Homework 2

Please turn these in on Monday, Nov. 2 (in class or in the problem session). You should be prepared to present these problems on the board during the problem session.

Fix an algebraically closed field k.

- 1. Just as for k^n , a hypersurface H in $\mathbb{P}^n(k)$ is defined to be a closed algebraic subset with $I_h(H) = (f)$ for some non-constant homogeneous polynomial $f \in k[x_0, \ldots, x_n]$. The polynomial f is called a defining equation for H.
- (a) Show that a defining equation for a hypersurface H is uniquely determined up to multiplication by a $\lambda \in k^{\times}$.
- (b) Show that a hypersurface H in $\mathbb{P}^n(k)$ is irreducible if and only if its defining equation is an irreducible polynomial, and that each hypersurface is uniquely the union of finitely many irreducible hypersurfaces.
- (c) Let H_1, \ldots, H_r be hypersurfaces in $\mathbb{P}^n(k)$, $r \leq n$. Show that $H_1 \cap \ldots \cap H_r \neq \emptyset$. Hint: If $f_1, \ldots, f_r \in k[x_0, \ldots, x_n]$ are homogeneous polynomials of degree > 0, then $(f_1, \ldots, f_r) \subset (x_0, \ldots, x_n)$. Then use Krull's dimension theorem. Note: You might view this result as a generalization of the well-known theorem in linear algebra: let L_1, \ldots, L_r be linear homogeneous polynomials in x_0, \ldots, x_n with $r \leq n$. Then the system of equations $L_1 = \ldots = L_r = 0$ has a solution $x \neq 0$.
- (d) Let $A \subset \mathbb{P}^n(k)$ be a non-empty closed algebraic subset; $A = V_h(I)$ for some homogeneous ideal $I \subset k[x_0, \dots, x_n]$. Define the dimension of A by

$$\dim A := \dim C(A) - 1$$

where C(A) is the cone, $C(A) := V(I) \subset k^{n+1}$. Suppose that $\dim A > 0$ and let $H \subset \mathbb{P}^n(k)$ be a hypersurface. Show that $A \cap H \neq \emptyset$ and that $\dim A - 1 \leq \dim(A \cap H) \leq \dim A$. Conclude that $A \cap H_1 \cap \ldots \cap H_r \neq \emptyset$ for hypersurfaces H_1, \ldots, H_r if $r \leq \dim A$. Hint: Consider the case of irreducible A.

- 2. Let $S \subset k^n$ be a closed algebraic subset. A closed algebraic subset of S is a subset $S' \subset S$ which as a subset of k^n is a closed algebraic subset of k^n ; an irreducible closed algebraic subset of S is a closed algebraic subset S' of S such that, if $S' = S'_1 \cup S'_2$ with each S'_i a closed algebraic subset of S, then $S' = S'_1$ or $S' = S'_2$.
- (a) Let T be a closed algebraic subset of k^n . Show that $S \cap T$ is a closed algebraic subset of S.
- (b) Show that a closed algebraic subset S' of S is an irreducible closed algebraic subset of S if and only if S' is an irreducible closed algebraic subset of k^n .

(c) Define a bijection

{closed algebraic subsets of S} \leftrightarrow { $J \subset k[S] \mid J$ is a radical ideal} and show that this yields a bijection between the set of irreducible closed algebraic subsets of S and the set of prime ideals in k[S].

- 3. Let $A \subset k^n$ be a non-empty closed algebraic subset and let $f \in k[x_1, \ldots, x_n]$ be a non-zero polynomial.
- (a) Show that there is a closed algebraic subset $A_f \subset k^{n+1}$ and a morphism $f: A_f \to A$ that defines a bijection of A_f with the subset $\{x \in A \mid f(x) \neq 0\}$ of A. Show that $k[A_f]$ is isomorphic to the localization $S_f^{-1}k[A]$, where $S_f = \{f^n \mid n = 0, 1, \ldots\}$. Hint: consider the ideal J in $k[x_1, \ldots, x_{n+1}]$ generated by I(A) and $1 x_{n+1} \cdot t$ and show that $k[x_1, \ldots, x_{n+1}]/J \cong S_f^{-1}k[A]$. (b) Let $A \subset k^n$ and $B \subset k^m$ be closed algebraic subsets and let $F: A \to B$ be a morphism. Let $f \in k[x_1, \ldots, x_n]$ and $g \in k[y_1, \ldots, y_m]$ be non-zero polynomials and let $U := A \setminus V((f))$, $V := B \setminus V((g))$. From (a), we identify U with a closed algebraic subset of k^{n+1} and V with a closed algebraic subset of k^{m+1} . Suppose that F restricts to a map of sets $G: U \to V$. Show that, under the above identifications, G is a morphism.
- 4. Let $C \subset k^2$ be the closed algebraic subset $V((x_2^2 x_1^3))$.
- (a) Show that C is irreducible.
- (b) Show that the pair (x^2, x^3) represents a morphism $f: k^1 \to C$, which, as a map of sets, is a bijection.
- (c) Show that the morphism f in (a) does not admit an inverse morphism $g: C \to k^1$. Hint: Consider the image of f^* .
- (d) From (3), we may consider the subsets $U := k^1 \setminus \{0\}$ and $V := C \setminus \{(0,0)\}$ as closed algebraic subsets (of k^2 and k^3 , respectively), since $\{0\} = V((x))$ and $\{(0,0)\} = V((x_1)) \cap C$. Show that the morphism $f : k^1 \to C$ restricts to a morphism $g : U \to V$, and that g is an isomorphism.