherian;

(b) Every open subspace of X is quasi-compact;

(c¢) Every subspace Y C X is quasi-compact;
(6) if A is a noetherian ring, then X = Spec A is noetherian space;
(7) Find a non-noetherian ring A such that Spec A is a noetherian space;
(8) Let A be a ring such that Spec A is noetherian: show that the set of prime ideals satisfis the

7a.c.c”. Does the converse hold?

Let’s get back to schemes. Let X be a scheme.

(9) If X is noetherian, then the underlying topological space (usually denoted by | X|) is a noetherian

space; the converse is false.

Ezercise 5 (Varieties).

Definition 5.1. Let S be any scheme. A scheme over S is a pair (X,px) where X is a scheme and
px : X — S is a morphism of schemes (sometimes px is called structure map and, with abuse, is often
omitted from the notation). A morphism of schemes over S (sometimes called S-morphism) is a map
f: X — Y compatible with the structure maps; in other words it’s a commutative diagram

X4>Y

RS

Schemes over S and S-morphisms form a category denoted by Schg. When S = Spec R we simply
write Schgr. Note that if S = SpecZ then Schy = Sch: why? Note also that the functor Spec restricts
to CAlgp — Schpr. Given a scheme over S, call it X, a T' point of X over S is an S-map f: T — X;
they are denoted by Xg(T'); in particular the S-points of X over S, denoted by Xg(.5), are those maps
o0 :S — X such that px oo =idg : S — S. If no confusion arises one removes the subscript S form
the notation. If T' = Spec B then it’s customary to call T-points ” B-points”.

Let k be a field, X be a scheme over k and Y be any scheme. Show that:
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(1) The set of k-points over k of X is in bijection with {x € X s.t. k(x) ~ k}. Here k(z) := Ox 5 /m,.

(2) Assume K is any field: then X (K) is in bijection wtth the set of pairs (y, i), where y € Y and
iy K(y) — K.

(3) Let Z C Y be a open (or closed) subschme of Y then Z(K) = Y(K) N Z. [Hint: compare the
residue fields in Y and in Z of a K-point].

(4) Let A be a finitely generated k-algebra and X = Spec A the associated k-scheme. In particular
A~Ek[Xq1,...,X,]/(f1,... fr). Let K Dk be a field extension. Describe Xy (k) and X (K).

(5) Assume that X is a k-scheme admitting a (possibly infinite) open cover by affine schemes Spec A;
where A; is a finitely generated k-algebra for every ¢ (in such a case we say that px is a map of
finite type). Show that the following are equivalent:

(a) x € X is a closed point (i.e. {x} is a closed subset of X);

(b) the natural map k — k() is a finite extension of fields;

(c) the natural map k — k(z) is an algebraic extension of fields;
Deduce that x € X is a closed point iff there exists an open affine subscheme Spec A C X
such that x is closed in Spec A.

Remark 5.2. Given a topological space T', a subspace Z C T is closed iff the exists an open
cover (and then for every open cover) T; of T' it holds that Z NT; is closed in T;.

(6) Find a scheme Y with an open subset U and a point € U such that x is closed in U but z is
not closed in Y.

Ezercise 6 (Glueing). (1) Let R be a ring; mimic the construction of P} to construct the scheme
P:

e Start with n+1 affine spaces A%} ~ Spec R[Z] =: X;, where R[)/(:] = R[Xo,..., 5(:, ey X
is a free polynomial ring in n indeterminates, 5(: means that X; is missing. Define open
subschemes X; ; := Spec R[j(\i]xj.

e Define adequate isomoprphisms ¢; ; : X; ; — X;; that satisfy the cocycle condition, so
that you actually get a scheme by gluing the X;’s. Be careful in the definition of the ¢; ; so
that you don’t axcidentally glue lines with double origins.

e Observe that this produces a scheme over Spec R, and that P} ~ P} Xgpecz Spec R in the
category Schgpec -

e Let k be a field: show that P} (k) coincides with the set of non-zero n + 1-tuples modulo
invertible scalars.

(2) Consider the polynomial F := XoX3 = X;(X; — Xo)(X1 + Xo) € Z[Xo, X1, X2] and let E; :=
Z[E}/FZ where Fy := F(1, X1, X5) and similiarly for F; and F5. Show that the gluing data for
PZ induce gluing data for the E;’s, giving rise to a scheme E.

(3) Let R be any ring and show that the previous argument applies to any homonegenous ideal of
R[Xo,...,Xn)

(4) Let k be a field, R := k[T, and consider the polynomial F := X X3 = X;(X;—Xo)(X1+TXo) €
R[Xo, X1, X5]: by applying the construction above we get a map f : E — Spec R.

e Compute the fibres of the map f.

e Construct a scheme and a map f : £ — P} that extends the map f; [in other words if
i: A} ~ Uy~ Spec R — P} is the map missing co we want a cartesian diagram as follows.

fj jf
AL P!

In particular j : E — E needs to be an open subscheme and f = ﬁE]
e Compute the fibres of f: you just need to compute the fibre at infinity.
e Construct the projections onto the three ”axes” pg, p1,p2 : £ — P! as maps of schemes.

Ezercise 7 (Fibred products). (1) Let A, B be two rings: describe and briefly prove the universal
property of B®z C' in the category CRng of commutative rings with morphisms of rings (maps
of rings respect 1). Assume now that, in addition, A, B are R-algebras. Describe the universal
property of A ®pr B in the category of CAlgy of commutative R-algebras and in the category
of CAlg; = CRng. Deduce that CAlgp has coproducts and pushouts.

(2) Le A be a commutative ring; show that:

Alz] @4 AlY] ~ A[X,Y];

If I is an ideal of A, then A/I ® 4 B ~ B/BI,;

If I, J are ideals of A, then A/T ®4 A/J ~ B/(I+ J);

Compute the following tensor products:
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— Z/n®z Z/m (m,n > 2 € N); — CopRIX]/(X?+1);

— Z/n ®z L) where p is a prime; — AX]/(X)®a A[X]/(X —1);
— Z/n s ZlL/p) — AIXT/(X) @ 4 ALXT/(X 1)
- Q®zQ; — AIX,Y] ®ax) AX]/(X - 1).

(3) Let S be a scheme and X, Y, Z be schemes over S. Show that:
e The following natural maps are isomorphisms of S-schemes: X xgS — X, SxgY — Y,
XXSY—>Y><5X7 and (X XsY) st—>X><S(Y><SZ).
e Assume that the map Z — S making Z an S-scheme factors as Z — Y — S. Then the
canonical map (X xgY) Xy Z — X Xg Z is an isomorphism.
e Given S-morphisms f: X — X’ and g : Y — Y” there exists a unique morphism over S,
denoted by f x g: X xg X' — Y xg Y’ such that the following diagram commutes:

XxgY — I xrwgvr

NN
<AL/

e Show that (X xgY)(S) ~ X(S) x Y(S5) and that Homx(X,Yx) ~ Homg(X,Y), where
Yy =Y xg X isa X—scheme via the second projection.

e Assume that the right hand side square, in the following diagram, is cartesian. Then the
outer suqare is cartesian iff the left hand side square is.

XX — X

R

S8 — 38

Ezercise 8 (Fibres). (1) Let ¢ : A — B ba a map of commutative rings, p € Spec A, and f =
Spec(¢). Show that under the homoeomorphic identification Spec A, with the subspace (with
induced topology) {p € Spec As.t.p N (A\p = 0)} C Spec A, the restriction of f to Spec A,
coincides with the map Spec ¢, : Spec A, — Spec By,.

(2) Let ¢ : A — B ba a map of commutative rings, let I be an ideal of A, and f = Spec(¢). Show
that under the homeomorphic indentification Spec A/I with the subspace {p € Spec As.t.p D
I} C Spec A, the restriction of f to Spec A/I coincides with the map Spec f : Spec A/I —
Spec B/IB.

(3) By combining the previous points and observing that we have a commutative diagram

A—— Ay —— A, /pA,

| ] ]

B —— B, —— B, /pB,

show that the fibre of the map f = Spec ¢ : Spec B — Spec A in p € Spec A, denoted as f~*(p)
is identified, as topological space, to Spec(B ®4 £(p)) where k(p) := Ap/pA,.

Definition 8.1. Let f : Y — X be a map of schemes and let x € X be a point of X. We call
Ox »/m,; =: k(z) residue field at z: it is endowed with a natural map Spec(x(z)) — X (see
exercise 5). The scheme-theoretic fibre of f in z is the x(z)-scheme Y x x Spec(x(x)), where the
structure of x(x)-scheme is induced by the projection on the second factor. It’s customary to
make an abuse of notation and denoted it by Y, omitting the map f from the notation.

(4) Show that the second projection Y, — Y identifies the underlying topological space of Y, with
the subspace f~1(x) C Y (with the induced topology).
(5) Explicitely compute some example taking inspiration from 7.
(6) Some computations:
(a) Consider the map f : Spec R[T] — Spec R[T] induced by T+ T?. Compte the fibres of f
in (X —1),(X),(X+1),(0).



(b)

Let k be a field, X = Speck[T], Y = Spec(k[X,Y,T]/(X? — Y2 —T)) and f:Y — X the
map induced by the inclusion k[T] C k[X,Y,T]/(X? — Y2 — T). Observe that if = is the
point of X corresponding to the prime ideal (X — a), then the map i, : Speck — X is
induced by the projection m,, : k[T] — k[T]/(T — a). Show that, for z = (X — a), we have
Y, ~ Speck[X,Y]/(X? — Y% — a). Compute the fibre over the point (0) € X. Prove that
the map of rings k[T] — k[X,Y,T]/(X? — Y2 —T) is flat: what can we deduce about the
fibres of the map?

Let Y := SpecZ[i], X := SpecZ, and f : Y — X the map induced by the inclusion
Z C Z[i]. Compute the fibres of the map at the points (2), (3), (5), (0) € SpecZ. Try to give
a meaning to the imprecise sentence ”For every x € X the fibre of f in x has two points”.



