## Homework 6

Please turn these in on Monday, Nov. 30 (in class or in the problem session). You should be prepared to present these problems on the board during the problem session.

1. Let $X$ be an affine algebraic set. Let $Y$ be one of the following algebraic sets: $\mathbb{P}^{n}(k), n \geq 1, \mathbb{P}^{n}(k) \backslash\{[0: \ldots: 0: 1]\}, n \geq 2$. Let $f: Y \rightarrow X$ be a morphism. Show that $f(x)=f(y)$ for all $x, y \in Y$.
2. Let $M$ be an $R$-module, $f_{1}, \ldots, f_{n} \in R$ that generate the unit ideal. We write $M_{i}$ for the localization $M_{f_{i}}, M_{i j}$ for the localization $M_{f_{i} f_{j}}$ and $M_{i j k}$ for the localization $M_{f_{i} f_{j} f_{k}}$. Suppose we have elements $m_{i j} \in M_{i j}$, $1 \leq i, j \leq n$, such that for all triples $(i, j, k), 1 \leq i, j, k \leq n$, we have

$$
\begin{equation*}
x_{j k}-x_{i k}+x_{i j}=0 \tag{*}
\end{equation*}
$$

in $M_{i j k}$. Show there are elements $x_{i} \in M_{i}, i=1, \ldots, n$, such that $x_{i j}=$ $x_{j}-x_{i}, 1 \leq i, j \leq n$. Hint: 1 st note that there is an $N \gg 0$ and $a_{i j} \in M_{i}$ such that the $f_{j}^{N} x_{i j}=a_{i j} / 1$ in $M_{i j}$ and

$$
a_{j k} / 1-a_{i k} / 1+f_{k}^{N} x_{i j}=0
$$

in $M_{i j}$. Then use an argument like in HW 4, problem 4(b).

3 . Let $R$ be a commutative ring, $M$ a flat $R$ module. Let

$$
0 \rightarrow M^{\prime \prime} \rightarrow M^{\prime} \rightarrow M \rightarrow 0
$$

be an exact sequence of $R$-modules, and let $N$ be an $R$-module. Show that

$$
0 \rightarrow M^{\prime \prime} \otimes_{R} N \rightarrow M^{\prime} \otimes_{R} N \rightarrow M \otimes_{R} N \rightarrow 0
$$

is exact. Hint: Let

$$
\cdots \rightarrow F_{2} \rightarrow F_{1} \rightarrow F_{0} \rightarrow N \rightarrow 0
$$

be a free resolution of $N$. Show that

$$
0 \rightarrow M^{\prime \prime} \otimes_{R} F_{n} \rightarrow M^{\prime} \otimes_{R} F_{n} \rightarrow M \otimes_{R} F_{n} \rightarrow 0
$$

is exact for all $n$, and that

$$
\begin{gathered}
\cdots \rightarrow M \otimes_{R} F_{2} \rightarrow M \otimes_{R} F_{1} \rightarrow M \otimes_{R} F_{0} \rightarrow M \otimes_{R} N \rightarrow 0 \\
M^{\prime} \otimes_{R} F_{1} \rightarrow M^{\prime} \otimes_{R} F_{0} \rightarrow M^{\prime} \otimes_{R} N \rightarrow 0
\end{gathered}
$$

and

$$
M^{\prime \prime} \otimes_{R} F_{1} \rightarrow M^{\prime \prime} \otimes_{R} F_{0} \rightarrow M^{\prime \prime} \otimes_{R} N \rightarrow 0
$$

are all exact. Then do a diagram chase on the commutative diagram

4. Let ( $R, \mathfrak{m}$ ) be a noetherian local ring, $M$ a finitely generated $R$-module.
(a) Show that $M$ is a flat $R$-module if and only if $M$ is a free $R$-module. Hint: Let $k=R / \mathfrak{m}$. Lift a $k$-basis of $M \otimes_{R} k$ to generators $m_{1}, \ldots, m_{n}$ for $M$, i.e., a surjection $R^{n} \rightarrow M$, giving the exact sequence

$$
0 \rightarrow N \rightarrow R^{n} \rightarrow M \rightarrow 0
$$

Then use (3) and Nakayama's lemma.
(b) Let $A$ be a noetherian ring, $N$ a finitely generated $A$-module. Show that $N$ is flat if and only if $N$ is projective. Hint: Suppose $M$ is flat. Use (a) to show that there are $f_{1}, \ldots, f_{n}$ in $A$, generating the unit ideal, such that $N_{f_{i}}$ is free for each $i$. Then consider a surjection $\pi: A^{m} \rightarrow N$. Let $N^{\prime}:=\operatorname{ker} \pi$ and consider the $A$-module $H:=\operatorname{Hom}_{A}\left(N, N^{\prime}\right)$. Chose $A_{f_{i}}-$ linear maps $g_{i}: N_{f_{i}} \rightarrow A_{f_{i}}^{m}$ with $\pi \circ g_{i}=\operatorname{Id}_{N_{f_{i}}}$ and let $g_{i j}=g_{j} / 1-g_{i} / 1$ in $\operatorname{Hom}_{A}\left(N_{f_{i} f_{j}}, N_{f_{i} f_{j}}^{\prime}\right)=H_{f_{i} f_{j}}$. Then use (2).
4. Let $S_{n, d}$ be the set of indices $I=\left(i_{0}, \ldots, i_{n}\right) \in \mathbb{N}^{n+1}$ with $\sum_{j} i_{j}=d$, let $N_{n, d}=\# S_{n, d}-1$. (Note that $\# S_{n, d}=\binom{n+2}{d+1}$ ). For $I=\left(i_{0}, \ldots, i_{n}\right) \in S_{n, d}$, let $X^{I}$ denote the monomial $X_{0}^{i_{0}} \cdots X_{n}^{i_{n}}$. Let $\left\{Z_{I} \mid I \in S_{n, d}\right\}$ be a set of variables indexed by $S_{n, d}$, and let $k\left[\ldots Z_{I} \ldots\right]$ be the polyonomial ring on the $Z_{I}$. Let

$$
\phi_{n, d}^{*}: k\left[\ldots Z_{I} \ldots\right] \rightarrow k\left[X_{0}, \ldots, X_{n}\right]
$$

be the $k$-algebra homomorphism with $\phi_{n, d}^{*}\left(Z_{I}\right)=X^{I}$.
(a) Show that $I_{n, d}:=\operatorname{ker} \phi_{n, d}^{*}$ is a homogeneous ideal, and that $\prod_{I_{i}} Z_{I_{i}}-$ $\prod_{J_{j}} Z_{J_{j}}$ is in $I_{n, d}$ if $\sum_{i} I_{i}=\sum_{j} J_{j}$ in $\mathbb{N}^{n}$. Let $X_{n, d}=V^{h}\left(I_{n, d}\right) \subset \mathbb{P}^{N}(k)$.
(b) Let $\phi_{n, d}: \mathbb{P}^{n}(k) \rightarrow \mathbb{P}^{N}(k)$ be the map of sets

$$
\phi_{n, d}\left(\left[x_{0}: \ldots: x_{n}\right]\right)=\left[\ldots: \phi_{n, d}\left(\left[x_{0}: \ldots: x_{n}\right]\right)_{I}: \ldots\right]
$$

with $\phi_{n, d}\left(\left[x_{0}: \ldots: x_{n}\right]\right)_{I}=x^{I}$. Show that $\phi_{n, d}\left(\mathbb{P}^{n}(k)\right) \subset X_{n, d}$ and that $\phi_{n, d}$ is injective (as a map of sets).
(c) Show that the restriction of $\phi_{n, d}$ to $U_{j} \subset \mathbb{P}^{n}(k)$ gives an isomorphism of $U_{j}$ with $X_{n, d} \cap U_{I}$, with $I=\left(i_{0}, \ldots, i_{n}\right), i_{j}=d, i_{\ell}=0$ for $\ell \neq j$. Conclude that $\phi_{n, d}: \mathbb{P}^{n}(k) \rightarrow X_{n, d}$ is an isomorphism of algebraic sets.
(d) Let $f \in k\left[X_{0}, \ldots, X_{n}\right]$ be a homogeneous polynomial of degree $d>0$. Show that the open subset $\mathbb{P}^{n}(k)_{f}$ of $\mathbb{P}^{n}(k)$ is affine. Hint Write $f=$ $\sum_{I \in S_{n, d}} a_{I} X^{I}$, and show that $\mathbb{P}^{n}(k)_{f}$ is isomorphic to $X_{n, d} \backslash V\left(\sum_{I} a_{I} Z_{I}\right)$.
5. Let $X$ and $Y$ be affine algebraic sets. We have defined in class the product $X \times Y$ in algebraic sets, which has as set of points the product of sets $X \times Y$.
(a) for $U \subset X, V \subset Y$ open subsets, show that the subset $U \times V$ of $X \times Y$ is an open subset.
(b) Show by examples that the Zariski topology on $X \times Y$ is strictly finer that the product topology, that is, there is an open subset $W \subset X \times Y$ that is not a union of product open subsets $U \times V, U \subset X, V \subset Y$ open. Hint: consider the case $X=Y=k^{1}$.

