Homework 7

Please turn these in on Monday, Dec. 7 (in class or in the problem session). You should be prepared to present these problems on the board during the problem session.

1. Verify the following properties of proper morphisms:
(a) If $f: X \rightarrow Y$ is a proper morphism and T is an algebraic set, then $f \times \operatorname{Id}_{T}: X \times T \rightarrow Y \times T$ is a proper morphism.
(b) if $f: X \rightarrow Y$ and $g: Z \rightarrow W$ are proper morphisms, then $f \times g:$ $X \times Z \rightarrow Y \times W$ is a proper morphism.
(c) a projective morphism is a proper morphism.
2. Verify the following properties of projective morphisms:
(a) A composition of projective morphisms is a projective morphism
(b) if $f: X \rightarrow Y$ and $g: Z \rightarrow W$ are projective morphisms, then $f \times g$: $X \times Z \rightarrow Y \times W$ is a projective morphism.
3. Fix positive integers n_{1}, \ldots, n_{m}. For each $j=1, \ldots, m$, let $\left\{X_{i}^{(j)}\right\}$ be the set of variables $X_{0}^{(j)}, \ldots, X_{n_{j}}^{(j)}$, and consider the polynomial ring

$$
k\left[X_{*}^{(1)} ; \ldots ; X_{*}^{(m)}\right]=k\left[\ldots, X_{i}^{(j)}, \ldots\right]
$$

An element $h=h\left(X_{*}^{(1)} ; \ldots ; X_{*}^{(m)}\right) \in k\left[X_{*}^{(1)} ; \ldots ; X_{*}^{(m)}\right]$ has multi-degree $\left(d_{1}, \ldots, d_{m}\right)$ if for each $j=1, \ldots, m$ and each $\lambda \in k$, one has

$$
h\left(X_{*}^{(1)} ; \ldots ; \lambda \cdot X_{*}^{(j)} ; \ldots ; X_{*}^{(m)}\right)=\lambda^{d_{j}} h\left(X_{*}^{(1)} ; \ldots ; X_{*}^{(j)} ; \ldots ; X_{*}^{(m)}\right)
$$

We let $k\left[X_{*}^{(1)} ; \ldots ; X_{*}^{(m)}\right]_{\left(d_{*}\right)}$ denote the subvector space of multi-degree $\left(d_{*}\right)=$ $\left(d_{1}, \ldots, d_{m}\right)$ elements. Note that

$$
k\left[X_{*}^{(1)} ; \ldots ; X_{*}^{(m)}\right]=\oplus_{\left(d_{*}\right)} k\left[X_{*}^{(1)} ; \ldots ; X_{*}^{(m)}\right]_{\left(d_{*}\right)}
$$

An ideal $I \subset k\left[X_{*}^{(1)} ; \ldots ; X_{*}^{(m)}\right]$ is multi-homogeneous if

$$
I=\oplus_{\left(d_{*}\right)} I \cap k\left[X_{*}^{(1)} ; \ldots ; X_{*}^{(m)}\right]_{\left(d_{*}\right)}
$$

(a) Show that an ideal $I \subset k\left[X_{*}^{(1)} ; \ldots ; X_{*}^{(m)}\right]$ is multi-homogeneous if and only if there are multi-homogeneous elements $f_{i} \in I, i=1, \ldots, r$, with $I=\left(f_{1}, \ldots, f_{r}\right)$.
(b) Let $\mathbb{P}^{n_{1}}(k) \times \ldots \times \mathbb{P}^{n_{m}}(k)$ denote the product (in Alg_{k}) of the algebraic sets $\mathbb{P}^{n_{1}}(k), \ldots, \mathbb{P}^{n_{m}}(k)$ (with projection maps $p_{j}: \mathbb{P}^{n_{1}}(k) \times \ldots \times \mathbb{P}^{n_{m}}(k) \rightarrow$ $\left.\mathbb{P}^{n_{j}}(k)\right)$. For $f \in k\left[X_{*}^{(1)} ; \ldots ; X_{*}^{(m)}\right]_{\left(d_{*}\right)}$, let

$$
V^{m h}(f)=\left\{\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{P}^{n_{1}}(k) \times \ldots \times \mathbb{P}^{n_{m}}(k) \mid f\left(x_{1}, \ldots, x_{m}\right)=0\right\}
$$

Show that the set $V^{m h}(k)$ is a well-defined closed subset of $\mathbb{P}^{n_{1}}(k) \times \ldots \times$ $\mathbb{P}^{n_{m}}(k)$. Hint: Consider the set of variables $Z_{i_{1}, \ldots, i_{m}}, 0 \leq i_{j} \leq n_{j}$ and let $k\left[\ldots, Z_{i_{*}}, \ldots\right]$ be the corresponding polynomial ring. Let $\mathbb{P}_{n_{1}, \ldots, n_{m}}(k)$ be
the closed subset of $\mathbb{P}^{N}(k), N=\prod_{j=1}^{m}\left(n_{j}+1\right)-1$, defined by the ideal $I_{n_{1}, \ldots, n_{m}} \subset k\left[\ldots, Z_{i_{*}}, \ldots\right]$ generated by elements $Z_{i_{*}} Z_{j_{*}}-Z_{i_{*}^{\prime}} Z_{j_{*}^{\prime}}$ where the indices $i_{*}, j_{*}, i_{*}^{\prime}, j_{*}^{\prime}$ satisfy $\left\{i_{\ell}, j_{\ell}\right\}=\left\{i_{\ell}^{\prime}, j_{\ell}^{\prime}\right\}$ for $1 \leq \ell \leq m$. Show that $\mathbb{P}^{n_{1}}(k) \times \ldots \times \mathbb{P}^{n_{m}}(k)$ is isomorphic to $\mathbb{P}_{n_{1}, \ldots, n_{m}}(k)$.
(c) For $I \subset k\left[X_{*}^{(1)} ; \ldots ; X_{*}^{(m)}\right]$ a multi-homogeneous ideal, let $V^{m h}(I)=$ $\cap_{f} V^{m h}(f)$, as f runs over the multi-homogeneous elements of I. Show that a subset $C \subset \mathbb{P}^{n_{1}}(k) \times \ldots \times \mathbb{P}^{n_{m}}(k)$ is a closed subset if and only if there is a multi-homogeneous ideal $I \subset k\left[X_{*}^{(1)} ; \ldots ; X_{*}^{(m)}\right]$ with $C=V^{m h}(I)$.
4. Fix positive integers n and d. A degree d irreducible hypersurface in $\mathbb{P}^{n}(k)$ is a closed algebraic subset $X \subset \mathbb{P}^{n}(k)$ of the form $X=V^{h}((f))$ for some element $f \in k\left[X_{0}, \ldots, X_{n}\right]_{d}$, with f irreducible. A degree d (effective) divisor in $\mathbb{P}^{n}(k)$ is a formal finite sum $\sum_{i=1}^{r} n_{i} X_{i}$ where the n_{i} are positive integers, X_{1}, \ldots, X_{r} are distinct irreducible hypersurfaces, with X_{i} of degree d_{i}, and $\sum_{i} n_{i} d_{i}=d$. Show that the set of degree d divisors in $\mathbb{P}^{n}(k)$ is in bijection with $\left\{f \in k\left[X_{0}, \ldots, X_{n}\right]_{d} \mid f \neq 0\right\} / \sim$, with $f \sim g$ if $g=\lambda f$ for some $\lambda \in k \backslash\{0\}$. This set in turn is $\mathbb{P}^{N_{n, d}}(k)$, where $N_{n, d}=\operatorname{dim}_{k} k\left[X_{0}, \ldots, X_{n}\right]_{d}-1$. In fact,

$$
N_{n, d}=\binom{n+d}{n}-1
$$

A representative f for a class in $\left\{f \in k\left[X_{0}, \ldots, X_{n}\right]_{d} \mid f \neq 0\right\} / \sim$ is called a defining equation for the corresponding divisor X; the support of X is the closed algebraic subset $\operatorname{supp}(X):=V^{h}(f)$.
(b) Let $I_{n, d} \subset \mathbb{P}^{n}(k) \times \mathbb{P}^{N_{n, d}}(k)$ be the set of pairs (p, X) such that $p \in$ $\operatorname{supp}(X)$. Show that $I_{n, d}$ is a closed algebraic subset of $\mathbb{P}^{n}(k) \times \mathbb{P}^{N_{n, d}}(k)$, in fact $I_{n, d}=V^{b h}(h)$ for h a polynomial of bi-degree $(d, 1)$.
(c) Let p be a point of $\mathbb{P}^{n}(k)$. Show that the set S of degree d divisors $X \in \mathbb{P}^{N_{n, d}}(k)$ with $p \in \operatorname{supp}(X)$ is a hyperplane (that is, a hypersurface of degree one) in $\mathbb{P}^{N_{n, d}}(k)$, and that $p \times S=I_{n, d} \cap p \times \mathbb{P}^{N_{n, d}}(k)$.
(d) Let $C \subset \mathbb{P}^{n}(k)$ be a closed algebraic subset. Show that the set of degree d divisors $X \subset \mathbb{P}^{n}(k)$ such that $C \subset \operatorname{supp}(X)$ forms a closed subset of $\mathbb{P}^{N_{n, d}}(k)$.
5. Fix a further integer m. Let $I_{n, d, m} \subset \mathbb{P}^{n}(k) \times \mathbb{P}^{N_{n, d}}(k)^{m}$ be the set of tuples $\left(p, X_{1}, \ldots, X_{m}\right)$ such that $p \in \cap_{i=1}^{m} \operatorname{supp}\left(X_{i}\right)$.
(a) Show that $I_{n, d, m}$ is a closed algebraic subset of $\mathbb{P}^{n}(k) \times \mathbb{P}^{N_{n, d}}(k)^{m}$.
(b) Let $C \subset \mathbb{P}^{n}(k)$ be a closed algebraic subset. Show that the set of m-tuples $\left(X_{1}, \ldots, X_{m}\right)$, with X_{i} a degree d divisor in $\mathbb{P}^{n}(k)$, and with $C \cap \cap_{i=1} m \operatorname{supp}\left(X_{i}\right) \neq \emptyset$, is a closed algebraic subset of $\mathbb{P}^{N_{n, d}}(k)^{m}$. Hint: 1st show that

$$
\left\{\left(p, X_{1}, \ldots, X_{m}\right) \mid p \in C \cap \cap_{i=1}^{m} \operatorname{supp}\left(X_{i}\right)\right\}
$$

is a closed subset of $\mathbb{P}^{n}(k) \times \mathbb{P}^{N_{n, d}}(k)^{m}$.
(c) Let $C \subset \mathbb{P}^{N, d_{1}}(k) \times \ldots \times \mathbb{P}^{N, d_{r}}(k)$ be a closed subset. Show that the set of r-tuples of divisors

$$
\left\{\left(X_{1}, \ldots, X_{r}\right) \in C \mid \cap_{i=1}^{r} \operatorname{supp}\left(X_{i}\right) \neq \emptyset\right\}
$$

is a closed subset of C. Hint: use the hint in (b).
6. Define as for $\mathbb{P}^{n}(k)$ the irreducible hypersurfaces $X \subset k^{n}$ as the algebraic closed subsets $V(f)$ for $f \in k\left[x_{1}, \ldots, x_{n}\right]$ with f irreducible, and a divisor X in k^{n} as a finite formal sum $\sum_{i=1}^{r} n_{i} X_{i}, n_{i}>0, X_{1}, \ldots, X_{r}$ distinct irreducible hypersurfaces. If we write $X_{i}=V\left(f_{i}\right)$, the polynomial $f=\prod_{i} f_{i}^{n_{i}}$ is called a defining equation for X (uniquely defined up to a non-zero constant) and $\operatorname{supp}(X):=V(f)$. A point $x \in \operatorname{supp}(X)$ is called a smooth point of the divisor X if X has defining equation f and $\left(\partial f / \partial x_{i}\right)(x) \neq 0$ for some $i=1, \ldots, n . x \in \operatorname{supp}(X)$ is a singular point if x is not a smooth point.
(a) Let $X \subset \mathbb{P}^{n}(k)$ be a degree d divisor with defining equation f. For each i, we have the open subset $U_{i} \subset \mathbb{P}^{n}(k), U_{i}=\left\{\left[x_{0}: \ldots: x_{n}\right] \in \mathbb{P}^{n}(k) \mid x_{i} \neq 0\right\}$, which we identify with k^{n} by the bijection

$$
\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{i-1}, 1, x_{i}, \ldots, x_{n}\right)
$$

Dehomogenizing f with respect to X_{i} gives us the polynomial

$$
f^{(i)} \in k\left[x_{1}, \ldots, x_{n}\right]
$$

with $x_{j}=X_{j-1}$ for $j=1, \ldots i, x_{j}=X_{j}$ for $j=i+1, \ldots, n$, and we let $X_{i}:=$ $X \cap U_{i}$ be the divisor with defining equation $f^{(i)}$ Call a point $x \in \operatorname{supp}(X)$ a smooth/singular point of X if x is a smooth/singular point of X_{i} for some i. Show that $x \in X$ is a singular point if and only if $\left(\partial f / \partial X_{j}\right)(x)=0$ for all $j=0, \ldots, n$. Conclude that if $x \in X$ is in $U_{i} \cap U_{j}$, then x is a singular point of X_{i} if and only if x is a singular point of X_{j}. Hint: first show that for $f \in k\left[X_{0}, \ldots, X_{n}\right]_{d}$, we have

$$
\sum_{j=0}^{n} X_{j} \cdot\left(\partial f / \partial X_{j}\right)=d \cdot f
$$

so if $f(x)=0$ and $\left(\partial f / \partial X_{j}\right)(x)=0$ for all $j \neq i$, then $x_{i} \cdot\left(\partial f / \partial X_{i}\right)(x)=0$. (b) Take $p \in \mathbb{P}^{n}(k)$ Show that the set of degree d divisors X such that $p \in \operatorname{supp}(X)$ is a singular point of X is a closed subset of $\mathbb{P}^{N_{n, d}}(k)$, in fact, a linear subset, that is, defined by linear homogeneous equations.
(c) Call a divisor X in $\mathbb{P}^{n}(k)$ singular if there is a singular point in $\operatorname{supp}(X)$. Show that the set of singular divisors of degree d in $\mathbb{P}^{n}(k)$ forms a closed subset of $\mathbb{P}^{N_{n, d}}(k)$.
Remark: This set is actually an hypersurface, called the discriminant locus.

