Homework 5

Please turn these in on Monday, Nov. 23 (in class or in the problem session). You should be prepared to present these problems on the board during the problem session.

- 1. Let $X \subset \mathbb{P}^n(k)$ be a closed algebraic subset, $U \subset \mathbb{P}^n(k)$ an open subset and let $i: X \cap U \to U$ be the inclusion. Show that i is a morphism of algebraic sets.
- 2. Let $\pi: k^{n+1} \setminus \{0\} \to \mathbb{P}^n(k)$ be the map of sets, $\pi(x_0, \dots, x_n) = [x_0 : \dots : x_n].$

Show that π is a morphism.

- 3. (a) Let $p=[0:\ldots:0:1]\in\mathbb{P}^{n+1}$ and let $q:\mathbb{P}^{n+1}(k)\setminus\{p\}\to\mathbb{P}^n(k)$ be the map $q([x_0:\ldots,x_{n+1}])=[x_0:\ldots,x_n]$. Show that q is a morphism. (b) Let $f(x_0,\ldots,x_{n+1})\in k[x_0,\ldots,x_{n+1}]$ be a homogeneous polynomial of degree d>0 with $f(0,\ldots,0,1)\neq 0$ (i.e., the coefficient of X_{n+1}^d in f is non-zero). Let $X\subset\mathbb{P}^{n+1}(k)$ be the closed subset $V^h((f))$. Let $q_X:X\to\mathbb{P}^n(k)$ be the restriction of q from (a) to X. Show that q_X is a morphism.
- 4. (a) Show that $\mathcal{O}_{\mathbb{P}^n(k)}(\mathbb{P}^n(k)) = k$ for all $n \geq 0$.
- (b) $\mathcal{O}_{\mathbb{P}^n(k)}(\mathbb{P}^n(k) \setminus \{[0:\ldots:0:1]\}) = k \text{ for all } n \ge 0.$
- (c) Let $F \subset \mathbb{P}^3(k)$ be the closed subset $V^h((X_0, X_1))$. Show that $\mathcal{O}_{\mathbb{P}^3(k)}(\mathbb{P}^3(k) \setminus F) = k$.