Homework 3

Please turn these in on Monday, Nov. 9 (in class or in the problem session). You should be prepared to present these problems on the board during the problem session.

First some background. Recall that a category C is an additive category if

- (i) The Hom sets are abelian groups, and the composition \circ : $\operatorname{Hom}_{\mathcal{C}}(Y, Z) \times \operatorname{Hom}_{\mathcal{C}}(X, Y) \to \operatorname{Hom}_{\mathcal{C}}(X, Z)$ is bilinear.
- (ii) There is an object 0 which is both initial and terminal
- (ii) For objects X and Y of C, a bi-product $X \oplus Y$ exists. This means: there is an object $X \oplus Y$ with morphisms $i_X : X \to X \oplus Y$, $i_Y : Y \to X \oplus Y$, $p_X : X \oplus Y \to X$, $p_Y : X \oplus Y \to Y$ such that $p_X i_X = \operatorname{Id}_X$, $p_Y i_Y = \operatorname{Id}_Y$, $p_Y i_X = 0$, $p_X i_Y = 0$ and $i_X p_X + i_Y p_Y = \operatorname{Id}_{X \oplus Y}$.

Note that this implies that $(X \oplus Y, i_X, i_Y)$ is a categorical co-product and $(X \oplus Y, p_X, p_Y)$ is a categorical product. If \mathcal{C} and \mathcal{D} are additive categories, a functor $F : \mathcal{C} \to \mathcal{D}$ is additive if for each pair of objects in \mathcal{C} , the map on the Hom sets given by F is a group homomorphism. This implies that F is compatible with bi-products.

An additive category $\mathcal C$ is an abelian category if for each morphism $f:X\to Y$, $\ker f$ and $\operatorname{coker} f$ both exist and the canonical morphism $\alpha:\operatorname{coker}(\ker f)\to\ker(\operatorname{coker} f)$ is an isomorphism. Recall that $\ker f$ is really a morphism $i:\ker f\to X$ such that for all objects Z, the sequence

$$0 \to \operatorname{Hom}_{\mathcal{C}}(Z, \ker f) \xrightarrow{i_*} \operatorname{Hom}_{\mathcal{C}}(Z, X) \xrightarrow{f_*} \operatorname{Hom}_{\mathcal{C}}(Z, Y)$$

is an exact sequence of abelian groups, and coker f is really a morphism $j: B \to \operatorname{coker} f$ such that such that for all objects Z, the sequence

$$0 \to \operatorname{Hom}_{\mathcal{C}}(\operatorname{coker} f, Z) \xrightarrow{j^*} \operatorname{Hom}_{\mathcal{C}}(Y, Z) \xrightarrow{f^*} \operatorname{Hom}_{\mathcal{C}}(X, Z)$$

is an exact sequence of abelian groups. Letting $p: X \to \operatorname{coker}(\ker f)$ and $q: \ker(\operatorname{coker} f) \to Y$ be the canonical morphisms, the morphism α is the unique morphism with $q \circ \alpha \circ p = f$.

The morphism $p: X \to \operatorname{coker}(\ker f)$ is called the *co-image* of f and $q: \ker(\operatorname{coker} f) \to Y$ is called the *image* of f (even if α is not an isomorphism).

We fix a topological space T.

- 1. Let \mathcal{C} be an additive category. Show that the category of presheaves $\mathbf{Psh}^{\mathcal{C}}(T)$ is an additive category where:
- (i) for $f,g:P\to Q$ morphisms of presheaves, $f\pm g:P\to Q$ is the morphism with $(f\pm g)_U:P(U)\to Q(U)$ the map $f_U\pm g_U$, for each open $U\subset T$.
- (ii) For presheaves P, Q, the biproduct is given by $(P \oplus Q)(U) := P(U) \oplus Q(U)$. You need to define the restriction maps res_{VU} , the maps i_P, i_Q, p_P, p_Q : these are all induced by the restriction maps for P and Q and the maps $i_{P(U)}, i_{Q(U)}, p_{P(U)}, p_{Q(U)}$ for $U \subset T$ open.
- 2. Show that the sheaf category $\mathbf{Sh}^{\mathcal{C}}(T)$ is an additive subcategory of $\mathbf{Psh}^{\mathcal{C}}(T)$, i.e., the bi-product of sheaves is a sheaf and the initial object 0 is a sheaf.
- 3. Let \mathcal{A} be an abelian category. Show that the presheaf category $\mathbf{Psh}^{\mathcal{C}}(T)$ is an abelian category, where for a morphism $f: P \to Q$ of presheaves, the presheaf kernel $i: \ker^p f \to P$ evaluated at an open $U \subset T$ is the kernel of $f_U: P(U) \to Q(U)$, and similarly for the presheaf cokernel $j: Q \to \operatorname{coker}^p f$.
- 4. Show that the sheaf category $\mathbf{Sh}^{\mathcal{A}}(T)$ is an abelian category, where for $f: P \to Q$
- (i) The sheaf kernel ker f is the presheaf kernel ker f.
- (ii) The sheaf cokernel coker f is the sheafification of the presheaf cokernel coker f.
- *Hint*: For (i) the main point is to show that $ker^p f$ is a sheaf. For (ii) use the universal property of sheafification.
- 5. In this problem we work is the categories of presheaves/sheaves of abelian groups.
- (i) for S a sheaf, $U \subset T$ open, $s \in S(U)$, then s = 0 if and only if $s_x = 0$ in S_x for all $x \in U$.
- (ii) Show that a morphism of sheaves $f: S' \to S$ is zero if and only if $f_x: S'_x \to S_x$ is zero for all $x \in T$. Conclude that a sheaf S is isomorphic to the 0-sheaf if and only if $S_x = 0$ for all $x \in T$.
- the 0-sheaf if and only if $S_x = 0$ for all $x \in T$. (iii) Let $0 \to P' \to P \to P'' \to 0$ be an exact sequence of presheaves. Show that $0 \to P'_x \to P_x \to P''_x \to 0$ is an exact sequence of abelian groups for all $x \in T$
- (iv) If P is a presheaf, $P \to \alpha P$ the sheafification, then $P_x \to (\alpha P)_x$ is an isomorphism for all $x \in T$.
- (v) If $0 \to S' \to S \to S'' \to 0$ is an exact sequence of sheaves, then $0 \to S'_x \to S_x \to S''_x \to 0$ is an exact sequence of abelian groups for all

- $x \in T$. Conclude that a morphism of sheaves $S' \to S$ is a monomorphism/epimorphism/isomorphism if and only if $S'_x \to S_x$ is a monomorphism/epimorphism/isomorphism for all $x \in T$.
- (vi) Show that a sequence of sheaves $P \to Q \to R$ is exact if and only if for all $x \in T$, the sequence of stalks $P_x \to Q_x \to R_x$ is an exact sequence of abelian groups.
- 6. Give an example of an morphism of sheaves of abelian groups on the circle S^1 for which the presheaf cokernel is not a sheaf. Hint: Let \mathcal{C}_{S^1} be the sheaf of continuous real-valued functions on S^1 , $i: \mathbb{Z}_{S^1} \to \mathcal{C}_{S^1}$ the subsheaf of \mathbb{Z} -valued functions. Show that coker i is isomorphic to the sheaf of continuous $S^1 :== \mathbb{R}/\mathbb{Z}$ -valued maps (with group law induced by the addition in S^1). Then try to lift the identity map $S^1 \to S^1$ to an element of $\mathcal{C}_{S^1}(S^1)$.
- 7. Let \mathcal{A} and \mathcal{B} be abelian categories. An additive functor $F: \mathcal{A} \to \mathcal{B}$ is called exact if F preserves kernels and cokernels.
- (i) Give an example of a topological space T such that the inclusion functor $i: \mathbf{Sh^{Ab}}(T) \to \mathbf{Psh^{Ab}}(T)$ is not exact. *Hint*: see problem (6). (ii) Show that the sheafification functor $\alpha: \mathbf{Psh^{Ab}}(T) \to \mathbf{Sh^{Ab}}(T)$ is exact.
- Hint: Use (4).